New coincidence and common fixed point theorems

S. L. Singh, Apichai Hematulin and Rajendra Pant

Abstract

In this paper, we obtain some extensions and a generalization of a remarkable fixed point theorem of Proinov. Indeed, we obtain some coincidence and fixed point theorems for asymptotically regular non-self and self-maps without requiring continuity and relaxing the completeness of the space. Some useful examples and discussions are also given.

2000 AMS Classification: $54 \mathrm{H} 25 ; 47 \mathrm{H} 10$.
Keywords: Coincidence point; fixed point; Banach contraction; quasicontraction; asymptotic regularity.

1. Introduction

The well-known Banach fixed point theorem has been generalized and extended by many authors in various ways. Recently, Proinov [15] has obtained two types of generalizations of Banach's fixed point theorem. The first type involves Meir- Keeler type conditions (see, for instance, Cho et al. [3], Jachymski [6], Lim [10], Matkowski [11], Park and Rhoades [14]) and the second type involves contractive gauge functions (see, for instance, Boyd and Wong [1] and Kim et al. [9]). Proinov [15] obtained equivalence between these two types of contractive conditions and also obtained a new fixed point theorem. Inspired by Jungck [7], Naimpally et al. [13], Proinov [15] and Romaguera [19], we obtain coincidence theorems on a very general setting and derive various fixed point theorems. Some special cases are also discussed.

In all that follows Y is an arbitrary non-empty set, (X, d) a metric space and $\mathbb{N}:=\{1,2,3, \ldots$,$\} . For T, f: Y \rightarrow X$, let $C(T, f)$ denote the set of coincidence points of T and f, that is $C(T, f):=\{z \in Y: T z=f z\}$.

The following definition comes from Sastry et al. [20] and S. L. Singh et al. [21].

Definition 1.1. Let S, T and f be maps on Y with values in a metric space (X, d). The pair (S, T) is asymptotically regular with respect to f at $x_{0} \in Y$ if there exists a sequence $\left\{x_{n}\right\}$ in Y such that

$$
\begin{gathered}
f x_{2 n+1}=S x_{2 n}, f x_{2 n+2}=T x_{2 n+1}, n=0,1,2, \ldots, \text { and } \\
\lim _{n \rightarrow \infty} d\left(f x_{n}, f x_{n+1}\right)=0 .
\end{gathered}
$$

If $Y=X$ and $S=T$ then we get the definition of asymptotic regularity of T with respect to f due to Rhoades et al. [18]. Further if $Y=X, S=T$ and f is the identity map on X, then we get the usual definition of asymptotic regularity for a map T due to Browder and Peteryshyn [2].
Definition 1.2 ([16]). Let (X, d) be a metric space and $T, f: X \rightarrow X$. Then the self-maps T and f are R-weakly commuting if there exists a positive real number R such that

$$
d(T f x, f T x) \leq R d(T x, f x) \text { for all } x \in X
$$

Following Itoh and Takahashi [5] and Singh and Mishra [22], we have the following definition for a pair of self-maps on a metric space X.

Definition 1.3. Let $T, f: X \rightarrow X$. Then the pair (T, f) is (IT)-commuting at $z \in X$ if Tfz=fTz. They are (IT)-commuting on X (also called weakly compatible, by Jungck and Rhoades [8]) if $T f z=f T z$ for all $z \in X$ such that $T z=f z$.

Definition 1.4 ([15] Definition 2.1 (i)). Let ϕ denote the class of all functions $\varphi: R_{+} \rightarrow R_{+}$satisfying: for any $\varepsilon>0$ there exists $\delta>\varepsilon$ such that $\varepsilon<t<\delta$ implies $\varphi(t) \leq \varepsilon$.

2. Main Results

Proinov [15] obtained the following result generalizing some fixed point theorems of Jachymski [6] and Matkowski [11].

