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Abstract. This paper deals with lattice-equivalence of topological
spaces. We are concerned with two questions: the first one is when
two topological spaces are lattice equivalent; the second one is what
additional conditions have to be imposed on lattice equivalent spaces
in order that they be homeomorphic. We give a contribution to the
study of these questions. Many results of Thron [Lattice-equivalence
of topological spaces, Duke Math. J. 29 (1962), 671-679] are recovered,
clarified and commented.
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1. Introduction

Let X be a topological space; we denote by Γ(X) the lattice of closed sets
of X . Two topological spaces X and Y are said to be lattice equivalent if
there is a bijective map from Γ(X) to Γ(Y ) which together with its inverse is
order-preserving [8].

The question of characterizing when two topological spaces are lattice equiv-
alent is still open.

A lattice equivalence ϕ : Γ(X) −→ Γ(Y ) is said to be induced by a homeo-
morphism if there is a homeomorphism f : X −→ Y such that ϕ(C) = f(C),
for each C ∈ Γ(X).

In [8], Thron was concerned in the problem of determining what additional
conditions have to be imposed on lattice equivalent spaces in order that they
be homeomorphic. A complete answer to this problem is still very far off.
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It is worth noting that, over the years, several researchers dealt with the
concept of lattice equivalent topological spaces and representations of an ab-
stract lattice as the family of closed sets on a topological space (see for instance
[4], [8], [9]).

In 1966, Finch [4] proved that a lattice equivalence ϕ : Γ(X) −→ Γ(Y )
is induced by a homeomorphism if and only if the following conditions are
satisfied:

(i) For each x ∈ X , there exists yx ∈ Y such that ϕ({x}) = {yx}.

(ii) For each y ∈ Y , there exists xy ∈ X such that ϕ−1({y}) = {xy}.

(iii) Let x ∈ X and y ∈ Y . Set Xx = {t ∈ X : {x} = {t}} and Yy = {t ∈

Y : {y} = {t}}. Then ϕ−1({y}) = {x} implies that |Xx| = |Yy| (where
|Xx| denotes the cardinality number of the set Xx).

In 1972, Yip Kai Wing [9] was interested in quasi-homeomorphisms and
lattice-equivalences of topological spaces. This work seems to be very close
to our paper; but it is important to announce that none of our results is in
Yip’s paper [9]. In this connection, the first section will be entirely devoted to
quasi-homeomorphisms and comments on Yip’s results in his note [9].

The present paper is devoted to shed some light on lattice equivalent topo-
logical spaces.

Let us first recall some notions which were introduced by the Grothendieck
school (see for example [5] and [6]), such as quasihomeomorphisms and strongly
dense subsets.

If X is a topological space, we denote by O(X) the set of all open subsets
of X . Recall that a continuous map q : X −→ Y is said to be a quasihomeo-
morphism if U 7−→ q−1(U) defines a bijection O(Y ) −→ O(X). We say that a
subset S of a topological space X is locally closed if it is an intersection of an
open set and a closed set of X . A subset S of a topological space X is said to
be strongly dense in X , if S meets every nonempty locally closed subset of X .
Thus a subset S of X is strongly dense if and only if the canonical injection
S →֒ X is a quasihomeomorphism. It is well known that a continuous map
q : X −→ Y is a quasihomeomorphism if and only if the topology on X is the
inverse image by q of that on Y and the subset q(X) is strongly dense in Y [5].

Let X be a topological space. If f : X −→ Y is continuous, then we define

Γ(f) : Γ(Y ) −→ Γ(X), by Γ(f)(C) = f−1(C).

In particular, if q : X −→ Y is a quasihomeomorphism. Then the map
Γ(q) : Γ(Y ) −→ Γ(X) is a lattice equivalence (see for example [1, Proposition
1.9]). The following definition is natural.

