

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 10, No. 1, 2009 pp. 29-37

*-half completeness in quasi-uniform spaces

ATHANASIOS ANDRIKOPOULOS

ABSTRACT. Romaguera and Sánchez-Granero (2003) have introduced the notion of T_1 *-half completion and used it to see when a quasi-uniform space has a *-compactification. In this paper, for any quasi-uniform space, we construct a *-half completion, called standard *-half completion. The constructed *-half completion coincides with the usual uniform completion in the uniform spaces and is the unique (up to quasi-isomorphism) T_1 *-half completion of a symmetrizable quasi-uniform space. Moreover, it constitutes a *-compactification for *-Cauchy bounded quasi-uniform spaces. Finally, we give an example which shows that the standard *-half completion differs from the bicompletion construction.

2000 AMS Classification: 54E15, 54D35.

Keywords: quasi-uniform, *-half completion, *-compactification.

1. INTRODUCTION AND PRELIMINARIES

The problem of constructing compactifications of quasi-uniform spaces has been investigated by several authors ([4, 3.47], [5], [7]). This notion of quasiuniform compactification is by definition Hausdorff. Moreover, a point symmetric totally bounded T_1 quasi-uniform space may have many totally bounded compactifications (see [5, page 34]). Contrary to this notion, Romaguera and Sánchez-Granero have introduced the notion of *-compactification of a T_1 quasiuniform space (see [8], [10] and [11]) and prove that: (a) Each T_1 quasi-uniform space having a T_1 *-compactification has an (up to quasi-isomorphism) unique T_1 *-compactification ([11, Corollary of Theorem 1]); and (b) All the Wallmantype compactifications of a T_1 topological space can be characterized in terms of the *-compactification of its point symmetric totally transitive compatible quasi-uniformities ([9, Theorem 1]). The proof of (a) is achieved with the help of the notion of T_1 *-half completion of a quasi-uniform space, which is introduced in [11]. Following ([11, Theorem 1]), if a quasi-uniform space (X, \mathcal{U}) is T_1 *-half completable (it has a T_1 *-half completion), then any T_1 *-half completion of (X, \mathcal{U}) is unique up to a quasi-isomorphism. In this paper, we prove that every quasi-uniform space has a *-half completion, called standard *-half completion, which in the case of a uniform space coincides with the usual one. We also give an example which shows that the standard *-half completion and the bicompletion are in general different. While a quasi-uniform space may have many *-half completions, here we prove that a symmetrizable quasi-uniform space has an (up to a quasi-isomorphism) unique *-half completion. We also prove that the standard *-half completion constitutes a *-compactification for *-Cauchy bounded quasi-uniform spaces.

