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Topologies on function spaces and hyperspaces
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Abstract. Let Y and Z be two fixed topological spaces, O(Z) the
family of all open subsets of Z, C(Y, Z) the set of all continuous maps
from Y to Z, and OZ(Y ) the set {f−1(U) : f ∈ C(Y, Z) and U ∈ O(Z)}.
In this paper, we give and study new topologies on the sets C(Y, Z) and
OZ(Y ) calling (A,A0)-splitting and (A,A0)-admissible, where A and
A0 families of spaces.
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1. Preliminaries

Let Y and Z be two fixed topological spaces. By C(Y, Z) we denote the set
of all continuous maps from Y to Z. If t is a topology on the set C(Y, Z), then
the corresponding topological space is denoted by Ct(Y, Z).

Let X be a space. To each map g : X×Y → Z which is continuous in y ∈ Y

for each fixed x ∈ X , we associate the map g∗ : X → C(Y, Z) defined as follows:
for every x ∈ X , g∗(x) is the map from Y to Z such that g∗(x)(y) = g(x, y),
y ∈ Y . Obviously, for a given map h : X → C(Y, Z), the map h⋄ : X × Y → Z

defined by h⋄(x, y) = h(x)(y), (x, y) ∈ X × Y , satisfies (h⋄)
∗

= h and is
continuous in y for each fixed x ∈ X . Thus, the above association (defined in
[7]) between the mappings from X × Y to Z that are continuous in y for each
fixed x ∈ X, and the mappings from X to C(Y, Z) is one-to-one.

In 1946 R. Arens [1] introduced the notion of an admissible topology: a
topology t on C(Y, Z) is called admissible if the map e : Ct(Y, Z) × Y → Z,
called evaluation map, defined by e(f, y) = f(y), is continuous.

In 1951 R. Arens and J. Dugundji [2] introduced the notion of a splitting
topology: a topology t on C(Y, Z) is called splitting if for every space X ,
the continuity of a map g : X × Y → Z implies the continuity of the map
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g∗ : X → Ct(Y, Z). On the set C(Y, Z) there exists the greatest splitting
topology, denoted here by tgs (see [2]). They also proved that a topology t on
C(Y, Z) is admissible if and only if for every space X , the continuity of a map
h : X → Ct(Y, Z) implies that of the map h⋄ : X × Y → Z

If in the above definitions it is assumed that the space X belongs to a
fixed class A of topological spaces, then the topology t is called A-splitting
or A-admissible, respectively (see [8]). In the case where A = {X} we write
X-splitting (respectively, X-admissible) instead of {X}-splitting (respectively,
{X}-admissible).

Let X be a space. In what follows by O(X) we denote the family of all open
subsets of X . Also, for two fixed topological spaces Y and Z we denote by
OZ(Y ) the set {f−1(U) : f ∈ C(Y, Z) and U ∈ O(Z)}.

The Scott topology Ω(Y ) on O(Y ) (see, for example, [11]) is defined as follows:
a subset IH of O(Y ) belongs to Ω(Y ) if:

(α) the conditions U ∈ IH , V ∈ O(Y ), and U ⊆ V imply V ∈ IH , and
(β) for every collection of open sets of Y , whose union belongs to IH , there

are finitely many elements of this collection whose union also belongs
to IH .

The strong Scott topology Ωs(Y ) on O(Y ) (see [12]) is defined as follows: a
subset IH of O(Y ) belongs to Ωs(Y ) if:

(α) the conditions U ∈ IH , V ∈ O(Y ), and U ⊆ V imply V ∈ IH , and
(β) for every open cover of Y there are finitely many elements of this cover

whose union also belongs to IH .

The Isbell topology tIs (respectively, strong Isbell topology tsIs) on C(Y, Z)
(see, for example, [13] and [12]) is the topology, which has as a subbasis the
family of all sets of the form:

(IH, U) = {f ∈ C(Y, Z) : f−1(U) ∈ IH},

where IH ∈ Ω(Y ) (respectively, IH ∈ Ωs(Y )) and U ∈ O(Z).

The compact open topology (see [7]) on C(Y, Z), denoted here by tco, is the
topology for which the family of all sets of the form

(K, U) = {f ∈ C(Y, Z) : f(K) ⊆ U},

where K is a compact subset of Y and U is an open subset of Z, form a subbase.
It is known that tco ⊆ tIs (see, for example, [13]).

