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Abstract. Using the concept of pre-open set, we introduce and
study topological properties of pre-limit points, pre-derived sets, pre-
interior and pre-closure of a set, pre-interior points, pre-border, pre-
frontier and pre-exterior. The relations between pre-derived set (resp.
pre-limit point, pre-interior (point), pre-border, pre-frontier, and pre-
exterior) and α-derived set (resp. α-limit point, α-interior (point),
α-border, α-frontier, and α-exterior) are investigated.
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1. Introduction

The notion of α-open set was introduced by Nj̊astad [14]. Since then it has
been widely investigated in several literatures (see [1, 3, 4, 5, 6, 7, 9, 10, 12, 15]).
In [2], Caldas introduced and studied topological properties of α-derived, α-
border, α-frontier, and α-exterior of a set by using the concept of α-open sets.
The notion of pre-open set was introduced by Mashhour et al. [8]. In this paper,
we introduce the notions of pre-limit points, pre-derived sets, pre-interior and
pre-closure of a set, pre-interior points, pre-border, pre-frontier and pre-exterior
by using the concept of pre-open sets, and study their topological properties.
We provide relations between pre-derived set (resp. pre-limit point, pre-interior
(point), pre-border, pre-frontier, and pre-exterior) and α-derived set (resp. α-
limit point, α-interior (point), α-border, α-frontier, and α-exterior).
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2. Preliminaries

Through this paper, (X, T ) and (Y, K ) (simply X and Y ) always mean
topological spaces. A subset A of X is said to be pre-open [11] (respec-
tively, α-open [14] and semi-open [13]) if A ⊂ Int(Cl(A)) (respectively, A ⊂
Int(Cl(Int(A))) and A ⊂ Cl(Int(A))). The complement of a pre-open set (re-
spectively, an α-open set and a semi-open set) is called a pre-closed set (respec-
tively, an α-closed set and a semi-closed set). The intersection of all pre-closed
sets (respectively, α-closed sets and semi-closed sets) containing A is called the
pre-closure (respectively, α-closure and semi-closure) of A, denoted by Clp(A)
(respectively, Clα(A) and Cls(A)). A subset A is also pre-closed (respectively,
α-closed and semi-closed) if and only if A = Clp(A) (respectively, A = Clα(A)
and A = Cls(A)). We denote the family of pre-open sets (respectively, α-
open sets and semi-open sets) of (X, T ) by T p (respectively, T α and T s).
Obviously, we have the following relations.

open set (closed set)

α-open set (α-closed set)

pre-open set

(pre-closed set)

semi-open set

(semi-closed set)

?

�
���

H
HHj

None of these implications is reversible in general.

3. Pre-open sets and α-open sets

Definition 3.1 ([11, 14]). A subset A of X is said to be pre-open (respectively,
α-open) if A ⊆ Int(ClA) (respectively, A ⊆ Int(Cl(IntA))).

The complement of a pre-open set (respectively, an α-open set) is called a
pre-closed set (respectively, an α-closed set).

The intersection of all pre-closed sets (respectively, α-closed sets) containing
A is called the pre-closure (respectively, α-closure) of A, denoted by Clp(A)
(respectively, Clα(A)).

A subset A is also pre-closed (respectively, α-closed) if and only if A =
Clp(A) (respectively, A = Clα(A)). We denote the family of pre-open sets
(respectively, α-open sets) of (X, T ) by T p (respectively, T α).

Example 3.2. Let T = {∅, X, {a}, {c, d}, {a, c, d}} be a topology on X =
{a, b, c, d, e}. Then we have

T
α = T ∪ {{a, b, c, d}, {a, c, d, e}},

T
p = T ∪ {{c}, {d}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, e},

{a, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}}.
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4. Applications of pre-open sets

Definition 4.1. Let A be a subset of a topological space (X, T ). A point
x ∈ X is said to be pre-limit point (resp. α-limit point) of A if it satisfies the
following assertion:

(∀G ∈ T
p( resp. T α)) (x ∈ G ⇒ G ∩ (A \ {x}) 6= ∅).

The set of all pre-limit points (resp. α-limit points) of A is called the pre-

derived set (resp. α-derived set) of A and is denoted by Dp(A) (resp. Dα(A)).
Denote by D(A) the derived set of A.

Note that for a subset A of X, a point x ∈ X is not a pre-limit point of A
if and only if there exists a pre-open set G in X such that

x ∈ G and G ∩ (A \ {x}) = ∅

or, equivalently,

x ∈ G and G ∩ A = ∅ or G ∩ A = {x}

or, equivalently,

x ∈ G and G ∩ A ⊆ {x}.