Let us recall that a quasi-uniformity on a (nonempty) set X is a filter \mathcal{U} on $X \times X$ such that for each $U \in \mathcal{U}$, (i) $\Delta(X) = \{(x, x) | x \in X\} \subseteq U$, and (ii) $V \circ V \subseteq U$ for some $V \in \mathcal{U}$, where $V \circ V = \{(x, y) \in X \times X | \text{ there is } z \in X \}$ such that $(x, z) \in V$ and $(z, y) \in V$. The pair (X, \mathcal{U}) is called a *quasi-uniform* space. If \mathcal{U} is a quasi-uniformity on a set X, then $\mathcal{U}^{-1} = \{U^{-1} | U \in \mathcal{U}\}$ is also a quasi-uniformity on X called the *conjugate* of \mathcal{U} . Given a quasiuniformity \mathcal{U} on $X, \mathcal{U}^{\star} = \mathcal{U} \bigvee \mathcal{U}^{-1}$ will denote the coarsest uniformity on X which is finer than \mathcal{U} . If $U \in \mathcal{U}$, the entourage $U \cap U^{-1}$ of \mathcal{U}^* will be denoted by U^* . The topology $\tau(\mathcal{U})$ induced by the quasi-uniformity \mathcal{U} on X is $\{G \subseteq X \mid \text{ for each } x \in G \text{ there is } U \in \mathcal{U} \text{ such that } U(x) \subseteq G \}$ where $U(x) = \{y \in X | (x, y) \in U\}$. If (X, τ) is a topological space and \mathcal{U} is a quasiuniformity on X such that $\tau = \tau(\mathcal{U})$ we say that \mathcal{U} is compatible with τ . Let (X,\mathcal{U}) and (Y,\mathcal{V}) be two quasi-uniform spaces. A mapping $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ is said to be quasi-uniformly continuous if for each $V \in \mathcal{V}$ there is $U \in \mathcal{U}$ such that $(f(x), f(y)) \in V$ whenever $(x, y) \in U$. A bijection $f : (X, \mathcal{U}) \to (Y, \mathcal{V})$ is called a *quasi-isomorphism* if f and f^{-1} are quasi-uniformly continuous. In this case we say that (X, \mathcal{U}) and (Y, \mathcal{V}) are quasi-isomorphic. A filter \mathcal{B} is called \mathcal{U}^* -Cauchy if and only if for each $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \times B \subseteq U$ (see [4, page 48]). A net $(x_a)_{a \in A}$ is called \mathcal{U}^* -Cauchy net if for each $U \in \mathcal{U}$ there exists an $a_{U} \in A$ such that $(x_{a}, x_{a'}) \in U$ whenever $a \geq a_{U}, a' \geq a_{U}$. We call a_{U} extreme index of $(x_{a})_{a \in A}$ for U and $x_{a_{U}}$ extreme point of $(x_{a})_{a \in A}$ for U. A quasi-uniform space (X, \mathcal{U}) is half complete if every \mathcal{U}^* -Cauchy filter is $\tau(\mathcal{U})$ -convergent [2]. Following to [11, Theorem 1], a *-half completion of a T_1 quasi-uniform space (X, \mathcal{U}) is a half complete T_1 quasi-uniform space (Y, \mathcal{V}) that has a $\tau(\mathcal{V}^*)$ -dense subspace quasi-isomorphic to (X, \mathcal{U}) . In [11, Definition 3] also the authors introduce and study the notion of a *-compactification a T_1 quasi-uniform space. A *-compactification of a T_1 quasi-uniform space (X, \mathcal{U}) is a compact T_1 quasi-uniform space (Y, \mathcal{V}) that has a $\tau(\mathcal{V}^*)$ -dense subspace quasi-isomorphic to (X, \mathcal{U}) .

2. The *-Half-completion

According to Doitchinov [3, Definition 1], a net $(y_{\beta})_{\beta \in B}$ is called a conet of the net $(x_a)_{a \in A}$, if for any $U \in \mathcal{U}$ there are $a_U \in A$ and $\beta_U \in B$ such that

 $(y_{\beta}, x_a) \in U$ whenever $a \ge a_{\scriptscriptstyle U}$ and $\beta \ge \beta_{\scriptscriptstyle U}$. In this case, we write $(y_{\beta}, x_a) \longrightarrow 0$. We denote (x) the constant net $(x_a)_{a \in A}$, for which $x_a = x$ for each $a \in A$.

Definition 2.1 (see [1, Definitions 1.1(3)]). Let (X, U) be a quasi-uniform space.

- For every U^{*}-Cauchy net (x_a)_{a∈A}, we consider aU^{*}-Cauchy net (y_β)_{β∈B} which is a conet of (x_a)_{a∈A}, different than (x_a)_{a∈A}. In the following, we consider all the nets A = {(xⁱ_a)_{a∈Ai} | i ∈ I} that have (y_β)_{β∈B} as their conet including (y_β)_{β∈B} itself. In the next, we pick up all the nets B = {(y^j_β)_{β∈Bj} | j ∈ J} which are conets of all the elements of A. The ordered couple (A, B) have the following properties:
 - (a) for every $U \in \mathcal{U}$ and every $(x_a^i)_{a \in A_i} \in \mathcal{A}$, $(y_\beta^j)_{\beta \in B_j} \in \mathcal{B}$ there are indices a_U^i , β_U^j such that $(y_\beta^j, x_a^i) \in U$ whenever $a \ge a_U^i$ and $\beta \ge \beta_U^j$.

We call a_{U}^{i} (resp. β_{U}^{j}) extreme index of $(x_{a}^{i})_{a \in A_{i}}$ (resp. $(y_{\beta}^{j})_{\beta \in B_{j}}$) for U and $x_{a_{U}^{i}}^{i}$ (resp. $y_{\beta_{U}^{j}}^{j}$) extreme point of $(x_{a}^{i})_{a \in A_{i}}$ (resp. $(y_{\beta}^{j})_{\beta \in B_{j}}$) for U.