A subset K of a space X is said to be bounded if every open cover of X has
a finite subcover for K (see [12]).

A space X is called corecompact (see [11]) if for every x ∈ X and for every
open neighborhood U of x, there exists an open neighborhood V of x such that
the subset V is bounded in the space U (see [11]).



Topologies on function spaces 161

Below, we give some well known results:

(1) The Isbell topology and, hence, the compact open topology, and the
point open topology (denoted here by tpo) on C(Y, Z) are always split-
ting (see, for example, [2], [3], and [13]).

(2) The compact open topology on C(Y, Z) is admissible if Y is a regular
locally compact space. In this case the compact open topology is also
the greatest splitting topology (see [2]).

(3) The Isbell topology on C(Y, Z) is admissible if Y is a corecompact
space. In this case the Isbell topology is also the greatest splitting
topology (see, for example, [12] and [14]).

(4) A topology larger than a admissible topology is also admissible (see
[2]).

(5) A topology smaller than a splitting topology is also splitting (see [2]).
(6) The strong Isbell topology on C(Y, Z) is admissible if Y is a locally

bounded space (see [12]).

For a summary of all the above results and some open problems on function
spaces see [10]. Also, [4] and [5] are other papers related to this area.

In what follows if ϕ : X → Y is a map and X0 ⊆ X , then by ϕ|X0
: X0 → Y

we denote the restriction of the map ϕ on the set X0. Also, if h : X × Y → Z

is a map and X0 ⊆ X , then by h|X0×Y we denote the restriction of the map h

on the set X0 × Y .

In Sections 2 and 3 we give and study new topologies on the sets C(Y, Z)
and OZ(Y ) calling (A,A0)-splitting and (A,A0)-admissible, where A and A0

families of spaces.

2. (A,A0)-splitting and (A,A0)-admissible topologies on the set

C(Y, Z)

Note 1. Let A be a family of topological spaces. For every X ∈ A we denote
by X0 a subspace of X and by A0 the family of all such subspaces X0. In all
paper by (A,A0) we denote the family of all pairs (X, X0) such that X ∈ A,
X0 ∈ A0, and X0 is a subspace of X.

Definition 2.1. A topology t on C(Y, Z) is called (A,A0)-splitting if for every
pair (X, X0) ∈ (A,A0), the continuity of a map g : X × Y → Z implies the
continuity of the map g∗|X0

: X0 → Ct(Y, Z), where g∗ : X → Ct(Y, Z) the
map which is defined in preliminaries.

A topology t on C(Y, Z) is called (A,A0)-admissible if for every pair (X, X0) ∈
(A,A0), the continuity of a map h : X → Ct(Y, Z) implies that of the map
h⋄|X0×Y : X0 × Y → Z, where h⋄ : X × Y → Z the map which is defined in
preliminaries.

In the case where A = {X} and A0 = {X0}, where X0 is a subspace
of X , we write (X, X0)-splitting (respectively, (X, X0)-admissible) instead of
({X}, {X0})-splitting (respectively, ({X}, {X0})-admissible).
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Clearly, the following theorem is true.

Theorem 2.2. The following statements are true:

(1) Every splitting (respectively, admissible) topology on C(Y, Z) is (A,A0)-
splitting (respectively, (A,A0)-admissible), where A and A0 are arbi-
trary families of spaces such that every element X0 ∈ A0 is a subspace
of an element X ∈ A.

(2) Every A-splitting (respectively, A-admissible) topology on C(Y, Z) is
(A,A0)-splitting (respectively, (A,A0)-admissible), where A and A0

are arbitrary families of spaces such that every element X0 ∈ A0 is a
subspace of an element X ∈ A.

Example 2.3.

(1) The point-open, the compact open, and the Isbell topologies are (A,A0)-
splitting, where A and A0 are arbitrary families of spaces such that
every element X0 ∈ A0 is a subspace of an element X ∈ A.

(2) If Y is a regular locally compact space, then the compact-open topology
is (A,A0)-admissible, where A and A0 are arbitrary families of spaces
such that every element X0 ∈ A0 is a subspace of an element X ∈ A.

(3) If Y is a corecompact space, then the Isbell topology is (A,A0)-admissible,
where A and A0 are arbitrary families of spaces such that every element
X0 ∈ A0 is a subspace of an element X ∈ A.

