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ABSTRACT 

The thesis explained here is called the “Effect of Clostridium Toxins on Intestinal Epithelial Cell 
Morphology”. Clostridium difficile is a gram-positive bacterium that causes bowel disorders in 
humans. They enter human body through food and target the intestinal epithelia to gain entry. 
They produce two toxins (Toxin A and Toxin B) that help them gain entry through the intestinal 
epithelial barrier. Caco-2 cells are commonly used as model cell systems to mimic intestinal 
enterocytes. Thus, it is being studied the effect of the clostridium toxins using Caco-2 and mouse 
cecum as intestinal epithelia models.  

The aim of this research is to cross compare these model systems and focus on known pathways 
like the Rho GTPases signaling (from Ingenuity Pathway Analysis software) along with other 
important genes and pathways that affect cell morphology. In this regard, the work line is a 
literature search for genes affected by the effect of Clostridium difficile toxins. Then proceed to 
use R (statistical scripting language) and Bioconductor packages (maSigPro) to understand the 
changes occurring in these genes. 2 different datasets will be handled in total: one time points 
data (mice) and one Caco-2 gene microarray data. 

Comparing the difference in expression of the genes under the effect of the toxins and under 
basal conditions after 2 hours and 6 hours in mice cecum and 4.5 hours in Caco2 have revealed 
the first regulators to be affected after toxins infection. Then, we proceed to relate these 
significant genes to their pathways to see which ones where the most affected. This systems 
approach allowed a broad view of the effect of Clostridium difficile infection in two model 
systems, mice and Caco2. Moreover, the comparison of mice cecum and Caco2 colon-like cells 
showed diverse toxins effects that are a consequence of differences between these systems. 
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RESUMEN 

El trabajo aquí descrito se denomina “Efecto de las toxinas de Clostridium sobre la morfología 
de las células epiteliales intestinales”. Clostridium difficile es una bacteria gram positiva que 
causa trastornos intestinales en humanos. Entran en el cuerpo humano a través de los alimentos 
y se dirigen el epitelio intestinal para invadir los tejidos. Producen dos toxinas (Toxina A y Toxina 
B) que les ayudan a entrar a través de la barrera epitelial intestinal. Las células Caco-2 se usan 
comúnmente como sistemas de células modelo para imitar enterocitos intestinales. Así mismo, 
se está estudiando el efecto de las toxinas de Clostridium usando Caco-2 y ciego de ratón como 
modelos de epitelios intestinales. 

El objetivo de esta investigación es comparar estos sistemas modelo y centrarse en las vías 
conocidas como la ruta de señalización de las Rho GTPasas (mediante Ingenuity Pathway 
Analysis software), junto con otros genes y vías importantes que afecten la morfología celular. 
Respecto a esto, la línea de trabajo consiste en realizar una búsqueda bibliográfica para obtener 
un conjunto de genes que estén afectados por los efectos de las toxinas de Clostridium difficile. 
A continuación, se procederá a utilizar R (lenguaje de escritura estadístico) y paquetes de 
Bioconductor (maSigPro) para comprender los cambios que se producen en estos genes. Se 
manejarán 2 conjuntos de datos diferentes en total: un conjunto de datos de puntos de tiempo 
(ratones) y datos de un microarray de genes de Caco-2. 

Comparando la diferencia en la expresión de los genes bajo el efecto de las toxinas y en 
condiciones basales después de 2 horas y 6 horas en el ciego de ratones y 4,5 horas en Caco2, 
se han obtenido los primeros reguladores afectados por la infección de toxinas. El siguiente paso 
fue relacionar estos genes significativos con sus vías de señalización para ver cuáles son los más 
afectados. Este enfoque de sistemas permitió una visión amplia del efecto de la infección por 
Clostridium difficile en dos sistemas modelo, ratones y Caco-2. Por otra parte, la comparación 
del ciego de ratón con Caco2, que son células similares a las del colon, mostraron diversos 
efectos de las toxinas que son consecuencia de las diferencias entre estos sistemas modelo. 
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1. INTRODUCTION 
1.1. Clostridium difficile  

Clostridium difficile is a gram-positive bacterium that is part of the commensal microbiota of 
some individuals. C. difficile affects the colon because it is an anaerobic bacterium, and it is in 
this part of the intestine where the medium is anaerobic. Moreover, most of the gut microbiota 
is present in the colon, so C. difficile coexist with other species there. This bacterium produces 
spores, which can germinate in presence of glycine and cholate derivatives (Di Bella et al., 2016). 
These compounds are present in the colon but are processed by other bacteria from the 
intestine, preventing germination of C. difficile spores.   

However, after treatment with antibiotics, the microbiota is destabilized, which prevents the 
metabolism of cholate by healthy bacteria and thus, favours Clostridium difficile spores’ 
germination and overgrowth (Burns et al., 2010). Therefore, an increase in the population of C. 
difficile causes inflammation of the colon.  The infection of C. difficile can trigger diarrhoea and, 
most importantly, pseudomembranous colitis. This infection can be treated with certain 
antibiotics that are effective for the bacterium (Moreno et al., 2013).  

Clostridium difficile infection can be detected if an individual shows the following symptoms: 
watery diarrhoea (with several bowel movements a day for 2 or more days which may contain 
blood), fever, loss of appetite, nausea and abdominal pain. If these symptoms remain, C. difficile 
infection can become more serious and produce dehydration, electrolyte imbalances, low blood 
pressure, and even bowel perforation, kidney failure, or ultimately death (Moreno, et al., 2013). 

The pathogenesis elicited by Clostridium difficile depends on two factors: a decrease in 
proportion of the gut microbiota after treatment with antibiotics and production of C. difficile 
toxins (high-molecular-weight toxins A and B) (Longo et al., 2015). 

 

1.2. Clostridium difficile toxins 

Most of Clostridium difficile strains produce two toxins: toxin A (TcdA), which is an enterotoxin, 
and toxin B (TcdB) (cytotoxin), produced by the genes tcdA and tcdB, respectively (Braun et al., 
1996). C. difficile strains have a great genetic variability and are divided according to the types 
of toxins they synthesize, based on genetic variations of tcdA and tcdB genes (Di Bella et al., 
2016). These genes have a multi-modular domain structure called ABCD model (A: biological 
activity; B: binding; C: cutting; D: delivery) (Jank, & Aktories, 2008). The role of each domain is: 

- A domain: corresponds to the N-terminal glucosyltransferase domain (GTD). It acts on the small 
Rho GTPases involved in regulation of the cytoskeleton.  

- B domain, corresponding to the receptor binding domain (RBD), which consists of combined 
repeated oligopeptides (CROPs). 

- C domain: related to the cysteine protease domain (CPD), which promotes the auto-catalytic 
cleavage of the toxins; and the three-helix bundle domain (3HB), so far identified in TcdA. 

- D domain: corresponds to the delivery hydrophobic domain (DD), involved in the translocation 
of the toxins into the cytosol, as well as their binding to target cells. In this DD domain, there is 
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the small globular domain (SGD) in TcdA that corresponds to the minimal pore forming region 
(MPFR) in TcdB, and overlaps only partially to the hydrophobic region (HR) of TcdA and TcdB. 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the multi-modular domain structure (ABCD model) of the genes encoding TcdA and 
TcdB Clostridium difficile toxins. ABDC model: A: biological activity; B: binding; C: cutting; D: delivery 
domains. (Di Bella et al., 2016) 

The synthesis of TcdA and TcdB is controlled by environmental conditions and regulators, as 
nutrient availability, temperature, redox potential, etc. (Bouillaut et al., 2015). Generally, the 
transcription of tcdA and tcdB genes occurs when bacteria enter the stationary phase in which 
there is nutrient limitation or accumulation of growth inhibiting substances. Once expression of 
the toxin genes is induced, the toxin proteins accumulate inside the cell and are slowly released 
over the course of several hours. When reaching the intestine, Clostridium difficile enters a 
vegetative state, begins to spread, and starts to secrete TcdA and TcdB (Rupnik et al., 2009). 
However, the cellular toxicity induced by TcdA and TcdB not only affects intestinal cells, but can 
also cause systemic problems including ascites, pleural effusion, cardiopulmonary arrest, 
hepatic abscess, abdominal compartment syndrome, acute respiratory distress syndrome, and 
renal failure (Di Bella et al., 2016).  

The pathogenic effects of CDI start when both TcdA and TcdB enter the cells and inactivate Rho 
GTPases, producing cytopathic and cytotoxic effects. 
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1.3. Molecular Mechanism of TcdA and TcdB toxins 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Toxins delivery into the host cell cytosol can be divided into seven main steps: (1) toxin binding 
to the host cell surface receptor; (2) toxins internalization through a receptor-mediated endocytosis; (3) 
endosome acidification; (4) pore formation; (5) GTD release from the endosome to the host cell 
cytoplasm; (6) Rho GTPases inactivation by glycosylation; and (7) downstream effects within the host 
cell, i.e., toxins-induced cytopathic and cytotoxic effects.  
Colours represent: GTD: N-terminal glucosyltransferase domain (in red); CPD: cysteine protease domain 
(in cyan); DD: delivery domain (in yellow) (Di Bella et al., 2016). 
 
