

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 10, No. 2, 2009 pp. 245-267

Michael spaces and Dowker planks

AGATA CASERTA* AND STEPHEN WATSON

ABSTRACT. We investigate the Lindelöf property of Dowker planks. In particular, we give necessary conditions such that the product of a Dowker plank with the irrationals is not Lindelöf. We also show that if there exists a Michael space, then, under some conditions involving singular cardinals, there is one that is a Dowker plank.

2000 AMS Classification: Primary 54C50, 54D20, 54G15.

Keywords: Michael space, Michael function, NL property, Haydon plank.

1. INTRODUCTION

In 1963 E. Michael constructed, under the continuum hypothesis, a Lindelöf space whose product with the irrationals is not normal (see [7]). Such a space is known as a *Michael space*. An open problem is to construct a Michael space in ZFC without additional axioms.

The aim of this paper is to provide necessary conditions for the existence of a Michael space, and to give some examples of Michael spaces. Our work is associated to the results in [8].

In this note, \mathbb{P} stands for the set of the irrational numbers, and the Cantor set \mathbb{C} is viewed as a compactification of \mathbb{P} obtained by adding a countable set \mathbb{Q}_C . Ordinal numbers are denoted by Greek letters; when viewed as topological spaces, they are given the order topology. Products of topological spaces are endowed with the standard product topology.

The symbol $[A]^{\lambda}$ denotes the family of subsets of A having size exactly λ . The symbols $[A]^{\leq \lambda}$ and $[A]^{<\lambda}$ have similar meaning.

Let \leq_* be the quasi-order on a countable product of ordered sets that is associated to the coordinate-wise order on each set. Thus $f \leq_* g$ stands for $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. A subset of ${}^{\omega}\omega$ is unbounded if it is unbounded in $({}^{\omega}\omega, \leq_*)$. A dominating family is an unbounded set that is

^{*}Corresponding author.

cofinal in $({}^{\omega}\omega, \leq_*)$. A subset of ${}^{\omega}\omega$ is a *scale* if it is a dominating family and is well-ordered by \leq_* .

Recall that \mathbb{P} can be identified with ${}^{\omega}\omega$ with the product topology. For each $\xi \in {}^{<\omega}\omega = \{\eta \mid \eta : [0,n] \to \omega \text{ for some } n\}$, a basic open neighborhood of ξ in the product topology is $\{f \in {}^{\omega}\omega : \xi \subseteq f\}$. For every $g \in {}^{\omega}\omega$, the sets $\{f \in {}^{\omega}\omega : f \leq g\}$ and $\{f \in {}^{\omega}\omega : f \leq_* g\}$ are respectively compact and σ -compact (see [2]).

Let X and Y be topological spaces. A set $A \subseteq X$ is Y-analytic if it is a projection on X of a closed subset of $X \times Y$. In particular, $A \subseteq X$ is analytic if it is \mathbb{P} -analytic.

Given a function $f : X \to Y$, the small image of $A \subseteq X$ is defined by $f^{\sharp}(A) = \{y \in Y : f^{-1}(y) \subseteq A\}$. Sometimes we abuse of terminology and say that f^{\sharp} is open, with the meaning that for each open subset A of X, $f^{\sharp}(A)$ is an open subset of Y.

In most cases we will employ the notation used in [4] and [6].

2. MICHAEL SEQUENCES AND MICHAEL FUNCTIONS

We start the section with the definition of a Michael sequence. The first goal of this section is to show that Michael sequences may be assumed to be continuous.

Definition 2.1. Let $\{X_{\xi}\}_{\xi \leq \theta}$ be a decreasing sequence of sets. It is a *continuous sequence* if for any $\gamma \leq \theta$, with γ limit ordinal, $X_{\gamma} = \bigcap_{\xi < \gamma} X_{\xi}$.

Definition 2.2 (Moore [8]). A decreasing sequence $\{X_{\xi}\}_{\xi \leq \theta}$ of subsets of a topological space Z is said to be a K-Michael sequence if the following conditions hold:

(i) for each K compact subset of $Z \setminus X_{\theta}$ the ordinal $\delta_K = \min\{\xi \leq \theta : X_{\xi} \cap K = \varnothing\}$ does not have uncountable cofinality.

In particular an \mathcal{F} -Michael sequence is a \mathcal{K} -Michael sequence satisfying the following additional condition:

(ii)_{*F*} for each *F* closed subset of $Z \setminus X_{\theta}$ the ordinal $\delta_F = \min\{\xi \leq \theta : X_{\xi} \cap F = \emptyset\}$ is either θ or does not have uncountable cofinality.

Also given a topological space Y, an $\mathcal{A}(Y)$ -Michael sequence is a \mathcal{K} -Michael sequence satisfying the following additional condition:

(ii)_A for each A which is Y-analytic in $Z \setminus X_{\theta}$ the ordinal $\delta_A = \min\{\xi \leq \theta : X_{\xi} \cap A = \emptyset\}$ is either θ or does not have uncountable cofinality.

Remark 2.3. In the definition of a \mathcal{K} -Michael sequence, we observe that the property of being a continuous sequence is partially satisfied. In other words, for every limit ordinal $\gamma < \theta$ with $cf\gamma > \omega$ it follows that $X_{\gamma} = \bigcap_{\xi < \gamma} X_{\xi}$. Indeed, let $x \in \bigcap_{\xi < \gamma} X_{\xi} \setminus X_{\gamma}$. Then $\{x\}$ is a compact subset of $Z \setminus X_{\theta}$, and $\delta_{\{x\}} = \gamma$, so that $cf\delta_{\{x\}} > \omega$ in contradiction with the definition of \mathcal{K} -Michael sequence.

Lemma 2.4. Let θ be a cardinal and $\{X_{\xi}\}_{\xi \leq \theta}$ (strictly) decreasing sequence such that $X_{\gamma} = \bigcap_{\xi < \gamma} X_{\xi}$ for every limit ordinal $\gamma < \theta$ with $\operatorname{cf} \gamma > \omega$. Then there exists $\{Y_{\xi}\}_{\xi \leq \theta}$ continuous (strictly) decreasing sequence, such that $Y_{\alpha} = X_{\alpha}$ for every $\alpha < \theta$ with $\operatorname{cf} \alpha \neq \omega$.

Proof. Let $\{X_{\xi}\}_{\xi \leq \theta}$ be decreasing sequence. Define $\{Y_{\xi}\}_{\xi \leq \theta}$ such that $Y_{\alpha} = X_{\alpha}$ for every $\alpha < \theta$ with $\mathrm{cf}\alpha > \omega$, otherwise $Y_{\alpha} = \bigcap_{\xi \leq \alpha} X_{\xi}$. Clearly $Y_{\eta} \supseteq Y_{\xi}$ for every $\eta < \xi \leq \theta$. Moreover for every $\alpha < \theta$ with $\mathrm{cf}\alpha = \omega$, $Y_{\alpha} \supseteq X_{\alpha}$. By construction, we have that $\{Y_{\xi}\}_{\xi \leq \theta}$ is a continuous sequence.

Assume that all the subsets $X_{\xi} \in \{X_{\xi}\}_{\xi \leq \theta}$ are distinct. Then $Y_{\alpha} \supseteq X_{\alpha} \supset X_{\alpha+1} = Y_{\alpha+1}$ implies that Y_{α} 's are distinct.

In case we have two or more sequences of subsets of Z of length $\theta + 1$, having the same last element, and given H, we denote δ_H with respect the sequence $\{X_{\xi}\}_{\xi < \theta}$ with $\delta_H^{\tilde{X}}$.

Lemma 2.5. Let θ be a cardinal with $cf\theta > \omega$, $\{X_{\xi}\}_{\xi \leq \theta}$ and $\{Y_{\xi}\}_{\xi \leq \theta}$ two decreasing sequences of subsets of a topological space Z, such that $Y_{\alpha} = X_{\alpha}$ for every $\alpha < \theta$ with $cf\alpha \neq \omega$. Then

$$\delta_{H}^{\tilde{\mathbf{X}}} < \delta_{H}^{\tilde{\mathbf{Y}}} \Rightarrow (\delta_{H}^{\tilde{\mathbf{Y}}} = \delta_{H}^{\tilde{\mathbf{X}}} + 1) \land (\mathrm{cf}\delta_{\mathrm{H}}^{\tilde{\mathbf{X}}} = \omega)$$

with $H \subseteq Z$.

Proof. From Remark 2.3 it follows that for every $\alpha < \theta$ with $cf\alpha > \omega$, $X_{\alpha} = \bigcap_{\xi < \alpha} X_{\xi}$, and $X_{\alpha} = Y_{\alpha} \supseteq \bigcap_{\xi < \alpha} Y_{\xi}$. We have also that for every $\alpha < \theta$ with $cf\alpha > \omega$ there exists a cofinal sequence $(\alpha_{\eta})_{\eta < cf\alpha}$ such that $Y_{\alpha_{\eta}} \subseteq X_{\alpha_{\eta}}$. Assume that $cf\delta_{\mathrm{H}}^{\tilde{X}} = \omega$ and $\delta_{H}^{\tilde{Y}} \neq \delta_{H}^{\tilde{X}} + 1$, we want to show that $\delta_{H}^{\tilde{X}} = \delta_{H}^{\tilde{Y}}$. Two cases: (i) $cf\delta_{\mathrm{H}}^{\tilde{Y}} > \omega$ and (ii) $cf\delta_{\mathrm{H}}^{\tilde{Y}} = \omega$. If (i) holds, then $Y_{\delta_{H}^{\tilde{Y}}} \cap H = X_{\delta_{H}^{\tilde{Y}}} \cap H = \emptyset$, therefore $\delta_{H}^{\tilde{X}} \leq \delta_{H}^{\tilde{Y}}$. If $\delta_{H}^{\tilde{X}} < \delta_{H}^{\tilde{Y}}$ there exists α_{η} , such that $\delta_{H}^{\tilde{X}} < \alpha_{\eta} < \delta_{H}^{\tilde{Y}}$. Then by minimality of $\delta_{H}^{\tilde{Y}}$ we have $Y_{\alpha_{\eta}} \cap K \neq \emptyset$ and $Y_{\alpha_{\eta}} \cap K \subseteq X_{\alpha_{\eta}} \cap K$. Moreover $X_{\alpha_{\eta}} \subseteq X_{\delta_{H}^{\tilde{X}}}$, so $X_{\delta_{H}^{\tilde{X}}} \cap K \neq \emptyset$ which is in contradiction with the definition of δ_{K} . Thus $\delta_{H}^{\tilde{X}} = \delta_{H}^{\tilde{Y}}$. For (ii), assume by contradiction, that $\delta_{H}^{\tilde{Y}} \neq \delta_{H}^{\tilde{Y}}$. Since $cf\delta_{\mathrm{H}}^{\tilde{X}} = cf\delta_{\mathrm{H}}^{\tilde{Y}} = \omega$, there exists α successor ordinal such that $\delta_{H}^{\tilde{Y}} < \alpha < \delta_{H}^{\tilde{X}}$. Then $X_{\alpha} = Y_{\alpha}$, and so $Y_{\delta_{H}^{\tilde{Y}}} \supseteq Y_{\alpha} = X_{\alpha} \supseteq X_{\delta_{H}^{\tilde{X}}}$. Therefore $X_{\alpha} \cap H = \emptyset$ which is in contradiction with the minimality of $\delta_{H}^{\tilde{X}}$.

