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Semigroups and their topologies arising from
Green’s left quasiorder
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Abstract. Given a semigroup (S, ·), Green’s left quasiorder on S

is given by a ≤ b if a = u · b for some u ∈ S1. We determine which
topological spaces with five or fewer elements arise as the specialization
topology from Green’s left quasiorder for an appropriate semigroup
structure on the set. In the process, we exhibit semigroup structures
that yield general classes of finite topological spaces, as well as general
classes of topological spaces which cannot be derived from semigroup
structures via Green’s left quasiorder.
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1. Introduction

The classification of finite semigroups of small order began over 50 years ago,
with much emphasis on enumerating them with or without the aid of comput-
ers ([4], [11], [10]). Asymptotic results on the number of semigroups are given
in [8], and methods for computing finite semigroups are discussed in [6]. In [2],
Almeida points out that the theory of finite semigroups only developed as an
independent field with its own set of problems and techniques after theoret-
ical computer science provided strong motivation for the development of the
discipline. One link noted in [2] is that the finite semigroups are exactly the
transition semigroups of finite-state automata.

Inherently, computers can only deal with finite spaces, so computer imple-
mentation of the ideas of nearness and convergence require finite, non-Hausdorff
topologies. The study of finite topologies often utilizes the connections with
quasiorders (preorders) established by P. Alexandroff [1], and quasiorders are
now prevalent in computer science (see [5]). Erné and Stege [3] provide an
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excellent foundational account of the enumeration of topologies on small sets
and give an extensive bibliography.

The links between principal topologies and quasiorders via Alexandroff spe-
cialization and between semigroups and quasiorders via Green’s relations are
well-known. While direct links between principal topologies and underlying
semigroups have received less attention, this paper provides a foundational
direct link between finite topologies and semigroups by identifying all topolog-
ical spaces on five or fewer elements that arise from semigroup structures in
this context. With the techniques used, we are able to give general classes of
topological spaces which allow or forbid corresponding semigroup structures.

2. Preliminaries

A quasiorder on a set X is a reflexive transitive relation on X . A quasiorder
≤ on X is a total quasiorder if every pair of elements x, y ∈ X is comparable,
that is, for any x, y ∈ X , either x ≤ y or y ≤ x. A partial order (respectively,
total order) is an antisymmetric quasiorder (respectively, an antisymmetric
total quasiorder).

A topology on a set X is called a principal topology if any arbitrary inter-
section of open sets is open. Observe that in a principal topology on X , every
element x ∈ X has a minimal open neighborhood Mx =

⋂

{U : x ∈ U, Uopen},
and the collection {Mx : x ∈ X} of minimal open neighborhoods forms a basis
for the topology. Note that any finite topology is a principal topology.

Alexandroff showed in [1] that the quasiorders on a set X are equivalent to
the principal topologies on X : If ≤ is a quasiorder on X , then a correspond-
ing topology called the specialization topology on X is obtained by taking the
minimal open neighborhood of x ∈ X to be Mx = {y : y ≤ x}. Conversely, for
a given principal topology on X , we define the specialization quasiorder ≤ on
X by taking y ≤ x if y is contained in every open set containing x. In other
words, y ≤ x if y is contained in the minimal open neighborhood of x, or y ≤ x

if x is in the closure of {y}.
A semigroup (S, ·) is a nonempty set S together with a binary associative

operation · . S is said to have an identity if there exists an element e ∈ S such
that e·s = s·e = s for every s ∈ S. A semigroup is commutative if a·b = b·a for
every a, b ∈ S. A subsemigroup of a semigroup (S, ·) is a subset A of S which
is a semigroup under the operation inherited from S. If S is a semigroup, S1

denotes the semigroup obtained from S by adjoining an identity, if necessary.
That is, S1 = S if S has an identity and S1 = S ∪ {1} with 1 · s = s · 1 = s for
any s ∈ S1 if S has no identity. For a semigroup (S, ·), Green’s left quasiorder
≤L is given by a ≤L b if a = u · b for some u ∈ S1 (see [7]). This quasiorder in
turn corresponds to a principal topology τL on S. Note that the minimal open
sets which form a basis for τL are the principal left ideals S1a = {s ·a : s ∈ S1}
(a ∈ S) for the semigroup S. For a semigroup S and an element x ∈ S, we will
denote the minimal open set of τL containing x by MS

x or, if the underlying
semigroup is clear, by Mx. Hence, MS

x = Mx = S1x, the principal left ideal of
S generated by x, and {MS

x : x ∈ S} is a basis for τL.
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3. General Remarks and Examples

If (S, ·) is a group, then every element is a left multiple of every other element,
namely b = (b · a−1) · a for any a, b ∈ S and hence the only minimal open set is
S itself. It follows that every group structure on S yields the topology τL = τI ,
the indiscrete topology on S. At the same time, a semigroup (S, ·) defined by
a · b = a for any a, b ∈ S also yields the indiscrete topology. So, we see that
many semigroup structures on S may yield the same topological structure on
S. At the other extreme, for τL to be discrete, the minimal left ideals of S all
have to be singleton sets, forcing the only possible semigroup structure yielding
the discrete topology to be a · b = b for any a, b ∈ S.