The first step of Clostridium difficile infection mediated by TcdA and TcdB toxins is the binding 
of the toxins to the cellular surface of the host, and their further endocytosis. TcdA and TcdB are 
uptaken through a clathrin and dynamin-dependent mechanism, as their RBD (binding domain) 
recognizes receptors on the surface of the target cells in the host (Jank, & Aktories, 2008). Each 
toxin has a different surface receptor: Sucrase-isomaltase and the glycoprotein 96 (gp96) are 
related to TcdA; whereas the chondroitin sulfate proteoglycan 4 (CSPG4) and the poliovirus 
receptor-like 3 (PVRL3) are found in TcdB. 

When toxins bind their receptors, they enter the cell through endocytosis. However, this 
endocytic vesicle needs to be more acidic to translocate the toxins to the cytosol. Acidification 
of the complex toxin-receptor allows a conformational change in the toxins, which is necessary 
to expose their hydrophobic regions and thus, facilitate the entrance into the cytosol. Once in 
the cytosol, the toxins carry out an autocatalytic cleavage that releases GTD domain (N-terminal 
glucosyltransferase domain). GTD targets Rho GTPases in the cytosol. 

Rho GTPases are glycosylated by TcdA and TcdB. When Rho proteins become glycosylated they 
are inactivated, promoting the pathogenetic effects of Clostridium difficile infection. As Rho 
GTPases mediate several signal transduction pathways, their glycosylation binds Rho proteins to 
cell membranes irreversibly and prevents Rho-GTPases dependent signalling. In concrete, those 
Rho proteins inactivated by TcdA and TcdB are: RhoA, RhoB, RhoC, RhoG, Rac1, Rac2, Rac3, 

Toxins 2016, 8, 134 
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Cdc42, and TC10 (Papatheodorou, et al. 2010). The inhibition of the interaction between Rho 
proteins and their effectors produced cytopathic and cytotoxic effects (Di Bella et al., 2016).  

The cytopathic effects are observed as morphological changes, as actin cytoskeleton is disrupted 
and thus, it affects tight and adherent junctions, loss of cell-cell contacts, and increased 
epithelial permeability, all of which are probably the cause of diarrhoea (Chen et al., 2015). 
Furthermore, reduced cell adherence causes apoptosis and cell loss, due to limited epithelial cell 
renewal and inhibition of cell proliferation. Consequently, cell cycle progression and actin-
dependent cytokinesis are suppressed. 

Regarding cytotoxic effects, they are the result of RhoA inactivation and upregulation of the pro-
apoptotic early gene product RhoB, involved in the regulation of programmed cell death. The 
cytotoxic effects are also associated with the activation of the inflammasome by the glycosylated 
RhoA, which is probably the cause inflammation and colitis induced by C. difficile (Ng et al., 
2010).   
 
The downstream effects of C. difficile toxins have been analysed through different approaches.  
One approach is through a systems perspective. This way, some experiments investigated the 
transcriptional profile of Clostridium difficile, TcdA and TcdB, host cells and colon of mice under 
the effect of C. difficile toxins. Janvilisri et al. (2010), analyse the transcriptional profile of host 
cells and C. difficile, to understand the host-pathogen interactions, by comparing the changes in 
transcription that occur in Clostridium difficile and human colorectal epithelial Caco-2 cells 
during infection. They found differentially expressed genes that encode molecules potentially 
involved in CDI (Janvilisri et al., 2010).  
 
Another experiment conducted by D'Auria et al. (2012), was particularly interested in the effects 
of TcdA and TcdB in the host. They observed the transcriptional profile of human colonic 
epithelial HCT-8 cells infected with TcdA and TcdB in vitro at 2h, 6h and 24h (D’Auria et al., 2012). 
They found pathways implicated in the impairment of the epithelial barrier, what promotes CDI 
pathogenesis (Kim et al., 2010). The same research group perform a study of the effect of TcdA 
and TcdB in vivo (D’Auria et al., 2013). The idea of the experiment was to analyse the genome-
wide responses after an intracecal injection of toxin into mice over 16-h time course 
(measurements taken at 2h, 6h and 16h) to link cellular and physiological responses. 
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2. AIM 

In this research, the aim was to uncover the initial interactions between Clostridium difficile 
toxins and host cells. Two datasets were used to see the effect of TcdA and TcdB in gene 
expression and physiological changes of the host: the first corresponds to microarray data from 
an intracecal toxin infection in mice (D’Auria et al., 2013), and the second, to human colorectal 
epithelial Caco-2 cells under toxin infection.  

Mice dataset contain data from 2 hours, 6 hours and 16 hours after TcdA, TcdB and TcdAB 
infection. In this experiment, we will use 2h and 6h time-points under TcdAB infection to look 
into the first steps of the infection and the genes and pathways that become affected earlier. 
The idea is to distinguish which genes are differentially expressed at 2h, and if their expression 
is maintained or returns to basal levels at 6h. Thus, we will conduct a gene expression analysis 
of 2h and 6h mice dataset, followed by a pathway analysis that will aid to identify the first 
downstream effects triggered by TcdAB. 

Regarding Caco2 data, these cells were infected with C. difficile toxins for 4.5 hours. The idea is 
to compare their differentially expressed genes, obtained after gene expression analysis, and 
their most significant pathways to the ones obtained in the cecum of mice.  

Comparison of genes and pathways from two different datasets from different organisms (mice 
and human) is expected to provide information about the mechanism of action of the toxins at 
the first moments of the infection and might help in the search for target molecules with a key 
role in the pathogenesis of TcdAB infection. 
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3. MATERIALS AND METHODS 
3.1. Sources of microarray data 

Two data sets were analysed: mice data belonged to the Department of Biomedical Engineering 
and Department of Medicine of the University of Virginia (Charlottesville, Virginia, USA); and 
Caco2 cells to Wageningen Food & Biobased Research of Wageningen University (Wageningen, 
The Netherlands). 

Regarding mice data, they were infected with 20 ng/ml of TcdA and TcdB during 16h (D’Auria et 
al., 2013). Gene expression was measured at 2h, 6h and 16h by hybridizing the mRNA extracted 
from the cecum of mice into Affymetrix mouse genome 430 2.0 GeneChip. The data obtained 
was placed in NCBI Gene Expression Omnibus (GEO) repository under the accession GSE44091 
(Barrett et al., 2013) . 

On the other hand, Caco-2 cells were cultured for 7 days, as by that time Caco2 cells resemble 
colon epithelium, and exposed to Toxin A and Toxin B for 4.5 h. A gene expression analysis to 
obtain the differentially expressed genes in Caco2 was performed in Wageningen Food & 
Biobased Research Centre (Wageningen University) in a former research. This analysis was done 
by the student Architha Ellappalayam, as part of her Master Thesis called “Comparison of HCT8, 
Caco2 and mouse in the light of Clostridium toxin studies”. Thus, in this research the data from 
the gene expression in Caco2 was taken and used for pathway analysis. This means that Caco2 
data will be considered in the pathway analysis, but is not shown in the gene expression analysis. 

 
3.2. Processing of data files 

The first data files processed were those from mice (GSE44091). Using R-scripting language, Cell 
Intensity Files (CEL files) were extracted from GSE44091 data file and raw data was processed. 
Packages taken from Bioconductor aided the procedure. In concrete, the packages “affy” and 
“limma” allow to extract and normalize the data (Gentleman et al., 2004). 

One of the first steps of the analysis, consists in converting the probes from the arrays into 
genes. For this, BrainArray database was used to download mapping files that were provided 
when the raw data was read (using “affy”) (MICROARRAY LAB, 2017). Normalization of the data 
was performed by RMA (Robust Multi-Array Average Analysis) normalization (from “affy”), 
which includes background correction (to remove non-specific signal), between-array 
normalization (to uniformize the data within an experiment) and reporter summarization 
(extract a gene expression value from the probes that target its transcripts). RMA ensures that 
only present, perfect-match (PM) probes are considered, discarding mismatch probes. 

The quality of the raw data before and after normalization was examined by plotting boxplots 
(affyPLM package) (Hahne et al.,2010). Furthermore, hierarchical clustering of the data was 
performed to observe if the groups of samples occur because of type of toxin (TcdA or TcdB) or 
time (2h, 6h, 16h) (or both) (Bell, 2007). Moreover, a Principal Component Analysis aided to 
examine the data already normalized and observe the correlation of the variables in the plot. 

To read the expression data in an easier way, a design matrix was built. For each toxin and time-
point, there were expression values that corresponded to each. With this matrix, we performed 
a pooled t-test using the linear model.  A contrast matrix was then formed by comparing each 
toxin and time-point to its control. This matrix was again fitted to the linear model, and after the 
empirical Bayesian approach was applied to it as well. 
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Differentially expressed genes were considered according to the p-value. A p-value lower than 
0.01 was applied to distinguish differentially-expressed genes. The results were observed with 
volcano plots (fold change vs p-value). In order to avoid false positives as a result of multiple t-
tests, the p-value was adjusted using Benjamin and Hochberg's false discovery rate (FDR). 
However, if the p-value was corrected for mice genes after 2h of toxin exposure, there were no 
differentially expressed genes considered. Therefore, we used raw p-values without adjusting 
for multiple comparisons both for mice genes at 2h and at 6h. We did not consider DE genes at 
16h in this research. Eventually, differentially expressed genes were placed into Excel files. 