(b) B contains all the conets of all the elements of A and conversely A contains all the nets whose conets are all the elements of B. We call the ordered pair (A, B) h^{*}-cut, the nets (x_a)_{a∈A} and (y_β)_{β∈B} generator and co-generator of (A, B) respectively. We also say that the pair ((y_β)_{β∈B}, (x_a)_{a∈A}) generates the h^{*}-cut (A, B). It is clear that different pairs of U^{*}-Cauchy nets can generate the same h^{*}cut.

The families \mathcal{A} and \mathcal{B} are called classes (first and second respectively) of the h^* -cut $(\mathcal{A}, \mathcal{B})$. In the following, \widetilde{X} denotes the set of all h^* -cuts in X.

If the above \mathcal{U}^* -Cauchy net $(x_a)_{a \in A}$ has not as conet a \mathcal{U}^* -Cauchy net different from itself, then we relate to it the h^* -cut which generated by the pair $((x_a)_{a \in A}, (x_a)_{a \in A})$.

- (2) To every x ∈ X we assign an h*-cut, denoted φ(x) = (A_{φ(x)}, B_{φ(x)}), which is generated by the pair ((x), (x)). Clearly, x belongs to both of A_{φ(x)} and B_{φ(x)}. Thus the class A_{φ(x)} contains all the nets which converge to x in τ_u and B_{φ(x)} contains nets which converge to x in τ_u.
- (3) Suppose that $\mathcal{K} = \{(x_a)_{a \in A} | (x_a)_{a \in A} \text{ is a non } \tau(\mathcal{U})\text{-convergent } \mathcal{U}^*\text{-Cauchy} \text{ net}\}.$ Let $X^{\mathcal{K}} = \{\xi \in \widetilde{X} | \text{ the generator of } \xi \text{ belongs to } \mathcal{K}\}.$ Then we put $\overline{X} = \phi(X) \cup X^{\mathcal{K}}.$
- (4) We often say for a U^{*}-Cauchy net (x_a)_{a∈A} with a conet (y_β)_{β∈B} and U ∈ U that:

"finally $((y_{\beta})_{\beta}, (x_{a})_{a}) \in U$ " or in symbols " $\tau \cdot ((y_{\beta})_{\beta}, (x_{a})_{a}) \in U$ ",

if there are $a_{\scriptscriptstyle U} \in A$ and $\beta_{\scriptscriptstyle U} \in B$ such that $(y_{\scriptscriptstyle \beta}, x_a) \in U$ whenever $a \ge a_{\scriptscriptstyle U}, \ \beta \ge \beta_{\scriptscriptstyle U}$.

A. Andrikopoulos

Definition 2.2. Let (X, \mathcal{U}) be a quasi-uniform space, $\xi \in \overline{X}$ and $W \in \mathcal{U}$.

- (1) We say that a net $(t_{\gamma})_{\gamma \in \Gamma}$ is W-close to ξ , if for each net $(x_a^i)_{a \in A_i} \in \mathcal{A}_{\xi}$ there holds $\tau.((t_{\gamma})_{\gamma}, (x_a^i)_a) \in W$.
- (2) For each $U \in \mathcal{U}$ denote by \overline{U} the collection of all pairs (ξ', ξ'') for which a co-generator of ξ' is U-close to ξ'' .

The proof of the following result is straightforward, so it is omitted.

Proposition 2.3. Let (X, \mathcal{U}) be a quasi-uniform space and let $(y_{\beta})_{\beta \in B}$ be a co-generator of an h^* -cut ξ in \overline{X} . Then $(y_{\beta})_{\beta \in B}$ belongs to both of the classes \mathcal{A}_{ξ} and \mathcal{B}_{ξ} .

As an immediate consequence of Definition 2.2 and Proposition 2.3 we obtain the following proposition.

Proposition 2.4. Let (X, \mathcal{U}) be a quasi-uniform space, $\xi', \xi'' \in \overline{X}$ and $U \in \mathcal{U}$. If $(y_{\beta})_{\beta \in B}$, $(y_{\gamma})_{\gamma \in \Gamma}$ are co-generators of ξ' and ξ'' respectively, then $(\xi', \xi'') \in \overline{U}$ if and only if $\tau.((y_{\beta})_{\beta}, (y_{\gamma})_{\gamma}) \in U$.