Theorem 2.1 ([15, Th. 4.1]). Let T be a continuous and asymptotically regular self-map on a complete metric space (X, d) satisfying the following conditions:
(P1): $d(T x, T y) \leq \varphi(D(x, y))$, for all $x, y \in X$;
(P2): $d(T x, T y)<D(x, y)$, for all distinct $x, y \in X$,

$$
\text { where } D(x, y)=d(x, y)+\gamma[d(x, T x)+d(y, T y)], \gamma \geq 0 \text { and } \varphi \in \phi
$$

Then T has a unique fixed point.
Moreover if $D(x, y)=d(x, y)+d(x, T x)+d(y, T y)$ and φ is continuous and satisfies $\varphi(t)<t$ for all $t>0$, then continuity of T can be dropped.

For a self-map $T: X \rightarrow X$ the quasi-contraction due to Ćirić [4] is as follows (C) $d(T x, T y) \leq q M(x, y)$,
where $M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}, 0 \leq q<1$.
We remark that following the listing of conditions due to Rhoades [17] the condition (C) is the condition (24). According to Rhoades [17] the condition (25):

$$
d(T x, T y)<M(x, y),
$$

is the most general condition among the contractive conditions.
The following example shows that (P 1) is more general than condition (C).
Example 2.2. Let $X=\{1,2,3\}$ with the usual metric d and $T: X \rightarrow X$ such that

$$
T 1=1, T 2=3, T 3=1 . \text { Then } T \text { satisfies (C) with } q>1
$$

Clearly, the condition (P1) is satisfied with $\varphi(t)=\frac{t}{2}$ for all $t>0$ and $\varphi(0)=0$ and $\gamma \geq 1$.

Evidently T can not satisfy the conditions (24) and (25) listed by Rhoades [17].

First we extend the scope of Theorem 2.1 by introducing a dummy map f in Theorem 2.1. This idea comes essentially from Jungck [7].

We remark that the requirement " $\varphi(t)<t$ for all $t>0$ " in Theorem 2.1 is redundant as this is the consequence of Definition 1.4. We shall use this fact in the proof of the following theorem.
Theorem 2.3. Let T and f be self-maps on a complete metric space (X, d) such that
(A1): $T(X) \subseteq f(X) ;$
(A2): $d(T x, T y) \leq \varphi(g(x, y))$ for all $x, y \in X$,
where $g(x, y)=d(f x, f y)+\gamma[d(f x, T x)+d(f y, T y)], \gamma \geq 0$ and $\varphi \in \phi$ is continuous;
(A3): $d(T x, T y)<g(x, y)$ for all distinct $x, y \in Y$;
(A4): (T, f) is asymptotically regular at $x_{0} \in X$.
If T is continuous then T has a fixed point provided that T and f are R-weakly commuting. Further if f is continuous and $\gamma=1$ then T and f have a unique common fixed point provided that T and f are R-weakly commuting.

Proof. Pick $x_{0} \in X$. Define a sequence $\left\{y_{n}\right\}$ by $y_{n+1}=T x_{n}=f x_{n+1}, n=$ $0,1,2, \ldots$ This can be done since the range of f contains the range of T. Let us fix $\varepsilon>0$. Since $\varphi \in \phi$, there exists $\delta>\varepsilon$ such that for any $t \in(0, \infty)$,

$$
\begin{equation*}
\varepsilon<t<\delta \Rightarrow \varphi(t) \leq \varepsilon \tag{2.1}
\end{equation*}
$$

Without loss of generality we may assume that $\delta \leq 2 \varepsilon$. Since the pair (T, f) is asymptotically regular, $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0$. Hence, there exists an integer $N \geq 1$ such that

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right)<\frac{\delta-\varepsilon}{1+2 \gamma} \text { for all } n \geq N \tag{2.2}
\end{equation*}
$$

By induction we shall show that

$$
\begin{equation*}
d\left(y_{n}, y_{m}\right)<\frac{\delta+2 \gamma \varepsilon}{1+2 \gamma} \text { for all } m, n \in \mathbb{N} \text { with } m \geq n \geq N \tag{2.3}
\end{equation*}
$$