(4) If Y is a locally bounded space, then the strong Isbell topology is
(A,A0)-admissible, where A and A0 are arbitrary families of spaces
such that every element X0 ∈ A0 is a subspace of an element X ∈ A.

(5) Let X be a space, x0 ∈ X , X0 the subspace {x0} of X , and t an
arbitrary topology on C(Y, Z) which it is not X-splitting. Then, the
topology t is (X, X0)-splitting. It is clear that this topology t is not
splitting.

(6) Let X be a space, x0 ∈ X , X0 the subspace {x0} of X , and t an
arbitrary topology on C(Y, Z) which it is not X-admissible. Then, the
topology t is (X, X0)-admissible. It is clear that this topology t is not
admissible.

Theorem 2.4. The following statements are true:

(1) A topology smaller than an (A,A0)-splitting topology is also (A,A0)-
splitting.

(2) A topology larger than an (A,A0)-admissible topology is also (A,A0)-
admissible.

Proof. We prove only the statement (1). The proof of (2) is similar. Let t1 be
an (A,A0)-splitting topology on C(Y, Z) and t2 a topology on C(Y, Z) such
that t2 ⊆ t1. We prove that the topology t2 is a (A,A0)-splitting topology.
Indeed, let (X, X0) ∈ (A,A0) and let g : X × Y → Z be a continuous map.
Since the topology t1 is (A,A0)-splitting, the map g∗|X0

: X0 → Ct1(Y, Z) is
continuous. Also, since t2 ⊆ t1, the identical map id : Ct1(Y, Z) → Ct2(Y, Z) is
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continuous. So, the map g∗|X0
: X0 → Ct2(Y, Z) is continuous as a composition

of continuous maps. Thus, the topology t2 is (A,A0)-splitting. �

Definition 2.5. Let (A1,A1
0) and (A2,A2

0) two pairs of spaces, where A1 (re-
spectively, A2) and A1

0 (respectively, A2
0) are arbitrary families of spaces such

that every element X0 ∈ A1
0 (respectively, every element X0 ∈ A2

0) is a sub-
space of an element X ∈ A1 (respectively, of an element X ∈ A2). We say
that the pairs (A1,A1

0) and (A2,A2
0) are equivalent if a topology t on C(Y, Z)

is (A1,A1
0)-splitting if and only if t is (A2,A2

0)-splitting, and t is (A1,A1
0)-

admissible if and only if t is (A2,A2
0)-admissible. In this case we write

(A1,A1
0) ∼ (A2,A2

0).

Theorem 2.6. For every pair (A,A0), where A and A0 are arbitrary families
of spaces such that every element X0 ∈ A0 is a subspace of an element X ∈ A,
there exists a pair (X(A), X(A0)), where X(A) is a space and X(A0) is a
subspace of X(A) such that

(A,A0) ∼ (X(A), X(A0)).

Proof. Let T c
sp be the set of all topologies on C(Y, Z) which are not (A,A0)-

splitting and let T c
ad the set of all topologies on C(Y, Z) which are not (A,A0)-

admissible. For each t ∈ T c
sp there exists in (A,A0) a pair (Xsp

t , X
sp
t,0) such that

t is not (Xsp
t , X

sp
t,0)-splitting. Similarly, for each t ∈ T c

ad there exists in (A,A0)

a pair (Xad
t , Xad

t,0) such that t is not (Xad
t , Xad

t,0)-admissible. Let

A′ = {Xsp
t : t ∈ T c

sp} ∪ {Xad
t : t ∈ T c

ad}

and
A′

0 = {Xsp
t,0 : t ∈ T c

sp} ∪ {Xad
t,0 : t ∈ T c

ad}.

Of course, we can suppose that the spaces from A′ and A′
0 are pair-wise disjoint.

Let X(A) and X(A0) be the free union of all the spaces from A′ and A′
0,

respectively. We prove that the pair (X(A), X(A0)) is the required pair.
Let t be an (A,A0)-splitting topology on C(Y, Z). We prove that this topol-

ogy is (X(A), X(A0))-splitting. Indeed, let g : X(A)×Y → Z be a continuous
map. It suffices to prove that the map

g∗|X(A0) : X(A0) → Ct(Y, Z)

is continuous. Let X ∈ A′ ⊆ A. Then, the restriction g|X×Y of the map g on
X ×Y ⊆ X(A)×Y is also a continuous map and, therefore, since the topology
t is (A,A0)-splitting we have that the map (g|X×Y )∗|X0

: X0 → Ct(Y, Z)
is continuous. Since X(A0) is the free union of all the spaces from A′

0 and
(g|X×Y )∗|X0

= (g∗|X(A0))|X0
, it follows that the map g∗|X(A0) : X(A0) →

Ct(Y, Z) is continuous. Thus, the topology t on C(Y, Z) is (X(A), X(A0))-
splitting.