Example 4.2. Let X = {a, b, c} with topology T = {X, ∅, {a}}. Then we
have the followings:

(i) T p = {X, ∅, {a}, {a, b}, {a, c}} = T α.
(ii) If A = {c}, then D(A) = {b} and Dα(A) = Dp(A) = ∅.
(iii) If B = {a} and C = {b, c}, then Dp(B) = {b, c}, Dp(C) = ∅ and

Dp(B ∪ C) = {b, c}.

Theorem 4.3. If a topology T on a set X contains only ∅, X, and {a} for a

fixed a ∈ X, then T p = T α.

Proof. Let a ∈ X and let A be an element of T p. Then a ∈ A. In fact, if not
then A 6⊆ Int(Cl(A)) = Int({a}c) = ∅. Hence A /∈ T p, a contradiction. Now
since Int(A) = {a}, we have

Int(Cl(Int(A))) = Int(Cl({a})) = Int(X) = X

which contains A, that is, A ∈ T α. Note that T α ⊆ T p. Thus T α = T p. �

Example 4.4. Let X = {a, b, c, d, e} with topology

T = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Then

T
p = {X, ∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, c, d}, {a, c, e}, {a, d, e},

{b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d},

{a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}}
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and

T
α = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d}, {c, d, e},

{a, b, c, d}, {a, c, d, e}, {b, c, d, e}}.

Consider subsets A = {a, b, c} and B = {b, d} of X. Then

D(A) = {b, d, e}, Dp(A) = ∅,
Int(A) = {a}, Intp(A) = A,
Intα(A) = {a}, Clp(A) = A,
Clα(A) = X, Clp(B) = B,
Clα(B) = {b, c, d, e}, Int(B) = ∅,
Intp(B) = B, Intα(B) = ∅.

Example 4.5. Consider a topology

T = {X, ∅, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}

on X = {a, b, c, d, e}. Then

T
p = {X, ∅, {a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, c},

{a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}

{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}}

= T
α.

For subsets A = {c, d, e} and B = {b} of X, we have

D(A) = {c, d} D(B) = {e}.
Dp(A) = ∅ Dp(B) = ∅.
Dα(A) = ∅ Dα(B) = ∅.
Int(A) = ∅ Int(B) = ∅,
Intp(A) = ∅, Intp(B) = ∅,
Intα(A) = ∅, Intα(B) = ∅,
Clp(A) = {c, d, e}, Clp(B) = {b},
Clα(A) = {c, d, e}, Clα(B) = {b},
Clp({b, d}) = {b, d}, Clα({b, d}) = {b, d},
Int({b, d}) = ∅, Intp({b, d}) = ∅,
Intα({b, d}) = ∅.

Lemma 4.6. If there exists a ∈ X such that {a} is the smallest element

of (T \ {∅},⊆), then every non-empty pre-open set contains
⋂
{Gi | Gi ∈

T \ {∅}; i = 1, 2, 3, · · · }.

Proof. If {a} is the smallest element of (T \ {∅},⊆), then
⋂

{Gi | Gi ∈ T \ {∅}; i = 1, 2, 3, · · · } = {a}.

Let A be a non-empty pre-open set in X. If a /∈ A, then Cl(A) ⊆ {a} and so

A * Int(Cl(A)) ⊆ Int({a}c) = ∅

which is a contradiction. Hence a ∈ A, and so the desired result is valid. �
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Theorem 4.7. Let T be a topology on a set X. If there exists a ∈ X such that

{a} is the smallest element of (T \ {∅},⊆), then T α = T p.

Proof. It is sufficient to show that T p ⊆ T α. Let A ∈ T p. If A = ∅, then
clearly A ∈ T α. Assume that A 6= ∅. Then a ∈ A by Lemma 4.6. Since
{a} ⊆ Int(A), it follows that X = Cl({a}) ⊆ Cl(Int(A)) so that

A ⊆ X = Int(X) ⊆ Int(Cl(Int(A))).

Hence A is an α-open set. �

Theorem 4.8. Let T1 and T2 be topologies on X such that T
p

1 ⊆ T
p

2 . For

any subset A of X, every pre-limit point of A with respect to T2 is a pre-limit

point of A with respect to T1.