Corollary 2.6. Let θ be a cardinal with $\operatorname{cf} \theta > \omega$, $\{X_{\xi}\}_{\xi \leq \theta}$ and $\{Y_{\xi}\}_{\xi \leq \theta}$ two decreasing sequences of subsets of Z, such that $Y_{\alpha} = X_{\alpha}$ for every $\alpha < \theta$ with $\operatorname{cf} \alpha \neq \omega$. Let $H \subset Z$, then $\delta_{H}^{\tilde{X}} = \delta_{H}^{\tilde{Y}}$ if either one has uncountable cofinality.

Corollary 2.7. Let θ be a cardinal with $cf\theta > \omega$, $\{X_{\xi}\}_{\xi \leq \theta}$ and $\{Y_{\xi}\}_{\xi \leq \theta}$ two decreasing sequences of subsets of a topological space Z, such that $Y_{\alpha} = X_{\alpha}$ for every $\alpha < \theta$ with $cf\alpha \neq \omega$.

Then $\{X_{\xi}\}_{\xi \leq \theta}$ is a \mathcal{K} -Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) sequence if and only if $\{Y_{\xi}\}_{\xi \leq \theta}$ is a \mathcal{K} -Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) sequence. Proof. Let $\{X_{\xi}\}_{\xi \leq \theta}$ be a K-Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) sequence. By hypothesis $Y_{\theta} = X_{\theta}$. Let $H \subseteq (Z \setminus X_{\theta})$ compact (resp., closed or analytic). Then $\mathrm{cf}\delta_{\mathrm{H}}^{\tilde{X}} \leq \omega$ (resp., either $\delta_{H}^{\tilde{X}} \leq \omega$ or $\delta_{H}^{\tilde{X}} = \theta$). We want to check that $\mathrm{cf}\delta_{\mathrm{K}}^{\tilde{Y}} \leq \omega$ (resp., either $\delta_{H}^{\tilde{Y}} \leq \omega$ or $\delta_{H}^{\tilde{Y}} = \theta$). Assume not, i.e., $\mathrm{cf}\delta_{\mathrm{K}}^{\tilde{Y}} > \omega$, (resp., $\omega < \mathrm{cf}\delta_{\mathrm{K}}^{\tilde{Y}} < \theta$) Corollary 2.6 implies that $\delta_{K}^{\tilde{X}} = \delta_{K}^{\tilde{Y}}$, which is a contradiction.

Corollary 2.8. Let θ be a cardinal with $cf\theta > \omega$. The following are equivalent:

- (i) there exists {X_ξ}_{ξ≤θ} which is K-Michael (resp., *F*-Michael or A(Y)-Michael strictly decreasing) sequence;
- (ii) there exists $\{X_{\xi}\}_{\xi \leq \theta}$ continuous \mathcal{K} -Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael strictly decreasing) sequence.

Next we introduce the definition of Michael function and we analyze the relationship between Michael functions and Michael sequences.

Definition 2.9. Let Z be a topological space and $f : Z \to \theta + 1$ an arbitrary function. Then f is said to be a \mathcal{K} -Michael function if the following condition holds:

(i) for each K compact subset of $Z \setminus f^{-1}(\{\theta\})$, $\sup_{x \in K} f(x) + 1$ does not have uncountable cofinality.

In particular an \mathcal{F} -Michael function is a \mathcal{K} -Michael function satisfying the following additional condition:

(ii) for every F closed subset of $Z \setminus f^{-1}(\{\theta\})$, $\sup_{x \in F} f(x) + 1$ is either θ or does not have uncountable cofinality.

Also given a topological space Y, an $\mathcal{A}(Y)$ -Michael function is a \mathcal{K} -Michael function satisfying the following additional condition:

(ii) for every A which is Y-analytic in $Z \setminus f^{-1}(\{\theta\})$, $\sup_{x \in A} f(x) + 1$ is either θ or does not have uncountable cofinality.

In the next proposition we will show the equivalence of continuous \mathcal{K} -Michael sequences with \mathcal{K} -Michael functions $f: Z \to \theta + 1$.

Lemma 2.10. Let Z be a topological space, $f : Z \to \theta + 1$ be an arbitrary function with θ cardinal. If $X_{\xi} = \{x \in Z : f(x) \ge \xi\}$ for every $\xi \in \theta$, then $\delta_H = \sup_{x \in H} f(x) + 1$ for every $H \subseteq Z \setminus X_{\theta}$.

Proof. By definition we have that $\delta_H = \min\{\xi \le \theta : K \cap X_{\xi} = \emptyset\} = \min\{\xi \le \theta : \forall x \in K \ (x \notin X_{\xi})\} = \min\{\xi \le \theta : \forall x \in K \ (f(x) < \xi)\} = \sup\{f(x) + 1 : x \in K\}.$

Lemma 2.11. Let θ be a cardinal, $\{X_{\xi}\}_{\xi \leq \theta}$ a continuous sequence of subsets of topological space Z, and $f: Z \to \theta + 1$ a function defined by $f(x) = \sup\{\gamma \in \theta + 1 : x \in X_{\gamma}\}$. Then we have:

- (i) $X_{\xi} = \{x \in Z : f(x) \ge \xi\}$ for every $\xi \in \theta$;
- (ii) f is surjective if and only if $\{X_{\xi}\}_{\xi \leq \theta}$ is strictly decreasing.

Proof. To show (i), we have that for every $\xi \in \theta$, $\{x \in Z : f(x) \ge \xi\} = \{x \in Z : \sup\{\gamma \in \theta : x \in X_{\gamma}\} \ge \xi\}$. From the continuity follow $\{x \in Z : \sup\{\gamma \in \theta : x \in X_{\gamma}\} \ge \xi\} = \{x \in Z : x \in X_{\xi}\} = X_{\xi}$.

For (ii), first assume that f is surjective. By (i) we have that $X_{\xi} = \{x \in Z : f(x) \ge \xi\}$ for every $\xi \in \theta$, and so $\{X_{\xi}\}_{\xi \le \theta}$ is a decreasing sequence. Assume that there exist $\alpha, \beta \in \theta$ with $\alpha < \beta$ such that $X_{\alpha} = X_{\beta}$. Thus there exist $\xi \in \theta$ with $\alpha < \xi \le \beta$ and $z \in Z$ such that $f(x) = \xi$. Hence $x \in X_{\beta}$ but $x \notin X_{\alpha}$, a contradiction.

On the other hand, assume that $\{X_{\xi}\}_{\xi \leq \theta}$ is strictly decreasing, and f is not surjective. Then there exists $\alpha < \theta$ such that $f(x) \neq \alpha$ for any $x \in Z \setminus X_{\theta}$, with $X_{\theta} = f^{-1}(\{\theta\})$. Let $f(x) > \alpha$. From (i) it follows that there exists $\alpha < \theta$ such that $(Z \setminus X_{\theta}) \subseteq X_{\alpha}$. Thus $X_{\beta} = X_{\alpha}$ for any $\beta \leq \alpha$, which contradicts the fact that the sequence is strictly decreasing. If $f(x) < \alpha$, follow that $(Z \setminus X_{\theta}) \cap X_{\alpha} = \emptyset$, which is a contradiction. \Box

Proposition 2.12. Let Z and Y be two topological spaces, θ a cardinal with $cf\theta > \omega$. For every $Q \subseteq Z$, the following statements are equivalent:

- (i) there exists a continuous K-Michael (resp., F-Michael or A- Michael) sequence {X_ξ}_{ξ≤θ} with Q = X_θ;
- (ii) there exists K-Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) function $f: Z \to \theta + 1$, with $Q = f^{-1}(\{\theta\})$;
- (iii) there exists \mathcal{K} -Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) sequence $\{X_{\xi}\}_{\xi \leq \theta}$ with $Q = X_{\theta}$.

Proof. (i) \Rightarrow (ii). Let $\{X_{\xi}\}_{\xi \leq \theta}$ be a continuous \mathcal{K} -Michael sequence. Define the following map $f: Z \to \theta + 1$ such that $f(x) = \sup\{\gamma \in \theta + 1 : x \in X_{\gamma}\}$. Clearly $f^{-1}(\{\theta\}) = X_{\theta}$. Now let $H \subset (Z \setminus Q)$ be a compact (resp., closed or analytic) subset. By Lemma 2.11, for any $\alpha \leq \theta$, $X_{\alpha} = \{x \in Z : f(x) \geq \alpha\}$. By Lemma 2.10, $\sup_{x \in H} f(x) + 1$) = δ_{H} . Since $cf\delta_{K} \leq \omega$ (resp., either $cf\delta_{H} \leq \omega$ or $cf\delta_{H} = \theta$), then cf ($\sup_{x \in K} f(x) + 1$)) $\leq \omega$ (resp., either cf ($\sup_{x \in H} f(x) + 1$) $\leq \omega$ or cf ($\sup_{x \in H} f(x) + 1$) = θ).

(ii) \Rightarrow (iii). Let $f: Z \to \theta + 1$ be a \mathcal{K} -Michael function with $Q = f^{-1}(\{\theta\})$. For any $\alpha \leq \theta$ define $X_{\alpha} = \{x \in Z : f(x) \geq \alpha\}$. Clearly $X_{\theta} = f^{-1}(\{\theta\})$ and $X_{\xi} \supseteq X_{\eta}$ for any $\xi < \eta \leq \theta$. Let now $H \subset (Z \setminus Q)$ be a compact (resp., closed or analytic) subset, we want to show that $\mathrm{cf}\delta_{\mathrm{H}} \leq \omega$. By Lemma 2.10, $\mathrm{sup}_{x \in \mathrm{K}}f(x) + 1 = \delta_{\mathrm{H}}$. Since cf ($\mathrm{sup}_{x \in \mathrm{H}}f(x) + 1$) $\leq \omega$ (resp., either cf ($\mathrm{sup}_{x \in \mathrm{H}}f(x) + 1$) $\leq \omega$ or cf ($\mathrm{sup}_{x \in \mathrm{H}}f(x) + 1$) $= \theta$), then $\mathrm{cf}\delta_{\mathrm{H}} \leq \omega$ (resp., either cf $\delta_{\mathrm{H}} \leq \omega$ or cf $\delta_{\mathrm{H}} = \theta$). (iii) \Rightarrow (i). Follow from Corollary 2.8.