Let $n \geq N$ be fixed. Obviously, (2.3) holds for $m=n$. Assuming (2.3) to hold for an integer $m \geq n$, we shall prove it for $m+1$. By the triangle inequality, we get

$$
d\left(y_{n}, y_{m+1}\right) \leq d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{m+1}\right)
$$

or

$$
\begin{equation*}
d\left(y_{n}, y_{m+1}\right) \leq d\left(y_{n}, y_{n+1}\right)+d\left(T x_{n}, T x_{m}\right) . \tag{2.4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
d\left(T x_{n}, T x_{m}\right) \leq \varepsilon . \tag{2.5}
\end{equation*}
$$

To prove (2.5), we consider two cases.
Case 1.: Let $g\left(x_{n}, x_{m}\right) \leq \varepsilon$. By (A2) and (A3),

$$
d\left(T x_{n}, T x_{m}\right) \leq g\left(x_{n}, x_{m}\right) \leq \varepsilon, \text { and }(2.5) \text { holds. }
$$

Case 2.: Let $g\left(x_{n}, x_{m}\right)>\varepsilon$. By (A2),

$$
\begin{equation*}
d\left(T x_{n}, T x_{m}\right) \leq \varphi\left(g\left(x_{n}, x_{m}\right)\right) \tag{2.6}
\end{equation*}
$$

By the definition of $g(x, y)$,

$$
g\left(x_{n}, x_{m}\right)=d\left(y_{n}, y_{m}\right)+\gamma\left[d\left(y_{n}, y_{n+1}\right)+d\left(y_{m}, y_{m+1}\right)\right] .
$$

From (2.2) and (2.3),

$$
g\left(x_{n}, x_{m}\right)<\frac{\delta+2 \gamma \varepsilon}{1+2 \gamma}+2 \gamma \frac{\delta-\varepsilon}{1+2 \gamma}=\delta
$$

Now by (2.1),

$$
\varepsilon<g\left(x_{n}, x_{m}\right)<\delta \Rightarrow \varphi\left(g\left(x_{n}, x_{m}\right)\right) \leq \varepsilon
$$

So (2.6) implies (2.5). From (2.5), (2.4) and (2.2), it follows that

$$
d\left(y_{n}, y_{m+1}\right) \leq \frac{\delta-\varepsilon}{1+2 \gamma}+\varepsilon=\frac{\delta+2 \gamma \varepsilon}{1+2 \gamma} . \text { This proves }(2.3)
$$

Since $\delta \leq 2 \varepsilon,(2.3)$ implies that $d\left(y_{n}, y_{m}\right)<2 \varepsilon$ for all integers m and n with $m \geq n \geq N$. So $\left\{y_{n}\right\}$ is a Cauchy sequence. Since the space X is complete the sequence $\left\{y_{n}\right\}$ has a limit. Call it z.

Suppose T is continuous. Then $T T x_{n} \rightarrow T z$ and $T f x_{n} \rightarrow T z$. Since T and f are R -weakly commuting,

$$
d\left(T f x_{n}, f T x_{n}\right) \leq R d\left(T x_{n}, f x_{n}\right)
$$

Making $n \rightarrow \infty$,

$$
f T x_{n} \rightarrow T z . \text { If } z \neq T z, \text { then by (A2), }
$$

$$
\begin{aligned}
d\left(T x_{n}, T T x_{n}\right) & \leq \varphi\left(g\left(x_{n}, T x_{n}\right)\right. \\
& =\varphi\left(d\left(f x_{n}, f T x_{n}\right)+\gamma\left[d\left(f x_{n}, T x_{n}\right)+d\left(f T x_{n}, T T x_{n}\right)\right]\right)
\end{aligned}
$$

Making $n \rightarrow \infty$, $d(z, T z) \leq \varphi(d(z, T z)<d(z, T z)$, a contradiction. It follows that $z=T z$.