Proof. Let x be a pre-limit point of A with respect to T2. Then (G∩A)\{x} 6=
∅ for every G ∈ T

p
2 such that x ∈ G. But T

p
1 ⊆ T

p
2 , so, in particular,

(G ∩ A) \ {x} 6= ∅ for every G ∈ T
p

1 such that x ∈ G. Hence x is a pre-limit
point of A with respect to T1. �

The converse of Theorem 4.8 is not true in general as seen in the following
example.

Example 4.9. Consider topologies T1 = {X, ∅, {a}} and

T2 = {X, ∅, {a}, {b, c}, {a, b, c}}

on a set X = {a, b, c, d}. Then

T
p

1 = T1 ∪ {{a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}

and

T
p

2 = T2 ∪ {{b}, {c}, {a, b}, {a, c}, {a, d}, {a, b, d}, {a, c, d}}.

Note that T
p

1 ⊆ T
p

2 and c is a pre-limit point of A = {a, b} with respect to
T1, but it is not a pre-limit point of A with respect to T2.

Lemma 4.10. If {Ai | i ∈ Λ} is a family of pre-open sets in X, then
⋃

i∈Λ

Ai is

a pre-open set in X where Λ is any index set.

Proof. Straightforward. �

In Example 3.2, we see that

{a, b, c, e} ∩ {a, b, d, e} = {a, b, e} /∈ T
p,

which shows that the intersection of two pre-open sets is not pre-open in gen-
eral. Thus we know that for any topology T on a set X, T p may not be a
topology on X.

Proposition 4.11. If I (resp. D) is the indiscrete (resp. discrete) topology

on a set X, then I p (resp. Dp) is a topology on X.

Proof. Straightforward. �
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Theorem 4.12. For any subsets A and B of (X, T ), the following assertions

are valid:

(1) Dp(A) ⊆ Dα(A).
(2) If A ⊆ B, then Dp(A) ⊆ Dp(B).
(3) Dp(A) ∪ Dp(B) ⊆ Dp(A ∪ B) and Dp(A ∩ B) ⊆ Dp(A) ∩ Dp(B).
(4) Dp(Dp(A)) \ A ⊆ Dp(A).
(5) Dp(A ∪ Dp(A)) ⊆ A ∪ Dp(A).

Proof. (1) It suffices to observe that every α-open set is pre-open.
(2) Let x ∈ Dp(A) and let G ∈ T p with x ∈ G. Then (G ∩ A) \ {x} 6= ∅.

Since A ⊆ B, it follows that (G ∩ B) \ {x} 6= ∅ so that x ∈ Dp(B).
(3) Straightforward by (2).
(4) Let x ∈ Dp(Dp(A)) \A and let G ∈ T p with x ∈ G. Then G∩ (Dp(A) \

{x}) 6= ∅. Let y ∈ G ∩ (Dp(A) \ {x}). Then y ∈ G and y ∈ Dp(A), and so
G ∩ (A \ {y}) 6= ∅. If we take z ∈ G ∩ (A \ {y}), then x 6= z because x /∈ A.
Hence (G ∩ A) \ {x} 6= ∅. Therefore x ∈ Dp(A).

(5) Let x ∈ Dp(A ∪ Dp(A)). If x ∈ A, the result is obvious. Assume that
x /∈ A. Then G ∩ ((A ∪ Dp(A)) \ {x}) 6= ∅ for all G ∈ T p with x ∈ G. Hence
(G∩A) \ {x} 6= ∅ or G∩ (Dp(A) \ {x}) 6= ∅. The first case implies x ∈ Dp(A).
If G∩(Dp(A)\{x}) 6= ∅, then x ∈ Dp(Dp(A)). Since x /∈ A, it follows similarly
from (4) that x ∈ Dp(Dp(A)) \ A ⊆ Dp(A). Therefore (5) is valid. �

In general, in Theorem 4.12, the reverse inclusion of (1), (4) and (5), and
the converse of (2) may not be true, and the equality in (3) does not hold as
seen in the following example.

Example 4.13. (1) Consider the topology T on X = {a, b, c, d, e} described
in Example 3.2. For a subset A = {b, c, d} of X, we have Dα(A) = {b, c, d, e}
and Dp(A) = {b, e}. This shows that the reverse inclusion of Theorem 4.12(1)
is not true. Now let X = {a, b, c, d} with a topology

T = {X, ∅, {a}, {d}, {a, b}, {a, d}, {c, d}, {a, b, d}, {a, c, d}}.