In view of these examples, it is natural to ask if all topological structures on
a set X can be derived in this fashion from an appropriate semigroup structure
on X , or if not all, which ones can. One of the difficulties in trying to answer
this type question lies in the nature of the relationship between topological
subspaces and subsemigroups as seen in the following example.

Example 3.1. Let S = {0, e11, e12, e21, e22} be the subset of M2(Z2), the set
of 2 × 2 matrices with entries in the integers modulo 2, consisting of the zero
matrix 0 and the indicated basic matrices, where eij denotes the matrix which
has entry 1 in the i-th row and j-th column and zero entries elsewhere. Then S

is a semigroup under matrix multiplication. Furthermore, V = {0, e11, e21} and
W = {0, e11, e22} are subsemigroups of S. The minimal open neighborhoods
of τL on S are easily seen to be MS

0 = {0}, MS
e11

= MS
e21

= {0, e11, e21} and

MS
e12

= MS
e22

= {0, e12, e22} while the minimal open neighborhoods for τL on

V are MV
0 = {0}, MV

e11
= {0, e11, e21}, and MV

e21
= {0, e21}. Finally, the

minimal open neighborhoods of τL on W are MW
0 = {0}, MW

e11
= {0, e11},

and MW
e22

= {0, e22}. The minimal open neighborhoods for S, V , and W are
pictured below.

minimal open sets minimal open sets minimal open sets
for S for V for W

As V is an open set in S but the minimal open neighborhoods of V are
not open sets in S, V is not a topological subspace of S. W is a topological
subspace of S, but not an open subset of S.
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Clearly, for any subsemigroup B of a semigroup A and any x ∈ B, we have
MB

x ⊆ MA
x as all left multiples of x in B are also left multiples of x in A. It

is also easy to see that for a subset B of a semigroup A to be a subsemigroup
of A it is sufficient that B be an open subspace of (A, τL). This condition is
not necessary: W in the example above is not an open subspace of S but is a
subsemigroup of S. Finally we observe that a subsemigroup B of a semigroup
A is a subspace of A if and only if Bb ∪ {b} = (Ab ∪ {b})∩ B for each element
b ∈ B, i.e., minimal open neighborhoods of B are the intersections of the
minimal open neighborhoods of A with B.

4. Bases of Minimal Open Sets and the Quasiorder ≤E

A principal topology on a set X is determined by the basis of minimal open
neighborhoods {Mx : x ∈ X}. Using this basis we can put a total quasiorder
on the elements of a finite topological space and will use this order to construct
all possible such bases for sets having cardinality of less than or equal to five.

The following proposition completely describes when a collection of subsets
of a set X constitutes a basis of minimal open sets for some principal topology
on X .

Proposition 4.1. Let X be a nonempty set and let B = {Bi : i ∈ I} be a

collection of nonempty subsets of X. Then B is a basis consisting of all the

minimal open neighborhoods for some principal topology on X if and only if

(1)
⋃

B = X.

(2) For any subcollection C ⊆ B and x ∈
⋂

C, there exists B ∈ B with

x ∈ B ⊆
⋂

C.

(3) For any B ∈ B, B and B\{B} are not equivalent bases; that is, B\{B}
is either not a basis for any topology on X or does not generate the same

topology as B.

Proof. Since in a principal topology, arbitrary intersections of open sets are
open, the first two conditions are equivalent to the collection B being a basis
for a principal topology. If B is the collection of all minimal open neighborhoods
then B ∈ B is a minimal neighborhood of some x ∈ X . So, there exists no
open set A in B \ {B} such that x ∈ A ⊆ B, i.e., the open set B is not a union
of sets in B \ {B} and hence B \ {B} cannot constitute a basis for a topology
in which B is an open set.

Conversely, suppose conditions 1)–3) hold, and hence B is a basis for some
principal topology τ . Let B ∈ B. If for every x ∈ B, Mx 6= B, where Mx

denotes the minimal neighborhood of x in τ , then B =
⋃

{Mx : x ∈ B}, and
each Mx in turn is a union of elements of B. Hence B\{B} and B are equivalent
bases and condition 3) would be violated. �

It is obvious that two bases B1 and B2 of minimal open neighborhoods for
their respective topologies are equivalent if and only if B1 = B2.

Let E = Πi∈NN0 be the set of all sequences with nonnegative integer terms.
Then E is totally ordered by the lexicographic order and we can obtain a total
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quasiorder on a finite topological space X by associating a sequence q(x) of
E with every element x ∈ X as follows: For a finite topological space X we
define, for any k ∈ N, Pk = {x ∈ X : |Mx| = k} to be the set of all points
in X whose minimal neighborhood has exactly k elements. The collection of
nonempty Pk’s forms a partition of X . Furthermore, for any x ∈ Pt we can
write Mx = {x = x1, x2, . . . , xt} with xi ∈ Pki

and ki+1 ≤ ki for all i. We
associate with x the sequence q(x) = (k1, k2, . . . , kt, 0, 0, . . .) in E, which we
will abbreviate as q(x) = (k1, k2, . . . , kt). Here k1 = t = |Mx|. For x, y ∈ X ,
we define x ≤E y if and only if q(x) ≤ q(y) in the lexicographic order on E.
This gives a total quasiorder ≤E on X .