Now, let t be an (X(A), X(A0))-splitting topology on C(Y, Z). We prove
that t is (A,A0)-splitting. We suppose that t is not (A,A0)-splitting. Then,
t ∈ T c

sp and, therefore, t is not (Xsp
t , X

sp
t,0)-splitting for some pair (Xsp

t , X
sp
t,0) ∈

(A,A0). Thus, there exists a continuous map g : X
sp
t × Y → Z such that the
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map g∗|Xsp

t,0
: X

sp
t,0 → Ct(Y, Z) is not continuous. Since the space X(A) is the

free union of all the spaces from the family A′, the map g can be extended to a
continuous map g1 : X(A) × Y → Z. Since the map g∗|Xsp

t,0
is not continuous,

X
sp
t,0 ∈ A′

0, and the space X(A0) is the free union of all spaces from A′
0 we have

that the map

g∗|X(A0) : X(A0) → Ct(Y, Z)

is not continuous, which contradicts our assumption that t is a (X(A), X(A0))-
splitting topology. Thus, a topology t on C(Y, Z) is (A,A0)-splitting if and only
if it is (X(A), X(A0))-splitting.

Similarly, a topology t on C(Y, Z) is (A,A0)-admissible if and only if is
(X(A), X(A0))-admissible. Hence,

(A,A0) ∼ (X(A), X(A0)).

�

Theorem 2.7. There exists the greatest (A,A0)-splitting topology, where A
and A0 are arbitrary families of spaces such that every element X0 ∈ A0 is a
subspace of an element X ∈ A.

Proof. Let {ti : i ∈ I} be the family of all (A,A0)-splitting topologies on
C(Y, Z). We consider the topology t = ∨{ti : i ∈ I}. Clearly, t is (A,A0)-
splitting and ti ⊆ t, for every i ∈ I. Thus, t is the greatest (A,A0)-splitting
topology. �

Note 2. In what follows we denote by t(A,A0) the greatest (A,A0)-splitting
topology on C(Y, Z),

Theorem 2.8. The following statements are true:

(1) If (A,A0) = ∪{(Ai,Ai
0) : i ∈ I}, then

t(A,A0) = ∩{t(Ai,Ai
0) : i ∈ I}.

(2) t(A,A0) = ∩{t(X, X0) : (X, X0) ∈ (A,A0)}.
(3) If (A,A0) = ∩{(Ai,Ai

0) : i ∈ I}, then

∨{t(Ai,Ai
0) : i ∈ I} ⊆ t(A,A0).

Proof. (1) Since (A,A0) = ∪{(Ai,Ai
0) : i ∈ I} we have that every topology

which is (A,A0)-splitting is also (Ai,Ai
0)-splitting, for every i ∈ I. Thus, the

topology t(A,A0) is (Ai,Ai
0)-splitting and, therefore,

t(A,A0) ⊆ t(Ai,Ai
0),

for every i ∈ I. So, we have

t(A,A0) ⊆ ∩{t(Ai,Ai
0) : i ∈ I}.

Now, we prove the converse relation, that is

∩{t(Ai,Ai
0) : i ∈ I} ⊆ t(A,A0).
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For the above relation it suffices to prove that the topology ∩{t(Ai,Ai
0) : i ∈ I}

is (A,A0)-splitting. Let (X, X0) ∈ (A,A0) and let g : X × Y → Z be a
continuous map. We prove that the map

g∗|X0
: X0 → C∩{t(Ai,Ai

0
):i∈I}(Y, Z)

is continuous. Since (X, X0) ∈ (A,A0), there exists i ∈ I such that (X, X0) ∈
(Ai,Ai