Definition 1.1. A lattice equivalence ϕ : Γ(X) −→ Γ(Y ) between two topolog-
ical spaces is said to be induced by a quasihomeomorphism if there is either a
quasihomeomorphism q : Y −→ X such that ϕ = Γ(q) or a quasihomeomor-
phism p : X −→ Y such that ϕ−1 = Γ(p).

Our main result is a characterization of lattice equivalences induced by a
quasihomeomorphism (see Theorem 3.4). This result is very close to the one
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done by Finch [4] characterizing lattice equivalences induced by a homeomor-
phism. As a consequence, many results of Thron are recovered, clarified and
commented.

2. Grothendieck’s Quasihomeomorphisms and Yip’s

Quasihomeomorphisms

As we have said in the introduction the concept of quasihomeomorphisms
was introduced in Algebraic geometry by Grothendieck ([6], [5]). Also, it was
shown that this concept arises naturally in the theory of some foliations asso-
ciated to closed connected manifolds( see the papers [2] and [3]).

The following definition is given in [9].

Definition 2.1. A continuous map q : X −→ Y between topological spaces is
said to be a quasihomeomorphism if the following conditions are satisfied:

(i) For any closed set C in X, q−1[q(C)] = C.

(ii) For any closed set F in Y , q[q−1(F )] = F .

Fortunately, the two notions “Grothendieck’s quasihomeomorphism” and
“Yip’s quasihomeomorphism” coincides, as it is shown in the following.

Proposition 2.2. Let q : X −→ Y be a continuous map between topolog-
ical spaces. Then q is a Yip’s quasihomeomorphism if and only if it is a
Grothendieck’s quasihomeomorphism.

Proof. Suppose that q is a Grothendieck’s quasihomeomorphism. Then Γ(q) :
Γ(Y ) −→ Γ(X) is a lattice isomorphism, by [1, Proposition 1.9]. Hence q is a
quasihomeomorphism in the sense of Yip, by [9, Theorem 1].

Conversely, if q is a Yip’s quasihomeomorphism, then Γ(q) : Γ(Y ) −→ Γ(X)
is a lattice isomorphism, by [9, Theorem 1]; so that Γ(q) is bijective; proving
that q is a Grothendieck’s quasihomeomorphism. �

Remark 2.3. Let q : X −→ Y be a quasihomeomorphism between topological
spaces. In [9, Theorem 2], Yip proved that q(X) is dense in Y . In fact, it
follows from [5, Chapter 0, Proposition 2.7.1] that q(X) is even strongly dense
in Y .

In [9, Theorem 3], the author investigated closed quasihomeomorphisms be-
tween T0-spaces. The following result is more precise.

Proposition 2.4. Let q : X −→ Y be a quasihomeomorphism. Then the
following statements are equivalent:

(i) q is a surjective mapping;
(ii) q is a closed mapping;

(iii) q is an open mapping.

Proof. (ii) =⇒ (i) and (iii) =⇒ (i). Let q be closed (resp.open). Then, q(X)
is a closed (resp.open) subset of Y . Now, since q−1(q(X)) = q−1(Y ), we get
q(X) = Y , by the definition of a quasihomeomorphism. Thus q is onto.
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(i) =⇒ (ii) and (iii). Let C be a closed (resp. an open) subset of X . By
definition, there is a closed (resp. an open) subset D of Y such that C =
q−1(D). But, since q is onto, we get q(C) = D, proving that q(C) is closed
(resp. open). �

Example 2.5. Let us construct a quasihomeomorphism that is not a sur-
jection. Consider an infinite set X and a point α not belonging to X . Set
Y := X ∪ {α}. Equip Y with the topology whose closed sets are Y and the
finite subsets of X . Hence X is a strongly dense subspace of Y ; so that the
canonical embedding i : X →֒ Y is a quasihomeomorphism. Since i is not onto,
it is not closed and not open.