Let X be a finite topological space with at least two elements and let B be
the basis of minimal open neighborhoods for X . Then X contains a maximum
element m with respect to ≤E and consequently its minimal open set MX

m is
maximal in B with respect to set inclusion. Let Y = X \ {m} be a subspace
of X . To derive a basis of minimal open neighborhoods for Y we have to
consider two cases: If MX

m is the minimal open neighborhood for m only, i.e.,
if MX

m 6= MX
y for any m 6= y, then B \ {MX

m } is a basis of minimal open

neighborhoods for Y . If MX
m = MX

y for some y 6= m, then {MX
x \ {m} :

x ∈ Y } = {B ∈ B : m 6∈ B} ∪ {MX
m \ {m}}, the set of all open minimal

neighborhoods in X with possibly m removed, forms a basis of minimal open
neighborhoods for Y . It follows that X can be obtained from an appropriate
subspace Y with |X | − 1 elements by adding one point m to Y whose minimal
open neighborhood Mm will be maximal among minimal open sets in such
a way that either the minimal open neighborhoods of y ∈ Y ∩ X have not
been changed when passing to X or one minimal open neighborhood in Y that
is maximal among open neighborhoods in Y with respect to set inclusion is
expanded by the added point. For an appropriate Y the added point can be
assumed to be maximal in X with respect to ≤E .

Example 4.2. Let Y = {a1, a2, a3} be the topological space whose basis of
minimal open neighborhoods is shown below. Note that q(a1) = 1 and q(a2) =
(2, 1). The only maximal point with respect to ≤E is a3, with q(a3) = (3, 2, 1).
If X = Y ∪{m} is a topological space which has subspace Y and in which m is
maximal with respect to ≤E , we must have q(m) ≥ q(a3) for the added maximal
point m. This gives three different choices for the minimal open neighborhood
of the added point m. The basis for the three different resulting spaces Xi

(i = 1, 2, 3) are shown below.
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Y with maximal points a3

where q(a3) = (3, 2, 1)

X1 = Y ∪ {m1} with X2 = Y ∪ {m2} with X3 = Y ∪ {m3} with
maximal point m1 maximal point m2 maximal point m3

q(m1) = (3, 2, 1) q(m2) = (4, 3, 2, 1) q(m3) = (4, 4, 2, 1)

We can now inductively construct all possible topologies (up to isomorphism)
on a set X of small cardinality, deriving the topologies on n points from the
topologies on n−1 points by adding a newly-maximal point. We exhibit a basis
of minimal open neighborhoods to determine the topology. In particular, the
table at the end shows all 2- and 3-point topologies listed as #2–13 together
with q(m) for the maximal point m that was added.

Note that two topological spaces X1 and X2 are isomorphic if and only if
there exists a bijection f : X1 → X2 such that f preserves minimal open sets,
i.e., f(MX1

a ) = MX2

f(a) for any a ∈ X1. We easily see that the topologies #1–13

in the table at the end are not isomorphic.
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5. Topologies τL

If a finite semigroup S yields a given topology τL via Green’s left quasiorder,
the basis of minimal open neighborhoods of S gives some information on the
semigroup structure map of S as seen in the following proposition.

Proposition 5.1. Let S be a finite semigroup with topology τL. For elements

x, y ∈ S with x ∈ Pk we have xy ∈ Pt for some t ≤ k. Moreover, for any

x, y ∈ S, q(xy) ≤ q(x).

Proof. Assume Mx = Sx ∪ {x} = {x = x1, x2, . . . , xk} with xi ∈ Pai
such

that a1 ≥ a2 ≥ a3 ≥ · · · ≥ ak and hence q(x) = (k = a1, a2, . . . , ak, 0, 0, . . .).
Then Mxy = Sxy ∪ {xy} = {xy = x1y = y1, x2y = y2, . . . , xky = yk}, and
hence |Mxy| ≤ |Mx|. In general, it follows that |Mxiy| ≤ |Mxi

| and hence
q(xy) ≤ q(x). �

Corollary 5.2. Let S be a finite semigroup with topology τL and basis B
of minimal open neighborhoods of τL. Then all sets in B that are minimal

with respect to set inclusion have the same cardinality. In other words, if

x1, x2, . . . , xk, y1, y2, . . . , yt are elements in S with Mx1
= Mx2

= Mx3
= · · · =

Mxk
= {x1, x2, . . . , xk} and My1

= My2
= My3

= · · · = Myt
= {y1, y2, . . . , yt},

then k = t. Consequently, if the least nonzero coordinate of q(z) is j for some

z ∈ S, then for every x ∈ S, q(x) contains at least j entries equal to j as the

final nonzero entries.

Note that from a semigroup viewpoint this corollary simply states that all
minimal left ideals of a finite semigroup have the same cardinality.