Then T p = T . For two subsets A = {a, c} and B = {a, b, d} of X, we get

Dp(A) = {b} ⊆ {b, c} = Dp(B),

but A * B. This shows that the converse of Theorem 4.12(2) is not valid. Now
consider two subsets A = {a, b} and B = {b, c, d} of X in Example 3.2. Then
Dp(A) = {b, e} = Dp(B), and so Dp(A ∩ B) = ∅ ⊆ Dp(A) ∩ Dp(B). Thus the
equality in Theorem 4.12(3) is not valid.

(2) Consider a topology T = {X, ∅, {b, c}, {b, c, d}, {a, b, c}} on X = {a, b, c, d}.
Then

T
p = {X, ∅, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

Let A = {a, b} and B = {a, c} be subsets of X. Then Dp(A) = ∅ = Dp(B), and
so Dp(A) ∪Dp(B) = ∅ ⊂ {a, d} = Dp(A ∪B). For a subset A = {a, b, c} of X,
we have Dp(Dp(A)) = Dp({a, d}) = ∅, Dp(Dp(A)) \A = ∅ ⊆ Dp(A) = {a, d},
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and so the equality in Theorem 4.12(4) is not valid. Now for a subset B = {b, c}
of X, we get Dp(B) = {a, d}, and so B∪Dp(B) = X and Dp(X) = {a, d} ⊆ X.
This shows that Dp(B ∪ Dp(B)) 6= B ∪ Dp(B) = X. Hence the equality in
Theorem 4.12(5) is not valid.

Theorem 4.14. Let A be a subset of X and x ∈ X. Then the following are

equivalent:

(i) (∀G ∈ T p) (x ∈ G ⇒ A ∩ G 6= ∅).
(ii) x ∈ Clp(A).

Proof. (i) ⇒ (ii) If x /∈ Clp(A), then there exists a pre-closed set F such
that A ⊆ F and x /∈ F. Hence X \ F is a pre-open set containing x and
A∩ (X \F ) ⊆ A∩ (X \A) = ∅. This is a contradiction, and hence (ii) is valid.

(ii) ⇒ (i) Straightforward. �

Corollary 4.15. For any subset A of X, we have Dp(A) ⊆ Clp(A).

Proof. Straightforward. �

Theorem 4.16. For any subset A of X, Clp(A) = A ∪ Dp(A).

Proof. Let x ∈ Clp(A). Assume that x /∈ A and let G ∈ T p with x ∈ G. Then
(G∩A) \ {x} 6= ∅, and so x ∈ Dp(A). Hence Clp(A) ⊆ A∪Dp(A). The reverse
inclusion is by A ⊆ Clp(A) and Corollary 4.15. �

Theorem 4.17. Let A and B be subsets of X. If A ∈ T p and T p is a topology

on X, then A ∩ Clp(B) ⊆ Clp(A ∩ B).

Proof. Let x ∈ A∩Clp(B). Then x ∈ A and x ∈ Clp(B) = B∪Dp(B). If x ∈ B,
then x ∈ A ∩ B ⊆ Clp(A ∩ B). If x /∈ B, then x ∈ Dp(B) and so G ∩ B 6= ∅
for all pre-open set G containing x. Since A ∈ T p, G ∩ A is also a pre-open
set containing x. Hence G ∩ (A ∩ B) = (G ∩ A) ∩ B 6= ∅, and consequently
x ∈ Dp(A ∩ B) ⊆ Clp(A ∩ B). Therefore A ∩ Clp(B) ⊆ Clp(A ∩ B). �

Example 4.18. Let T = {X, ∅, {b}, {b, c}, {b, c, d}} be a topology on a set
X = {a, b, c, d}. Then

T
p = {X, ∅, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}

which is a topology on X. Let A = {a, b} and B = {b, c} be subsets of X.
Then A ∩ Clp(B) = {a, b} 6= X = Clp(A ∩ B). This shows that the equality in
Theorem 4.17 is not true in general.

Example 4.19. Consider T and T p which are given in Example 4.13(2).
Note that T p is not a topology on X. For subsets A = {a, b} and B = {b, c}
of X, we have A∩Clp(B) = {a, b} * {b} = Clp(A ∩B). This shows that if T p

is not a topology on X then the result in Theorem 4.17 is not true in general.

Theorem 4.20. Let A and B subsets of X. If A is pre-closed, then

Clp(A ∩ B) ⊆ A ∩ Clp(B).
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Proof. If A is pre-closed, then Clp(A) = A and so

Clp(A ∩ B) ⊆ Clp(A) ∩ Clp(B) = A ∩ Clp(B)

which is the desired result. �

Lemma 4.21. A subset A of X is pre-open if and only if there exists an open

set H in X such that A ⊆ H ⊆ Cl(A).