Corollary 2.5. Let (X, \mathcal{U}) be a quasi-uniform space and let $\xi', \xi'' \in \overline{X}$. If $(y_{\beta})_{\beta \in B}, (y_{\gamma})_{\gamma \in \Gamma}$ are co-generators of ξ' and ξ'' respectively, then

$$\xi' = \xi''$$
 if and only if $(y_{\beta}, y_{\gamma}) \longrightarrow 0$ in $\tau(\mathcal{U}^{\star})$.

The following lemma is obvious.

Lemma 2.6. Let $U, V \in \mathcal{U}$. Then $U \subseteq V$ if and only if $\overline{V} \subseteq \overline{U}$.

Theorem 2.7. The family $\overline{\mathcal{U}} = \{\overline{U} | U \in \mathcal{U}\}$ is a base for a quasi-uniformity $\overline{\mathcal{U}}$ on \overline{X} .

Proof. By definitions 2.2 and Proposition 2.3, it follows that the pair (ξ, ξ) belongs to every element of $\overline{\mathcal{U}}$ and by the previous Lemma $\overline{\mathcal{U}}$ is a filter.

Let now $U, W \in \mathcal{U}$ be such that $W \circ W \circ W \subseteq U$ and $\overline{x}, \overline{y} \in \overline{X}$ with $(\overline{x}, \overline{y}) \in \overline{W} \circ \overline{W}$. Then there exists a \overline{z} in \overline{X} such that $(\overline{x}, \overline{z}) \in \overline{W}$ and $(\overline{z}, \overline{y}) \in \overline{W}$. If $(x_a^{\overline{x}})_{a \in A}$, $(z_{\gamma}^{\overline{z}})_{\gamma \in \Gamma}$ and $(y_{\beta}^{\overline{y}})_{\beta \in B}$ are co-generators of \overline{x} , \overline{z} and \overline{y} respectively, then Definition 2.2 and Proposition 2.3 imply that $\tau.((x_a^{\overline{x}})_a, (z_{\gamma}^{\overline{z}})_{\gamma}) \in W$ and $\tau.((z_{\gamma}^{\overline{z}})_{\gamma}, (y_{\beta}^{\overline{y}})_{\beta}) \in W$. We note that, for each $(t_{\delta})_{\delta \in \Delta} \in \mathcal{A}_{\overline{y}}$, it holds that $\tau.(y_{\beta}^{\overline{y}}, t_{\delta}) \longrightarrow 0$. Hence, $\tau.((x_a^{\overline{x}})_a, (t_{\delta})_{\delta}) \in W \circ W \circ W \subseteq U$ which implies that $(\overline{x}, \overline{y}) \in \overline{U}$.

Proposition 2.8. If $\xi \in \overline{X}$ and $(x_a)_{a \in A}$ is a \mathcal{U}^* -Cauchy net which belong to \mathcal{A}_{ξ} , then $\phi(x_a) \longrightarrow \xi$. Dually, if $(y_{\beta})_{\beta \in B}$ is a \mathcal{U}^* -Cauchy net which belong to \mathcal{B}_{ξ} , then $\lim_{\beta} (\phi(y_{\beta}), \xi) = 0$.

Proof. Let $V, U \in \mathcal{U}$ such that $V \circ V \subseteq U$. If $(z_{\gamma})_{\gamma \in \Gamma}$ is a co-generator of ξ , then $(z_{\gamma}, x_{a}) \longrightarrow 0$. Thus there are a_{V} and γ_{V} such that $(z_{\gamma}, x_{a}) \in V$ for $\gamma \geq \gamma_{V}$ and $a \geq a_{V}$. Fix an $a \geq a_{V}$ and pick a net $(x_{\delta})_{\delta \in \Delta}$ of $\mathcal{A}_{\phi(x_{a})}$. Then, $x_{\delta} \longrightarrow x_{a}$ and so $(x_{a}, x_{\delta}) \in V$, whenever $\delta \geq \delta_{V}$ for some $\delta_{V} \in \Delta$. Hence, $(z_{\gamma}, x_{\delta}) \in U$ for $\gamma \geq \gamma_{V}$ and $\delta \geq \delta_{V}$. Hence $(\xi, \phi(x_{a})) \in \overline{U}$, whenever $a \geq a_{V}$.

32

The proof of the dual is similar.

Theorem 2.9. The quasi-uniform space $(\overline{X}, \overline{\mathcal{U}})$ is a *-half completion of (X, \mathcal{U}) .