Before stating the next result, we need to recall the notion of sober space
(also introduced by the school of Grothendieck [5] or [6]). A subspace Y of X is
called irreducible, if each nonempty open subset of Y is dense in Y (equivalently,
if C1 and C2 are two closed subsets of X such that Y ⊆ C1 ∪C2, then Y ⊆ C1

or Y ⊆ C2). Let C be a closed subset of a space X ; we say that C has a generic

point if there exists x ∈ C such that C = {x}. Recall that a topological space
X is said to be sober if any nonempty irreducible closed subset of X has a
unique generic point.

Let X be a topological space and S(X) the set of all nonempty irreducible

closed subsets of X [5]. Let U be an open subset of X ; set Ũ = {C ∈ S(X) |

U ∩ C 6= ∅}; then the collection {Ũ | U is an open subset of X} provides a
topology on S(X) and the following properties hold [5]:

(i) The map ηX : X −→ S(X), which takes x to {x}, is a quasihomeomor-
phism.

(ii) S(X) is a sober space.
(iii) Let f : X −→ Y be a continuous map. Let S(f) : S(X) −→ S(Y ) be

the map defined by S(f)(C) = f(C), for each irreducible closed subset
C of X . Then S(f) is continuous.

(iv) The topological space S(X) is called the soberification of X , and the
assignment S, defines a functor from the category TOP of topological
spaces to itself.

Proposition 2.6. Let q : X −→ Y be a quasihomeomorphism. Then the
following properties hold.

(1) If X is a T0-space, then q is injective.
(2) If X is sober and Y is a T0-space, then q is a homeomorphism.

Proof. (1) Let x1, x2 be two distinct points of X with q(x1) = q(x2). Then
there exists an open subset U of X such that, for example, x1 ∈ U and x2 /∈
U . Since there exists an open subset V of Y satisfying q−1(V ) = U , we get
q(x1) ∈ V and q(x2) /∈ V , which is impossible. It follows that q is injective.

(2) Firstly, it is obviously seen that if S is a closed subset of Y , then S is
irreducible if and only if so is q−1(S).



Lattice equivalent topological spaces 231

Now, let us prove that q is surjective. For this end, let y ∈ Y . According to
the above observation, q−1({y}) is a nonempty irreducible closed subset of X .

Hence q−1({y}) has a generic point x. Thus we have the containments

{x} ⊆ q−1({q(x)}) ⊆ q−1({y}) = {x}.

So that q−1({q(x)}) = q−1({y}). It follows, from the fact that q is a quasi-

homeomorphism, that {q(x)} = {y}. Since Y is a T0-space, we get q(x) = y.
This proves that q is a surjective map, and thus q is bijective. But it is easily
seen that bijective quasihomeomorphisms are homeomorphisms. �

Remark 2.7. Let q : X −→ Y be a quasihomeomorphism. If Y is sober and
X is a T0-space, then q need not be a homeomorphism. To see this, it suffices
to consider a T0-space X which is not sober. Then the canonical embedding
ηX : X −→ S(X) is a quasihomeomorphism which is not a homeomorphism.

3. Lattice equivalence

A Brouwerian lattice is a complete lattice L for which x
∨

(
∧

C) =
∧
{x

∨
y |

y ∈ C} for all x ∈ L and all C ⊆ L. A morphism of Brouwerian lattices is a
mapping f : L −→ M that preserves all infima and all finite suprema.

Let CBL denotes the category of Brouwerian lattices and Brouwerian lattice
maps. Then Γ : TOP −→ CBL is a contravariant functor.

Remark 3.1. Let f : X −→ Y be a continuous map. Then f is rendered
invertible by the functor Γ (i.e., Γ(f) is a lattice equivalence) if and only if f
is a quasihomeomorphism.

The following example shows that a lattice equivalence that is induced by a
quasihomeomorphism is not necessarily induced by a homeomorphism.

Example 3.2. Let X be a topological space which is not sober. Then the
canonical quasihomeomorphism ηX : X −→ S(X) induces a lattice equivalence
between S(X) and X which is not induced by a homeomorphism.