Corollary 2.13. Let θ be a cardinal of uncountable cofinality, Z and Y two topological spaces. There exists a continuous K-Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) strictly decreasing sequence $\{X_{\xi}\}_{\xi \leq \theta}$ of subsets of Z, if and only if there exists K-Michael (resp., \mathcal{F} -Michael or $\mathcal{A}(Y)$ -Michael) function $f: Z \to \theta + 1$ that is surjective. A. Caserta and S. Watson

3. Local properties of Michael functions

In this section we want to analyze and characterize the properties of being a Michael function. First we need the following definition.

Definition 3.1. Let Z be a topological space, $h : Z \to \theta + 1$ an arbitrary function with θ cardinal. For every $\alpha \leq \theta$ we say that h is *Michael at* α if

 $cf\alpha > \omega \Rightarrow (\forall F \subseteq Z closed (\forall z \in F h(z) < \alpha) \Rightarrow (sup_{z \in F} h(z) < \alpha)).$

Moreover h is σ -Michael at α if

$$cf\alpha > \omega \Rightarrow (\forall C \subseteq Z F_{\sigma}\text{-set} (\forall z \in C h(z) < \alpha) \Rightarrow (sup_{z \in C}h(z) < \alpha)).$$

Directly from the definition follow:

Lemma 3.2. Let Z be a topological space, $h : Z \to \theta + 1$ an arbitrary function with θ cardinal. The following statements are equivalent:

(i) h is Michael at α ,

(ii) $cf\alpha > \omega \Rightarrow (\forall U \subseteq Z \text{ open } (h^{-1}[\alpha, \theta] \subseteq U) \Rightarrow (sup_{z \in Z \setminus U} h(z) < \alpha)).$

Lemma 3.3. Let Z be a topological space, $h: Z \to \theta + 1$ an arbitrary function with θ cardinal. The following statements are equivalent:

- (i) h is σ -Michael at α ,
- (ii) $\operatorname{cf} \alpha > \omega \Rightarrow (\forall G \subseteq Z \operatorname{G}_{\delta}\operatorname{-set}(h^{-1}([\alpha, \theta]) \subseteq G) \Rightarrow (\operatorname{sup}_{z \in Z \setminus G}h(z) < \alpha)).$

Lemma 3.4. Let Z be a topological space, $h: Z \to \theta + 1$ an arbitrary function with θ cardinal. Then h is σ -Michael at α if and only if h is Michael at α .

Proof. Let $\operatorname{cf} \alpha > \omega$, and $C = \bigcup_{n \in \omega} F_n$ with F_n closed subset of Z such that for every $z \in C h(z) < \alpha$. Then for every $n \in \omega$ and for every $z \in F_n$, $h(z) < \alpha$. Let $\alpha_n = \sup_{z \in F_n} h(z)$. Since h is Michael at α , follow $\alpha_n < \alpha$ for every $n \in \omega$. Then $\sup_{z \in C} h(z) = \sup_{n \in \omega} \alpha_n$. From $\operatorname{cf} \alpha > \omega$ if follows that $\sup_{n \in \omega} \alpha_n < \alpha$. \Box

An arbitrary function $h: Z \to \theta+1$, induces a new function $\hat{h}: Z \times Y \to \theta+1$, defined by $\hat{h}(x) = h(\pi_1(x))$ for every $x \in Z \times Y$, where Y is an arbitrary topological space, and π_1 the projection of $Z \times Y$ onto its first coordinate space. Clearly this raises the question whether \hat{h} is Michael at some ordinal $\alpha \leq \theta$.

Lemma 3.5. Let Z, Y be two topological spaces, $h: Z \to \theta + 1$ is an arbitrary function, $\hat{h}: Z \times Y \to \theta + 1$ with θ cardinal. Then the following statements are equivalent:

(i) h is Michael at α ,

(ii) $cf\alpha > \omega \Rightarrow (\forall A \subseteq Z \text{ Y-analytic} (\forall z \in A h(z) < \alpha) \Rightarrow \sup_{z \in A} h(z) < \alpha).$

Moreover, if \hat{h} is Michael at α for some $\alpha \leq \theta$, then h is Michael at the same ordinal. But the converse does not hold.

Now, given a function $h: Z \to \theta + 1$, we want to characterize the property of being Michael at some ordinal for h, in term of a Michael function.

Proposition 3.6. Let Z be a topological space, $h: Z \to \theta + 1$ a function with θ cardinal. Then the following statements are equivalent:

- (i) h is a \mathcal{F} -Michael function;
- (ii) h is Michael at α for every $\alpha \leq \theta$.

Proof. Assume that h is not a \mathcal{F} -Michael function. Then there is a closed set $F \subseteq (Z \setminus h^{-1}(\{\theta\}))$ such that $cf(\sup_{z \in F} h(z) + 1) > \omega$. Let $\alpha = \sup_{z \in K} h(z) + 1$. Note that $h(z) < \alpha$ for every $z \in F$. Since h is Michael at α , from Lemma 3.2 follow that $\sup_{z \in F} h(z) < \alpha$, which is a contradiction.

Vice versa, Assume that h is a \mathcal{F} -Michael function. Let $\alpha \in \theta$ such that $\mathrm{cf}\alpha > \omega$. We want to show that h is Michael at α . Let U be an open set of Z such that $h^{-1}([\alpha, \theta]) \subset U$. Then $Z \setminus U$ is such that $h(z) < \alpha$ for every $z \in Z$. Therefore $\mathrm{cf}(\sup_{Z \setminus U} h(z) + 1) \leq \omega$. Since $\mathrm{cf}\alpha > \omega$ there exists $\beta < \alpha$ such that $\sup_{z \in Z \setminus U} h(z) + 1 \leq \beta < \alpha$.

From the previous proof we can argue that if h is Michael at α for every $\alpha \in \theta$, then h is \mathcal{F} -Michael function, and so \mathcal{K} -Michael function, but the vice versa does not hold. Clearly it is true in case Z is a compact space.

Moreover we have shown that if h is a \mathcal{F} -Michael function, then there exists an ordinal α such that h is Michael at α . The vice versa does not hold, we needed the property of being Michael to be satisfied at each ordinal into the codomain of h.

Proposition 3.7. Let Z, Y be two topological spaces, $h : Z \to \theta + 1$ and $\hat{h} : Z \times Y \to \theta + 1$ functions with θ cardinal. Then the following statements are equivalent:

- (i) h is a $\mathcal{A}(Y)$ -Michael function,
- (ii) \hat{h} is Michael at α for each $\alpha \leq \theta$.

Proof. Assume that h is not a $\mathcal{A}(Y)$ -Michael function. Then there is a set $A \subseteq (Z \setminus h^{-1}(\{\theta\}))$ which is the projection onto Z of a closed subset F of $Z \times Y$, such that $\omega < \operatorname{cf}(\sup_{z \in A} h(z) + 1) < \theta$. Let $\alpha = \sup_{z \in A} h(z) + 1$. Since A is a Y-analytic subset of Z and \hat{h} is Michael at α it follows that $\sup_{z \in A} h(z) < \alpha$ which is in contradiction with $\sup_{z \in A} h(z) = \{\beta \leq \alpha : h(z) \geq \beta \text{ for same } z \in A\} = \alpha$.

Assume that h is a $\mathcal{A}(Y)$ -Michael function. Let $\alpha < \theta$ with $cf\alpha > \omega$. Let A be a Y-analytic subset of Z, i.e., $A = \pi(F)$ where F is a closed subset of $Z \times Y$ such that $h(z) < \alpha$ for every $z \in A$. Then $cf(\sup_{z \in A} h(z) + 1) \leq \omega$. Since $cf\alpha > \omega$, it follows that $\sup_{z \in A} h(z) < \alpha$.

Remark 3.8. Note that by Proposition 2.12 and Proposition 3.6, it follows that if $h : \mathbb{C} \to \theta + 1$ is such that $\mathbb{Q}_C = h^{-1}(\{\theta\})$, the property of being Michael at α for every $\alpha \leq \theta$ is equivalent to the notion of \mathcal{K} -Michael sequence $\{X_{\xi}\}_{\xi \leq \theta}$ [M [8]], where for every $\xi \in \theta$, $X_{\xi} \subseteq \mathbb{C}$ and $X_{\theta} = \mathbb{Q}_C$.

The next Proposition give us conditions on the function $h: Z \to \theta + 1$, so that the function \hat{h} is not Michael at θ .

Proposition 3.9. Let θ be a cardinal with $cf\theta > \omega$, Z a topological space. Let $h: Z \to \theta + 1$ be a function such that $h(Z) \cap (\alpha, \theta) \neq \emptyset$ for every $\alpha < \theta$. Then \hat{h} is not Michael at θ , where $\hat{h}: Z \times (Z \setminus h^{-1}(\{\theta\})) \to \theta + 1$.

Proof. Set $\Delta = \{(z,z) : z \in Z \setminus h^{-1}(\{\theta\})\}$. Then Δ is a closed subset of $Z \times (Z \setminus h^{-1}(\{\theta\}))$ such that for every $z \in Z \setminus h^{-1}(\{\theta\})$ we have $h(z) < \theta$. But $\sup_{z \in Z \setminus h^{-1}(\{\theta\})} h(z) = \theta. \text{ If not, there exists } \alpha < \theta \text{ such that } \sup_{z \in Z \setminus h^{-1}(\{\theta\})} h(z) = \theta.$ α . Since $h(Z) \cap (\alpha, \theta) \neq \emptyset$, there exists β with $\alpha < \beta < \theta, z \in Z \setminus h^{-1}(\{\theta\})$ such that $h(z) = \beta$ which is a contradiction.

4. NL PROPERTY

In this section we introduce the new definition of NL Property at some ordinal, and we give examples of functions which have this property.

Definition 4.1. Let X be a topological space, θ a cardinal and $j: X \to \theta$ an arbitrary function. For each $\alpha \leq \theta$ with $cf\alpha > \omega$, we say that j has the property *NL* at α if for every $A \subseteq X$ such that j(A) is cofinal in α , A is not Lindelöf

Remark 4.2. A banal case for the function $j: X \to \theta + 1$ to have the property NL at each $\alpha \leq \theta$ with $cf\alpha > \omega$, is for $j = id_{\theta+1}$. Indeed every subset of α which is cofinal in α cannot be Lindelöf

Another simple case in which j has the property NL at each $\alpha \leq \theta$ with $\mathrm{cf}\alpha > \omega$ is when $j^{-1}(\beta)$ is open in X for every $\beta < \alpha$. Indeed, assume that $A \subseteq X$ such that j(A) is cofinal in α , and by contradiction A is Lindelöf. Then $\{j^{-1}(\beta)\}_{\beta \in \alpha}$ is an open cover for A, therefore there exist $\beta_0 \in \alpha$ countable such that $A \subseteq \bigcup_{\beta \in \beta_0} j^{-1}(\beta)$. Thus $A \subseteq j^{-1}(\beta_0)$ which is a contradiction.