Proof. Under the hypotheses, note that q(x1) = q(x2) = · · · = q(xk) =
(k, k, . . . , k, 0, 0, . . .) and q(y1) = q(y2) = · · · = q(yt) = (t, t, . . . , t, 0, 0, . . .). By
the previous proposition, since x1y1 ∈ My1

, it follows that t ≤ k. Analogously,
y1x1 ∈ Mx1

and hence k ≤ t. Thus, k = t. �

The corollary shows that, in particular, the topology #7 cannot arise from
a semigroup structure via Green’s left quasiorder. As discussed earlier, the
topologies #1, #4, and #13 are obtained by any groups of the appropriate
order and the discrete topologies #2 and #5 are obtained from semigroups
with xy = y for all x, y.

Positive results about building semigroups yielding desired topologies are
given in the following propositions.

Proposition 5.3. Let S be a finite semigroup with topology τL and basis B
of minimal open neighborhoods for τL. For m 6∈ S, let S↑ = S ∪ {m} be a

topological space with basis B↑ = B ∪ {S↑} of minimal open sets. Then this

topology arises from an appropriate semigroup structure on S↑.

Proof. By adding an element m to S which acts as an identity, regardless of
whether S already had an identity, we get the semigroup S↑ = S ∪ {m} with
the desired topology. �
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Applying this proposition to the semigroups with topologies #1, #2, #3,
and #4 will give, respectively, semigroup structures for topologies #3, #8, #10,
and #12. In particular, note that a semigroup for topology #10 arises from
a repeated application of the proposition to the trivial semigroup for topology
#1.

Proposition 5.4. Let S be a finite semigroup with topology τL and basis B
of minimal open neighborhoods for τL. For m 6∈ S, let S↓ = S ∪ {m} be a

topological space with basis B↓ = {B ∪ {m} : B ∈ B}∪ {{m}} of minimal open

sets. Then this topology arises from an appropriate semigroup structure on S↓.

Proof. By adding an element m to S which acts as a zero, regardless of whether
S already had a zero, we get the semigroup S↓ = S ∪ {m} with the desired
topology. �

Applied to the semigroups with topologies #2 and #4, respectively, this
proposition yields a semigroup structure for topologies #9 and #11.

The two previous propositions can be generalized as follows.

Theorem 5.5. Let (Q1, ·1) and (Q2, ·2) be disjoint finite semigroups with

topologies τ1
L and τ2

L having bases B1 and B2 of minimal open neighborhoods,

respectively. Let Q∗ = Q1 ∪ Q2. Then Q∗ is a semigroup with the following

binary operation:

xy =















x ·1 y if x, y ∈ Q1

x ·2 y if x, y ∈ Q2

x if x ∈ Q1 and y ∈ Q2

y if x ∈ Q2 and y ∈ Q1.

The corresponding topology τ∗
L for Q∗ has basis B∗ = B1 ∪ {B ∪ Q1 : B ∈ B2}.

Proof. Observe that with this binary operation the elements of Q1 act as ze-
roes when multiplied by elements of Q2 or equivalently, the elements of Q2

act as ones when multiplied by elements of Q1. Since the product xyz takes
place in Q2 if all elements are in Q2 and otherwise is simply the product of
those elements that are in Q1, the given binary operation does indeed give a
semigroup structure on Q∗ and the resulting topology τ∗

L is easily seen to have
basis B∗. �

We will denote Q∗ constructed in the previous proposition from Q1 and Q2

by Q1 ↑ Q2 and will make considerable use of this construction to verify the
existence of semigroups structures yielding topologies on 4- and 5-point sets.
While Q1 ↑ Q2 will always yield a connected topological space, the following
theorem gives a construction of a disconnected topological space arising from
semigroup structures.
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Theorem 5.6. Let (Q1, ·1) and (Q2, ·2) be disjoint finite semigroups with

topologies τ1
L and τ2

L having bases B1 and B2 of minimal open neighborhoods,

respectively. Assume there exists a semigroup embedding ϕ : Q1 → Q2 that

preserves minimal open neighborhoods, i.e., ϕ(MQ1

s1
) = M

Q2

ϕ(s1)
for all s1 ∈ Q1.

Let Q∗ = Q1 ∪ Q2. Then Q∗ becomes a semigroup when given the following

binary operation:

xy =















x ·1 y if x, y ∈ Q1

x ·2 y if x, y ∈ Q2

ϕ(x) ·2 y if x ∈ Q1 and y ∈ Q2

ϕ−1(x ·2 ϕ(y)) if x ∈ Q2 and y ∈ Q1.

The corresponding topology τ∗
L for Q∗ has basis B1 ∪ B2.

Proof. Observe that by assumption, for y ∈ Q1, the minimal open neighbor-
hood of ϕ(y) lies in ϕ(Q1) and hence for x ∈ Q2, x ·2 ϕ(y) ∈ ϕ(Q1) and thus the
product xy makes sense as defined. For x, y, z ∈ Q∗, by definition the product
xyz can be thought of as taking place in Q2 by identifying any element s ∈ Q1

with its image ϕ(s) in Q2 and mapping the resulting element back into Q1 via
ϕ−1 if and only if z ∈ Q1. This clearly makes the operation associative and
this resulting semigroup structure is easily seen to yield the topology τL with
basis B1 ∪ B2. �

We will denote Q∗ constructed in the previous proposition from semigroups
Q1 and Q2 by Q1 ∪ϕ Q2. Observe that while Q1 ↑ Q2 can be formed from any
given semigroups Q1 and Q2, Q1 ∪ϕ Q2 can only be defined if an appropriate
semigroup embedding ϕ : Q1 → Q2 exists.