0). This means that the map

g∗|X0
: X0 → Ct(Ai,Ai

0
)(Y, Z)

is continuous. Also, since ∩{t(Ai,Ai
0) : i ∈ I} ⊆ t(Ai,Ai

0), the identical map

id : Ct(Ai,Ai
0
)(Y, Z) → C∩{t(Ai,Ai

0
):i∈I}(Y, Z)

is continuous. So, the map

g∗|X0
: X0 → C∩{t(Ai,Ai

0
):i∈I}(Y, Z)

is continuous as a composition of continuous maps. Thus, the topology

∩{t(Ai,Ai
0) : i ∈ I}

is (A,A0)-splitting.
(2) The proof of this is a corollary of the statement (1).
(3) The proof of this follows by the fact that the topology

∨{t(Ai,Ai
0) : i ∈ I}

is (A,A0)-splitting. �

Theorem 2.9. Let t be an (A,A0)-admissible topology on C(Y, Z). If

(Ct(Y, Z), Ct(Y, Z)) ∈ (A,A0),

then t is admissible and t(A,A0) ⊆ t.

Proof. Let id ≡ h : Ct(Y, Z) → Ct(Y, Z) be the identical map. Clearly, this
map is continuous. Since

(Ct(Y, Z), Ct(Y, Z)) ∈ (A,A0)

and t is (A,A0)-admissible, the map h⋄|Ct(Y,Z) ≡ h⋄ : Ct(Y, Z) × Y → Z is
continuous. Hence, the topology t is admissible.

Now, since the map h⋄ ≡ g : Ct(Y, Z) × Y → Z is continuous,

(Ct(Y, Z), Ct(Y, Z)) ∈ (A,A0),

and the topology t(A,A0) is (A,A0)-splitting, the map

g∗|Ct(Y,Z) = id : Ct(Y, Z) → Ct(A,A0)(Y, Z)

is also continuous. Thus, t(A,A0) ⊆ t. �

Corollary 2.10. Let t be an (A,A0)-splitting and (A,A0)-admissible topology
on C(Y, Z). If (Ct(Y, Z), Ct(Y, Z)) ∈ (A,A0), then t(A,A0) = t.

Proof. By Theorem 2.9, t(A,A0) ⊆ t. Also, since the topology t is (A,A0)-
splitting, t ⊆ t(A,A0). Thus, t(A,A0) = t. �
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Theorem 2.11. Let Y be a regular locally compact space, A the family of all Ti-
spaces, i = 0, 1, 2, 3, 3 1

2 , A0 an arbitrary family of spaces containing subspaces
of spaces of A, Ctco

(Y, Z) ∈ A0, and Z ∈ A. Then, we have t(A,A0) = tco =
tIs.

Proof. Since Y is a regular locally compact space, the compact open topology
coincides with the Isbell topology on C(Y, Z) and it is admissible. Hence, tco

is (A,A0)-admissible. Also, the topology tco is splitting and, therefore, tco is
(A,A0)-splitting. Since Z ∈ A, we have that Ctco

(Y, Z) ∈ A (see preliminaries)
and, therefore, (Ctco

(Y, Z), Ctco
(Y, Z)) ∈ (A,A0). Thus, by Corollary 2.10 we

have that t(A,A0) = tco. �

Theorem 2.12. Let Y be a regular locally compact space, A the family of
all topological spaces whose weight is not greater than a certain fixed infinite
cardinal, A0 an arbitrary family of spaces containing subspaces of spaces of A,
Ctco

(Y, Z) ∈ A0, and Y, Z ∈ A. Then, we have t(A,A0) = tco = tIs.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and
follows by Corollary 2.10 and Theorem 3.4.16 of [6]. �

Theorem 2.13. Let Y be a regular second-countable locally compact space, A
the family of all metrizable spaces, A0 an arbitrary family of spaces contain-
ing subspaces of spaces of A, Ctco

(Y, Z) ∈ A0, and Z ∈ A. Then, we have
t(A,A0) = tco = tIs.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and
follows by Corollary 2.10 and Exercices 4.2.H and 3.4.E(c) of [6]. �

Theorem 2.14. Let Y be a regular locally compact Lindelöf space, A the family
of all completely metrizable spaces, A0 an arbitrary family of spaces contain-
ing subspaces of spaces of A, Ctco

(Y, Z) ∈ A0, and Z ∈ A. Then, we have
t(A,A0) = tco = tIs.

Proof. The proof of this theorem is similar to the proof of Theorem 2.11 and
follows by Corollary 2.10 and Exercice 4.3.F(a) of [6]. �

Theorem 2.15. Let Y be a corecompact space, A the family of all Ti-spaces,
where i = 0, 1, 2, A0 an arbitrary family of spaces containing subspaces of spaces
of A, CtIs

(Y, Z) ∈ A0, and Z ∈ A. Then, we have t(A,A0) = tIs.