Proof. Straightforward. �

Lemma 4.22. The intersection of an open set and a pre-open set is a pre-open

set.

Proof. Let A be an open set in X and B a pre-open set in X. Then there exists
an open set G in X such that B ⊆ G ⊆ Cl(B). It follows that

A ∩ B ⊆ A ∩ G ⊆ A ∩ Cl(B) ⊆ Cl(A ∩ B).

Now since A∩G is open, it follows from Lemma 4.21 that A∩B is pre-open. �

Theorem 4.23. Let A and B be subsets of X. If A is open, then

A ∩ Clp(B) ⊆ Clp(A ∩ B).

Proof. It is by Theorem 4.17 and Lemma 4.22. �

Theorem 4.24. If A is a subset of a discrete topological space X, then Dp(A) =
∅.

Proof. Let x be any element of X. Recall that every subset of X is open, and
so pre-open. In particular, the singleton set G := {x} is pre-open. But x ∈ G
and G ∩ A = {x} ∩ A ⊆ {x}. Hence x is not a pre-limit point of A, and so
Dp(A) = ∅. �

Theorem 4.25. For every subset A of X, we have

A is pre-closed if and only if Dp(A) ⊆ A.

Proof. Assume that A is pre-closed. Let x /∈ A, i.e., x ∈ X \ A. Since X \ A is
pre-open, x is not a pre-limit point of A, i.e., x /∈ Dp(A), because (X \A)∩(A\
{x}) = ∅. Hence Dp(A) ⊆ A. The reverse implication is by Theorem 4.16. �

Theorem 4.26. Let A be a subset of X. If F is a pre-closed superset of A,
then Dp(A) ⊆ F.

Proof. By Theorem 4.12(2) and Theorem 4.25, A ⊆ F implies Dp(A) ⊆ Dp(F ) ⊆
F. �

Theorem 4.27. Let A be a subset of X. If a point x ∈ X is a pre-limit point

of A, then x is also a pre-limit point of A \ {x}.

Proof. Straightforward. �
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Definition 4.28 ([2]). Let A be a subset of a topological space X. A point x ∈
X is called an α-interior point of A if there exists an α-open set G containing
x such that G ⊆ A. The set of all α-interior points of A is called the α-interior

of A and is denoted by Intα(A).

Based on the above definition, we give the notion of a pre-interior point.

Definition 4.29. Let A be a subset of a topological space X. A point x ∈ X
is called a pre-interior point of A if there exists a pre-open set G such that
x ∈ G ⊆ A. The set of all pre-interior points of A is called the pre-interior of
A and is denoted by Intp(A).

Example 4.30. Let (X, T ) be a topological space which is given in Exam-
ple 4.4. We know that a is the only pre-interior point of A = {a, b, e}, i.e.,
Intp(A) = {a}.

Theorem 4.31. Let A be a subset of X. Then every α-interior point of A is

a pre-interior point of A, i.e., Intα(A) ⊆ Intp(A).

Proof. If x is an α-interior point of A, then there exists an α-open set G con-
taining x such that G ⊆ A. Since every α-open set is pre-open, it follows that
x is a pre-interior point of A. �

The following example shows that there exists a pre-interior point of A which
is not an α-interior point of A.

Example 4.32. In Example 4.4, Intα(A) = {a} and Intp(A) = {a, b, c}. Hence
b and c are pre-interior points of A. But they are not α-interior points of A.

Proposition 4.33. For subsets A and B of X, the following assertions are

valid.

(1) Intp(A) is the union of all pre-open subsets of A;
(2) A is pre-open if and only if A = Intp(A);
(3) Intp(Intp(A)) = Intp(A);
(4) Intp(A) = A \ Dp(X \ A).
(5) X \ Intp(A) = Clp(X \ A).
(6) X \ Clp(A) = Intp(X \ A).
(7) A ⊆ B ⇒ Intp(A) ⊆ Intp(B).
(8) Intp(A) ∪ Intp(B) ⊆ Intp(A ∪ B).
(9) Intp(A ∩ B) ⊆ Intp(A) ∩ Intp(B).