3.3.  Gene annotation 

The differentially expressed genes were identified with their Affymetrix ID. They were 
transformed to Entrez Gene ID before they were submitted to DAVID. Entrez Gene is a gene-
specific database from the National Center for Biotechnology Information (NCBI) which contains 
records from completely-sequenced genomes (Maglott et al., 2011). For each gene, Entrez Gene 
forms unique identifiers (GeneID), which are used to integrate information of their 
nomenclature, descriptions, gene-products, etc. 

The genes associated with GeneID were inserted in DAVID.  This is a Database for Annotation, 
Visualization and Integrated Discovery (DAVID) (Huang et al., 2009). The objective is to provide 
functional annotation tools to be aware of the biological meaning of large list of genes. To do 
this, it allows to identify enriched biological terms (like GO terms), cluster related annotation 
genes or visualize them in pathway maps, convert gene identifiers from one type to another, 
etc. 

The list with our differentially expressed genes were placed into the Gene Accession Conversion 
Tool in DAVID, to assign them a DAVID identifier, species to which they belong and a gene name. 
This aided us to check if the genes were indeed from mice (Mus musculus).  

 
3.4.  Orthologue transformation 

The further step was to transform our mice genes into human ones. To do so, we needed a 
database with orthologues. In Ensembl (Aken et al., 2016), a genome browser for vertebrate 
genomes which annotates genes, computes multiple alignments, predicts regulatory function 
and collects disease data, we found the tool BioMart (Smedley et al., 2015). This is an open data 
source management system that provides an interface to biomedical databases from different 
research groups worldwide. 

One of BioMart’s databases is Mouse Genome Informatics (MGI) (Shaw, 2016). It contains 
information about mouse genome features, locations, alleles, and orthologs, hosted by Jackson 
Laboratory, in US. We used MouseMine (Motenko et al., 2015) to access mouse data from MGI, 
as it is a query form from MGI that allows to export data in text files. MouseMine is powered by 
InterMine framework (Smith et al., 2012), which permits the integration and analysis of complex 
biological data from many different biological data sources and formats.  

Using MouseMine, we introduced the list of genes we obtained from DAVID, to create a list in 
this data source. With this list, we searched for the human orthologues of our mice genes via 
HumanMine (Dessimoz et al., 2012), another database from InterMine. HumanMine integrates 
Homo sapiens and Mus musculus genomic data. We obtained a table with the orthologues of 
the mice genes. 
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To check these orthologues from HumanMine, we introduce their primary gene identifier in 
DAVID (as for the mouse genes), to assess if they were human orthologues and if their annotated 
function matches in both databases. We also compare the orthologues with the ones they 
obtained in the research were mice data was taken (D’Auria et al., 2013). 

 

3.5.  Pathway Analysis 

Using all mouse genes under the effect of TcdA and TcdB with their corresponding fold change 
and p-value at 2h and at 6h, we perform a Core Analysis with Ingenuity Pathway Analysis (IPA) 
software from Qiagen (Hilden, Germany). For a detailed description of Ingenuity Pathways 
Analysis, visit https://www.qiagenbioinformatics.com/. This tool analyses, integrates and 
interprets data from ‘omics experiments, including microarrays experiments.  

The idea is to find biological meaning of these large data sets to further identify targets or 
biomarkers involved. To do this, IPA compares the datasets we introduced with the information 
of the Ingenuity Pathway Knowledge Base, a data repository containing biological interactions 
and functional annotations from many databases, to identify model relationships between 
genes, proteins, cells, drugs and diseases. These modelled relationships are manually reviewed 
to increase their accuracy and provide links to their primary literature.  

A key feature of IPA is that it contains full content of information for Human, Mouse and Rat. If 
the data introduced belongs to other species, it is mapped to orthologues of one of these three 
species using HomoloGene (NCBI). HomoloGene is an automated tool from NCBI that identifies 
putative homology groups from annotated gene sets of a wide range of completely sequenced 
eukaryotic genomes. 

The Core Analysis of all mouse genes was done under a p-value threshold of 0.01. The aim of 
the Core Analysis is to identify relationships, functions, mechanisms or pathways significant to 
a dataset. It was based on an expression analysis, based on the expression log ratio.  

The Core Analysis predicted canonical pathways and upstream regulators involved and their 
activation or inhibition state. Although we introduced the differentially expressed mice genes at 
2h and at 6h under the effect of TcdA, TcdB and TcdAB, we will refer only to the results obtained 
under TcdAB effects. The Canonical Pathways check if the molecules of the dataset introduced 
belonged to pre-defined pathways, and if so, predict their activation or inhibition by calculating 
an activity score called z-score. If z-score is positive, a pathway is activated, if it is negative, a 
pathway is suppressed. P-value of the whole pathway is also calculated and we use a pathway 
p-value lower of 0.05 to consider a pathway to be significant. Moreover, in these pathways, 
upstream regulators are involved. After identifying the main regulators affecting the observed 
gene expression changes, a network of these regulators and targets is displayed, to hypothesize 
the effect of these molecules in gene regulatory networks.  

Caco2 cells with their genes, p-values and expression log ratios were already placed in IPA by a 
previous research conducted in the same department. Thus, we directly took the results from 
the Canonical Pathways of the Core Analysis to compare them with the pathways analysed in 
mice. 

 

 



9 

4. RESULTS AND DISCUSSION 
4.1. Gene Expression Analysis 

The first part of the research consisted in a gene expression analysis. Datafiles were processed 
and normalized using R studio. A wide range of functions and images aided us to find the 
differentially expressed genes under TcdAB infection in mice at 2h and at 6h (code in annex). 

The starting point of our data analysis was to perform an RMA normalization (Robust Multi Array 
Average). Considering that an expression analysis was going to be done, normalizing the 
expression values was necessary to ensure a proper comparison between treated and control 
samples. Thus, box plots were made in R studio, both for unnormalized and normalized mice 
samples (Figure 3). 

The raw data (Figure 3) showed a great variability among data samples. This is the result of 
background noise, which affects the quality of the data. After RMA normalization, the variability 
is uniform across the data samples, ensuring a proper removal of the background noise. 

 

Figure 3. Box plots. In A, a representation of the original data without any RMA normalization. In B, 
RMA- normalized data. 

 

4.1.1. Clustering of the data 

Once the 32 mice samples were normalized, the following step was to see how similar they were 
among each other and how they cluster in groups. To do this, a Principal Component Analysis 
(PCA) was performed (Figure 4). The samples corresponded to 3 time-points of toxin exposure 
(2h, 6h and 16h) and 4 types of toxin samples (TcdA, TcdB, TcdAB and Sham). There were some 
replicates: 3 replicates for TcdA (at 2h, 6h, 16h), TcdB (at 2h, 6h,16h), TcdAB (at 2h) and Sham 
(at 2h, 6h); 1 replicate for TcdAB at 6h and 4 replicates for Sham at 16h. The absence of more 
replicates at TcdAB 6h and TcdAB 16h was due to death of the mice during the experiment. 

A B 
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Figure 4. Principal Component Analysis of Mice samples. Each type of toxin is represented in a different 
colour and each time point of exposure to toxin is represented in a different shape. 

From the PCA plot, 3 clusters of samples are observed. Samples corresponding to 2h data and 
Sham and TcdB at 6h are grouped in the middle left part of the plot. This means that in the first 
hours of toxin exposure the difference with control samples is small and not visible in the PCA 
plot. In the top of the plot, TcdA and TcdAB at 6h are together, showing a difference from the 
behaviour of TcdB and Sham at 6h. Regarding, 16h data, the samples are spread in the bottom 
part of the plot, with significant differences among Sham, TcdB and TcdA at 16h. Consequently, 
the higher the time exposed to toxins, the higher the difference between treated and control 
samples, and TcdA seems to have a more significant role than TcdB. 

 

Figure 5. Dendogram representing a Hierarchical Clustering of mice samples.  
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The Hierarchical Clustering (Figure 5) represents similar results with the PCA plot. The first 
cluster from the left contains samples from TcdB and Sham at 2h, 6h and 16h. The second cluster 
(in green) represents 2h data (TcdA, TcdAB and 1 replicate of Sham 2h and TcdB 2h), plus one 
replicate from TcdB 16h and Sham 16h. The following 3 samples (in blue and yellow) are formed 
by TcdA 16h, followed by the last cluster of TcdA and TcdAB at 6h. As seen in the PCA plot, TcdA 
shows a greater difference from control samples than TcdB.  

 

4.1.2. Representation of Differentially Expressed (DE) genes 

During data analysis, the intensity values of the microarray probes, were converted into 
expression values of the genes with their corresponding p-value. Expression values were log2-
converted to embrace more values within a range in expression. From these expression values, 
fold change was calculated, which is a ratio of the expression of a gene under toxin exposure 
divided by the expression in the control sample of the same gene. If the ratio is higher of 1.5 or 
lower of -1.5, the gene considered is upregulated or downregulated, respectively. Regarding the 
p-value, this is a statistical value which calculates the probability that a value is what it is by 
chance. The lower the p-value, the less probable it is a random value and thus, it is more 
significant to the results.  

From this point of the analysis we have only considered the effects of TcdAB in mice at 2h and 
at 6h. To obtain the differentially expressed genes, we considered a fold change of 1.5 and a p-
value lower than 0.01. These restrictions gave 267 DE genes in mice under TcdAB expression at 
2h. DE genes at 2h are represented in a volcano plot (Figure 6).  