Other examples of function with the property NL are given. Before we need the following definitions.

Definition 4.3. Let θ be a cardinal and X a topological space. The family $\{A_{\alpha}\}_{\alpha\in\theta}$ is a special G_{δ} family of X, if for every $\alpha\in\theta$, $A_{\alpha}=\bigcap_{n\in\omega}A_{\alpha}^{n}$ where each A^n_{α} is open in X and for every $n \in \omega$, $\{A^n_{\alpha}\}_{\alpha \in \theta}$ is an increasing family.

Definition 4.4. Let θ be a cardinal and X a topological space. The function $j: X \to \theta + 1$ is a special at α with $\alpha \leq \theta$, if there exists a sequence of continuous functions $(j_n)_{n \in \omega}$ with $j_n : X \to \theta + 1$ such that for every $n \in \omega$,

- (i) $j^{-1}(\alpha) \subseteq j_n^{-1}(\alpha)$, (ii) $j(x) \leq j_n(x)$ for every $x \in X$, (iii) $\{j_n^{-1}(\alpha)\}_{\alpha \leq \theta}$ is an increasing family.

Lemma 4.5. Let θ be a cardinal, X a topological space and $j: X \to \theta + 1$ a function. The following statements are equivalent:

- (i) η is special at each $\alpha < \theta$
- (ii) $\{j^{-1}(\alpha)\}_{\alpha < \theta}$ is a special G_{δ} family of X.

Proof. Let $\alpha \leq \theta$ and j be special at α . Let $(j_{n,\alpha})_{n \in \omega}$ be a sequence of continuous functions $j_{n,\alpha}: X \to \theta + 1$ satisfying properties in Definition 4.4. By

continuity of each $j_{n,\alpha}$, the set $j_{n,\alpha}^{-1}(\alpha)$ is open in X for each $n \in \omega$. Since $j^{-1}(\alpha) \subseteq j_{n,\alpha}^{-1}(\alpha)$, it follows that $j^{-1}(\alpha) \subseteq \bigcap_{n \in \omega} j_{n,\alpha}^{-1}(\alpha)$ for each $\alpha \in \omega$. We show that $\bigcap_{n \in \omega} j_{n,\alpha}^{-1}(\alpha) \subseteq j^{-1}(\alpha)$. Let $x \in \bigcap_{n \in \omega} j_{n,\alpha}^{-1}(\alpha)$, hence $x \in j_{n,\alpha}^{-1}(\alpha)$ for each $n \in \omega$, i.e., for each $n, j_{n,\alpha}(x) \in \alpha$. Since $j(x) \leq j_{n,\alpha}(x)$ for all $n \in \omega$ and $x \in X$, we have that $j(x) \leq \alpha$. Thus $x \in j^{-1}(\alpha)$ and $j^{-1}(\alpha) = \bigcap_{n \in \omega} j_{n,\alpha}^{-1}(\alpha)$ for each $\alpha \leq \theta$. Moreover for every $n \in \omega$, we have that $\{j_{n,\alpha}^{-1}(\alpha)\}_{\alpha \leq \theta}$ is an increasing family.

Vice versa, assume that $\{j^{-1}(\alpha)\}_{\alpha \leq \theta}$ is a special G_{δ} family of X. Let $\alpha \leq \theta$. By hypothesis, $j^{-1}(\alpha) = \bigcap_{n \in \omega} A^n_{\alpha}$ with the property that A^n_{α} is an open set and for every n the family $\{A^n_{\alpha}\}_{\alpha \leq \theta}$ is increasing. Define for each $n \in \omega$, the function $j_n : X \to \theta + 1$ by $j_n(x) = \min\{\xi \in \theta + 1 : x \in A^n_{\xi}\}$. We have that for each $\alpha \leq \theta$, $j_n^{-1}(\alpha) = A^n_{\alpha}$. Indeed, $A^n_{\alpha} \subseteq j_n^{-1}(\alpha)$ and for each $\gamma > \alpha$ there is not $y \in A^n_{\gamma} \setminus A^n_{\alpha}$ such that $y \in j_n^{-1}(\alpha)$. Otherwise from $y \in j_n^{-1}(\alpha)$, it follows that $y \in A^n_{\alpha}$ which is a contradiction. Thus j_n is continuous for each n and the family $\{j_n^{-1}(\alpha)\}_{\alpha \leq \theta}$ is an increasing. Since $j^{-1}(\alpha) = \bigcap_{n \in \omega} j_n^{-1}(\alpha)$, we have that for each $n \in \omega$, $j^{-1}(\alpha) \subseteq j_n^{-1}(\alpha)$. Let $x \in X$. It remains to prove that $j(x) \leq j_n(x)$ for every $n \in \omega$. Let $j(x) = \alpha$. Hence $x \in j^{-1}(\alpha)$ and $x \in j_n^{-1}(\alpha)$ for every $n \in \omega$, i.e., the point x is such that $\min\{\xi \in \theta + 1 : x \in A^n_{\xi}\} = \alpha$ for each n. Therefore $j_n(x) \geq \alpha$ for each $n \in \omega$.

Proposition 4.6. Let X be a topological space, θ a cardinal and $j: X \to \theta + 1$ a function. If $\{j^{-1}(\alpha)\}_{\alpha \in \theta}$ is a special G_{δ} family, then j has the property NL for every $\alpha \leq \theta$.

Proof. Let $A \subseteq X$, $\alpha \leq \theta$ with $cf\alpha > \omega$ and j(A) is cofinal in α . For every $\beta \in \theta$, we have $j^{-1}(\beta) = \bigcap_{n \in \omega} G_{\beta}^{n}$ such that for every $n \in \omega$, $\{G_{\beta}^{n}\}_{\beta \in \theta}$ is an increasing family of open sets. Since j(A) is cofinal in α , for all $\beta \in \alpha \ A \setminus \bigcap_{n \in \omega} G_{\beta}^{n} \neq \emptyset$, i.e., for all $\beta \in \alpha$ there exists $n \in \omega$ such that $A \setminus G_{\beta}^{n} \neq \emptyset$. There exist $n \in \omega$ and $(\beta_{\xi})_{\xi \in cf\alpha}$ increasing sequence with $\beta_{\xi} < \alpha$, such that $A \setminus G_{\beta_{\xi}}^{n} \neq \emptyset$. Now, fixed $n \in \omega$, we have that $A \subseteq \bigcup_{\xi \in cf\alpha} G_{\beta_{\xi}}^{n}$. Therefore the family $\{G_{\beta_{\xi}}^{n}\}_{\xi \in cf\alpha}$ is an open cover of A. If A was Lindelöf, there should be β_{0} countable such that $G_{\beta_{0}}^{n}$ would cover A, which is a contradiction.

Proposition 4.7. Let $X = \prod_{n \in \omega} \theta + 1$, $j : X \to \theta + 1$ defined by $j(f) = \min\{\xi \in \theta + 1 : f \leq f_{\xi}\}$, where $\{f_{\alpha}\}_{\alpha \in \theta} \subseteq \prod_{n \in \omega} \theta + 1$ such that for every $\alpha < \alpha'$ $f_{\alpha} \leq f_{\alpha'}$. Then j has the property NL at every $\alpha \leq \theta$.

Proof. By definition $j^{-1}(\alpha) = \{f \in X : \forall n \in \omega \ f(n) < f_{\alpha}(n)\} = \bigcap_{n \in \omega} \{f \in X : f(n) < f_{\alpha}(n)\}$. Set $G_{\alpha}^{n} = \{f \in X : f(n) < f_{\alpha}(n)\}$, then for every $\alpha \in \theta + 1$, G_{α}^{n} is an open set in X, and moreover for every $n \in \omega$, $\{G_{\alpha}^{n}\}_{\alpha \in \theta}$ is an increasing family. Hence $\{j^{-1}(\alpha)\}_{\alpha \in \theta}$ is a special G_{δ} family of X. Proposition 4.6 ends the proof. \Box

Corollary 4.8. Let $X = \prod_{n \in \omega} \theta + 1$, $j: X \to \theta + 1$ defined by $j(f) = \min\{\xi \in \theta + 1 : f \leq f_{\xi}\}$, where f_{ξ} is a constant function with value ξ for every $\xi \leq \theta$. Then j has the property NL at every $\alpha \leq \theta$. **Remark 4.9.** Given $X = \prod_{n \in \omega} \theta + 1$, a family $\{f_{\alpha}\}_{\alpha \in \theta} \subseteq \prod_{n \in \omega} \theta + 1$, a sequence of function $j_n(f) = \min\{\xi \in \theta + 1 : f(n) \leq f_{\xi}(n)\}$ and a function $j(f) = \min\{\xi \in \theta + 1 : f \leq f_{\xi}\}$, all of them defined in X with value in $\theta + 1$. Then $j > \sup j_n$, and the equality does not hold. Indeed let $f : \omega \to \theta + 1$ defined by f(n) = 0 for every $n \neq 0$ and f(0) = 2, and $\{f_{\xi}\}_{\xi \in \theta}$ defined by $f_{\xi} = \vec{\xi}$ for every $\xi \in \theta$ with $\xi \neq 2$ and $f_2(n) = 0$ for every $n \in \omega \setminus \{0, 2\}$ and f(0) = 2, f(2) = 0. Then j(f) = 3 and $\sup_{n \neq n} f(f) = 2$.

There are examples of chain for countable product of ordered spaces, not considering the constant value function, which is a banal example. For example $X = \prod_{n \in \omega \setminus \{0\}} \aleph_{\omega \cdot n}$. In (X, \leq) there exists a chain C such that $\operatorname{ot}(C) = \aleph_{\omega \cdot \omega}$ but not $\operatorname{ot}(C) = \aleph_{\omega \cdot \omega+1}$.

Given $\{\alpha_n\}_{n\in\omega}$ ordinals, what is the set of β such that there exists a function $f: \beta \hookrightarrow \pi \alpha_n$?

Remark 4.10. Let κ be a cardinal with $cf\kappa > \omega$, $X = \prod_{n \in \omega} \kappa + 1$ and $\{f_{\xi}\}_{\xi \in \kappa} \subseteq X$ such that $f_{\alpha} \leq f_{\beta}$ for every $\alpha < \beta < \kappa$. Let $j : X \to \kappa + 1$, defined by $j(f) = \min\{\xi \in \kappa : f \leq f_{\xi}\}$. We have that the function j has the property NL at κ .