Proof. (1) Let {Gi | i ∈ Λ} be a collection of all pre-open subsets of A. If
x ∈ Intp(A), then there exists j ∈ Λ such that x ∈ Gj ⊆ A. Hence x ∈

⋃
i∈Λ

Gi,

and so Intp(A) ⊆
⋃

i∈Λ

Gi. On the other hand, if y ∈
⋃

i∈Λ

Gi, then y ∈ Gk ⊆ A for

some k ∈ Λ. Thus y ∈ Intp(A), and
⋃

i∈Λ

Gi ⊆ Intp(A). Accordingly, Intp(A) =
⋃

i∈Λ

Gi.

(2) Straightforward.
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(3) It follows from (1) and (2).
(4) If x ∈ A \Dp(X \A), then x /∈ Dp(X \A) and so there exists a pre-open

set G containing x such that G ∩ (X \ A) = ∅. Thus x ∈ G ⊆ A and hence
x ∈ Intp(A). This shows that A \ Dp(X \ A) ⊆ Intp(A). Now let x ∈ Intp(A).
Since Intp(A) ∈ T p and Intp(A) ∩ (X \ A) = ∅, we have x /∈ Dp(X \ A).
Therefore Intp(A) = A \ Dp(X \ A).

(5) Using (4) and Theorem 4.16, we have

X \ Intp(A) = X \ (A \ Dp(X \ A)) = (X \ A) ∪ Dp(X \ A) = Clp(X \ A).

(6) Using (4) and Theorem 4.16, we get

Intp(X \ A) = (X \ A) \ Dp(A) = X \ (A ∪ Dp(A)) = X \ Clp(A).

(7) Straightforward.
(8) and (9) They are by (7). �

The converse of (7) in Proposition 4.33 is not true in general as seen in the
following example.

Example 4.34. Consider a topological space (X, T ) which is described in
Example 4.4. Let A = {a, b} and B = {a, c, d} be subsets of X. Then Intp(A) =
{a} ⊆ Intp(B) = {a, c, d}.

Definition 4.35 ([2]). For any subset A of X , the set

bα(A) := A \ Intα(A)

is called the α-border of A, and the set

Frα(A) := Clα(A) \ Intα(A)

is called the α-frontier of A.

Definition 4.36. For any subset A of X , the set

bp(A) := A \ Intp(A)

is called the pre-border of A, and the set

Frp(A) := Clp(A) \ Intp(A)

is called the pre-frontier of A.

Note that if A is a pre-closed subset of X, then bp(A) = Frp(A).

Example 4.37. (1) Let (X, T ) be the topological space which is described in
Example 4.4. Let A = {a, b, e} be a subset of X. Then Intp(A) = {a}, and so
bp(A) = {b, e}. Since A = {a, b, e} is pre-closed, Clp(A) = {a, b, e} and thus
Frp(A) = {b, e}.

(2) Consider the topological space (X, T ) which is given in Example 3.2. For
a subset A = {b, c, d} of X, we have Intp(A) = {c, d} and Clp(A) = {b, c, d, e}.
Hence bp(A) = {b} and Frp(A) = {b, e}.
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Proposition 4.38. For a subset A of X, the following statements hold:

(1) bp(A) ⊆ bα(A).
(2) A = Intp(A) ∪ bp(A).
(3) Intp(A) ∩ bp(A) = ∅.
(4) A is a pre-open set if and only if bp(A) = ∅.
(5) bp(Intp(A)) = ∅.
(6) Intp(bp(A)) = ∅.
(7) bp(bp(A)) = bp(A).
(8) bp(A) = A ∩ Clp(X \ A).
(9) bp(A) = A ∩ Dp(X \ A).

Proof. (1) Since Intα(A) ⊆ Intp(A), we have

bp(A) = A \ Intp(A) ⊆ A \ Intα(A) = bα(A).

(2) and (3). Straightforward.
(4) Since Intp(A) ⊆ A, it follows from Proposition 4.33(2) that

A is pre-open ⇔ A = Intp(A) ⇔ bp(A) = A \ Intp(A) = ∅.

(5) Since Intp(A) is pre-open, it follows from (4) that bp(Intp(A)) = ∅.
(6) If x ∈ Intp(bp(A)), then x ∈ bp(A) ⊆ A and x ∈ Intp(A) since Intp(bp(A)) ⊆

Intp(A). Thus x ∈ bp(A) ∩ Intp(A) = ∅, which is a contradiction. Hence
Intp(bp(A)) = ∅.

(7) Using (6), we get

bp(bp(A)) = bp(A) \ Intp(bp(A)) = bp(A).

(8) Using Proposition 4.33(6), we have

bp(A) = A \ Intp(A) = A \ (X \ Clp(X \ A)) = A ∩ Clp(X \ A).