 

Figure 6. Volcano plot of DE genes under TcdAB infection in mice for 2h. In blue, DE genes with p-value < 
0.01. Genes in the left part are downregulated, in the right part they are upregulated. 

 

Besides the volcano plot, a heatmap was made with each toxin type and time point compared 
to its control sample. We clustered the 267 DE genes found in mice TcdAB 2h and we compared 
the expression of these 267 genes with the values in the other samples (Figure 7). 
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Figure 7. Heatmap with 267 DE genes (from TcdAB 2h with p-value<0.01) compared to the expression 
values of these genes in the other toxins and time points. 

From the heatmap, there are visible differences among the samples. First, TcdB clusters together 
at the three time points (2h, 6h and 16h) and shows a lower degree of expression than both 
TcdA and TcdAB. TcdA and TcdAB at 2h have similar expression and it is lower than the 
expression of TcdAB at 6h and TcdA at 6h and 16h. These results are consistent with the PCA 
plot (Figure 4) and the dendogram (Figure 5). Again, we see that TcdA and TcdAB have a similar 
expression and it is higher than TcdB. In concrete, our focus is in TcdAB at 2h and at 6h. We 
expect a higher number of DE genes at 6h and thus, more significant changes in the pathways. 
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4.2. Pathways Analysis 

At this point DE genes for mice under TcdAB infection for 2h are known. Thus, the following step 
is to relate these DE genes to their pathways and see in which way they affect the responses 
triggered by the host towards C. difficile toxins. To do so, Ingenuity Pathway Analysis (IPA) 
software was used. Indeed, we performed a Core Analysis, to identify pathways significant to 
our Mice TcdAB 2h dataset considering the expression log ratios of the genes (fold change). From 
this analysis, we checked the most significant canonical pathways and upstream regulators 
involved and their activation or inhibition state. The level of activity of the pathways is measure 
by the z-score, a statistical parameter that predicts if the pathway is activated or suppressed 
considering the expression ratios of their regulators.  

The same procedure was followed to check to which pathways DE genes from TcdAB 6h and 
Caco2 cells (4.5h, 7days) correlate. Therefore, here we introduced DE genes in Caco2 cells in IPA 
to analyse the pathways to which these genes belong. 

 

4.2.1. Number of Significant Pathways 

The first step after the core analysis was to compare the number of canonical pathways with a 
p-value lower than 0.05 for the three datasets (TcdAB 2h, TcdAB 6h and Caco2). The number of 
significant pathways is represented in a Venn’s diagram (Figure 8). 

Figure 8. Venn’s diagram with pathways which p-value < 0.05, for TcdAB 2h, TcdAB 6h and Caco2.  

From Venn’s diagram, the trend observed is that the number of significant pathways increases 
with time (less number in TcdAB 2h, followed by Caco2 4.5h and Mice TcdAB 6h). Moreover, 
almost all pathways in TcdAB 2h are also remarkable in TcdAB 6h (42 out of 48 of TcdAB 2h 
pathways). Among the three datasets, there are 20 pathways that are significant among all 
three. Another interesting fact is that there are 4 pathways in TcdAB 2h and Caco2 4.5h, but not 
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in Mice TcdAB 6h, which could be due to a decrease in their activity at later time points. It is 
noteworthy to mention that the pathways here represented have a p-value lower than 0.05, but 
their z-score (activation score) was not checked yet. Thus, if some pathways have a z-score of 0 
(no change in activity) or their activation score is not known, they will not be considered for our 
further analysis.  

 

4.2.2. Activation State of the Pathways  

Pathways with p-value lower than 0.05 were plotted in a heatmap (Figure 9). The aim of this 
representation was to observe the direction of expression (activation or suppression) of the 
pathways for each dataset.  

 
Figure 9. Heatmap with pathways which p-value<0.05 for TcdAB 2h, TcdAB 6h and Caco2. 

In the heatmap, Mice TcdAB 6h is the dataset with higher number of significant pathways, as 
seen in Venn’s diagram (Figure 8). Most of them are overactivated (in red). On the contrary, 
Mice TcdAB 2h shows the lowest number of relevant pathways, also as appeared in Venn’s 
diagram (Figure 8), but still there are more overactivated than suppressed pathways. However, 
in Caco2, the majority of the pathways are suppressed and follow the opposite direction of 
expression than mice, in which the same pathways are activated. Moreover, some pathways 
appear in black in the three datasets, which means that the activation score (z-score) is 0 or 
unknown. These pathways will not be considered later on. The number of pathways activated 
and suppressed for each dataset are represented in table 1. 



15 

Table 1. Pathways with p-value < 0.05 and a negative (suppressed, in green) or positive (activated, in 
red) z-score for each dataset. 

At this point the number of significant pathways and their direction of activation was known. 
The next step was to analyse the name of the pathways and their z-scores, to check if there are 
pathways that follow the same direction of expression for the three datasets (TcdAB 2h, TcdAB 
6h and Caco2). We represented the z-scores in table 2, but we only mention the pathways with 
a z-score in at least 2 of the 3 datasets. Pathways with a z-score in only one of the samples were 
removed as no comparison with the pathways from the other samples was possible. 

 
Table 2. Pathways with their z-scores in TcdAB 2h, TcdAB 6h and Caco2 are represented. Highlighted 
in yellow are the pathways which follow the same direction of expression (same sign of the z-score) 
in Caco2 and Mice. 

Significant pathways after TcdAB infection z- score 
Caco2 

z- score  
Mice 2h 

z- score 
Mice 6h 

Colorectal Cancer Metastasis Signaling -3.5 1 1.732 
ERK/MAPK Signaling -2.887 0 2.111 
ERK5 Signaling -2.333 0 2.183 
NRF2-mediated Oxidative Stress Response -2.324 1.342 0 
Cardiac Hypertrophy Signaling -2.324 1.633 1.298 
IL-6 Signaling -2.111 1.342 2.777 
HMGB1 Signaling -2.111 2.236 2.401 
ILK Signaling -2.111 0 2.343 
CXCR4 Signaling -2.111 0 1.512 
Cholecystokinin/Gastrin-mediated Signaling -1.941 0 2.711 
p38 MAPK Signaling -1.941 -0.447 2.558 
IL-8 Signaling -1.732 1 2 
NF-ÎºB Signaling -1.732 0.447 0.714 
Production of Nitric Oxide and Reactive 
Oxygen Species in Macrophages 

-1.732 1.633 2.598 

BMP signaling pathway -1.633 0 1.069 
GNRH Signaling -1.508 0.447 0.756 
Acute Phase Response Signaling -1.508 0.816 3.042 
Neuregulin Signaling -1.414 0 0.243 
p53 Signaling -1.414 0 -1.279 
Sumoylation Pathway -1.414 0 2.236 
NGF Signaling -1.414 0 0.87 
GÎ±12/13 Signaling -1.265 1 0.962 
Role of NFAT in Cardiac Hypertrophy -1.155 0 0.707 
LPS/IL-1 Mediated Inhibition of RXR Function -0.905 0 3 
HGF Signaling -0.707 0 1.512 
TGF-Î² Signaling -0.378 0 1.342 
IL-1 Signaling -0.378 0 2.065 
NF-ÎºB Activation by Viruses 0.378 0 2.043 

Num Pathways Mice 2h Mice 6h Caco2 4.5h 
Negative z-score 7 41 80 
Positive z-score 14 123 15 
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TNFR1 Signaling 0.447 0 2.132 
Death Receptor Signaling 0.632 0 1.095 
CD27 Signaling in Lymphocytes 1 0 1.291 
PPAR Signaling 1.414 -2.236 -3.651 
PPARÎ±/RXRÎ± Activation 1.508 -1 -1.183 
Protein Kinase A Signaling 0 -1.633 1.05 
Neurotrophin/TRK Signaling 0 -1 -0.426 
LXR/RXR Activation 0 -1 -2.837 
SAPK/JNK Signaling 0 -1 -0.447 
RANK Signaling in Osteoclasts 0 0.447 1.569 
GÎ±q Signaling 0 0.447 0.18 
PKCÎ¸ Signaling in T Lymphocytes 0 1 2.117 
Integrin Signaling 0 1 2.082 
PI3K Signaling in B Lymphocytes 0 1.342 2.921 
B Cell Receptor Signaling 0 1.342 1.769 
Signaling by Rho Family GTPases 0 2 2.271 

 

There are 44 pathways with a z-score in more than one dataset. From them, only 6 have the 
same direction of expression (sign of the z-score) in Caco2 and Mice under TcdAB infection 
(Table 2, in yellow). This is consistent with the heatmap (Figure 9), in which in Caco2 the majority 
of the pathways were suppressed as opposed to mice. Moreover, most of the pathways are 
related to response to stimuli and stress activities. This makes sense as both Mice and Caco2 
cells are dealing with bacterial toxin infection, so they need to activate pathways which sense 
defence mechanism to overcome the infection. 

After comparing the z-scores for Mice TcdAB 2h, Mice TcdAB 6h and Caco2, we looked into the 
regulators of each of the pathway. The objective was to check if the molecules implicated in the 
pathways were upregulated or downregulated, or both, and if there is a correlation between 
the expression of the regulators of a pathway in the three datasets. In Table 3, the most 
upregulated (in red) and downregulated (in green) molecules are mentioned for each pathway.  