Proof. Since Y is corecompact, the Isbell topology tIs on C(Y, Z) is admissible.
Hence the topology tIs is (A,A0)-admissible. Also, the topology tIs is splitting
and, therefore, tIs is (A,A0)-splitting. Since Z ∈ A, we have that CtIs

(Y, Z) ∈
A (see preliminaries) and, therefore, (CtIs

(Y, Z), CtIs
(Y, Z)) ∈ (A,A0). Thus,

by Corollary 2.10 we have that t(A,A0) = tIs. �

Theorem 2.16. Let Y be a corecompact space, A the family of all second-
countable spaces, A0 an arbitrary family of spaces containing subspaces of
spaces of A, CtIs

(Y, Z) ∈ A0, and Y, Z ∈ A. Then, we have t(A,A0) = tIs.
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Proof. The proof of this theorem is similar to the proof of Theorem 2.15 and
follows by Corollary 2.10 and the fact that CtIs

(Y, Z) ∈ A (see [12]). �

3. On dual topologies

Note 3. Let Y and Z be two fixed topological spaces. By OZ(Y ) we denote the
set

{f−1(U) : f ∈ C(Y, Z) and U ∈ O(Z)}.

Let IH ⊆ OZ(Y ), H ⊆ C(Y, Z), and U ∈ O(Z). We set

(IH, U) = {f ∈ C(Y, Z) : f−1(U) ∈ IH}

and

(H, U) = {f−1(U) : f ∈ H}.

Definition 3.1. (See [9]) Let τ be a topology on OZ(Y ). The topology on
C(Y, Z), for which the set

{(IH, U) : IH ∈ τ, U ∈ O(Z)}

is a subbasis, is called dual to τ and is denoted by t(τ).
Now, let t be a topology on C(Y, Z). The topology on OZ(Y ), for which the

set

{(H, U) : H ∈ t, U ∈ O(Z)}

is a subbasis, is called dual to t and is denoted by τ(t).

We observe that if τ is a topology on OZ(Y ) and σ a subbasis for τ , then
the set {(IH, U) : IH ∈ σ, U ∈ O(Z)} is a subbasis for t(τ) (see Lemma 2.5
in [9]). Also, if t is a topology on C(Y, Z) and s a subbasis for t, then the set
{(H, U) : H ∈ s, U ∈ O(Z)} is a subbasis for τ(t) (see Lemma 2.6 in [9]).

Note 4. Let X be a space and g : X×Y → Z a continuous map. If gx : Y → Z

is the map for which gx(y) = g(x, y), for every y ∈ Y , then by g we denote the
map of X × O(Z) into OZ(Y ), for which g(x, U) = g−1

x (U) for every x ∈ X

and U ∈ O(Z).
Now, let h : X → C(Y, Z) be a map. By h we denote the map of X ×O(Z)

into OZ(Y ), for which h(x, U) = (h(x))−1(U) for every x ∈ X and U ∈ O(Z).

Definition 3.2. Let τ be a topology on OZ(Y ). We say that a map M :
X × O(Z) → OZ(Y ) is continuous with respect to the first variable if for
every fixed element U of O(Z), the map MU : X → (OZ(Y ), τ), for which
MU (x) = M(x, U) for every x ∈ X, is continuous.

Definition 3.3. A topology τ on OZ(Y ) is called (A,A0)-splitting if for every
(X, X0) ∈ (A,A0) the continuity of a map g : X × Y → Z implies the conti-
nuity with respect to the first variable of the map g|X0×O(Z) : X0 × O(Z) →
(OZ(Y ), τ).

A topology τ on OZ(Y ) is called (A,A0)-admissible if for every (X, X0) ∈
(A,A0) and for every map h : X → C(Y, Z) the continuity with respect to the
first variable of the map h : X ×O(Z) → (OZ(Y ), τ) implies the continuity of
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the map h⋄|X0×Y : X0 × Y → Z defined by h⋄|X0×Y (x, y) = h(x)(y), (x, y) ∈
X0 × Y .

Theorem 3.4. A topology τ on OZ(Y ) is (A,A0)-splitting if and only if the
topology t(τ) on C(Y, Z) is (A,A0)-splitting.