In order to give a complete characterization of lattice equivalence of topolog-
ical spaces induced by a quasihomeomorphism, we give the following definition.

Definition 3.3. Let X, Y be two topological spaces and ϕ : Γ(X) −→ Γ(Y ) a
lattice equivalence. We say that ϕ is a point-closure lattice equivalence if one
of the following properties is satisfied:

(i) For each x ∈ X, there exists yx ∈ Y such that ϕ({x}) = {yx}.

(ii) For each y ∈ Y , there exists xy ∈ X such that ϕ−1({y}) = {xy}.

Our main result is the following.
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Theorem 3.4. Let ϕ : Γ(X) −→ Γ(Y ) be a lattice equivalence of topological
spaces. Then the following statements are equivalent:

(i) ϕ is induced by a quasihomeomorphism;
(ii) ϕ is a point-closure lattice equivalence.

Proof.
(i) =⇒ (ii) Suppose that there is a quasihomeomorphism q : Y −→ X such

that ϕ = Γ(q). Then for each D ∈ Γ(Y ), we have ϕ−1(D) = C with C ∈ Γ(X)
and q−1(C) = D. Hence

D ⊆ q−1(q(D)) ⊆ q−1(C) = D.

Thus ϕ−1(D) = q(D). Therefore, for each y ∈ Y , we have ϕ−1({y}) = q({y}).

But q({y}) = {q(y)}, since q is continuous; so that ϕ−1({y}) = {q(y)}.
Now, if we suppose that there is a quasihomeomorphism p : X −→ Y such

that ϕ−1 = Γ(p), then we get ϕ({x}) = {p(x)}, for each x ∈ X .
It follows that ϕ is a point-closure lattice equivalence.
(ii) =⇒ (i) Suppose, for instance, that for each x ∈ X , there exists yx ∈ Y

such that ϕ({x}) = {yx}. For each x ∈ X choose q(x) ∈ Y such that ϕ({x}) =

{q(x)}. This allows us to define a mapping q : X −→ Y . We are aiming to
prove that q is a quasihomeomorphism and ϕ−1 = Γ(q).

It is enough to prove that ϕ−1(G) = q−1(G), for each G ∈ Γ(Y ).

Let x ∈ ϕ−1(G). Then {x} ⊆ ϕ−1(G). Thus {q(x)} ⊆ G; in particular
q(x) ∈ G; therefore x ∈ q−1(G). Conversely, let x ∈ q−1(G); then q(x) ∈ G.

Hence {q(x)} ⊆ G; consequently, {x} ⊆ ϕ−1(G). Therefore, x ∈ ϕ−1(G). It
follows that ϕ−1 = Γ(q).

If we suppose that for each y ∈ Y , there exists a xy ∈ X such that

ϕ−1({y}) = {xy}, then by the above argument, there is a quasihomeomor-
phism p : Y −→ X such that ϕ = Γ(p). �

Corollary 3.5. If X is a topological space and Y is a T1-space, then each
lattice equivalence between them is induced by a quasihomeomorphism.

Proof. It is easy to check that condition (ii) of Definition 3.3 is fulfilled. Then
we can apply Theorem 3.4. �

The following result establishes some links between lattice equivalences in-
duced by a homeomorphism and those induced by a quasihomeomorphism.

For the proof of the next theorem, we need a lemma.

Lemma 3.6. Let E, F be two topological spaces such that F is a T0-space. If
f, g : E −→ F are two continuous maps such that Γ(f) = Γ(g), then f = g.

Proof. Let x ∈ E. Then

f−1({f(x)}) = g−1({f(x)}) and g−1({g(x)}) = f−1({g(x)}).