Proof. We firstly prove that $(\overline{X}, \overline{\mathcal{U}})$ is half-complete, and secondly that the space $(\overline{X}, \overline{\mathcal{U}})$ has a $\tau(\overline{\mathcal{U}}^*)$ -dense subspace quasi-isomorphic to (X, \mathcal{U}) . Indeed, let $(\xi_a)_{a \in A}$ be a $\overline{\mathcal{U}}^*$ -Cauchy net of \overline{X} . In the following, for each $a \in A$, $(y_{\beta}^a)_{\beta \in B_a}$ denotes a co-generator of ξ_a . Suppose that $W \in \mathcal{U}$. Then, there exists $a_{\overline{W}} \in A$ such that $(\xi_{\gamma}, \xi_a) \in \overline{W}$ whenever $\gamma, a \geq a_{\overline{W}}$. Fix an $a \geq a_{\overline{W}}$ and suppose that $\beta(a, W)$ is the extreme index of $(y_{\beta}^a)_{\beta \in B_a}$ for W.

We consider the set

 $\begin{array}{l} A^{\star} = \{(a,W) | a \in A, W \in \mathcal{U}\}\\ \text{ordered by } (a',W') \leq (a'',W'') \text{ if } a' \leq a'' \text{ and } W'' \subseteq W'.\\ \text{We put } y(a,W) = y^a_{_{\beta(a,W)}} \text{ and we prove that the net} \end{array}$

 $\{y(a, W) | (a, W) \in A^{\star}\}$

is a \mathcal{U}^* -Cauchy net.

Indeed, let $U \in \mathcal{U}$. Pick $V \in \mathcal{U}$ such that $V \circ V \circ V \subseteq U$. Suppose that $(a', W'), (a'', W'') \ge (a_{\overline{V}}, V)$. Then, $(y(a', W'), y_{\beta'}^{a'}) \in (W')^* \subseteq V^*$ and $(y(a'', W''), y_{\beta''}^{a''}) \in (W'')^* \subseteq V^*$ whenever $\beta' \ge \beta'(a', W')$ and $\beta'' \ge \beta''(a'', W'')$. Since $(\xi_a)_{a \in A}$ is a $\overline{\mathcal{U}}^*$ -Cauchy net of \overline{X} , Proposition 2.4 implies that $\tau.((y_{\beta'}^{a'})_{\beta'}, (y_{\beta''}^{a''})_{\beta''}) \in V^*$ whenever $a', a'' \ge a_{\overline{V}}$. Hence, $(y(a', W'), y(a'', W'')) \in V^* \circ V^* \circ V^* \subseteq U^*$.

We now prove that $(\xi_a)_{a \in A}$ is $\tau(\overline{\mathcal{U}})$ -convergent. We have two cases. Case 1. $(y(a, W))_{(a, W) \in A^{\star}} \tau(\mathcal{U})$ -converges to a point $x \in X$.

In this case, we have that $(\phi(y(a, W)))_{(a,W)\in A^*} \tau(\overline{\mathcal{U}})$ -converges to $\phi(x)$. Since $(y^a_{\beta})_{\beta\in B_a}$ belongs to \mathcal{B}_{ξ_a} , Proposition 2.8 implies that $(\phi(y(a, W)), \xi_a) \longrightarrow 0$. Hence, from $(\phi(x), \phi(y(a, W))) \longrightarrow 0$ we conclude that $(\xi_a)_{a\in A} \tau(\overline{\mathcal{U}})$ -converges to $\phi(x)$.

 $\textit{Case 2. } (y(a,W))_{\scriptscriptstyle (a,W)\in A^{\star}} \textit{ is a non } \tau(\mathcal{U})\textit{-convergent net.}$

Let ξ be the h^* -cut in \overline{X} which is generated by $(y(a, W))_{(a,W)\in A^*}$. It follows, by Proposition 2.8, that $(\xi, \phi(y(a, W))) \to 0$. Since $(y^a_\beta)_{\beta\in B_a}$ belongs to \mathcal{B}_{ξ_a} , Proposition 2.8 implies that $(\phi(y(a, W)), \xi_a) \longrightarrow 0$. The rest is obvious.

It remains to prove that $(\phi(X), \overline{\mathcal{U}}/\phi(X) \times \phi(X))$ is a $\tau(\overline{\mathcal{U}}^*)$ -dense subspace of $(\overline{X}, \overline{\mathcal{U}})$. Indeed, let $\xi \in \overline{X}$ and let $(y_{\beta})_{\beta \in B}$ be a co-generator of it. Then, since the co-generator belongs to both of classes of ξ , Proposition 2.8 implies that $\phi(y_{\beta}) \tau(\overline{\mathcal{U}}^*)$ -converges to ξ .