If S1 denotes the semigroup on one point and S3 denotes the semigroup
S1 ↑ S1 giving topology #3 (as noted after Proposition 5.3), we see that the
natural embedding

satisfies the conditions of Theorem 5.6 and the resulting semigroup S1 ∪ϕ S3

yields the topology #6.

6. 4-Point Topologies and their Semigroups

We will now denote the earlier suggested semigroup structures yielding the
topologies #1 through #13 by Si for i = 1, 2, . . . , 13 (i 6= 7), respectively. For
example, S1, S4, and S13 are cyclic groups of appropriate order, S2 and S5 are
semigroups of size 2 or 3 with operation xy = y for any x, y, and S3 = S1 ↑ S1,
S11 = S1 ↑ S4, and S6 = S1 ∪ϕ S3 as given in the preceding paragraph.
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The 4-point topologies, #14–46 in the table at the end, are constructed by
adding a newly maximal element m to a 3-point topology. Most of them can
be recognized as arising from some semigroup structure using Theorems 5.5
and 5.6.

We see that only topologies #22 and #35 could not readily be given a
corresponding semigroup structure or be determined as not possibly arising
from such by using Corollary 5.2. The following proposition on semigroup
structures of a general class of topological spaces shows that, in particular,
topologies #22 and #35 do arise from a semigroup structure.

Proposition 6.1. Let X = {ai, bj, ck, dp, eq : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤
m, 1 ≤ p ≤ s, 1 ≤ q ≤ t}. Assume n + r > 0, m + r > 0, s > 0, and t > 0.
Suppose X is a topological space with minimal open neighborhoods Mai

= {ai},
Mbj

= {bj}, Mck
= {ck}, Mdp

= {ai, bj, dp′ : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ p′ ≤ s}
and Meq

= {ai, ck, eq′ : 1 ≤ i ≤ r, 1 ≤ k ≤ m, 1 ≤ q′ ≤ t} as pictured below.

If r ≤ 1 or r ≥ 2 and (m, t) = (n, s), then X arises from a semigroup structure

on X via Green’s left quasiorder.

Observe that for r = 1, m = s = t = 1, and n = 0, we obtain topology #22,
and topology #35 is the case with r = 1, m = n = 0, t = 1, and s = 2.

We will see in Theorem 7.2 that the conditions on r, m, n, s, and t are not
only sufficient, but also necessary.

Proof. First assume r = 0 and define a binary operation on X as follows:

xbj = bjdp = bj all j, p, any x ∈ X

xck = ckeq = ck all k, q, any x ∈ X

dpdu = dp all p, u

eqeu = eq all q, u

eqdp = ckdp = b1 all q, k, p

bjeq = dpeq = c1 all j, q, p.

Once the above definition has been shown to give a semigroup structure on
X , it is easy to see that the topology arising via Green’s left quasiorder has the
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desired basis of minimal open sets. Thus, we will only show that (xy)z = x(yz)
for any x, y, z ∈ X .

If z ∈ {bj, ck : 1 ≤ i ≤ n, 1 ≤ k ≤ m}, then it follows from the definition
that (xy)z = z and that x(yz) = xz = z for any x, y ∈ X . Now assume that
z ∈ {dp, eq : 1 ≤ p ≤ s, 1 ≤ q ≤ t}. By symmetry of the operation defined, we
may assume without loss of generality that z = dp0

for some 1 ≤ p0 ≤ s. We
will consider three cases: 1) y ∈ {eq, ck : 1 ≤ q ≤ t, 1 ≤ k ≤ m}, 2) y ∈ {bj : 1 ≤
j ≤ n}, and 3) y ∈ {dp : 1 ≤ p ≤ s}. In case 1), we have x(ydp0

) = xb1 = b1 as
well as (xy)dp0

= wdp0
for some w ∈ {eq, ck : 1 ≤ q ≤ t, 1 ≤ k ≤ m} and hence

wdp0
= b1. In case 2), y = bj0 for some 1 ≤ j0 ≤ n, so (xbj0)dp0

= bj0dp0
= bj0

and x(bj0dp0
) = xbj0 = bj0 . In case 3), y = dp1

for some 1 ≤ p1 ≤ s and then

x(dp1
dp0

) = xdp1
=

{

b1 if x ∈ {eq, ck : 1 ≤ q ≤ t, 1 ≤ k ≤ m}
x if x ∈ {bj, dp : 1 ≤ j ≤ n, 1 ≤ p ≤ s}

and

(xdp1
)dp0

=

{

b1dp0
= b1 if x ∈ {eq, ck : 1 ≤ q ≤ t, 1 ≤ k ≤ m}

xdp0
= x if x ∈ {bj , dp : 1 ≤ j ≤ n, 1 ≤ p ≤ s}.