Proof. Suppose that the topology τ on OZ(Y ) is (A,A0)-splitting, that is for
every pair (X, X0) ∈ (A,A0) the continuity of a map g : X × Y → Z implies
the continuity with respect to the first variable of the map

g|X0×O(Z) : X0 ×O(Z) → (OZ(Y ), τ).

We prove that the topology t(τ) on C(Y, Z) is (A,A0)-splitting. Let (X, X0) ∈
(A,A0) and g : X × Y → Z be a continuous map. We need to prove that
g∗|X0

: X0 → Ct(τ)(Y, Z) is a continuous map.
Let x ∈ X0 and (IH, U) be an open neighborhood of (g∗|X0

)(x) in Ct(τ)(Y, Z).
We must find an open neighborhood V of x in X0 such that (g∗|X0

)(V ) ⊆
(IH, U). We have that ((g∗|X0

)(x))−1(U) ∈ IH . Since (g∗|X0
)(x) = gx, we have

g−1
x (U) ∈ IH , that is, g(x, U) ∈ IH . Since the map

g|X0×O(Z) : X0 ×O(Z) → (OZ(Y ), τ).

is continuous with respect to the first variable, the map (g|X0×O(Z))U : X0 →
(OZ(Y ), τ) is continuous. Also, (g|X0×O(Z))U (x) ∈ IH . Thus, there exists an
open neighborhood V of x in X0 such that (g|X0×O(Z))U (V ) ⊆ IH .

Let x′ ∈ V . Then, (g|X0×O(Z))U (x′) ∈ IH , that is, g−1
x′ (U) ∈ IH or

(g∗|X0
)(x′) ∈ (IH, U). Thus, (g∗|X0

)(V ) ⊆ (IH, U), which means that the
map g∗|X0

is continuous.
Conversely, suppose that t(τ) is (A,A0)-splitting. We prove that τ is (A,A0)-

splitting. Let (X, X0) be an element of (A,A0) and g : X×Y → Z a continuous
map. It is sufficient to prove that g|X0×O(Z) : X0 ×O(Z) → (OZ(Y ), τ) is con-
tinuous with respect to the first variable.

Let U be a fixed element of O(Z). Consider the map (g|X0×O(Z))U : X0 →

(OZ(Y ), τ). Let x ∈ X0, IH ∈ τ , and (g|X0×O(Z))U (x) = g−1
x (U) ∈ IH. We need

to find an open neighborhood V of x in X0 such that (g|X0×O(Z))U (V ) ⊆ IH.

Consider the open set (IH, U) of the space Ct(τ)(Y, Z). Since

(g|X0×O(Z))U (x) = g−1
x (U) ∈ IH,

we have gx ∈ (IH, U). Since t(τ) is (A,A0)-splitting, the map g∗|X0
: X0 →

Ct(τ)(Y, Z) is continuous. Hence, there exists an open neighborhood V of x in
X0 such that (g∗|X0

)(V ) ⊆ (IH, U).
Let x′ ∈ V . Then, (g∗|X0

)(x′) = gx′ ∈ (IH, U), that is, g−1
x′ (U) ∈ IH or

(g|X0×O(Z))U (x′) ∈ IH . Thus, (g|X0×O(Z))U (V ) ⊆ IH , which means that the
map (g|X0×O(Z))U is continuous. �

Theorem 3.5. A topology t on C(Y, Z) is (A,A0)-splitting if and only if the
topology τ(t) on OZ(Y ) is (A,A0)-splitting.

Proof. The proof of this theorem is similar to the proof of Theorem 3.4. �
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Example 3.6.

(1) The topologies τ(tco) and τ(tIs) are (A,A0)-splitting for every pair
(A,A0). This follows by the fact that the topologies tco and tIs are
splitting and, therefore, (A,A0)-splitting.

(2) Let Z be the Sierpinski space, Ω(Y ) the Scott topology, and ΩZ(Y )
the relative topology of Ω(Y ) on OZ(Y ). Then, the topology t(ΩZ(Y ))
coincides with the Isbell topology on C(Y, Z). Hence, the topology
t(ΩZ(Y )) is splitting and, therefore, (A,A0)-splitting. Thus, the topol-
ogy τ(t(ΩZ (Y ))) on OZ(Y ) is (A,A0)-splitting.