In the sequel the *-half completion $(\overline{X}, \overline{\mathcal{U}})$ constructed above will be called standard *-half completion of the space (X, \mathcal{U}) .

The following example shows that the standard *-half completion and the bicompletion of a quasi-uniform space are in general different.

Example 2.10. Let X be the set consisting of all nonzero real numbers and let d be the quasi-metric on X given by:

$$d(x,y) = \begin{cases} y-x & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

Suppose that \mathcal{U} is the quasi-uniformity generated by d. Let \mathcal{F} be the \mathcal{U}^* -Cauchy filter generated by $\{(0, a) | a > 0\}$ and \mathcal{G} be the \mathcal{U}^* -Cauchy filter generated by $\{(b, 0) | b < 0\}$. Then a new point is defined by the h^* -cut $\xi = (\mathcal{A}_{\xi}, \mathcal{B}_{\xi})$, where $\mathcal{A}_{\xi} = \{\mathcal{G}, \mathcal{F}\}$ and $\mathcal{B}_{\xi} = \{\mathcal{F}\}$. Hence, $\overline{X} = \phi(X) \cup \{\xi\}$. Clearly, ξ defines the point 0 in $(\overline{X}, \overline{\mathcal{U}})$. On the other hand, there is exactly one minimal \mathcal{U}^* -Cauchy filter coarser than \mathcal{F} and \mathcal{G} respectively. More precisely, if \mathcal{F}_0 and \mathcal{G}_0 are any bases for \mathcal{F} and \mathcal{G} respectively, then $\{U(F_0) \mid F_0 \in \mathcal{F}_0 \text{ and } U$ is a symmetric member of $\mathcal{U}^*\}$ and $\{U(G_0) \mid G_0 \in \mathcal{G}_0$ and U is a symmetric member of $\mathcal{U}^*\}$ are equivalent bases for the minimal \mathcal{U}^* -Cauchy filter \mathcal{H} coarser than \mathcal{F} and \mathcal{G} respectively. Hence, we have $\widetilde{X} = i(X) \cup \{\mathcal{H}\}$. The filter \mathcal{H} defines the point 0 in $(\widetilde{X}, \widetilde{\mathcal{U}})$ as well. We conclude the following:

- (i) The bicompletion of (X, \mathcal{U}) differs from the standard *-half completion. Indeed, by the definition of ξ and from the Propositions 2.3 and 2.8, we conclude that $\phi(\mathcal{G})$ and $\phi(\mathcal{F})$ converge to 0 with respect to $\tau(\overline{\mathcal{U}})$ and $\tau(\overline{\mathcal{U}}^*)$ respectively. On the other hand, $i(\mathcal{G})$ and $i(\mathcal{F})$ converge to 0 with respect to $\tau(\widetilde{\mathcal{U}}^*)$.
- (ii) The standard *-half completion is not quasi-uniformly isomorphic to its bicompletion. This is true by (i) and the fact that the bicompletion of (X, U) coincides up to a quasi-isomorphism with the bicompletion of (X,U).

Theorem 2.11. Let (X, \mathcal{U}) be a uniform space. Then, the standard *-half completion $(\overline{X}, \overline{\mathcal{U}})$ coincides with the usual uniform completion.

Proof. Let (X, \mathcal{U}) be a uniform space and let ξ be an h^* -cut in X. Suppose that $(x_a)_{a \in A} \in \mathcal{A}_{\xi}$ and $(y_{\beta})_{\beta \in B} \in \mathcal{B}_{\xi}$. Then $(y_{\beta}, x_a) \longrightarrow 0$ and $(x_a, y_{\beta}) \longrightarrow 0$. Hence the nets and the conets of ξ coincide. Thus, the class of equivalent Cauchy nets, of the uniform case, is identified with an h^* -cut and vice versa. Hence the "ground set" of the two completions is the \overline{X} . The rest is obvious. \Box

Next, we give an equivalent definition for nets for the Definition 5 in [11].

Definition 2.12. Let (X, \mathcal{U}) be a quasi-uniform space. A \mathcal{U}^* -Cauchy net $(x_a)_{a \in A}$ on X is said to be symmetrizable if whenever $(y_\beta)_{\beta \in B}$ is a \mathcal{U}^* -Cauchy net on X such that $(y_\beta, x_a) \longrightarrow 0$, then $(x_a, y_\beta) \longrightarrow 0$.