If f continuous and $\gamma=1$. Then $f f x_{n} \rightarrow f z$ and $f T x_{n} \rightarrow f z$. Since T and f are R -weakly commuting,

$$
d\left(T f x_{n}, f T x_{n}\right) \leq R d\left(T x_{n}, f x_{n}\right)
$$

Making $n \rightarrow \infty$,

$$
\begin{aligned}
& T f x_{n} \rightarrow f z . \text { If } z \neq f z, \text { then by (A2), } \\
d\left(T x_{n}, T f x_{n}\right) & \leq \varphi\left(g\left(x_{n}, f x_{n}\right)\right. \\
& =\varphi\left(d\left(f x_{n}, f f x_{n}\right)+\gamma\left[d\left(f x_{n}, T x_{n}\right)+d\left(f f x_{n}, T f x_{n}\right)\right]\right)
\end{aligned}
$$

Making $n \rightarrow \infty$,
$d(z, f z) \leq \varphi(d(z, f z)<d(z, f z)$, a contradiction. It follows that $z=f z$.
Now if $z \neq T z$, then by (A2),

$$
\begin{aligned}
d\left(T z, T f x_{n}\right) & \leq \varphi\left(g\left(z, f x_{n}\right)\right. \\
& =\varphi\left(d\left(f z, f f x_{n}\right)+\left[d(f z, T z)+d\left(f f x_{n}, T f x_{n}\right)\right]\right) .
\end{aligned}
$$

Making $n \rightarrow \infty$,

$$
d(T z, f z) \leq \varphi(d(T z, f z)<d(T z, f z), \text { a contradiction. }
$$

It follows that $T z=f z=z$, and z is a common fixed point of f and T. Uniqueness follows easily.

We remark that Theorem 2.1 is obtained from Theorem 2.3 as a corollary. Notice that conditions (P1) and (P2) come respectively from (A2) and (A3) when f is the identity map on X. Further, the continuity of only one map is needed. The following example shows the superiority of Theorem 2.3 over Theorem 2.1.

Example 2.4. Let $X=[0, \infty)$ with usual metric d. Let $T: X \rightarrow X$ such that

$$
T x= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

Theorem 2.1 is not applicable to this map T as it is not continuous. However, if we take a (dummy) map $f: X \rightarrow X$ such that $f x=2 x$ for all $x \in X$ then T and f satisfy all the hypotheses of Theorem 2.3. Notice that f is continuous and $T 0=f 0=0$.

Now we modify certain requirements of Theorem 2.3 a slightly to obtain a new result.

Theorem 2.5. Let T and f be maps on an arbitrary non-empty set Y with values in a metric space (X, d) such that
(B1): $T(Y) \subseteq f(Y)$;
(B2): $d(T x, T y) \leq \varphi(g(x, y))$ for all $x, y \in Y$,
where $g(x, y)=d(f x, f y)+\gamma[d(f x, T x)+d(f y, T y)], 0 \leq \gamma \leq 1$, and $\varphi: R_{+} \rightarrow R_{+}$continuous;
(B3): (T, f) is asymptotically regular at $x_{0} \in Y$.
If $T(Y)$ or $f(Y)$ is a complete subspace of X then
(i): $C(T, f)$ is non-empty.

Further, if $Y=X$, then
(ii): T and f have a unique common fixed point provided that T and f are (IT)-commuting at a point $u \in C(T, f)$.
Proof. Pick $x_{0} \in Y$. Define a sequence $\left\{y_{n}\right\}$ by $y_{n+1}=T x_{n}=f x_{n+1}, n=$ $0,1,2 \ldots$, this can be done since the range of f contains the range of T. Since the pair (f, T) is asymptotically regular, $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0$.

First we shall show that $\left\{y_{n}\right\}$ is a Cauchy sequence. Suppose $\left\{y_{n}\right\}$ is not Cauchy. Then there exists $\mu>0$ and increasing sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers such that for all $n \leq m_{k}<n_{k}$,

$$
d\left(y_{m_{k}}, y_{n_{k}}\right) \geq \mu \text { and } d\left(y_{m_{k}}, y_{n_{k}-1}\right)<\mu .
$$

By the triangle inequality,

$$
d\left(y_{m_{k}}, y_{n_{k}}\right) \leq d\left(y_{m_{k}}, y_{n_{k}-1}\right)+d\left(y_{n_{k}-1}, y_{n_{k}}\right)
$$