This yields g(x) ∈ {f(x)} and f(x) ∈ {g(x)}. Thus {f(x)} = {g(x)}; so that
f(x) = g(x), since Y is a T0-space. �
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Theorem 3.7. Let X, Y be two T0-spaces and ϕ : Γ(X) −→ Γ(Y ) a lattice
equivalence of topological spaces. Then the following statements are equivalent:

(i) ϕ is induced by a homeomorphism;
(ii) There are two quasihomeomorphisms q : Y −→ X and p : X −→ Y

such that ϕ = Γ(q) and ϕ−1 = Γ(p).

Proof.
[(i) =⇒ (ii)]. Straightforward.
[(ii) =⇒ (i)].
Let q : Y −→ X and p : X −→ Y be two quasihomeomorphisms such that

ϕ = Γ(q) and ϕ−1 = Γ(p).
We have

ϕϕ−1 = 1Γ(Y ) = Γ(1Y ) and ϕ−1ϕ = 1Γ(X) = Γ(1X).

Hence Γ(pq) = Γ(1Y ) and Γ(qp) = Γ(1X). Thus, according to Lemma 3.6, we
get qp = 1X and pq = 1Y . Therefore, ϕ is induced by the homeomorphism p.

�

The following example shows that the T0 axiom cannot be deleted in Theo-
rem 3.7.

Example 3.8. Let X, Y be two sets with distinct cardinalities. We equip X
and Y with the indiscrete topology. The unique lattice equivalence between X
and Y is ϕ : Γ(X) −→ Γ(Y ), defined by ϕ(∅) = ∅ and ϕ(X) = Y . It is easily
seen that for any two continuous maps q : Y −→ X and p : X −→ Y , we have
ϕ = Γ(q) and ϕ−1 = Γ(p). Moreover, p, q are quasihomeomorphisms. But
since the two sets have distinct cardinalities, they cannot be homeomorphic.

Recall that a topological space X is said to be a TD-space if for each x ∈ X ,
{x} is locally closed. It is easily seen that TD is between T0 and T1.

The following result will be used in the next corollary.

Proposition 3.9. Every quasihomeomorphism between two TD-spaces is a
homeomorphism.

Proof. Let q : X −→ Y be a quasihomeomorphism between two TD-spaces.
Hence q is injective, by Proposition 2.6. On the other hand, q(X) is strongly
dense in Y and every point-set is locally closed; so that q(X) = Y . Thus q is
a bijective quasihomeomorphism. Therefore, q is a homeomorphism. �

For the proof of the next corollary, we need a lemma.

Lemma 3.10. Let X, Y be two topological spaces and ϕ : Γ(X) −→ Γ(Y ) a
lattice equivalence. Let G be a closed subset of Y . Then the following statements
are equivalent:

(i) G is irreducible in Y ;
(ii) ϕ−1(G) is irreducible in X.



234 O. Echi and S. Lazaar

Proof. Since ϕ−1 is also a lattice equivalence, it is enough to show the impli-
cation (i) =⇒ (ii).

Let F1, F2 be two closed subsets of X such that ϕ−1(G) ⊆ F1 ∪ F2. Hence
G ⊆ ϕ(F1 ∪ F2). But ϕ(F1 ∪ F2) = ϕ(F1) ∪ ϕ(F2). Thus G ⊆ ϕ(F1) ∪ ϕ(F2).
Now, since G is irreducible in Y , G ⊆ ϕ(F1) or G ⊆ ϕ(F2). This yields
ϕ−1(G) ⊆ F1 or ϕ−1(G) ⊆ F2, proving that ϕ−1(G) is irreducible in X . �

Corollary 3.11. Let X, Y be two T0-spaces and ϕ : Γ(X) −→ Γ(Y ) a lattice
equivalence.

(1) If X or Y is a TD-space (resp. sober space), then ϕ is induced by a
quasihomeomorphism q : X −→ Y or p : Y −→ X.

(2) If X and Y are TD-spaces (resp. sober spaces), then the mapping q of
(1) is a homeomorphism (thus ϕ is induced by a homeomorphism).