Definition 2.13. A quasi-uniform space (X, U) is called symmetrizable if each U^* -Cauchy net on X, including for each $x \in X$ the constant net (x), is symmetrizable.

It easy to check that a quasi-uniform space is symmetrizable if and only if the bicompletion is T_1 . In this case, the space has only one T_0 *-half completion,

the bicompletion. From Theorem 2.9 and [11, Theorem 1] we immediate deduce the following result.

Corollary 2.14. If a T_1 quasi-uniform space is symmetrizable, then it has a T_1 *-half completion which is unique up to a quasi-isomorphism.

3. Standard *-half completion and *-Compactification

We recall some well known notions from [6].

A net $(x_a)_{a\in A}$ is said to be *frequently in* S, for some subset S of X, if and only if for all $a \in A$ there is some $a' \geq a$ such that $x_{a'} \in S$. A net is said to be *eventually in* S if and only if there is an a_0 in A such that for all $a \geq a_0$, x_a is in S. A point x in X is a cluster point of the net $(x_a)_{a\in A}$ if and only if the net is frequently in all neighborhoods of x. The net $(x_a)_{a\in A}$ converges to x if and only if $(x_a)_{a\in A}$ is eventually in all neighborhoods of x. The tail sets of $(x_a)_{a\in A}$ are the sets T_a (a in A) where $T_a = \{x_{a'} | a' \geq a\}$. Note that the T_a have the finite intersection property, by the directedness of the index set A, so they generate a filter, the *filter of tails* of $(x_a)_{a\in A}$ or the *filter associated with* the net $(x_a)_{a\in A}$. Then a point x is a cluster point of the filter of tails). And $x_a \longrightarrow x$ if and only if the filter of tails converges to x. This already shows that there is a close relationship between convergence of filters and convergence of nets.

Definition 3.1 (see [6, page 81]). A universal net in X is one such that for each $S \subset X$, either the net is eventually in S, or it is eventually in $X \setminus S$.

From the classical theory we have the following statements.

- (a) A net is a universal net if and only if its associated filter is an ultrafilter.
- (b) Let \mathcal{F} be the filter associated with the net $(x_a)_{a \in A}$ and \mathcal{G} be a filter with $\mathcal{F} \subset \mathcal{G}$. Then $(x_a)_{a \in A}$ has a subnet whose associated filter is \mathcal{G} .
- (a) and (b) implies that:
 - (c) Every net has a universal subnet.
 - (d) A universal net converges to each of its cluster points.
 - (e) A space is compact if and only if every universal net is convergent.

Definition 3.2 (see [11, Definition 6]). A quasi-uniform space (X, \mathcal{U}) is called *-Cauchy bounded if for each ultrafilter \mathcal{F} on X there is a \mathcal{U}^* -Cauchy filter \mathcal{G} on X such that $(\mathcal{G}, \mathcal{F}) \longrightarrow 0$.

Definition 3.2 admits an equivalent definition for nets.

Definition 3.3. A quasi-uniform space (X, \mathcal{U}) is called *-Cauchy bounded if for each universal net $(x_a)_{a\in A}$ on X there is a \mathcal{U}^* -Cauchy net $(y_\beta)_{\beta\in B}$ on X such that $(y_\beta, x_a) \longrightarrow 0$.