Thus, the operation is associative and X is a semigroup under the given oper-
ation.

For r = 1, in the above definition we may identify b1 and c1 and set a1 =
b1 = c1. This is easily seen to be a well-defined operation which gives the
desired semigroup structure.

Now assume r ≥ 2 and (m, t) = (n, s) and define a binary operation on X

as follows:

xbj = bjdp = cjdp = bj all j, p, any x ∈ X

xai = aidp = aieq = ai all i, q, any x ∈ X

xck = ckeq = bkeq = ck all k, q, any x ∈ X

dpdu = epdu = dp all p, u

eqeu = dqeu = eq all q, u.

It is easy to see that the operation yields the desired topology once it has been
shown to be associative. From the definition it is clear that (xy)z = x(yz) for
any x, y ∈ X with z ∈ {ai, bj, ck : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤ m}. So, assume
z ∈ {dp, eq : 1 ≤ p ≤ s, 1 ≤ q ≤ t}. By the symmetry of the operation defined,
we may assume without loss of generality that z = dp0

for some 1 ≤ p0 ≤ s.
We consider four cases for y: 1) y ∈ {bj, ck : 1 ≤ j ≤ n, 1 ≤ k ≤ m}, 2)
y ∈ {ai : 1 ≤ i ≤ r}, 3) y ∈ {dp : 1 ≤ p ≤ s} and 4) y ∈ {eq : 1 ≤ q ≤ t}. In
case 4), y = eq0

for some 1 ≤ q0 ≤ t, so

x(eqo
dp0

) = xdq0
=







x if x ∈ {ai, bj, dp : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ p ≤ s}
bk if x = ck for some k

dq if x = eq for some q
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and

(xeqo
)dp0

=







xdp0
if x ∈ {ai, ck, eq : 1 ≤ i ≤ r, 1 ≤ k ≤ m, 1 ≤ q ≤ t}

cjdp0
if x = bj for some j

epdp0
if x = dp for some p

=























bk if x = ck for some k

dq if x = eq for some q

x if x = ai for some i

x if x = bj for some j

x if x = dp for some p

and hence (xy)z = x(yz) in this case. In the cases 1)–3), associativity can be
verified similarly. So, X is a semigroup with the specified binary operation and
has the desired basis of minimal open sets. �

7. 5-Point Topologies and their Semigroups

When determining which topologies arise from semigroups via Green’s left
quasiorder, the following proposition is useful for constructing semigroups yield-
ing desired topologies from semigroup structures on appropriate open sub-
spaces.

Proposition 7.1. Let X = X1 ∪ X2 be a finite topological space with open

subspaces X1 and X2 such that X1∩X2 = {w}. Assume X1 and X2 arise from

semigroup structures Q1 and Q2, respectively. Then X arises from a semigroup

structure, denoted by Q1 ⊙w Q2.

Proof. Let (Q1, ·1) and (Q2, ·2) be the semigroups yielding the open subspaces
X1 and X2 respectively. Since {w} = X1 ∩X2 is open, we see that Mw = {w}
in both X1 and X2 so that s1 ·1 w = s2 ·2 w = w for all s1 ∈ Q1, s2 ∈ Q2. Let
Q = Q1 ∪ Q2 and define a binary operation on Q as follows:

xy =















x ·1 y if x, y ∈ Q1

x ·2 y if x, y ∈ Q2

w ·2 y if x ∈ Q1 and y ∈ Q2

w ·1 y if x ∈ Q2 and y ∈ Q1.

Observe that this operation is well-defined, i.e., we may consider w ∈ Q1 or
w ∈ Q2 in the definition above and the product will be the same. For example,
for s1 ∈ Q1, when considering w ∈ Q1, we have s1w = s1 ·1 w = w and when
considering w ∈ Q2, we have s1w = w ·2 w = w.

To show that (xy)z = x(yz), we consider 8 cases depending on whether
the three factors are in Q1 or Q2. By associativity in Q1 or Q2, we need not
consider the two cases in which all factors lie in Qi (i = 1 or 2). Now by the
symmetry of the definition, we need only verify the three cases:

(s1s2)s̄2 = (w ·2 s2)s̄2 = (w ·2 s2) ·2 s̄2 = w ·2 (s2 ·2 s̄2) = s1(s2s̄2)

(s2s1)s̄2 = (w ·1 s1)s̄2 = w ·2 s̄2 = (s2 ·2 w) ·2 s̄2

= s2 ·2 (w ·2 s̄2) = s2(w ·2 s̄2) = s2(s1s̄2)
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(s2s̄2)s1 = (s2 ·2 s̄2)s1 = w ·1 s1 = (w ·1 w) ·1 s2

= w ·1 (w ·1 s1) = s2(w ·1 s1) = s2(s̄2s1)

where si, s̄i ∈ Qi for i = 1, 2. This shows that Q is a semigroup under the
given operation. It is easy to see that its corresponding topology has basis
of minimal open neighborhoods being the union of the bases of minimal open
neighborhoods for X1 and X2, as desired. �

As before, for i = 1, 2, . . . , 46, Si will denote the suggested semigroup struc-
ture, if it exists, yielding the topology #i. For example, S22 and S35 will be
the semigroups with operations defined in the proof of Proposition 6.1.