From Table 3, the over and under-expressed regulators for each pathway in TcdAB 2h, TcdAB 6h 
and Caco2 do not show a high degree of similarity. However, the most upregulated gene in Mice 
TcdAB 2h is c-Jun in almost all the pathways, while in Caco2 it is downregulated. C-Jun is a 
transcription factor that activates under stress stimuli. Their responsive genes mediate the 
response triggered by proinflammatory cytokines and other defence responses. A higher 
expression of c-Jun in Mice TcdAB 2h will lead to a higher degree of inflammation than in Caco2, 
in which this transcription factor is suppressed. In Mice TcdAB 6h, c-Jun is not overactivated any 
more, but instead, c-Fos is upregulated at this time point. C-Jun and c-Fos interact in the nucleus 
to form Ap-1 (Activator protein 1) transcription factor, which regulates gene expression under a 
variety of stimuli like cytokines, growth factors, stress and bacterial and viral infections. The 
decrease in expression of c-Jun could be to favour the expression of c-Fos and thus, promote 
Ap-1 transcription of genes. 
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Table 3. Representation of the most activated (in red) and suppressed (in green) molecules for each 
pathway considered in Table 2. Blank spaces refer to z-scores that are 0 for a dataset. 

Significant Pathways after 
TcdAB infection 

DE molecules in Caco2 DE molecules in 
Mice 2h 

DE molecules in Mice  
6h 

Colorectal Cancer Metastasis 
Signaling 

Frizzled, WNT, RAS, KRAS, 
TGFβ, TNFR, IL6R, RHO, c-
JUN, iNOS, PTGER 

 TNFα, IL6, c-Fos, TLR, 
MLH1, RRβ, Gγ, PKA, 
PI3K, LRP, Frizzled 

ERK/MAPK Signaling CAS, RAS, Integrin, MKP, 
CREB 

 c-Fos, PKA, PI3K, 
PP1/PP2A, VRK2, BAD, 
CREB 

ERK5 Signaling LIF, RAS, Gα12/13, CREB, 
14-3-3 

 c-Fos, FRA-1, 14-3-3, 
BAD, MEK5, CREB 

NRF2-mediated Oxidative 
Stress Response 

PERK, ERK, Jun, Small MAP, 
CBP/p300, HSP22/40/90 

PERK, HSP22/40/90, 
ASK1 

FRA1, PKC, PI3K, CAT, 
CBP/p300, HSP22/40/90 

Cardiac Hypertrophy Signaling c-Jun, TGFβ, IL6R, RAS, 
RHO 

 IL6, ADRα, Gγ, Gα, PI3K, 
AC, PKA, Gaq11 

IL-6 Signaling IL6R, TNFR, IL1R, c-Jun SOCS3, C-Jun TNFα, IL6, SOCS3, NF-
IL6, c-Fos, CD14, IL1, c-
Raf 

HMGB1 Signaling c-JUN, RHO, RAS, TNFR1, 
IL1R 

c-JUN, TPA c-Fos, TNFα, ICAM1, 
TPA, PI3K, HAT 

ILK Signaling Rac, TNFR, c-JUN, iNOS, 
BMP2, RHO 

 c-Fos, TNFα, TNFR, 
HIF1α, PP2, PI3K, BMP2 

CXCR4 Signaling c-JUN, RHO, RAS, AC, Gα  c-FOS, EGR1, Gγ, Gα, 
PI3K, PKC, AC 

Cholecystokinin/Gastrin-
mediated Signaling 

c-JUN, RHO, RAS  c-Fos, TNFα, ICER, IL1, 
PKC, c-RAF 

p38 MAPK Signaling TGFβ, IL1R, TNFR/Fas, 
MKP1/5, MKK6 

MSK1, MKP1/5, 
TNFR/Fas 

TIFA, p38 MAPKβ, 
MKK3, TNFR/Fas, MAX, 
FADD, IL1 

IL-8 Signaling CXCL1, Rho, AP-1, pro-HB-
EGF 

 pro-HB-EGF, ICAM-1, 
Gγ, PKC, PI3K, PLD, 
RAB11FIP2 

NF-IkB Signaling BMP2/4, RAS, IL1R/TLR, 
TNFR 

 TNFα, A20, BMP2/4, 
BAFF, PI3K, IL1, 
IL1R/TLR, PKCζ, IKK, 
FADD 

Production of Nitric Oxide and 
Reactive Oxygen Species in 
Macrophages 

TNFR, Rho, AP1, iNOS Rho, TNFR, AP1, 
MEKK 

TNFα, TNFR, PPARα, 
CAT, PKC, PP1, 
PP2a/PP2a, PI3K 

BMP signaling pathway BMP, Ras, JUN JUN, PITX2 PITX2, BMP, c-Raf, CBP, 
PKA 

GNRH Signaling EGR1, c-Jun c-Jun EGR-1, c-Fos, Gaq/11, 
PKC 

Acute Phase Response 
Signaling 

c-Jun, FGA, FGB, IL6R, IL1R, 
TNFR, Ras 
 

Ask, SOCS3, c-Jun 
 

TNFα, IL6, c-Fos, HP, NF-
IL6, SOCS3, IKBα, IL1, 
ECSIT, AMBP, GCR, c-Raf 

Neuregulin Signaling  EGFR ligand, ERBB4 
ligand, GRB7, Ralt, 
Ras 

Ralt, ERBB2, PI3K p85, 
PKC, Erbin 

p53 Signaling c-Jun, p300, Teap, NOXA  HIF1A, TRIM29, Apaf1, 
Teap, SIRT, p300, PI3K 

Sumoylation Pathway c-Myb, RhoGDI, Rho, Ap1 MDM2, Ask1 IKBα, c-Myb, Sirt1, GR 
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NGF Signaling TRAF4, PKCδ, ERK5 NGF, MEKK PI3K, PKCζ, TrkA 

GÎ±12/13 Signaling IKK, PAR, RAS, C-JUN  IKB, LPAR, VAV, PI3K 

Role of NFAT in Cardiac 
Hypertrophy 

AKAP5, TGFβ, RAS, LIF  IL6, Na+/Ca2+ exchanger, 
PKC, Gγ, PI3K, HDAC 

LPS/IL-1 Mediated Inhibition of 
RXR Function 

CYP2A, c-Jun, TNFR  TNFα, CD14, PPAR, PGC-
1α, PGC-1β, LRH-1, CAT, 
RMO, FATP 

HGF Signaling c-Fos, c-Jun c-Jun, c-Fos, MEKK IL6, c-Fos, PKC, PI3K 
TGF-β Signaling c-Jun, AP-1, BMR2/4/7, 

TGFβ 
 TMEPAI, BMR2/4/7, 

Type I Receptor, Type II 
Receptor, VDR, IRF7, 
PITX2 

IL-1 Signaling c-Jun, IL1R1, Gα, AC  c-Fos, Gγ, Gα, AC, PKA 
NF-IkB Activation by Viruses IKK, MEKK1, RAS, PKC  IkB, NF-kB, PI3K, PKC, 

IKK, c-RAF 
TNFR1 Signaling TNFR1, c-Jun 

 
c-Jun, A20 TNFα, A20, APAF, c-Fos, 

RAIDD, FADD, IKK, cIAP 
Death Receptor Signaling TL1, TNFR1 

 
 TNFα, TNFR1, TNFR2, 

APAF, FADD, RAIDD, 
PARP 

CD27 Signaling in Lymphocytes c-Jun c-JUN, MEKK c-Fos, APAF 
PPAR Signaling c-JUN, RAS, TNFR1, IL1, 

NCOA, NR0B2 
c-JUN TNFα, c-Fos, PPARα, 

NCOA 
 

PPARα/RXRα Activation MKK3/6, IKK, MEF2C, c-
JUN, IGFβ, AC, RAS, IL1R, 
NR0B2, BCL3 

 BCL3, IL6, IkBα, PPARα, 
PGC-1, Gαq 

Protein Kinase A Signaling  PTP, PDE, PYG TGFBR2, SMAD3, CREM, 
14-3-3, Troponin I, 
Adducin, MLCK, PP1, 
PKC, PDE, PKA, AC, Hh, 
Gγ, PLC 

Neurotrophin/TRK Signaling  c-JUN, ASK1, 
Neurotrophin 

c-FOS, PI3K 
 

LXR/RXR Activation  LDLR, IDOL TNFα, CD14, IL6, TLR3, 
IL1, ACC 

SAPK/JNK Signaling  c-JUN, DUSP8, ASK1 GADD45, DUSP8, PI3K, 
Gβγ, GCKs, FADD 

RANK Signaling in Osteoclasts  c-Jun, MEKK, c-CbI c-Fos, IKK, PI3K, c-Raf 
Gαq Signaling  PLD Gαq, Gγ, IKK, PI3K, c-

Raf, PKC, PLD 
PKCÎ¸ Signaling in T 
Lymphocytes 

 c-Jun, MEKK c-FOS, VAV, PI3K, IKK 

Integrin Signaling  AND-34 ACK, ZYX, TSPAN, PI3K, 
MLCK, RAP, c-RAF 

PI3K Signaling in B 
Lymphocytes 

 c-JUN, CBL, BLK C3, IL4R, c-FOS, VAV, 
aPKC, IKK. 
 