Proof.
(1) Suppose for example, that X is a TD-space and Y is a T0-space.
Thron showed in [8] that for each x ∈ X , there exists a unique yx ∈ Y

such that ϕ({x}) = {yx}. Then ϕ is a point-closure lattice equivalence and
according to the proof of Theorem 3.4, ϕ is induced by a quasihomeomorphism
q : X −→ Y ( q takes x to yx).

Now, suppose that X is sober and Y is T0. Let y ∈ Y ; then, since {y}

is an irreducible closed subset of Y , ϕ−1({y}) is an irreducible closed subset

of X , by Lemma 3.10. Hence ϕ−1({y}) has a unique generic point. Thus ϕ
is a point-closure lattice equivalence; so that there is a quasihomeomorphism
p : Y −→ X which induces ϕ (p takes y ∈ Y to the unique generic point of

ϕ−1({y})).
(2) Every quasihomeomorphism between two TD-spaces is a homeomor-

phism, by Proposition 3.9. Also, every quasihomeomorphism between two sober
spaces is a homeomorphism, by Proposition 2.6. �

Corollary 3.12 ([8, Theorem 2.1 ]). Every lattice equivalence between two
TD-spaces is induced by a homeomorphism.

Corollary 3.13 ([8, Corollary 2.1 ]). Every lattice equivalence between a T0-
space and a T2-space is induced by a homeomorphism.

Proof. Let X be a T0-space, Y a T2-space (thus a TD-space) and ϕ : Γ(Y ) −→
Γ(X) a lattice equivalence. Then by Corollary 3.11, there is a quasihomeomor-
phism q : Y −→ X such that ϕ−1 = Γ(q).

Now, Y is a sober space (since it is T2) and X is T0. This forces q to be a
homeomorphism, by Proposition 2.6. Therefore, ϕ is induced by a homeomor-
phism. �

Example 3.14. A lattice equivalence between a T1-space (thus a TD-
space) and a sober space which is not induced by a homeomorphism.
For, let Y be an infinite set equipped with the cofinite topology. Let α /∈ Y ,
and X = Y ∪{α}. We equip X with the topology whose closed sets are X and
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the finite subsets of Y . Hence Y is a strongly dense subspace of X ; so that
the canonical embedding Y →֒ X is a quasihomeomorphism; thus it induces a
lattice equivalence ϕ. Clearly, ϕ is not induced by a homeomorphism, since Y
is a T1-space and X is not.

Note that Example 3.18 provides nontrivial examples of lattice equivalences
between a T1-space and a sober space which are not induced by a homeomor-
phism.

It is worth noting that the TD-axiom is the weakest requirement under which
[8, Theorem 2.1] is true, as shown by Thron in the following

Theorem 3.15 ([8, Theorem 2.2]). If X is not a TD-space, then there exists
a lattice equivalence between X and some other space Y , which is not induced
by a homeomorphism.

Looking carefully at the proof of the above theorem, we remark that the
lattice equivalence given by the author is not induced by a homeomorphism
in both cases, when X is T0 or not; nevertheless, it is induced by a quasi-
homeomorphism. This rises the natural question whether a lattice equivalence
is always induced by a quasihomeomorphism. Unfortunately, the answer is
negative, as shown by the following nice example.

Example 3.16. A lattice equivalence of topological spaces that is not
induced by a quasihomeomorphism.

Let X and Y be two disjoint infinite sets equipped with the cofinite topology.
Let α, β /∈ X ∪ Y and α 6= β. Set X

′

= X ∪ {α} and Y
′

= Y ∪ {β}. We equip

X
′

(resp. Y
′

) with the topology whose closed sets are X
′

(resp. Y
′

) and the
finite subset of X (resp. of Y ).

Recall that the free union E +F of disjoint spaces E and F is the set E ∪F
with the topology: U ⊆ E + F is open if and only if U ∩ E is open in E and
U ∩ F is open in F .