Making $k \rightarrow \infty$,

$$
d\left(y_{m_{k}}, y_{n_{k}}\right)<\mu
$$

Thus, $d\left(y_{m_{k}}, y_{n_{k}}\right) \rightarrow \mu$ as $k \rightarrow \infty$. Now by (B2),

$$
\begin{aligned}
d\left(y_{m_{k}+1}, y_{n_{k}+1}\right) & =d\left(T x_{m_{k}}, T x_{n_{k}}\right) \\
& \leq \varphi\left(g\left(x_{m_{k}}, x_{n_{k}}\right)\right) \\
& =\varphi\left(d\left(f x_{m_{k}}, f x_{n_{k}}\right)+\gamma\left[d\left(f x_{m_{k}}, T x_{m_{k}}\right)+d\left(f x_{n_{k}}, T x_{n_{k}}\right)\right]\right) .
\end{aligned}
$$

Making $k \rightarrow \infty$,

$$
\mu \leq \varphi(\mu)<\mu
$$

a contradiction. Therefore $\left\{y_{n}\right\}$ is Cauchy. Suppose $f(Y)$ is complete. Then $\left\{y_{n}\right\}$ being contained in $f(Y)$ has a limit in $f(Y)$. Call it z. Let $u \in f^{-1} z$. Then $f u=z$. Using (B2),

$$
d\left(T u, T x_{n}\right) \leq \varphi\left(d\left(f u, f x_{n}\right)+\gamma\left[d(T u, f u)+d\left(T x_{n}, f x_{n}\right)\right]\right)
$$

Making $n \rightarrow \infty$,

$$
d(T u, z) \leq \varphi(\gamma d(T u, z))<d(T u, z),
$$

a contradiction. Therefore $T u=z=f u$. This proves (i). Now if $Y=X$ and the pair (T, f) is (IT)-commuting at u then $T f u=f T u$ and $T T u=T f u=$ $f T u=f f u$. In view of (B2), it follows that

$$
\begin{aligned}
d(T u, T T u) & <\varphi(g(u, T u)) \\
& =\varphi(d(f u, f T u)+\gamma[d(T u, f u)+d(T T u, f T u)])<d(T u, T T u),
\end{aligned}
$$

a contradiction. Therefore $T T u=T u$ and $f T u=T T u=T u=z$. This proves (ii).

In the case $T(Y)$ is a complete subspace of X, the condition (B1) implies that sequence $\left\{y_{n}\right\}$ converges in $f(Y)$, and the previous proof works. The uniqueness of common fixed point follows easily.

The following result generalizes an important result of Proinov [15, Cor. 4.3]
Corollary 2.6. Let T and f be maps on an arbitrary non-empty set Y with values in metric space (X, d) such that
(C1): $T(Y) \subseteq f(Y)$;
(C2): $d(T x, T y) \leq \varphi(M(x, y))$, for all $x, y \in Y$,
where $M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{1}{2}[d(f x, T y)+\right.$ $d(f y, T x)]\}$ and $\varphi: R_{+} \rightarrow R_{+}$continuous.

If $T(Y)$ or $f(Y)$ is a complete subspace of X then conditions (i) and (ii) of above Theorem 2.5 hold.

Now we obtain a new common fixed point theorem for three non self-maps.
Theorem 2.7. Let S, T and f be maps on an arbitrary non-empty set Y with values in a metric space (X, d). Let (S, T) be asymptotically regular with respect to f at $x_{0} \in Y$ and the following conditions are satisfied:
(D1): $S(Y) \cup T(Y) \subseteq f(Y)$;
(D2): $d(S x, T y) \leq \varphi(h(x, y))$, for all $x, y \in X$,
where $h(x, y)=d(f x, f y)+\gamma[d(S x, f x)+d(T y, f y)], 0 \leq \gamma \leq 1$, and $\varphi: R_{+} \rightarrow R_{+}$continuous. If $S(Y)$ or $T(Y)$ or $f(Y)$ is a complete subspace of X then
(I): $C(S, f)$ is non-empty;
(II): $C(T, f)$ is non-empty.