Let $A \subset X$ such that j(A) is cofinal in κ . Then for every $\alpha \in \kappa A \not\subseteq j^{-1}(\alpha)$, i.e., for every $\alpha \in \kappa$ and for every $n \in \omega A \not\subseteq \{g \in X : g(n) \leq f_{\alpha}(n)\}$. Let $Vn, \alpha = \{g \in X : g(n) \leq f_{\alpha}(n)\}$. Then $\{V_{n,\alpha}\}_{n,\alpha}$ is an uncountable open cover of A. If A was Lindelöf, there should exist $\alpha_0 \in \kappa$ countable such that $\{V_{n,\alpha}\}_{\alpha \in \alpha_0}^{n \in \omega}$ is a cover for A which is a contradiction with $cf \kappa > \omega$.

We give an example of function which has the property NL only at some ordinal.

Proposition 4.11. Let $X = \prod_{n \in \omega} \theta_n + 1$ with every θ_n cardinal with $\operatorname{cf} \theta_n > \omega$, and $j: X \to \kappa + 1$ defined by $j(f) = \min\{\xi \in \kappa : f \leq_* f_\xi\}$ where κ is a cardinal with $\operatorname{cf} \kappa > \omega$ and $\kappa > \theta_n$ for every $n \in \omega$, $\{f_\xi\}_{\xi \in \kappa}$ a dominating family in $(\prod_{n \in \omega} \theta_n, \leq_*)$. Then j has the property NL at κ .

Proof. Let $A \subset X$ such that j(A) is cofinal in κ . Then for every $\alpha \in \kappa A \not\subseteq j^{-1}(\alpha)$, i.e., for every $\alpha \in \kappa A \not\subseteq \{g \in X : g \leq_* f_\alpha\}$. Then there exists $n \in \omega$ such that $\{g(n) : g \in A\}$ is unbounded in θ_n . If not, for every $n \in \omega \{g(n) : g \in A\}$ is bounded in θ_n , and since the family $\{f_{\xi}\}_{\xi \in \kappa}$ is an \leq_{*} -dominating in $(\prod_{n \in \omega} \theta_n, \leq_*)$, there should exists $\xi \in \kappa$ such that for every $g \in A g \leq_* f_{\xi}$, which is a contradiction. Thus there exist $n \in \omega$ such that for every $\alpha \in \theta_n A \not\subseteq \{g \in A : g(n) < \alpha\}$. Let $V_{n,\alpha} = \{g \in A : g(n) < \alpha\}$. Then $\{V_{n,\alpha}\}_{n,\alpha}$ is an uncountable open cover of A. If A was Lindelöf, there should exist $\alpha_0 \in \theta_n$ countable such that $\{V_{n,\alpha}\}_{\alpha \in \alpha_0}^{n \in \omega}$ is a cover for A which is a contradiction with $cf\theta_n > \omega$.

5. Closed mapping properties

In this section we investigate different properties of the projection map, introducing two new definitions.

Let us recall that if $f : X \to Y$ is a function and $A \subseteq X$, then the restriction of f to A, f | A, is closed if the image of a closed subset of A is a closed subset of Y.

Definition 5.1. Given two arbitrary topological spaces X and Y, we say that the function $f: X \to Y$ is σ -closed if the image of a closed subset of X is an F_{σ} subset of Y.

Definition 5.2. Let X, Y be two topological spaces. $f : X \to Y$ is *strongly* σ -closed if there exists $(K_n)_{n \in \omega}$ with K_n 's closed subsets of X such that $X = \bigcup_{n \in \omega} K_n$ and $f \upharpoonright K_n$ is closed for every $n \in \omega$.

Remark 5.3. We are dealing with three different properties of the function $f: X \to Y$. The following implications hold

 $f \operatorname{closed} \Rightarrow f \operatorname{strongly} \sigma \operatorname{-closed} \Rightarrow f \sigma \operatorname{-closed}$

Example 5.4. First note that for every countable topological space X which is T_1 , the map $f : X \to Y$ is strongly σ -closed for every topological space Y which is T_1 . Therefore the map $f : \mathbb{Q} \to \mathbb{R}$ with $f = id_{\mathbb{Q}}$ is strongly σ -closed, but it is not a closed map.

Example 5.5. [AC] Under the Axiom of choice, the set ω_1 can be partitioned in ω stationary sets S_n such that $\omega_1 = \bigcup_{n \in \omega} S_n$. In other words, there exists a function $f: \omega_1 \to \omega + 1$ defined by $f^{-1}(n) = S_n$ for every $n \in \omega$. By definition of stationary set, it follows that for every $n \in \omega$ and for every club C in ω_1 we have $C \cap f^{-1}(n) \neq \emptyset$. Clearly f is σ -closed. We claim that f is not strongly σ -closed, which is equivalent to show that for every $(K_n)_{n \in \omega}$ with K_n 's closed subsets of X such that $X = \bigcup_{n \in \omega} K_n$ there exists $n_0 \in \omega$ such that the map $f \upharpoonright K_{n_0}$ is not closed. Indeed let $(K_n)_{n \in \omega}$ be any countable family of closed subsets of ω_1 such that $\omega_1 = \bigcup_{n \in \omega} K_n$. Then there exist $n_0 \in \omega$ such that $|K_{n_0}| > \aleph_0$. Then K_{n_0} is a club in ω_1 , therefore $K_{n_0} \cap f^{-1}(n) \neq \emptyset$ for every $n \in \omega$. Thus $f(K_{n_0}) = \omega$, and so $f \upharpoonright K_{n_0}$ is not closed, because the set ω is not closed in its compactification $\omega + 1$.

Lemma 5.6. Let X, Z be topological spaces, such that $X = \bigcup_{n \in \omega} K_n$. Let F be a subset of $X \times Z$ and $F_n = F \cap (K_n \times Z)$. Let $\pi : X \times Z \to Z$ be the projection map. Then $\pi(F) = \bigcup_{n \in \omega} \pi \upharpoonright (K_n \times Z)(F_n)$

Proof. Note that $X \times Z = \bigcup_{n \in \omega} (K_n \times Z)$, and for every $n \in \omega$, F_n is a subset of $K_n \times Z$ such that $F = \bigcup_{n \in \omega} F_n$. Let $p_n = \pi \upharpoonright (K_n \times Z)$. For every $n \in \omega$, $p_n(F_n) \subseteq \pi(F)$. Indeed if $z \in p_n(F_n)$, there exists $(x, z) \in F_n$ such that $p_n(x, z) = z$, therefore there exists $(x, z) \in F$ such that $\pi(x, z) = z$. Thus $z \in \pi(F)$. On the other side, if $z \in \pi(F)$, there exists $(x, z) \in \bigcup_{n \in \omega} F_n$ such that $\pi(x, z) = z$. Therefore there exists $n \in \omega$ such that $(x, z) \in F_n$ such that $p_n(x, z) = z$.

The Kuratowski Theorem is useful:

Theorem 5.7. Given a compact Hausdorff space X, the projection map π : $X \times Z \to Z$ is a closed map, for every topological space Z.

An application is given by:

Proposition 5.8. Given an Hausdorff space X and the projection map π : $X \times Z \to Z$, the following implications hold

 $X \sigma$ -compact $\Rightarrow \pi$ strongly σ -closed $\Rightarrow \pi \sigma$ -closed

Proof. First we show that π is a strongly σ -closed map. From $X \sigma$ -compact,let $X = \bigcup_{n \in \omega} K_n$ where K_n 's are compact in X. Therefore $K_n \times Z$ is closed in $X \times Z$. The Kuratowski Theorem assures that the projection map $\pi \upharpoonright K_n \times Z$ is a closed map, for every topological space Z. For the second implication, let $X \times Z = \bigcup_{n \in \omega} K_n$ where K_n 's are closed. Let F be a closed subset of $X \times Z$, and $F_n = F \cap K_n$. Then for every $n \in \omega F_n$ is a closed subset of K_n such that $F = \bigcup_{n \in \omega} F_n$. From Lemma 5.6, $\pi(F) = \bigcup_{n \in \omega} \pi \upharpoonright K_n(F_n)$; moreover for every $n \in \omega \pi \upharpoonright K_n(F_n)$ is closed. It follows that $\pi(F)$ is F_σ in Z.

The use of the small image of the projection map will recur often. So let us state an useful basic property:

Lemma 5.9. Let X and Y be two topological spaces and $\pi : X \times Y \to Y$ a projection map. Then for every $A \subseteq Y$ and $B, K \subseteq X \times Y$,

- (i) $A \subseteq (\pi \upharpoonright K)^{\sharp} (B \cap K) \Leftrightarrow (X \times A) \cap K \subseteq B;$
- (ii) $A \subseteq \pi^{\sharp}(B) \Leftrightarrow X \times A \subseteq B$.

 $\begin{array}{ll} \textit{Proof.} \ A \subseteq (\pi \restriction K)^{\sharp}(B \cap K) = \{ y \in Y : \pi^{-1}(y) \cap K \subseteq B \cap K \} \Leftrightarrow & \forall y \in A \ \pi^{-1}(y) \cap K \subseteq B \cap K \Leftrightarrow & \forall y \in A \ \{(x,y) \in K : x \in X \land \pi(x,y) = y \} \subseteq B \Leftrightarrow \\ \{(x,y) \in K \cap (X \times A) : \pi(x,y) = y \} \subseteq B \Leftrightarrow (X \times A) \cap K \subseteq B. \end{array}$

Lemma 5.10. Let X, Y be two topological spaces, $f : X \to Y$ an arbitrary function. If f is a closed map, then for every U open in X, $f^{\sharp}(U)$ is an open subset of Y.

Moreover if f is σ -closed map, then $f^{\sharp}(U)$ is a G_{δ} subset of Y.

Proposition 5.11. Let the projection $\pi : K \times Z \to Z$ be σ -closed, and $X \subseteq Z$. Let U be an open subset in $K \times Z$ which cover $K \times X$, then there exists $H \supseteq X$ which is a G_{δ} in Z such that U cover $K \times H$.

Proof. Set $H = \pi^{\sharp}(U)$. Then, since π is σ -closed, H is a G_{δ} in Z. By Lemma 5.9 follow that $K \times H \subseteq U$, and $X \subseteq H$.

Proposition 5.12. Let X be a subset of a topological space Z, and $K \times Z \subseteq \bigcup_{n \in \omega} K_n$ with every K_n Lindelöf, and for every $n \in \omega \pi \upharpoonright K_n$ is closed, where $\pi : K \times Z \to Z$ is the projection map. If X is Lindelöf, then $K \times X$ is Lindelöf.