B Cell Receptor Signaling  c-Jun, MEKK EGR1, PI3K, VAV, RAP 
Signaling by Rho Family 
GTPases 

 c-Jun c-Fos, Gα, Gγ, MLCK, 
PAR6, aPKC, PI3K 
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4.2.3. Analysis of the Pathways  

At this point we analysed the information of all pathways present in TcdAB 2h, TcdAB 6h and 
Caco2 in a broad sense. We know the number and the name of the pathways implicated at each 
time point and the most DE regulators. Therefore, the next step is to look thoroughly into the 
most remarkable pathways for each dataset. To do this, we are going to separate the analysis in 
two parts: 

- First part: Compare the level of activation in the pathways between Mice at 2h and Mice at 6h 
under TcdAB infection. 

- Second part: Compare the level of activation in the pathways between Mice (2h and 6h) and 
Caco2 cells under TcdAB infection. 

The objectives of dividing the analysis in two parts are to determine differences in time of the 
activation of the regulators in the pathways (Mice data at 2h and at 6h, first part), and to cross-
compare the effect of the toxins in samples from different model systems (mice and Caco2, 
second part). 

 

4.2.3.1. Comparison of Mice Datasets under Toxins’ Effect 

In order to compare the activation of the pathways between Mice TcdAB 2h and Mice TcdAB 6h, 
we have to consider the pathways which are activated or suppressed in both datasets (absolute 
z-score > 0). Considering Table 2, in which there are 44 pathways that contain a significant z-
score in two of the three samples, there are 24 pathways with z-score in Mice TcdAB 2h and 
Mice TcdAB 6h. They are plotted in a heatmap (Figure 10) to observe the direction of activation. 

 

Figure 10. Heatmap with pathways which p-value<0.05 and |z-score| > 0 for TcdAB 2h and TcdAB 
6h in mice. 
 
The trend visualized in the heatmap is that in Mice under TcdAB infection for 6h, the 
activation or the suppression of the pathways is more remarkable than at 2h. Thus, although 
the pathways plotted are significant in both datasets, we expect a higher effect in the 
regulators of the pathways at 6h than at 2h. This is consistent with the heatmap in Figure 9. 
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Regarding we analysed all of the 24 pathways in both mice 2h and 6h, we are going to limit 
the explanation to the most significant pathways (Figure 11). 
 

 
Figure 11. Graph of the pathways with higher z-score (in absolute value) in Mice TcdAB 2h and Mice 
TcdAB 6h vs their activation z-score. 

From the figure, we can conclude that the suppressed pathways (“PPAR Signalling” and 
“cAMP-mediated Signaling”) are similar in Mice TcdAB at 2h and at 6h, but the most 
activated pathways differ. In fact, the most activated pathways in Mice TcdAB 2h (“HMGB1 
Signaling” and “Signaling by Rho Family GTPases”) retain almost the same level of expression 
in Mice TcdAB 6h, but the most activated in Mice 6h (“Acute Phase Response Signalling” and 
“LPS/IL-1 Mediated Inhibition of RXR Function”) were fairly or not activated at 2h.  

“PPAR Signalling” and “Signaling by Rho Family GTPases” will be explained in the cross 
comparison between mice and Caco2 data. Here we will discuss the regulation of “HMGB1 
Signaling” and “Acute Phase Response Signalling”, the most activated pathways in Mice 
TcdAB 2h and Mice TcdAB 6h, respectively. We decided to highlight these pathways because 
of their connection to other pathways that are directly involved in the cytopathic and 
cytotoxic effects mediated by the toxins. 
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4.2.3.1.1. HMGB1 Signalling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. HMHB1 Signalling Pathway in Mice TcdAB 2h (above) and Mice TcdAB 6h 
(below). Upregulated molecules are coloured in red, suppressed molecules in green. 
 
 

Mice TcdAB 6h 

Mice TcdAB 2h 
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High Mobility Group-B1 (HMGB1) is a DNA binding protein involved in the regulation of 
nucleosome structure and gene transcription. Its secretion occurs after stimulation with 
endotoxins (by macrophages, monocytes, and pituicytes). HMGB1 mediates strong, direct 
bactericidal effects, so as a result, this is one of the first pathways to become activated after a 
bacterial invasion (Bianchi & Agresti, 2005). 

When IL-1, TNF-α, IFN-γ, LPS or HMGB1 ligands bind their receptors (IL-1R, TNFR1, TLR4, IFN-γR 
and RAGE respectively) NF-κB and MAPK pathways activate. Activated MAPKs and NF-KB enter 
the nucleus and switch on histone acetylases (HATs) or inhibition of deacetylases. This triggers 
HMGB1 acetylation.  

HMGB1 can activate cell surface receptors on various cell types through ERK1/2 and JNK and 
p38; PI3K and Akt; the transcription factors NF-κB and Sp1 as well as Rac1 and CDC42. These 
activations result in the release of a proinflammatory cytokines and chemokines: TNF-α, IL-1α, 
IL-1β, IL-1Ra, IL-6, IL-8 and MCP1, upregulation of adhesion molecules: ICAM1 and VCAM1, 
RAGE, and HMGB1 itself (Klune & Dhupar, 2008).  

HMGB1 signals to the cell motility system by activating CDC42, Rac1 and Rho. At the 
lamellopodia, which is the area of actin microfilament formation in the plasma membrane, 
HMGB1 interacts with the extracellular matrix and membrane receptors, affecting cell motility 
and metastasis.  

Regarding HMGB1 pathway after 2h and 6h of TcdAB infection in mice (Figure 12), the first 
molecules to become activated in Mice TcdAB 2h are NF-KB, c-JUN and TPA. NF-KB and c-JUN 
are both transcription factors, so their responsive genes appear upregulated in Mice TcdAB 6h. 
Thus, TNF-α, TPA, ICAM1 and c-Fos are upregulated at 6h. TNF-α is a proinflammatory cytokine 
that increase their expression in response to NF-KB. TPA, also upregulated at 2h, is responsible 
of dissolving blood clots, that might appear when a cluster of bacteria forms. ICAM1 is an 
adhesion molecule, so its upregulation is involved in cell-to-cell contacts, that are disrupted by 
bacterial toxins. Regarding c-Fos, it becomes upregulated when c-JUN returns to basal levels. In 
fact, this happens because c-Fos is an NF-KB responsive gene, so its expression is delayed from 
c-Jun’s expression. Both transcription factors are needed to activate AP1 transcription factor. 
Thus, their expression must be regulated to avoid excessive expression of either c-Jun or c-Fos 
without the expression of the other. 

At 6h, HAT, PI3K and proinflammatory cytokines start to be suppressed. This might be a negative 
feedback mechanism, to avoid excessive HBGB1 signalling once the bacterial invasion is sensed, 
and other pathways have already become activated. 
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4.2.3.1.2. Acute Phase Response Signalling 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Acute Phase Response 
Signalling Pathway in Mice TcdAB 2h 
(above) and Mice TcdAB 6h (below). 
Upregulated molecules are coloured in 
red, suppressed molecules in green. 

Mice TcdAB 6h 

Mice TcdAB 2h 
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The acute phase response is a rapid inflammatory response that provides protection against 
microorganisms using non-specific defense mechanisms. There are proteins that activate the 
acute phase response (positive acute phase response proteins) and other that suppress this 
response (negative acute phase response). Therefore, negative acute phase response proteins 
are downregulated when this pathway is activated. Many of these proteins bind hormones, such 
as glucocorticoids. Thus, downregulation of these proteins increases the number of hormones 
available in plasma. This effect is visible in Mice TcdAB 6h, where GCR (glucocorticoid receptors) 
are downregulated. Moreover, GCR complex to the GRE site of the DNA to act as promoters. 
Their suppression leads to a lower expression of their responsive genes, which are involved in 
tight junction sealing (Balda et Matter, 2009). Thus, less GCR induces less TJs and increase 
epithelial permeability. 

Positive acute phase response proteins become upregulated when acute phase response is 
elicited, but their higher levels in plasma are visible 4-5 hours after the stimulus. Thus, 
upregulated molecules are seen in Mice TcdAB 6h but not in Mice TcdAB 2h. Upregulated 
positive acute phase proteins remain in plasma for 24 up to 48 hours. They are important in the 
first stages of an infection because they opsonize and trap microorganisms, activate the 
complement, neutralize harmful enzymes and modulate the immune response (Gruys, et al. 
2005). 
 
At 2 hours, acute phase response starts with the upregulation of SOCS3 and c-JUN and the 
downregulation of ASK1. c-JUN appears to be the first overstimulated regulator. However, it 
binds the AP1 promoter in the DNA, which responsive genes are related to the negative acute 
phase response. Thus, SOCS3 and ASK1 might mediate in reducing c-JUN overactivation. ASK1 is 
a kinase involved in JNK pathway that activates c-JUN. Its downregulation reduces the signaling 
in this pathway, and therefore, the upregulation of c-JUN. Parallelly, SOCS3 becomes 
upregulated and inhibits TAK kinase, involved in JNK and p38 MAPK pathways. Both pathways 
are involved in the activation of c-JUN, so less TAK activation leads to a decrease in c-JUN. 
Moreover, c-JUN returns to its basal expression at 6h, but SOCS3 remains upregulated at that 
time. 
 