Theorem 3.4. Let (X, U) be a *-Cauchy bounded quasi-uniform space. Then the standard *-half completion $(\overline{X}, \overline{U})$ is a *-compactification of the space (X, U). *Proof.* Let $(\xi_a)_{a\in A}$ be a universal net in $(\overline{X}, \overline{\mathcal{U}})$. Suppose that for any $a \in \mathbb{R}$ $A, \xi_a = (\mathcal{A}_{\xi_a}, \mathcal{B}_{\xi_a}).$ Let $(y^a_\beta)_{\beta \in B_a}$ and $\{y(a, W) | (a, W) \in A^\star\}$ be as in the proof of Theorem 2.9. Then, $\{y(a, W) | (a, W) \in A^*\}$ is a net in X. By the above statement (c), we have that $(y(a, W))_{(a,W)\in A^*}$ has a universal subnet, let $\{y(a_k, W_k)|(a_k, W_k)\in A^*, k\in K\}$. Since (X, \mathcal{U}) is *-Cauchy bounded, there is a \mathcal{U}^{\star} -Cauchy net $(x_{\gamma})_{\gamma \in \underline{\Gamma}}$ of X such that $(x_{\gamma}, y(a_k, W_k)) \longrightarrow 0$. Hence $(\phi(x_{\gamma}), \phi(y(a_k, W_k))) \longrightarrow 0$ in $(\overline{X}, \overline{\mathcal{U}})$ (1). On the other hand, since the space $(\overline{X},\overline{\mathcal{U}})$ is half-complete, there exists $\xi \in \overline{X}$ such that $(\phi(x_{\gamma}))_{\gamma \in \Gamma} \tau(\overline{\mathcal{U}})$ -converges to ξ (2). Hence by (1) and (2) we conclude that $\{\phi(y(a_k, W_k))|(a_k, W_k) \in$ $A^*, k \in K$ $\tau(\overline{\mathcal{U}})$ -converges to ξ . Since $\{\phi(y(a_k, W_k)) | (a_k, W_k) \in A^*, k \in K\}$ is a subnet of $\phi(y(a, W))_{(a,W)\in A^{\star}}$ we conclude that ξ is a cluster point of the latter. Since $(y^a_{\beta})_{\beta\in B_a}$ belongs to \mathcal{B}_{ξ_a} , Proposition 8 implies that $(\phi(y(a, W)), \xi_a) \longrightarrow \mathbb{C}$ 0. Hence, ξ is a cluster point of $(\xi_a)_{a \in A}$. There also holds that $(\xi_a)_{a \in A}$ is a universal net, thus the above statement (d) implies that it $\tau(\overline{\mathcal{U}})$ -converges to ξ . Finally, by the above statement (e) we conclude that the space $(\overline{X}, \overline{\mathcal{U}})$ is compact. By Theorem 9, the space $(\overline{X}, \overline{\mathcal{U}})$ has a $\tau(\overline{\mathcal{U}}^*)$ -dense subspace quasiisomorphic to (X, \mathcal{U}) . Hence $(\overline{X}, \overline{\mathcal{U}})$ is a *-compactification of (X, \mathcal{U}) . \Box

References

- A. Andrikopoulos, Completeness in quasi-uniform spaces, Acta Math. Hungar. 105 (2004), 549-565, MR 2005f:54050.
- [2] J. Deak, On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, Stud. Sci. Math. Hungar. 26 (1991), 411-413, MR 94e:94077.
- [3] D. Doitchinov, A concept of completeness of quasi-uniform spaces, Topology Appl. 38 (1991), 205-217, MR 92b:54061.
- [4] P. Fletcher and W. F. Lindgren, *Quasi-uniform spaces*, Lectures Notes in Pure and Appl. Math. 77 (1978), Marc. Dekker, New York, MR 84h:54026.
- [5] P. Fletcher, and W. F. Lindgren, Compactifications of totally bounded quasi-uniform spaces, Glasgow Math. J. 28 (1986), 31-36, MR 87f:54037.
- [6] J. Kelley, General Topology, D.Van Nostrand Company, Inc., Toronto-New York-London, (1955), MR 16, 1136c.
- [7] H. Render, Nonstandard methods of completing quasi-uniform spaces, Topology Appl. 62 (1995), 101-125, MR 96a:54041.
- [8] S. Romaguera and M. A. Sánchez-Granero, *-Compactifications of quasi-uniform paces, Stud. Sci. Math. Hung. 44 (2007), 307-316.
- [9] S. Romaguera and M. A. Sánchez-Granero, A quasi-uniform characterization of Wallman type compactifications, Stud. Sci. Math. Hung. 40 (2003), 257-267, MR 2004h:54021.
- [10] S. Romaguera and M. A. Sánchez-Granero, Compactifications of quasi-uniform hyperspaces, Topology Appl. 127 (2003), 409-423, MR 2003j:54011.
- [11] S. Romaguera and M. A. Sánchez-Granero, Completions and compactifications of quasiuniform spaces, Topology Appl. 123 (2002), 363-382, MR 2003c:54051.

 $^{\ast}\mbox{-half}$ completeness in quasi-uniform spaces

Received January 2008

Accepted August 2008

ATHANASIOS ANDRIKOPOULOS (aandriko@cc.uoi.gr) Department of Economics, University of Ioannina, Greece