The table at the end lists all 139 5-point topologies (#47–185) as constructed
from a 4-point topology by adding an element m which is newly maximal with
respect to ≤E as described following Proposition 4.1. If for the added element
m, q(m) > q(x) for any x 6= m, then the resulting topology only arises from
the 4-point topology used at this step and will not be duplicated later. If, on
the other hand, q(m) = q(m̄) for some m̄ 6= m, then the same topology may
arise from a possibly different topology by adding m̄, so we will make note of
this and not relist the isomorphic topology as arising from a later considered
4-point topology. It turns out that only topology #78 could arise from two
different 4-point topologies, namely #19 and #20; it will be listed in the table
only among those arising from #19.

We see that only the 7 topologies below could not easily be derived from
semigroup structures using Theorems 5.5 and 5.6 and Propositions 6.1 and 7.1.

#56 #71 #81

#101 #106 #132
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#174

We now give semigroup structures yielding some of these topologies. The
associativity of the indicated operations are easily checked by hand or com-
puter.

Topology #56: Let S3 denote the semigroup {a1, b1} yielding topology #3
with a1 ∈ P1 and let S8 be the semigroup {a2, a3, b2} yielding topology #8 with
a2, a3 ∈ P1. Let S56 = S8 ∪S3 with the product defined as in S3 or S8 between
pairs of elements in S3 or S8, respectively, and taking xy = a1, ya2 = yb2 = a2,
and ya3 = a3 for all x ∈ S8, y ∈ S3.

Topology #81: Let S3 be as above and let S11 = {a2, b2, b3} be the semigroup
yielding topology #11 with a2 ∈ P1. Let S81 = S3 ∪ S11 with the product
defined as in S3 or S11 between pairs of elements in S3 or S11, respectively, and
taking xy = a1 and yx = a2 for all x ∈ S11, y ∈ S3.

Topology #106: Let S25 = {a1, a2, b1, b3} be the semigroup yielding topology
#25 with a1, a2 ∈ P1, b1 ∈ P2, and b3 ∈ P4. Here S25 denotes the semigroup
that was earlier shown to generate topology #25, so S25 = (S′′

1 ∪ϕ (S1 ↑ S′
1)) ↑

S′′′
1 where S1 = {a1}, S

′
1 = {b1}, S

′′
1 = {a2}, and S′′′

1 = {b3} are the trivial
semigroups on one element. Let S106 = S25 ∪ {b2} with product defined as in
S25 between elements in S25 and b2b2 = b2, b2b3 = b2b1 = b2a1 = a1, b2a2 = a2,
a2b2 = b3b2 = a1b2 = a1, and b1b2 = b1.

Topology #174: Let S4 = {a1, a2} and S′
4 = {b1, b2} be cyclic groups of

order two yielding topology #4. Let S44 = S4 ↑ S′
4 be the semigroup associated

with topology #44. Let S174 = S44 ∪ {b3} with product defined as in S44 for
elements in S44 and b3b3 = b3, b3x = a1 and xb3 = a1 for all x ∈ S44.

Topologies #71 and #132 are of the type discussed in Proposition 6.1 for
r ≥ 2. The following theorem will show that these cannot be derived from any
semigroup.

Theorem 7.2. Let X = {ai, bj , ck, dp, eq : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤
m, 1 ≤ p ≤ s, 1 ≤ q ≤ t}. Assume n + r > 0, m + r > 0, s > 0, and t > 0.
Suppose X is a topological space with minimal open neighborhoods Mai

= {ai},
Mbj

= {bj}, Mck
= {ck}, Mdp

= {ai, bj, dp′ : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ p′ ≤ s}
and Meq

= {ai, ck, eq′ : 1 ≤ i ≤ r, 1 ≤ k ≤ m, 1 ≤ q′ ≤ t} as shown in

Proposition 6.1.

X arises from a semigroup structure on X via Green’s left quasiorder if and

only if r ≤ 1 or r ≥ 2 and (m, t) = (n, s).

Proof. In Proposition 6.1 it was shown that a semigroup structure exists if
r ≤ 1 or r ≥ 2 and (m, t) = (n, s). So assume r ≥ 2 and (m, t) 6= (n, s). We
will assume X has an appropriate semigroup structure and when considering
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the two cases 1) m + t 6= n + s and 2) m + t = n + s we will arrive at a
contradiction.