(9) Applying (8) and Theorem 4.16, we have

bp(A) = A ∩ Clp(X \ A) = A ∩ ((X \ A) ∪ Dp(X \ A)) = A ∩ Dp(X \ A).

This completes the proof. �

Lemma 4.39. For a subset A of X,

A is pre-closed if and only if Frp(A) ⊆ A.

Proof. Assume that A is pre-closed. Then

Frp(A) = Clp(A) \ Intp(A) = A \ Intp(A) ⊆ A.

Conversely suppose that Frp(A) ⊆ A. Then Clp(A) \ Intp(A) ⊆ A, and so
Clp(A) ⊆ A since Intp(A) ⊆ A. Noticing that A ⊆ Clp(A), we have A = Clp(A).
Therefore A is pre-closed. �

Theorem 4.40. For a subset A of X, the following assertions are valid:

(1) Frp(A) ⊆ Frα(A).
(2) Clp(A) = Intp(A) ∪ Frp(A).
(3) Intp(A) ∩ Frp(A) = ∅.
(4) bp(A) ⊆ Frp(A).
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(5) Frp(A) = bp(A) ∪ (Dp(A) \ Intp(A)).
(6) A is a pre-open set if and only if Frp(A) = bp(X \ A).
(7) Frp(A) = Clp(A) ∩ Clp(X \ A).
(8) Frp(A) = Frp(X \ A).
(9) Frp(A) is pre-closed.

(10) Frp(Frp(A)) ⊆ Frp(A).
(11) Frp(Intp(A)) ⊆ Frp(A).
(12) Frp(Clp(A)) ⊆ Frp(A).
(13) Intp(A) = A \ Frp(A).

Proof. (1) Since Clp(A) ⊆ Clα(A) and Intα(A) ⊆ Intp(A), it follows that

Frp(A) = Clp(A) \ Intp(A) ⊆ Clα(A) \ Intp(A) ⊆ Clα(A) \ Intα(A) = Frα(A).

(2) Straightforward.
(3) Intp(A) ∩ Frp(A) = Intp(A) ∩ (Clp(A) \ Intp(A)) = ∅.
(4) Since A ⊆ Clp(A), we have

bp(A) = A \ Intp(A) ⊆ Clp(A) \ Intp(A) = Frp(A).

(5) Using Theorem 4.16, we obtain

Frp(A) = Clp(A) \ Intp(A)

= (A ∪ Dp(A)) ∩ (X \ Intp(A))

= (A \ Intp(A)) ∪ (Dp(A) \ Intp(A))

= bp(A) ∪ (Dp(A) \ Intp(A)).

(6) Assume that A is pre-open. Then

Frp(A) = bp(A) ∪ (Dp(A) \ Intp(A))

= ∅ ∪ (Dp(A) \ A)

= Dp(A) \ A

= bp(X \ A)

by using (5), Proposition 4.38(4), Proposition 4.33(2) and Proposition 4.38(9).
Conversely suppose that Frp(A) = bp(X \ A). Then

∅ = Frp(A) \ bp(X \ A)

= (Clp(A) \ Intp(A)) \ ((X \ A) \ Intp(X \ A))

= A \ Intp(A)

by (4) and (5) of Proposition 4.33, and so A ⊆ Intp(A). Since Intp(A) ⊆ A
in general, it follows that Intp(A) = A so from Proposition 4.33(2) that A is
pre-open.

(7) Using Proposition 4.33(5), we have

Clp(A) ∩ Clp(X \ A) = Clp(A) ∩ (X \ Intp(A)) = Clp(A) \ Intp(A) = Frp(A).

(8) It follows from (7).
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(9) we have

Clp(Frp(A)) = Clp(Clp(A) ∩ Clp(X \ A))

⊆ Clp(Clp(A)) ∩ Clp(Clp(X \ A))

= Clp(A) ∩ Clp(X \ A)

= Frp(A).

Obviously Frp(A) ⊆ Clp(Frp(A)), and so Frp(A) = Clp(Frp(A)). Hence Frp(A)
is pre-closed.

(10) This is by (9) and Lemma 4.39.
(11) Using Proposition 4.33(3), we get

Frp(Intp(A)) = Clp(Intp(A)) \ Intp(Intp(A))

⊆ Clp(A) \ Intp(A)

= Frp(A).

(12) We obtain

Frp(Clp(A)) = Clp(Clp(A)) \ Intp(Clp(A))

⊆ Clp(A) \ Intp(A)

= Frp(A).