At 6h, IL6 is upregulated, as a result of TNFα upregulation, that activates NF-IL6 transcription 
factor through NIK pathway. NF-IL6 is upregulated, promoting the expression of IL6. 
Furthermore, IL6 is the first activator of JAK/STAT pathway, thus enhancing the expression of 
positive acute phase proteins. Remarkably, glucocorticoids are able to release IL6 into the 
circulation. Overall, IL6 is an important mediator of the acute phase response. 
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4.2.3.2. Comparison of Mice and Caco2 Datasets under Toxins’ Effect 

After the analysis of the toxins’ effect in the cecum of mice, we decided to cross-compare 
the results with pathways obtained in Caco2. Considering the pathways in Table 2, there are 
33 out of 44 pathways with a z-score in Caco2 and in one of the samples in mice (either 2h, 
6h or both).  

We plot the three most suppressed and the three most activated pathways in Caco2 (lowest 
and highest z-score, respectively) and we compared them to the z-scores of these pathways 
in mice (Figure 14). 

 

Figure 14. Graph of the most activated and suppressed pathways in Caco2 (higher and lower z-
scores) vs their activation z-score in Caco2, Mice TcdAB 2h and Mice TcdAB 6h. 

In the plot, the trend is that the most and the least activated pathways in Caco2 show an 
opposite direction of expression in mice. Moreover, half of them are not even activated in 
mice at 2h. There’s only one pathway with the same direction of expression (Cyclins and Cell 
Cycle Regulation). Therefore, our attention will be focused in the pathways: “Signalling by 
Rho Family GTPases” and “PPAR Signalling”. These pathways were among the most 
significant ones also in the mice comparison (Figure 11). 
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4.2.3.2.1. Signalling by Rho Family GTPases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Signalling by Rho Family GTPases 
Pathway in Mice TcdAB 2h (above), Mice 
TcdAB 6h (middle) and Caco2 TcdAB 4.5h 
(below). Upregulated molecules are coloured 
in red, suppressed molecules in green. 

Mice TcdAB 2h 

Mice TcdAB 6h 

Caco2 TcdAB 4.5h 
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Rho Family GTPases are small GTP-binding proteins that become activated by growth factors, 
cytokines, adhesion molecules, hormones and integrins. Signaling pathways that are regulated 
by these GTPase family play an important role in several pathological conditions, including 
cancer, inflammation, and bacterial infections (Etienne-Manneville & Hall, 2002). Rho signalling 
cascade is related to HMGB1 signalling, because Rho GTPases sense HMGB1 signals.  

The importance of Rho GTPase signalling in the regulation of biological processes is remarkable, 
as they are involved in reorganization of the actin cytoskeleton, transcriptional regulation, 
vesicle trafficking, morphogenesis, neutrophil activation, phagocytosis, mitogenesis, apoptosis 
and tumorigenesis.  
 

In mammals, the GTPase family currently consists of three subfamilies: Rho, Rac and Cdc42. Each 
one controls the formation of a distinct cytoskeletal element in mammalian cells. Most 
important in our research is Rho, that regulates bundling of actin filaments into stress fibers and 
the formation of focal adhesion complexes (Ridley, 2015).  
 

After infection with TcdAB toxins, Rho GTPases cascade changes its basal activation and 
expression. At 2h, the only molecule highly activated in the pathway is c-Jun, besides the positive 
z-score of the overall pathway. At 6h, some kinases are slightly suppressed, probably to decrease 
the transcription of Jun responsive genes and return to homeostasis (decrease inflammation) 
after the first stages of bacterial infection. One of these kinases suppressed is MLCK, a kinase 
that regulates tight junction permeability. Suppression of MLCK is related to the loosening of TJ 
in the intestinal epithelial barrier (Balda et Matter, 2009). In Caco2 the overall pathway is 
suppressed. 
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4.2.3.2.2. PPAR Signalling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. PPAR Signalling Pathway 
in Mice TcdAB 2h (above), Mice 
TcdAB 6h (middle) and Caco2 
TcdAB 4.5h (below). Upregulated 
molecules are coloured in red, 
suppressed molecules in green. 

Mice TcdAB 6h 

Mice TcdAB 2h 

Caco2 TcdAB 4.5h 
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PPARs (Peroxisome Proliferator-Activated Receptors) are nuclear receptor proteins that act as 
transcription factors to regulate metabolic pathways. They induce genes that affect fatty acid 
metabolism, peroxisome proliferation, colon and hepatocarcinogenesis. PPAR function is 
supressed by cytokines, growth factors and insulin (Michalik et al., 2006).  

There are three types of PPAR receptors. PPARα blocks STAT5 transcription factor and LXRα. 
LXRα blockage inhibits fatty acid biosynthesis but favours fatty acids degradation. This receptor 
is activated by MAPK. PPARγ inhibits STAT5, c-Jun and c-Fos and its inhibited itself by MAPK and 
NF-KB stimulated by TNFα and IL1. PPARδ stimulates fatty acids oxidation. 

At 2h in mice, there is an increasing IL1 and TNFR expression, which then leads to a higher 
expression in Mice 6h, that increases the level of suppression of the pathway. Later, at 6h, 
expression of TNFα inhibits PPARα. This suppression is not visible in Mice TcdAB 2h nor Caco2, 
as TNFα is not overexpressed. Also in mice at TcdAB 6h, NCOA is suppressed, less RXR activation 
and thus, less PPARα activation. Suppression of PPARα leads to a decreased fatty acids 
biosynthesis and oxidation. 
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5. CONCLUSIONS 

The effect of Clostridium difficile toxins was analysed using a systems approach. Comparing the 
effects of TcdAB at 2h and at 6h in mice cecum did not have the same influence than in Caco2 
colon-like cells after 4.5 hours of toxin infection. This approach is informative to analyse the 
genes and pathways most affected by Clostridium toxins. We observed that most of the 
pathways that popped-up in the analysis contained shared genes which activation or expression 
were affected. This was the case of some transcription factors (c-Jun, c-Fos, NF-kB), some kinases 
(Rho, Ras, PI3K, PKA) and target genes (inflammatory cytokines as TNFα, IL-1). Thus, these 
pathways should not only be considered as a whole, in fact, we should look inside their 
regulators and their upstream and downstream effects.  

Differences in the activation of mice and Caco2 pathways were in part, due to the intrinsic 
differences in both model systems. Whereas in mice we were considering cecum tissue in vivo, 
in human epithelial Caco2 cell line we were considering colon-like cells cultured in vitro for 7 
days. Although in vitro and in vivo experiments show different results, it is significant that we 
still saw some overlap in the pathways affected (e.g. Rho GTPases Signalling, PPAR Signalling, 
etc.) and some differentially expressed genes (c-Jun, NF-kB, ETC.). 

In order to improve the research, we could have compared mice cecum DE genes with mice 
intestinal enterocytes (in vitro system). This way, we could remove the effect of other cells in 
mice cecum tissue expression. Indeed, it is probable that our results not only had intestinal 
epithelial cells from mice but also other type of cells, like immune cells, that could affect the 
degree of activation of the pathways. 

Considering the significant pathways obtained, Rho GTPases Signalling is the most affected by 
the Clostridium difficile toxins infection. Upstream of this pathway, HMGB1 signalling sensed 
and sent signals to the GTPases that elicit actin cytoskeleton disruption and eventually, tight 
junction disruption and changes in cell morphology. Therefore, Tight Junction Signalling pathway 
was also connected to Rho GTPases, and their disruption lead to impairment of the colon 
epithelia, promoting diarrhoea and inflammation of the colon. Regarding PPAR and Acute Phase 
Response Signalling, these are pathway that affect the overall tissue by promoting gene 
expression of metabolic pathways or inflammation, respectively. Indeed, this was found also in 
literature (Janvilisri et al., 2010), in which it was explained that TcdA and TcdB enter the cells 
through receptor-mediated endocytosis, inactivate Rho GTPases, what leads to disaggregation 
of the actin cytoskeleton and intestinal epithelial cell damage, what eventually increases 
permeability of tight junctions. 