Now, consider Λ = X
′

+ Y and ∆ = Y
′

+ X . It is clear that there exists
a unique morphism of lattices ϕ : Γ(Λ) −→ Γ(∆) which satisfies the following
properties:

– (i) ϕ(X
′

) = X, ϕ(C) = C, for all finite subset C of X.

– (ii) ϕ(Y ) = Y
′

, ϕ(D) = D, for all finite subset D of Y.
Clearly, ϕ is a lattice equivalence of topological spaces.
Suppose that ϕ is induced by a quasihomeomorphism. Without loss of gen-

erality, we may suppose that there is a quasihomeomorphism q : ∆ −→ Λ such
that ϕ = Γ(q). Hence q−1(Y ) = ϕ(Y ) = Y

′

; so that q(β) ∈ Y . On the other

hand, {β} = Y
′

. The continuity of q implies that

q(Y
′

) = q({β}) ⊆ q({β}) = {q(β)}.

Thus
Y

′

⊆ q−1({q(β)}) = ϕ({q(β)}) = {q(β)},

a contradiction, since Y is infinite.
Therefore, ϕ is not induced by a quasihomeomorphism.
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In [8, Corollary 2.1], Thron has written that “If X is a T0-space and Y is a T2-
space, then they are homeomorphic if and only if they are lattice-equivalent”.

The following result shows that in [8, Corollary 2.1], “T2-space” cannot be
replaced by “T1-space”.

We need to recall the notion of Jacobson space [5]. A topological space X
is said to be a Jacobson space if the subset of all closed points of X is strongly
dense in X .

Theorem 3.17.

(1) If a T0-space X is lattice equivalent to a T1-space Y , then X is a
Jacobson space.

(2) There exist a T0-space X and a T1-space Y which are lattice equivalent
but not homeomorphic (hence any lattice equivalence between them is
not induced by a homeomorphism).

Proof.
(1) By Corollary 3.5, the lattice equivalence between X and Y is induced by a

quasihomeomorphism q : Y −→ X . According to Proposition 2.6, the induced
quasihomeomorphism q1 : Y −→ q(Y ) is bijective. Hence Y is homeomorphic
to the subspace q(Y ) of X and q(Y ) is strongly dense in X . It suffices to prove
that q(Y ) is the set X0 of all closed points of X . Indeed, X0 ⊆ q(Y ), since
q(Y ) is strongly dense in X .

On the other hand, let y ∈ Y ; then {q(y)} is closed in q(Y ) since Y is

homeomorphic to q(Y ). Hence {q(y)} ∩ q(Y ) = {q(y)}. Let z ∈ {q(y)}; then

{z} ∩ q(Y ) 6= ∅. Thus {z} ∩ q(Y ) = {q(y)}. It follows that {q(y)} = {z}.
Therefore, z = q(y), since X is a T0-space.

(2) It suffices to take a Jacobson T0-space X which is not T1. Let Y be the
subspace of X whose elements are the closed points of X . Hence the canonical
embedding of Y into X is a quasihomeomorphism. Thus X and Y are lattice
equivalent; however, they are not homeomorphic. �

Example 3.18. It is easy to give explicit examples of Jacobson T0-spaces
which are not T1. Let R be a Hilbert ring which is not a field; i.e., a ring
such that the intersection with R of a maximal ideal of the polynomial ring
R[t] is maximal (take for example R = K[t1, ..., tn] the polynomial ring on n
indeterminates over a field K). Let X = Spec(R) equipped with the hull-kernel
topology. Then X is a Jacobson space which is not T1.

Here, if we let Y := Max(R) be the set of all maximal ideals of R, then Y is
a T1 strongly dense subspace of X . Thus the canonical quasihomeomorphism
i : Y −→ X induces a lattice equivalence between the topological spaces X
and Y . On the other hand, the space X is sober by [7, Proposition 4]. This
yields a lattice equivalence between a T1-space and a sober space which is not
induced by a homeomorphism.
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der mathematischen Wissenschaften, 166, Springer-Verlag, New York, 1971.
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