(13) We get

A \ Frp(A) = A \ (Clp(A) \ Intp(A))

= A ∩ ((X \ Clp(A)) ∪ Intp(A))

= ∅ ∪ (A ∪ Intp(A))

= Intp(A).

This completes the proof. �

The converses of (1) and (4) of Theorem 4.40 are not true in general as seen
in the following example.

Example 4.41. In Example 3.2, let A = {a, b, c}. Then Frp(A) = {e} (
{b, c, d, e} = Frα(A), which shows that the reverse inclusion of Theorem 4.40(1)
is not valid. Also, Example 4.37(2) shows that the reverse inclusion of Theorem
4.40(4) is not valid in general.

Definition 4.42 ([2]). For a subset A of X, Extα(A) = Intα(X \A) is said to
be an α-exterior of A.

Definition 4.43. For a subset A of X, the semi-interior of X \A is called the
pre-exterior of A, and is denoted by Extp(A), that is,

Extp(A) = Intp(X \ A).

Example 4.44. Let (X, T ) be a topological space in Example 4.4. For subsets
A = {a, b, c} and B = {b, d} of X, we have Extp(A) = {d, e} and Extp(B) =
{a, c, e}.
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Theorem 4.45. For subsets A and B of X, the following assertions are valid.

(1) Extα(A) ⊆ Extp(A).
(2) Extp(A) is pre-open.

(3) Extp(A) = X \ Clp(A).
(4) Extp(Extp(A)) = Intp(Clp(A)) ⊇ Intp(A).
(5) A ⊆ B ⇒ Extp(B) ⊆ Extp(A).
(6) Extp(A ∪ B) ⊆ Extp(A) ∩ Extp(B).
(7) Extp(A ∩ B) ⊇ Extp(A) ∪ Extp(B).
(8) Extp(X) = ∅, Extp(∅) = X.
(9) Extp(A) = Extp(X \ Extp(A)).

(10) X = Intp(A) ∪ Extp(A) ∪ Frp(A).

Proof. (1) Using Theorem 4.31, we have

Extα(A) = Intα(X \ A) ⊂ Intp(X \ A) = Extp(A).

(2) It follows from Lemma 4.10 and Proposition 4.33(1).
(3) It is straightforward by Proposition 4.33(6).
(4) Applying (5) and (7) of Proposition 4.33, we get

Extp(Extp(A)) = Extp(Intp(X \ A))

= Intp(X \ Intp(X \ A))

= Intp(Clp(A)) ⊃ Intp(A).

(5) Assume that A ⊂ B. Then

Extp(B) = Intp(X \ B) ⊆ Intp(X \ A) = Extp(A)

by using Proposition 4.33(7).
(6) Applying Proposition 4.33(9), we get

Extp(A ∪ B) = Intp(X \ (A ∪ B))

= Intp((X \ A) ∩ (X \ B))

⊆ Intp(X \ A) ∩ Intp(X \ B)

= Extp(A) ∩ Extp(B).

(7) Using Proposition 4.33(8), we obtain

Extp(A ∩ B) = Intp(X \ (A ∩ B))

= Intp((X \ A) ∪ (X \ B))

⊇ Intp(X \ A) ∪ Intp(X \ B)

= Extp(A) ∪ Extp(B).

(8) Straightforward.
(9) Using Proposition 4.33(3), we have

Extp(X \ Extp(A)) = Extp(X \ Intp(X \ A)) = Intp(X \ A) = Extp(A).

(10) Straightforward. �
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Let (X, T ) be a topological space which is given in Example 4.4. Take
A = {d, e}. Then Extα(A) = {a} and Extp(A) = {a, b, c}. Thus the reverse
inclusion of Theorem 4.45(1) is not valid. Let A = {b, e} and B = {c, d, e}.
Then Extp(B) = {a} ⊆ {a, c, d} = Extp(A). This shows that the converse of
(5) in Theorem 4.45 is not valid. Now let A = {d, e} and B = {c}. Then
Extp(A∪B) = {a} 6= {a, b} = {a, b, c}∩{a, b, d, e} = Extp(A)∩Extp(B) which
shows that the equality in Theorem 4.45(6) is not valid. Finally let A = {a, b}
and B = {c, d, e}. Then Extp(A ∩B) = {a, b, c, d, e} and Extp(A) ∪Extp(B) =
{a, c, d, e}. This shows that the equality in Theorem 4.45(7) is not valid.
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