Further, if $Y=X$ then
(III): S and f have a common fixed point provided that S and f are (IT)-commuting at a point $u \in C(S, f)$.
(IV): T and f have a common fixed point provided that T and f are (IT)-commuting at a point $v \in C(T, f)$.
(V): S, T and f have a unique common fixed point provided that (III) and (IV) both are true.

Proof. Let x_{0} be an arbitrary point in Y. Since (S, T) is asymptotically regular with respect to f, then there exists a sequence $\left\{x_{n}\right\}$ in Y such that

$$
\begin{gathered}
f x_{2 n+1}=S x_{2 n}, f x_{2 n+2}=T x_{2 n+1}, n=0,1,2, \ldots, \text { and } \\
\lim _{n \rightarrow \infty} d\left(f x_{n}, f x_{n+1}\right)=0 .
\end{gathered}
$$

Now we shall show that $\left\{f x_{n}\right\}$ is Cauchy sequence. Suppose $\left\{f x_{n}\right\}$ is not Cauchy. Then there exists $\mu>0$ and increasing sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers, such that for all $n \leq m_{k}<n_{k}$,

$$
d\left(f x_{m_{k}}, f x_{n_{k}}\right) \geq \mu \text { and } d\left(f x_{m_{k}}, f x_{n_{k}-1}\right)<\mu .
$$

By the triangle inequality,

$$
d\left(f x_{m_{k}}, f x_{n_{k}}\right) \leq d\left(f x_{m_{k}}, f x_{n_{k}-1}\right)+d\left(f x_{n_{k}-1}, f x_{n_{k}}\right) .
$$

Making $k \rightarrow \infty$, we get

$$
d\left(f x_{m_{k}}, f x_{n_{k}}\right)<\mu
$$

Thus

$$
d\left(f x_{m_{k}}, f x_{n_{k}}\right) \rightarrow \mu \text { as } k \rightarrow \infty
$$

By (D2) we have

$$
\begin{aligned}
d\left(f x_{m_{k}+1}, f x_{n_{k}+1}\right) & =d\left(S x_{m_{k}}, T x_{n_{k}}\right) \\
& \leq \varphi\left(h\left(x_{m_{k}}, x_{n_{k}}\right)\right) \\
& =\varphi\left(d\left(f x_{m_{k}}, f x_{n_{k}}\right)+\gamma\left[d\left(S x_{m_{k}}, f x_{m_{k}}\right)+d\left(T x_{n_{k}}, f x_{n_{k}}\right)\right]\right) .
\end{aligned}
$$

Making $k \rightarrow \infty$

$$
\mu \leq \varphi(\mu)<\mu, \text { a contradiction. }
$$

Thus $\left\{f x_{n}\right\}$ is Cauchy sequence. Suppose $f(Y)$ is a complete subspace of X. Then $\left\{y_{n}\right\}$ being contained in $f(Y)$ has a limit in $f(Y)$. Call it z. Let $u=f^{-1} z$. Thus $f u=z$ for some $u \in Y$. Note that the subsequences $\left\{f x_{2 n+1}\right\}$ and $\left\{f x_{2 n+2}\right\}$ also converge to z. Now by (D2),

$$
d\left(S u, T_{2 n+1}\right) \leq \varphi\left(d\left(f u, f_{2 n+1}\right)+\gamma\left[d(S u, f u)+d\left(T_{2 n+1}, f_{2 n+1}\right)\right]\right)
$$

Making $n \rightarrow \infty$,

$$
d(S u, f u) \leq \varphi(\gamma d(S u, f u))<d(S u, f u) \text { a contradiction. }
$$