Theorem 3.7. A topology τ on OZ(Y ) is (A,A0)-admissible if and only if the
topology t(τ) on C(Y, Z) is (A,A0)-admissible.

Proof. Suppose that the topology τ on OZ(Y ) is (A,A0)-admissible, that is
for every space (X, X0) ∈ (A,A0) and for every map h : X → C(Y, Z) the

continuity with respect to the first variable of the map h : X × O(Z) →
(OZ(Y ), τ) implies the continuity of the map h⋄|X0×Y : X0×Y → Z. We prove
that t(τ) is (A,A0)-admissible. Let (X, X0) ∈ (A,A0) and h : X → Ct(τ)(Y, Z)
be a continuous map. It is sufficient to prove that the map h⋄|X0×Y : X0×Y →
Z is continuous. Clearly, it suffices to prove that the map h : X × O(Z) →
(OZ(Y ), τ) is continuous with respect to the first variable.

Let x ∈ X , U ∈ O(Z) and IH ∈ τ such that hU (x) = h(x, U) = (h(x))−1(U) ∈
IH. We prove that there exists an open neighborhood V of x in X such that
hU (V ) ⊆ IH . Consider the open set (IH, U) of the space Ct(τ)(Y, Z). Then,
h(x) ∈ (IH, U).

Since the map h : X → Ct(τ)(Y, Z) is continuous, there exists an open
neighborhood V of x in X such that h(V ) ⊆ (IH, U).

Let x′ ∈ V . Then h(x′) ∈ (IH, U), that is (h(x′))−1(U) ∈ IH or hU (x′) =
h(x′, U) ∈ IH . Thus, hU (V ) ⊆ IH , which means that hU is continuous.

Conversely, suppose that the topology t(τ) is (A,A0)-admissible. We prove
that the topology τ is (A,A0)-admissible. Let (X, X0) be a pair of (A,A0) and

h : X → C(Y, Z) a map such that h : X × O(Z) → (OZ(Y ), τ) is continuous
with respect to the first variable. We need to prove that the map h⋄|X0×Y :
X0 × Y → Z is continuous.

Since t(τ) is (A,A0)-admissible, it is sufficient to prove that the map h :
X → Ct(τ)(Y, Z) is continuous.

Let x ∈ X , U ∈ O(Z), and IH ∈ τ such that h(x) ∈ (IH, U). Then,
(h(x))−1(U) ∈ IH. Since the map hU : X → (OZ(Y ), τ) is continuous, there

exists an open neighborhood V of x in X such that hU (V ) ⊆ IH.

Let x′ ∈ V . Then, hU (x′) = (h(x′))−1(U) ∈ IH or h(x′) ∈ (IH, U). Thus,
h(V ) ⊆ (IH, U), which means that the map h is continuous. �

Theorem 3.8. A topology t on C(Y, Z) is (A,A0)-admissible if and only if
the topology τ(t) on OZ(Y ) is (A,A0)-admissible.

Proof. The proof of this theorem is similar to the proof of Theorem 3.7. �



170 D. N. Georgiou

Example 3.9.

(1) If Y is a regular locally compact space, then the topology τ(tco) is
(A,A0)-admissible for every pair (A,A0).

(2) If Y is a corecompact space, then the topology τ(tIs) is (A,A0)-admissible
for every pair (A,A0).

(3) If Y is a locally bounded space, then the topology τ(tsIs) is (A,A0)-
admissible for every pair (A,A0).

(4) Let Ω(Y ) be the Scott topology on O(Y ). By ΩZ(Y ) we denote the
relative topology of Ω(Y ) on ΩZ(Y ). If Y is corecompact, then the
topology ΩZ(Y ) is admissible (see Corollary 3.12 of [9]) and, therefore,
it is (A,A0)-admissible. Thus, the topology t(ΩZ(Y )) on C(Y, Z) is
(A,A0)-admissible.

Theorem 3.10. Let A and A0 are arbitrary families of spaces such that every
element X0 ∈ A0 is a subspace of an element X ∈ A. Then in the set OZ(Y )
there exists the greatest (A,A0)-splitting topology.

Proof. Let {τi : i ∈ I} be the set of all (A,A0)-splitting topologies on OZ(Y ).
We consider the topology

τ = ∨{τi : i ∈ I}.

It is not difficult to prove that this topology is (A,A0)-splitting. By this fact we
have that this topology is the required greatest (A,A0)-splitting topology. �
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