Due to the broad and diverse effect of the toxins in the systems, it is difficult to find a specific 
pathway or regulator to target for the regulation of TcdAB infection. Therefore, more research 
is needed insight the molecular effects of the toxins in the organism. These data could serve to 
identify diagnostic markers or targets to overcome host responses to Clostridium difficile toxins. 
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ANNEX 

Annex 1. R code for Microarray Data Analysis  

###  

#Mice: GSE44091 dataset 

#Name: Judith Cantó 

#Code description - Code to load the GSE44091 dataset and find differentially expressed genes 

### 

#Installing the CDF files from BRAINARRAY 

install.packages("../../2h-data mice/example/mouse4302mmentrezg.db_21.0.0.zip", repos = 
NULL, type = "source") 

install.packages("../../2h-data mice/example/mouse4302mmentrezgcdf_21.0.0.zip", repos = 
NULL, type = "source")  

install.packages("../../2h-data mice/example/mouse4302mmentrezgprobe_21.0.0.zip", repos = 
NULL, type = "source") 

install.packages("../../2h-data mice/example/pd.mouse4302.mm.entrezg_21.0.0.zip", repos = 
NULL, type = "source") 

install.packages("FactoMineR") 

#Packages for microarray analysis are to be downloaded from BiocLite 
source("https://bioconductor.org/biocLite.R")  

biocLite() 

#Downloading the required packages 

biocLite("affy") 

biocLite("limma") 

biocLite("annotate")  

biocLite("GEOquery")  

biocLite("Biobase") 

biocLite("genefilter")  

biocLite("affyPLM")  

biocLite("tools") 

#Loading the libraries in the environment  

library(affy)  

library(limma)  

library(annotate)  
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library(GEOquery)  

library(affyPLM)  

library(genefilter)  

library(mouse4302mmentrezgcdf)  

library(mouse4302mmentrezg.db)  

library(mouse4302mmentrezgprobe)  

library(pd.mouse4302.mm.entrezg) 

library(FactoMineR)  

library(Biobase)  

library(tools)  

require(ggplot2) 

#Set the working directory 

setwd(“C:\Users\J\Desktop\Bachelor thesis- Axis\2hdatamice\CEL files”) 

#Uncompress the CEL files contained in GSE44091 dataset TAR file  

library(R.utils) 

untar("GSE44091_RAW.tar", files = NULL, list = FALSE, exdir = ".", compressed = NA, extras = 
NULL, verbose = FALSE, restore_times =  TRUE, tar = Sys.getenv("TAR")) 

#Read the CEL files from the folder  

rm(list = ls()) 

lst = list.files("./") 

dat = ReadAffy(filenames = lst, cdfname = "mouse4302mmentrezgcdf", verbose = TRUE) 

#Performing RMA normalization on the raw data 

eset.data = affy::rma(dat) 

rma = as.data.frame(exprs(eset.data)) 

#Creating a file with the name of the CEL files and their phenotypic data 

dim(rma) 

x = colnames(rma) 

colnames(rma) = sub(pattern = "\\_.*","",x) 

colnames(rma) 

x = colnames(rma) 

y = read.csv("C:/Users/J/Desktop/Bachelor thesis- Axis/Judith/Pheno_data.csv", header = F, 
row.names = 1) 
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colnames(rma) = y[x,1] 

colnames(rma) 

#Principal Component Analysis 

write.table(rma, file="mouse_pca_data.txt", quote=F, sep="\t") 

mouse_pca = read.table("mouse_pca_data.txt",sep = "\t", header= T, row.names = 1)  

colnames(mouse_pc) <- c("Toxin", "Exposure")  

PC.1 = PC$x[,c(1,2)] 

PC.1 = cbind(PC.1,mouse_pc[row.names(PC.1),c(1,2)])  

write.table(PC.1, file="pca_cluster.txt", quote=F, sep="\t") #I modified this in Excel 

library(ggplot2) 

# Scatter plot with multiple groups 

# shape depends on exposure 

pca_clust = read.table("pca_cluster.txt",sep = "\t", header= T, row.names = 1)  

ggplot(pca_clust, aes(x=PC1, y=PC2, shape=Exposure, color= Toxin, size=4)) +  geom_point() 

#####Quality control checks for the expression data###### 

#box plot of the original data without any RMA normalization 

boxplot(dat, col= "cadetblue1",main="mice- Before normalization") 

#box plot of the normalized data 

boxplot(rma, col="cadetblue1",main="mice RMA expression values") 

#creating hierarchical clustering to see effect of genes in conditions in mice  

distance.mouse <- dist(t(rma), method="maximum")  

clusters.mouse <- hclust(distance.mouse) 

#Visualisation of the dendrogram 

#load code of A2R function 

source("http://addictedtor.free.fr/packages/A2R/lastVersion/R/code.R") 

#colored dendrogram 

op = par(bg = "white")  

A2Rplot(clusters.mouse, k = 5, boxes = FALSE,bg = "white", col.up = "black", col.down = 
c("red", "seagreen3", "blue", "yellow3", "maroon1", labels = TRUE)) 
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#####Finding differentially expressed genes for mouse data ######## 

#Create a design matrix. The levels in the design matrix are checked by looking at samples 

des = factor(c("TcdA2h","TcdA2h","TcdA2h","TcdB2h","TcdB2h","TcdB2h","TcdAB2h", 

               "TcdAB2h","TcdAB2h","Sham2h","Sham2h","Sham2h","TcdA6h","TcdA6h", 

               "TcdA6h","TcdB6h","TcdB6h","TcdB6h","TcdAB6h","Sham6h","Sham6h", 

               "Sham6h","TcdA16h","TcdA16h","TcdA16h","TcdB16h","TcdB16h","TcdB16h", 

               "Sham16h","Sham16h","Sham16h","Sham16h")) 

design = model.matrix(~0+ des) 

colnames(design) = sub("des","",colnames(design)) 

colnames(design) 

#setting up the contrast matrix for the design matrix 

conts = makeContrasts(TcdA2h - Sham2h, TcdB2h - Sham2h, TcdAB2h - Sham2h, TcdA6h - 
Sham6h, TcdB6h - Sham6h, TcdAB6h - Sham6h, TcdA16h - Sham16h, TcdB16h - Sham16h,                       
levels = design) 

#providing the data for limma analysis  

#fit the linear model to the expression set 

fit <- lmFit(rma, design) 

#contrast matrix is now combined with the per-probeset linear model fit 

fit2 <- contrasts.fit(fit, conts) 

fit2 <- eBayes(fit2) 

#Obtain the expression coefficients (log2 ratios) 

lim= fit2$coefficients 

dim(lim) 

dim(rma) 

#Obtain the p-values 

pvals= fit2$p.value 

# Get the adjusted p-values 

temp = p.adjust(pvals[,1],method = "hochberg")  

#To view the count of differentially expressed genes (based only on p-value) 

sum(temp<0.05)  # no DE genes if we adjust the p-value 

sum(pvals[,3]<0.01) # we will work with raw p-values, we obtained 267 DE genes 
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#Make a volcano plot 

require(ggplot2) 

genelist<- toptable(fit2, coef=1, number = 2500, sort.by = "P")  

genelist$threshold = as.factor(abs(genelist$logFC) > 0.58 & genelist$P.Value < 0.01) 

ggplot(data=genelist, aes(x=logFC, y=-log10(P.Value), colour=threshold)) + 

  geom_point(alpha=0.4, size=1.75) + xlim(c(-5, 5)) + ylim(c(0, 10)) + xlab("log2 fold change") + 
ylab("-log10 p-value") 

# Heatmap with DE genes 

new.coeff = lim[names(gene1.list),] 

dim(new.coeff) 

pacman::p_load(pheatmap) 

myColor <- colorRampPalette(c("green", "black", "red"))(10) 

myBreaks <- c(seq(min(new.coeff), 0, length.out=ceiling(10/2) + 1),            
seq(max(new.coeff)/10, max(new.coeff), length.out=floor(10/2))) 

pheatmap::pheatmap(t(new.coeff),  cluster_row = T, cluster_cols = T, color = myColor,                   
breaks=myBreaks, fontsize = 6.5, fontsize_row=12, fontsize_col = 6)                    

#Writing the differentially expressed genes onto a new table  

Temp = row.names(pvals[which(pvals[,3]<0.01, arr.ind = T),]) 

gene.list = lim[Temp,3] 

#Storing them in the output folder 

write.csv(gene.list, "./gene_list.csv" ) # DE genes in Mice TcdAB 2h 

write.csv(info, "./gene6_list.csv" ) #we repeat the procedure for DE genes in Mice TcdAB 6h 

### Pathway Analysis ### 

#Venn’s diagram of DE pathways at Mice 2h, 6h and Caco2 4.5h. 

library(VennDiagram) 

grid.newpage() 

g= draw.triple.venn(area1 = 48, area2 = 251, area3 = 75, n12 = 42, n23 = 49, n13 = 24,                 
n123 = 20, category = c("Mice TcdAB 2h", "Mice TcdAB 6h", "Caco2 TcdAB 4.5h"), lty = "blank", 
cex = 1.5, fill = c("red", "yellow", "skyblue")) 

require(gridExtra) 

grid.arrange(gTree(children=g), top="Pathways") 

# Heatmap with pathways which pvalue<0.05 

pathway = read.csv ("path_heat.csv", header= F, row.names = 1) 
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pacman::p_load(pheatmap) 

myColor <- colorRampPalette(c("green", "black", "red"))(10) 

colnames(pathway) = c("Caco2", "Mice2h", "Mice6h") 

myBreaks <- c(seq(min(pathway), 0, length.out=ceiling(10/2) + 1),                
seq(max(pathway)/10, max(pathway), length.out=floor(10/2))) 

pheatmap::pheatmap(t(pathway),  cluster_row = T, cluster_cols = T, color = myColor, 
breaks=myBreaks, fontsize = 6.5, fontsize_row=12, fontsize_col = 6) 

 

# Heatmap with pathways which pvalue<0.05 and z-score in Mice 2h and Mice 6h 

pathway = read.csv ("path_mice.csv", header= F, row.names = 1) 

pacman::p_load(pheatmap) 

myColor <- colorRampPalette(c("green", "black", "red"))(10) 

colnames(pathway) = c("Mice2h", "Mice6h") 

myBreaks <- c(seq(min(pathway), 0, length.out=ceiling(10/2) + 1),                
seq(max(pathway)/10, max(pathway), length.out=floor(10/2))) 

pheatmap::pheatmap(t(pathway),  cluster_row = T, cluster_cols = T, color = myColor, 
breaks=myBreaks, fontsize = 6.5, fontsize_row=12, fontsize_col = 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