Therefore $S u=f u=z$. This proves (I). Since $S(Y) \cup T(Y) \subseteq f(Y)$. Therefore there exists $v \in Y$ such that $S u=f v$. We claim that $f v=T v$. Using (D2),

$$
\begin{aligned}
d(f v, T v) & =d(S u, T v) \\
& \leq \varphi(d(f u, f v)+\gamma[d(S u, f u)+d(T v, f v)]) \\
& =\varphi(\gamma d(f v, T v))<d(f v, T v)
\end{aligned}
$$

which is a contradiction. Therefore $T v=f v=S u=f u$. This proves (II). Now if $Y=X,(S, f)$ and (T, f) are (IT)-commuting then $S f u=f S u$ and $S S u=S f u=f S u=f f u, T f v=f T v$ and $T T v=T f v=f T v=f f v$. In view of (D2), it follows that

$$
\begin{aligned}
d(S S u, S u) & =d(S S u, T v) \\
& \leq \varphi(d(f S u, f v)+\gamma[d(S S u, f S u)+d(T v, f v)]) \\
& =\varphi(\gamma d(S S u, S u))<d(S S u, S u)
\end{aligned}
$$

Therefore $S S u=S u=f S u, S u$ is a common fixed point of S and f. Similarly, $T v$ is a common fixed point of T and f. Since $S u=T v$, we conclude that $S u$ is a common fixed point of S, T and f. The proof is similar when $S(Y)$ or $T(Y)$ are complete subspaces of X since, $S(Y) \cup T(Y) \subseteq f(Y)$. Uniqueness of the common fixed point follows easily.

Acknowledgements. The authors are indebted to the referee and Prof. Salvador Romaguera for their perspicacious comments and suggestions.

References

[1] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
[2] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575.
[3] Y. J. Cho, P. P. Murthy and G. Jungck, A theorem of Meer-Keeler type revisited, Internat J. Math. Math. Sci. 23 (2000), 507-511.
[4] Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[5] S. Itoh and W. Takahashi, Single valued mappings, mutivalued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977), 514-521.
[6] J. Jachymski, Equivalent conditions and the Meir-keeler type theorems, J. Math. Anal. Appl. 194 (1995), 293-303.
[7] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly. 83 (1976), 261-263.
[8] G. Jungck and B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure Appl. Math. 29, no. 3 (1988), 227-238.
[9] K. H. Kim, S. M. Kang and Y. J. Cho, Common fixed point of ϕ-contractive mappings, East. Asian Math. J. 15 (1999), 211-222.
[10] T. C. Lim, On characterization of Meir-Keeler contractive maps, Nonlinear Anal. 46 (2001), 113-120.
[11] J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Cas. Pest. Mat. 105 (1980), 341-344.
[12] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
[13] S. A. Naimpally, S. L. Singh and J. H. M. Whitfield, Coincidence theorems for hybrid contractions, Math. Nachr. 127 (1986), 177-180.
[14] S. Park and B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon. 26 (1981), 13-20.
[15] P. D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64 (2006), 546557.
[16] R. P. Pant, Common fixed points of noncommuting mappings J. Math. Anal. Appl. 188 (1994), 436-440.
[17] B. E. Rhoades, A comparison of various definitions of contracting mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
[18] B. E. Rhoades, S. L. Singh and Chitra Kulshrestha, Coincidence theorems for some multivalued mappings, Internat. J. Math. Math. Sci. 7, no. 3 (1984), 429-434.
[19] S. Romaguera, Fixed point theorems for mappings in complete quasi-metric spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 39, no. 2 (1993), 159-164.
[20] K. P. R. Sastry, S. V. R. Naidu, I. H. N. Rao and K. P. R. Rao, Common fixed point points for asymptotically regular mappings, Indian J. Pure Appl. math. 15, no. 8 (1984), 849-854.
[21] S. L. Singh, K. Ha and Y. J. Cho, Coincidence and fixed point of nonlinear hybrid contractions, Internat. J. Math. Math. Sci. 12, no. 2 (1989), 247-256.
[22] S. L. Singh and S. N. Mishra, Coincidence and fixed points of nonself hybrid contractions, J. Math. Anal. Appl. 256 (2001), 486-497.
S. L. Singh (vedicmri@gmail.com)

21, Govind Nagar Rishikesh 249201, India

Apichai Hematulin
Department of Mathematics, Nakhonratchasima Rajabhat University, Nakhoratchasima, Thailand

Rajendra Pant (pant.rajendra@gmail.com)
SRM University Modinagar, Ghaziabad (U.P.) 201204, India