Proof. Let \mathcal{U} be a cover of $K \times X$ made by open sets of $K \times Z$. Without loss of generality we can assume that \mathcal{U} is closed under countable unions. Fix $n \in \omega$, for each $z \in X$, $K_n \cap (K \times \{z\})$ is Lindelöf. For every $z \in X$, since \mathcal{U} is closed under countable unions there exists $U_z \in \mathcal{U}$ such that $K_n \cap (K \times \{z\}) \subset U_z$. Set $A_{z,n} = (\pi \upharpoonright K_n)^{\sharp} (U_z \cap K_n)$. Then $A_{z,n}$ is an open subset of Z containing z. From Lemma 5.9 follow that $(K \times A_{z,n}) \cap K_n \subseteq U_z$. For a fixed $n \in \omega$, $\{A_{z,n}\}_{z \in X}$ is a family of open sets in Z which covers X. Since X is Lindelöf.

there exists countably many z_i^n 's such that $\{A_{z_i^n,n}\}_{i\in\omega}$ cover X. Moreover we have that for every $n \in \omega$ $(K \times A_{z_i^n,n}) \cap K_n \subseteq U_{z_i^n}$. We claim that $\{U_{z_i^n}\}_{i,n\in\omega}$ covers $K \times X$. Indeed, let $(k, z) \in K \times X$, then there exists $n \in \omega$ such that $(k, z) \in (K \times X) \cap K_n$. Fixed such n, there exists $i \in \omega$ such that $z \in A_{z_i^n,n}$. Thus $(k, z) \in (K \times A_{z_i^n,n}) \cap K_n \subseteq U_{z_i^n}$. Therefore we have that $\{U_{z_i^n}\}_{i,n\in\omega}$ is a countable family of open sets of \mathcal{U} which covers $K \times X$.

Corollary 5.13. Let X be a subset of a topological space Z, and $K = \bigcup_{n \in \omega} K_n$ with every K_n Lindelöf, and for every $n \in \omega \pi \upharpoonright K_n \times Z$ is closed, where $\pi : K \times Z \to Z$ is the projection map. If X is Lindelöf, then $K \times X$ is Lindelöf.

Remark 5.14. From the proof of Lemma 5.12 we can also get that if K, X and π satisfy the assumptions, there exists $U \in \mathcal{U}$ such that it covers $K \times X$, where \mathcal{U} is an open cover of $K \times X$ made by open set in $K \times Z$ closed under countable union.

Corollary 5.15. Let K, Z two topological spaces, $\pi : K \times Z \to Z$ the projection map, and $X \subset Z$. If

- (i) X is Lindelöf,
- (ii) K is Lindelöf,
- (iii) π is strongly σ -closed,

then $K \times X$ is Lindelöf.

Corollary 5.16. Let K, Z two topological spaces, $\pi : K \times Z \to Z$ the projection map and $X \subset Z$. Let \mathcal{U} be a family of open sets of $K \times Z$ which covers $K \times X$. If

- (i) X is Lindelöf,
- (ii) K is Lindelöf,
- (iii) π is strongly σ -closed,

then there exists $H \supset X$ which is a G_{δ} in Z and a countable subfamily of \mathcal{U} which covers $K \times H$.

Proof. Without loss of generality we can assume that \mathcal{U} is closed under countable unions. By Corollary 5.15, $K \times X$ is Lindelöf, therefore there exists $\mathcal{U}_0 \subseteq \mathcal{U}$ countable such that cover $K \times X$. Set $U_0 = \bigcup \mathcal{U}_0$. Then $U_0 \in \mathcal{U}$. By Proposition 5.11, there exists $H \supseteq X$ which is a G_{δ} in Z, such that $U \supseteq K \times H$. \Box

Lemma 5.17. Let \mathcal{U} be a family of open sets in $K \times Z$ which covers $K \times X$, with $X \subset Z$. Let $\pi : K \times Z \to Z$ be the projection map. If

- (i) X is Lindelöf,
- (ii) K is Lindelöf,
- (iii) $K = \bigcup_{n \in \omega} K_n$ with K_n closed and $\pi \upharpoonright K_n \times Z$ is closed,

then there exists a countable subfamily of \mathcal{U} that covers $K \times X$.

Corollary 5.18. Let K be a σ - compact space, X a Lindelöf subset of a topological space Z. Let \mathcal{U} be a family of open subsets in $K \times Z$ which cover $K \times X$, then there exists $H \supseteq H$ which is a G_{δ} in Z, and $\mathcal{U}_0 \subseteq \mathcal{U}$ countable which cover $K \times H$.

6. LINDELOF HAYDON PLANKS

In this section we construct a Dowker-Style plank, i.e., a variation of Dowker's idea of 1955 in which we take the subspace of all points in the product lying below the graph of a function (see [3]). Planks have been extensively studied by Watson in [9].

Definition 6.1. Let X, Z be topological spaces, θ a cardinal, $h: Z \to \theta + 1$ an arbitrary function, and $j: X \to \theta + 1$ surjective. Define the plank

$$Y_{j,h} = \{(x,z) \in X \times Z : h(z) \ge j(x)\}$$

For every $\xi \leq \gamma \leq \theta$ denote

$$Y_{j,h} \upharpoonright (\xi, \cdot) = \{ (x, z) \in Y_{j,h} : j(x) < \xi \}$$

and

$$Y_{j,h} \restriction (\xi, \gamma) = \{ (x, z) \in Y_{j,h} : j(x) < \xi \land h(z) < \gamma \}.$$

We investigate more in detail the relation between the plank and the functions. In the following, unless we state otherwise, we assume that the X, Zand the function h and j are defined as in the Definition 6.1

Proposition 6.2. Let $\alpha \leq \theta$, if j has the property NL at α , then

$$(\exists B \ Lindel\" of : Y_{j,h} | (\alpha, \alpha) \subseteq B \subseteq Y_{j,h} \Rightarrow h \ is \ Michael \ at \ \alpha).$$

Proof. Let $\alpha \leq \theta$ with $cf\alpha > \omega$, and B Lindelöf subset of $Y_{j,h}$ such that $Y_{j,h} \upharpoonright (\alpha, \alpha) \subseteq B$. Let $F \subset Z$ be closed such that for every $z \in F$, $h(z) < \alpha$. Then $B \cap (X \times F)$ is Lindelöf. Let $A = \pi_X(B \cap (X \times F))$. Thus A is a Lindelöf subset of X, such that for every $x \in A$ $j(x) < \alpha$. From j NL at α we have j(A) is not cofinal in α , i.e, there exist $\beta < \alpha$ such that for every $x \in A$ $j(x) \leq \beta$. Since j is surjective, for every $z \in F$ we can choose $x \in X$ with j(x) = h(z). Then $(x, z) \in Y_{j,h} \upharpoonright (\alpha, \alpha) \cap (X \times F)$, therefore $(x, z) \in B \cap (X \times F)$. It follows that $x \in A$. Hence for every $z \in F$ there exists $x \in A$ with $j(x) = h(z) \leq \beta$. Thus $\sup_{z \in F} h(z) \leq \beta < \alpha$, i.e., h is Michael at α .

Corollary 6.3. Let θ be a cardinal. Assume that j has the property NL at each $\alpha \leq \theta$. If $Y_{j,h}$ is Lindelöf then for each $\alpha \in \theta$, h is Michael at α .

Proof. Let $\alpha \in \theta$ with $\operatorname{cf} \alpha > \omega$. Assume by contradiction that h is not Michael at α . Then $Y_{j,h}$ is Lindelöf and $Y_{j,h} | (\alpha, \alpha) \subset Y_{j,h}$. From Proposition 6.2 follows that h is Michael at α .

From Proposition 3.9 and Proposition 6.2 follow:

Corollary 6.4. Let θ be a cardinal with $cf\theta > \omega$. If

(i) j has the property NL at θ ,

(ii) for each $\alpha < \theta$, $h(Z) \cap (\alpha, \theta) \neq \emptyset$,

then $Y_{j,h} \times (Z \setminus h^{-1}(\{\theta\})$ is not Lindelöf.

Now we want to investigate when the plank $Y_{j,h}$ is Lindelöf, and we give an inductive proof. First we need the following lemma.

Lemma 6.5. Let \mathcal{U} be a family of open sets in $j^{-1}([0,\alpha]) \times Z$ which covers $Y_{j,h} | (\alpha + 1, \cdot)$. Let $\pi : j^{-1}([0,\alpha]) \times Z \to Z$ be the projection map. If

- (i) there exists $U_0 \in \mathcal{U}$ which covers $j^{-1}([0,\alpha]) \times h^{-1}([\alpha,\theta])$,
- (ii) h is Michael at α ,
- (iii) for each $\xi < \alpha$, $Y_{j,h} \upharpoonright (\xi + 1, \cdot)$ is Lindelöf;,
- (iv) π is σ -closed,

then there exists a countable subfamily of \mathcal{U} that covers $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$.

Proof. Note that $Y_{j,h} \upharpoonright (\alpha+1, \cdot) = (j^{-1}([0,\alpha]) \times h^{-1}([\alpha,\theta])) \cup (\bigcup_{\xi < \alpha} Y_{j,h} \upharpoonright (\xi+1, \cdot))$. Let $U_0 \in \mathcal{U}$ that covers $j^{-1}([0,\alpha]) \times h^{-1}([\alpha,\theta])$.

If $\operatorname{cf} \alpha = \omega$, there exists an increasing sequence of ordinal $(\alpha_n)_{n \in \omega}$ such that $\bigcup_{\xi < \alpha} Y_{j,h} \upharpoonright (\xi + 1, \cdot) = \bigcup_{n \in \omega} Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$, therefore there exists $\mathcal{U}_1 \subset \mathcal{U}$ which cover $\bigcup_{\xi < \alpha} Y_{j,h} \upharpoonright (\xi + 1, \cdot)$. Then $\mathcal{U}_1 \cup \{U_0\}$ is a countable subcover of \mathcal{U} that covers $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$.