Case 1). By the symmetry of the topological space given we may assume
m + t < n + s. Observe that dp ∈ Pn+r+s and eq ∈ Pm+r+t for any 1 ≤ p ≤
s, 1 ≤ q ≤ t with m + r + t < n + r + s. By Proposition 5.1 it follows that
eqdp ∈ Pu for some u ≤ m+ r+ t < n+ r+s and from eqdp ∈ Mdp

we conclude
that eqdp ∈ P1 for any p and q. Hence x(eqdp) = eqdp for any x ∈ X . In
particular, for q = 1 = p we have e1d1 = x(e1d1) = (xe1)d1 for any x and since
xe1 takes on any value in {ai, ck, eq : 1 ≤ i ≤ r, 1 ≤ k ≤ m, 2 ≤ q ≤ t} ⊆ Me1

,
it follows that aid1 = ckd1 = eqd1 = e1d1 for any i, k, q. Hence

Md1
= {e1d1, dpd1, bjd1 : 1 ≤ p ≤ s, 1 ≤ j ≤ n} ∪ {d1}

contains at most s + n + 2 distinct elements. On the other hand, d1 ∈ Pn+s+r,
so s +n + 2 ≥ n + s + r and we need only consider the case r = 2. Since r = 2,
Md1

contains n + 2 elements of P1 and hence dpd1 ∈ P1 for some 1 ≤ p ≤ s.
Let us say dp0

d1 ∈ P1. But then (xdp0
)d1 = x(dp0

d1) = dp0
d1. Since, for

x ∈ X , xdp0
takes on all values bj , ai, and dp with p 6= p0, it follows that

dp0
d1 = bjd1 = aid1 = dpd1 for all j, i, p. So Md1

contains at most 3 distinct
elements. Since r = 2 it follows that s = 1 and n = 0, which is a contradiction
to 0 < m + t < n + s = 0 + 1.

Case 2). By symmetry of the topological space given with m + t = n + s

and (m, t) 6= (n, s) we may assume that n < m and hence s > t ≥ 1, which,
in particular, implies s ≥ 2. If e1d1 6∈ P1 then e1d1 = dp0

for some p0 ∈
{1, 2, . . . , s}. Observe that by Proposition 5.1, yd1 ∈ P1 for any y ∈ P1 and
thus {(xe1)d1 : x ∈ X} contains at most t elements not in P1 while {xdp0

=
x(e1d1) : x ∈ X} contains s elements not in P1, since s ≥ 2 and thus also dp0

is necessarily a left multiple of itself. It follows that t ≥ s, which contradicts
t < s. Hence e1d1 ∈ P1. Thus (xe1)d1 = x(e1d1) = e1d1 ∈ P1 for all x ∈ X .
Since for x ∈ X , xe1 takes on at least all values ai, ck, eq with q 6= 1, it follows
that e1d1 = (xe1)d1 = aid1 = ckd1 = eqd1 for all i, k, q. So all the left multiples
of d1 are of the form bjd1, dpd1, and e1d1 and thus there are at most n + s + 1
distinct ones. Since s ≥ 2 all n+s+r elements in Md1

are indeed left multiples
of d1 and since r ≥ 2 we have a contradiction. �

The only remaining 5-point topology that has not been resolved is topology
#101. The following proposition will show that no semigroup structure exists
for this topology.

Proposition 7.3. Let X = {a1, a2, b1, b2, b3} be the topological space #101 with

basis of minimal open sets as pictured on page 156. There exists no semigroup

structure on X which yields the topological space X via Green’s left quasiorders.

Proof. If X has a semigroup structure yielding the desired topology, we must
have xa1 = a1, xa2 = a2 for any x ∈ X as well as, by Proposition 5.1, a1b1 =
a2b1 = a1. By Proposition 5.1, b2b3 ∈ {a1, a2, b1}. If b2b3 ∈ {a1, a2} ⊆ P1, it
follows that xb2b3 = b2b3 for all x ∈ X , and since a1 and a2 are left multiples
of b2 we have a1b3 = a2b3 = b2b3. Since both a1 and a2 are left multiples of b3
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it follows that either b3b3 ∈ {a1, a2} or b1b3 ∈ {a1, a2} and it is different from
b2b3. So xb3b3 = b3b3 or xb1b3 = b1b3 for all x ∈ X . In either case since a1

is a left multiple of b3 as well as b1, it follows that a1b3 = b3b3 or a1b3 = b1b3

which equals b2b3. So b3 would have at most two distinct left multiples which
contradicts that b3 ∈ P4. So b2b3 ∈ {a1, a2} is not possible and we only need
to consider the case b2b3 = b1. Since a1 and a2 are left multiples of b2 there
exist x1, x2 in X such that x1b2 = a1 and x2b2 = a2. Thus x1b1 = x1b2b3 =
a1b3 ∈ P1 and hence a1b3 = a1 as well as x2b1 = x2b2b3 = a2b3 ∈ P1 and hence
a2b3 = a1.

Thus a1b3 = a2b3 = a1 and b2b3 = b1. Since a2 is a left multiple of b3 it
follows that b1b3 = a2 or b3b3 = a2. If b1b3 = a2, then (a1b1)b3 = a1b3 = a1

as well as a1(b1b3) = a1a2 = a2, which is impossible. If b3b3 = a2, then
a1(b3b3) = a1a2 = a2 as well as (a1b3)b3 = a1b3 = a1 which also gives a
contradiction. �

TABLE

The nonisomorphic topologies on n points for n = 1, 2, 3, 4, 5 are given by show-
ing the basis of minimal open neighborhoods of each. Each n-point topology
(n > 1) is derived from the (n− 1)-point topology indicated by adding a newly
maximal point m with respect to ≤E . The truncated sequence for q(m) and,
when possible, one possible semigroup structure determining the topology are
given below each basis.
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