Assume that $cf\alpha > \omega$. Let $U_0^c = (j^{-1}([0,\alpha]) \times Z) \setminus U_0$. Then U_0^c is closed in $j^{-1}([0,\alpha]) \times Z$ and for every $(x,z) \in U_0^c \cap Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$ we have that $j(x) < \alpha$ and $h(z) < \alpha$. From (iv) follow that $C = \pi(U_0^c)$ is an F_σ subset of Z, and for every $z \in C$ $h(z) < \alpha$. From (ii) follow that $\delta = \sup_{z \in C} h(z) < \alpha$. We claim that $Y_{j,h} \upharpoonright (\alpha + 1, \cdot) \setminus U_0 \subseteq Y_{j,h} \upharpoonright (\delta + 1, \cdot)$. Let $(x, z) \in Y_{j,h} \upharpoonright (\alpha + 1, \cdot) \setminus U_0$. From $(x, z) \in U_0^c$, follow that $z \in C$; from $h(z) < \delta$ and $j(x) \leq h(z)$, follow that $(x, z) \in Y_{j,h} \upharpoonright (\delta + 1, \cdot)$. By hypothesi, $Y_{j,h} \upharpoonright (\delta + 1, \cdot)$ is Lindelöf, therefore there exists a countable subfamily $\mathcal{U}_1 \subset \mathcal{U}$ which is a cover for a $Y_{j,h} \upharpoonright (\delta + 1, \cdot)$. Thus $\{U_0\} \cup \mathcal{U}_1$ is a countable subcover for \mathcal{U} that covers $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$.

Proposition 6.6. Let Z be a Lindelöf space, θ a cardinal and $\alpha \leq \theta$. If

- (i) h is Michael at α ,
- (ii) $h^{-1}([\alpha, \theta])$ is Lindelöf,
- (iii) $j^{-1}([0, \alpha])$ is Lindelöf,
- (iv) for each $\xi < \alpha$, $Y_{j,h} \upharpoonright (\xi + 1, \cdot)$ is Lindelöf,
- (v) $\pi: j^{-1}([0,\alpha]) \times Z \to Z$ is strongly σ -closed,

then $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$ is Lindelöf.

Proof. Let \mathcal{U} be a cover of $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$ made by open sets of $j^{-1}([0, \alpha]) \times Z$, and without loss of generality we can assume that it is closed under countable union. Note that $Y_{j,h} \upharpoonright (\alpha + 1, \cdot) = (j^{-1}([0, \alpha]) \times h^{-1}([\alpha, \theta])) \cup (\bigcup_{\xi < \alpha} Y_{j,h} \upharpoonright (\xi + 1, \cdot))$. From Corollary 5.15, there exists $\mathcal{U}_0 \subset \mathcal{U}$ countable such that it covers $j^{-1}([0, \alpha]) \times h^{-1}([\alpha, \theta])$. Let $U_0 = \bigcup \mathcal{U}_0$, then $U_0 \in \mathcal{U}$. Lemma 6.5 ends the proof. \Box

Proposition 6.7. Let Z be a Lindelöf space, θ a cardinal, and $\alpha \leq \theta$. If for each $\beta \leq \alpha$

- (i) h is Michael at β ,
- (ii) $h^{-1}([\beta, \theta])$ is Lindelöf,
- (iii) $j^{-1}([0,\beta])$ is Lindelöf,
- (iv) $\pi: j^{-1}([0,\beta]) \times Z \to Z$ is strongly σ -closed,

then $Y_{j,h} \upharpoonright (\alpha + 1, \cdot)$ is Lindelöf.

Proof. Assume that h is Michael at β for every $\beta \leq \alpha$. From Proposition 6.6, it remains to show that $Y_{j,h} \upharpoonright (\beta + 1, \cdot)$ is Lindelöf for every $\beta < \alpha$. Suppose not, there exists $\beta < \alpha$ such that $Y_{j,h} \upharpoonright (\beta + 1, \cdot)$ is not Lindelöf, and assume that β is the minimum ordinal with this property. Then, for every $\gamma < \beta$, $Y_{i,h} \upharpoonright (\gamma + 1, \cdot)$ is Lindelöf, and for every $\gamma < \beta$, h is Michael at γ . From Proposition 6.6 follow that $Y_{j,h} \upharpoonright (\beta + 1, \cdot)$ is Lindelöf, a contradiction.

Theorem 6.8. Let Z be a Lindelöf space, θ a cardinal. If for each $\alpha \leq \theta$

- (i) h is Michael at α ;
- (ii) $h^{-1}([\alpha, \theta])$ is Lindelöf;,
- (iii) $j^{-1}([0,\alpha])$ is Lindelöf,
- (iv) $\pi: j^{-1}([0, \alpha]) \times Z \to Z$ is strongly σ -closed,

then $Y_{j,h}$ is Lindelöf.

Note that the problem to determinate when given an arbitrary topological space Y, the product $Y_{j,h} \times Y$ is Lindelöf becomes a problem to find condition on \hat{h} and j so that $Y_{j,\hat{h}}$ is a Lindelöf space where $\hat{h}: Z \times Y \to \theta + 1$.

Simply applying Proposition 6.2 and Corollary 6.8 to \hat{h} the following corollary give us conditions to determinate when $Y_{j,h} \times Y$ is Lindelöf.

Corollary 6.9. Let Z be a Lindelöf space, X, Y a topological spaces, θ a cardinal, $\hat{h}: Z \times Y \to \theta + 1$. If for each $\alpha \leq \theta$

- (i) \hat{h} is Michael at α ,
- (ii) $\hat{h}^{-1}([\alpha, \theta]) \times Y$ is Lindelöf,
- (iii) $j^{-1}([0,\alpha])$ is Lindelöf, (iv) $\pi: \hat{j}^{-1}([0,\alpha]) \times Z \times Y \to Z \times Y$ is strongly σ -closed,

then $Y_{i,h} \times Y$ is Lindelöf.

The next Theorem give us a necessary condition to find a Michael space:

Theorem 6.10. Let X be a topological space, θ a cardinal with uncountable cofinality and $h : \mathbb{C} \to \theta + 1$. If

- (i) $\mathbb{Q}_C = h^{-1}(\{\theta\}),$
- (ii) for each $\alpha \leq \theta$, h is Michael at α ,
- (iii) for each $\alpha < \theta$, $h(\mathbb{C}) \cap (\alpha, \theta) \neq \emptyset$,
- (iv) j has the property NL at θ ,
- (v) for each $\alpha \leq \theta$, $j^{-1}([0,\alpha])$ is Lindelöf, (vi) for each $\alpha \leq \theta$, $\pi : j^{-1}([0,\alpha]) \times Z \to Z$ is strongly σ -closed,

then $Y_{j,h}$ is a Michael space.

7. Special cases

One special case is obtained choosing $X = \theta + 1$ and the map j as the identity map on $\theta + 1$. The plank $Y_{j,h}$ becomes

$$Y_h = \{(\alpha, z) \in (\theta + 1) \times Z : h(z) \ge \alpha\}$$

subset of $(\theta + 1) \times Z$, and it is an Haydon Plank [(see [5]). For every $\alpha \in \theta$ denote $Y_h \upharpoonright \alpha = \{(\delta, z) \in Y_h : \delta < \alpha\}$.

In this case, the plank is characterized as Lindelöf, and it is also an example of Michael space.

Theorem 7.1. Let Z be a Lindelöf space, $h : Z \to \theta + 1$ a function, θ a cardinal with $cf\theta > \omega$. Then Y_h is Lindelöf if and only if for every $\alpha \leq \theta$

- (i) h is Michael at α ;
- (ii) $h^{-1}([\alpha, \theta])$ is Lindelöf.

Proof. Let Y_h be Lindelöf. Then, for every $\alpha \in \theta$, $Y_h \upharpoonright \alpha + 1$ is Lindelöf. By Proposition 6.2, h is Michael at α for every $\alpha \in \theta$. Moreover $Y_h \cap (\{\alpha\} \times Z) \cong h^{-1}([\alpha, \theta])$. Theorem 6.8 ends the proof.

Corollary 7.2. Let θ be a cardinal with $cf\theta > \omega$, $h : \mathbb{C} \to \theta + 1$ an arbitrary function. Then Y_h is Lindelöf if and only if for each $\alpha \leq \theta$, h is Michael at α .

Lemma 7.3. Let Y be a topological space, θ cardinal with $cf\theta > \omega$. If $Y_h \times Y$ is Lindelöf, then for every $\alpha \leq \theta$, \hat{h} is Michael at α , where $\hat{h} : Z \times Y \to \theta + 1$.

Moreover, if $h^{-1}([\alpha, \theta]) \times Y$ is Lindelöf for every $\alpha \leq \theta$, then the converse holds.

Proof. Follows from Corollary 6.8 (applied to \hat{h}), Proposition 6.2 and Remark 4.2.

Corollary 7.4. Let Y be a topological space, θ cardinal, $h: Z \to \theta + 1$ a function such that for every $\alpha \leq \theta$ $h^{-1}([\alpha, \theta]) \times Y$ is Lindelöf. Then the following statements are equivalent:

(i) h is $\mathcal{A}(Y)$ -Michael function, (ii) $V \to V$ is Lindeläf

(ii) $Y_h \times Y$ is Lindelöf.

Proof. Follows from Theorem 7.3 and Proposition 3.7.

Corollary 7.5. Let θ be a cardinal with uncountable cofinality, Z a Lindelöf space and $h: Z \to \theta+1$ a function such that for every $\alpha < \theta$ $h(Z) \cap (\alpha, \theta) \neq \emptyset$. Then $Y_h \times (Z \setminus h^{-1}(\{\theta\}))$ is not Lindelöf

Proof. Follows from Corollary 6.4.

Corollary 7.6. Let θ be a cardinal with uncountable cofinality, Z a Lindelöf space and $h: Z \to \theta + 1$ a function. If

- (i) for each $\alpha \leq \theta$, h is Michael at α ,
- (ii) for each $\alpha < \theta$, $h(Z) \cap (\alpha, \theta) \neq \emptyset$,
- (iii) for each $\alpha \leq \theta$, $h^{-1}([\alpha, \theta])$ is Lindelöf,

then $Y_h \subseteq (\theta + 1) \times Z$ is a Lindelöf space such that $Y_h \times (Z \setminus h^{-1}(\{\theta\}))$ is a non-Lindelöf space.

Proof. Follows from Corollary 6.8 and Corollary 7.5.

□ 1...(

Theorem 7.7. Let θ be a cardinal with uncountable cofinality and h a K-Michael function defined on \mathbb{C} such that

(i) $\mathbb{Q}_C = h^{-1}(\{\theta\}),$ (ii) $h(\mathbb{C}) \cap (\alpha, \theta) \neq \emptyset$ for every $\alpha < \theta$.

Then Y_h , subspace of $(\theta + 1) \times \mathbb{C}$, is a Michael space.

We give some other examples of planks which are Michael spaces.

Definition 7.8. A special plank is given by choosing $X = \prod_{n \in \omega} \theta + 1$ with θ of uncountable cofinality, and the map $j: X \to \theta + 1$ defined by $j(f) = \min\{\xi \in I\}$ $\theta + 1 : f \leq f_{\xi}$, where f_{α} is a constant function with value α for every $\alpha \leq \theta$. We denote this plank $Y_{j,h}^P$.

Theorem 7.9. Let θ be a cardinal with $cf\theta > \omega$ and h a K- Michael function defined on \mathbb{C} such that

- (i) $\mathbb{Q}_C = h^{-1}(\{\theta\}),$ (ii) for every $\alpha < \theta, \ h(\mathbb{C}) \cap (\alpha, \theta) \neq \varnothing.$

Then $Y_{j,h}^P$ is a Michael space.

Proof. By Corollary 4.8, follow that the map j has the property NL at α for every $\alpha \leq \theta$. Moreover, for every $\alpha \leq \theta$, $j^{-1}([0,\alpha]) = \{f \in \prod_{n \in \omega} \theta + 1 : \forall n \in \mathbb{N}\}$ $\omega f(n) \leq \alpha$ is a compact subset of $\prod_{n \in \omega} \theta + 1$. By Lemma 5.8, the projection $\pi: j^{-1}([0,\alpha]) \times Z \to Z$ is strongly σ -closed. Theorem 6.10 ends the proof. \Box

Another special plank is obtained for a particular choice of the map *j*.

Definition 7.10. Let $X = \prod_{n \in \omega} \theta_n + 1$ with every θ_n cardinal with uncountable cofinality, and $j: X \to \kappa + 1$ defined by $j(f) = \min\{\xi \in \kappa : f \leq_* f_\xi\}$ where κ is a cardinal with $cf\kappa > \omega$ and $\{f_{\xi}\}_{\xi \in \kappa}$ is a dominating family in $(\prod_{n\in\omega}\theta_n,\leq_*)$. We denote this plank $Y_{n,h}^{\prod}$

Remark 7.11. The definition of a dominating family and the definition of the map j in the plank $Y_{j,h}^{\prod}$, imply that $\kappa > \theta_n$ for every $n \in \omega$. Indeed considering the special case in which the family $\{f_{\xi}\}_{\xi \in \kappa}$ is a family of constant functions, we need to have the function which assumes constant value θ_n . Therefore $\kappa > \theta_n + 1$ for every $n \in \omega$.

Remark 7.12. Let (X, \leq) be a partial order, $\mathcal{F} \subseteq X$ with $\mathcal{F} = \{f_{\xi}\}_{\xi \in \kappa}$ a dominating family in X, (i.e. for all $x \in X$, there exists $f_{\xi} \in \mathcal{F}$ such that $x \leq f_{\xi}$). Define $j: X \to \mathcal{F}$ by $j(x) = \min\{f_{\xi} \in \mathcal{F} : x \leq f_{\xi}\}$. We have that j is surjective if and only if $f_{\alpha} \not\geq f_{\beta}$ for every $\alpha < \beta$.

Remark 7.13. Let $X = \prod_{n \in \omega} \theta_n + 1$ with every θ_n cardinal with uncountable cofinality, κ a cardinal with $cf\kappa > \omega$ and $\{f_{\xi}\}_{\xi \in \kappa}$ a dominating family in $(\prod_{n \in \omega} \theta_n, \leq_*)$. The map $j: X \to \kappa + 1$ defined by $j(f) = \min\{\xi \in \kappa : f \leq_* f_\xi\}$ might not be surjective. Since $\mathcal{F}' = \{f_{\xi} \in \mathcal{F} : f_{\xi} \in \mathfrak{I}(X)\}$ is still a dominating family of X, when $\mathfrak{I}(X)$ has order type κ , we can assume without loss of generality that j is surjective. Further, if the dominating family is a scale of X,

we can consider \mathcal{F}' , the dominating family of minimum cardinality which is a scale, i.e., $|\mathcal{F}'| = \mathbf{d}$. Such a family is a dominating family with order type \mathbf{d} and the map $j': X \to \mathcal{F}'$ defined by $j'(x) = \min\{f_{\xi} \in \mathcal{F}' : x \leq f_{\xi}\}$ is surjective.

An example of $Y_{j,h}^{\prod}$ -plank is given by cardinal of countable cofinality. Indeed, from the Theorem of Shelah [B.M. [1]], given θ with $cf\theta = \omega$, there exists an increasing sequence of regular cardinals $\{\theta_n\}_{n\in\omega}$ cofinal in θ , and a scale $\{f_{\xi}\}_{\xi\in\theta^+}$ on $(\prod_{n\in\omega}\theta_n,\leq_*)$. In this case choose $X=\prod_{n\in\omega}\theta_n+1$ and the map $j:X\to\theta^++1$ defined by $j(f)=\min\{\xi\in\theta^+:f\leq_*f_{\xi}\}.$

Then we have:

Theorem 7.14. Let θ be a cardinal with $cf\theta > \omega$ and h a K- Michael function defined on \mathbb{C} such that

- (i) $\mathbb{Q}_C = h^{-1}(\{\theta\}),$ (ii) for every $\alpha < \theta, \ h(\mathbb{C}) \cap (\alpha, \theta) \neq \varnothing.$

Then $Y_{i,h}^{\prod}$ is a Michael space.

Proof. For every $\alpha \in \kappa$, we have $j^{-1}([0, \alpha]) = \{f \in X : f \leq_* f_\alpha\} = \bigcup_{F \in [\omega]^{<\omega}} \{f \in X : f \leq_* f_\alpha\}$ $X: \forall n \notin F \ f(n) \leq f_{\alpha}(n)$. Therefore for every $\alpha \in \kappa$, the set $j^{-1}([0,\alpha]) \subset X$ is σ -compact, hence by Lemma 5.8, the projection map $\pi : j^{-1}([0, \alpha]) \times Z \to Z$ is strongly σ -closed. Moreover from Proposition 4.11, the map j has the property NL at κ . Theorem 6.10 ends the proof.

8. The cardinal L

If X is a non-Lindelöf space, L(X) denote the minimum cardinality of an uncountable open cover of X with no countable subcover, and if X is Lindelöf, define $L(X) = \infty$. Note that for a non-Lindelöf space, $L(X) \le w(X)$, where w(X) denote the weight of the topological space X, and L(X) is either a regular cardinal or has countable cofinality.

The following lemma give us some relations between the L cardinals of related spaces.

Lemma 8.1. Let X, Y be topological spaces. The following properties hold:

- (i) If X is Lindelöf and $X \times Y$ is not Lindelöf, then $L(X \times Y) \leq |Y|$.
- (ii) If $F \subseteq X$ is closed and not Lindelöf space, then $L(X) \leq L(F)$.
- (iii) If f is a continuous open map, such that f(X) is not Lindelöf space, then L(f(X)) = L(X).

Proof. (i) Let \mathcal{U} be an open cover of $X \times Y$ witnessing $L(X \times Y)$. For every $y \in Y$, let $\mathcal{U}(y) = \{U_n(y) : n \in \omega\} \subset \mathcal{U}$ be a countable open subcover of $X \times \{y\}$. Thus $\mathcal{V} = \{U_n(y) : n \in \omega \land y \in Y\} \subset \mathcal{U}$ is an open cover of $X \times Y$, such that $|\mathcal{V}| \leq |Y|$ with no countable subcover. Therefore $L(X \times Y) \leq |Y|$.

(ii) Let \mathcal{U} be an open cover of F with $|\mathcal{U}| = L(F)$ with no countable subcover. Then $\mathcal{U} \cup \{F^c\}$ is an open cover for X of the same kind.

(iii) Let \mathcal{U} be an open cover of f(X) with $|\mathcal{U}| = L(f(X))$ with no countable subcover. Then $f^{-1}(\mathcal{U})$ is an open cover for X. Thus $L(X) \leq L(f(X))$. If \mathcal{V} is an open cover of X with $|\mathcal{V}| = L(X)$ with no countable subcover. Then $f(\mathcal{V})$ is an open cover for f(X) of the same kind.

Lemma 8.2. Let X, Y be topological with X Lindelöf. For every $F \subseteq Y$ closed such that $L(X \times Y) > |F|, X \times F$ is Lindelöf.

Proof. If $X \times Y$ is Lindelöf, then $L(X \times Y) = \infty$, and $X \times F$ is Lindelöf. Now, assume that $X \times Y$ and $X \times F$ are not Lindelöf. Since $X \times F$ is closed in $X \times Y$, from Lemma 8.1 we have that $|F| < L(X \times Y) \le L(X \times F)$. Lemma 8.1 ends the proof.

Corollary 8.3. Let X, Y be topological spaces with X Lindelöf and $L(X \times Y) = |Y|$. Then for every closed $F \subseteq Y$ with |F| < |Y| follow that $X \times F$ is Lindelöf.

Lemma 8.4. Let X, Y be topological spaces with X Lindelöf and $L(X \times Y) = |Y|$, then Y is not union of less than |Y| many closed subsets of Y with cardinality less than |Y|.

Proof. Let $\mathcal{U} = \{U_{\xi}\}_{\xi < |Y|}$ be an open cover of $X \times Y$ witnessing $L(X \times Y)$. Let κ cardinal with $\kappa < |Y|$. Assume by contradiction that $Y = \bigcup_{\xi \in \kappa} Y_{\xi}$ where for every $\xi \in \kappa$ Y_{ξ} are closed in Y and $|Y_{\xi}| < |Y|$. Therefore from Corollary 8.3 follow that $X \times Y_{\xi}$ is Lindelöf for every $\xi \in \kappa$, and so there exists $\mathcal{U}_{\xi} \subset \mathcal{U}$ countable subcover of $X \times Y_{\xi}$. Set $\mathcal{V} = \{\mathcal{U}_{\xi} : \xi \in \kappa\} \subset \mathcal{U}$. Then $\mathcal{V} \subseteq \mathcal{U}$ is an open cover of $X \times Y$ of size κ . From $L(X \times Y) = |Y|$ follow that there exist a countable subcover $\mathcal{V}' \subset \mathcal{V}$ of $X \times Y$. Then \mathcal{V}' is also a countable subcover from \mathcal{U} which is a contradiction.

Let X, Y be topological spaces, θ a cardinal, and $P(X, Y, \theta)$ states that X is a Lindelöf space such that $X \times Y$ is not Lindelöf space and $L(X \times Y) = \theta$.

Theorem 8.5. Let X be a topological space and θ a cardinal. If Y satisfies $P(X, Y, \theta)$ and $|Y| < \kappa$, with κ infinite cardinal, then there exists Y' which satisfies $P(X, Y', \theta)$ and $|Y'| = \kappa$.

Proof. Let $Y' = Y \oplus \alpha D(\kappa)$, where $\alpha D(\kappa)$ is the one-point compactification of a discrete set of cardinality κ . Clearly $|Y'| = \kappa$. Since the space $X \times Y$ is a closed subset of $X \times Y'$, it follows that $X \times Y'$ is not Lindelöf. It remains to show that $L(X \times Y') = \theta$, assuming that $L(X \times Y) = \theta$. Since the space $X \times Y$ is a closed subset of $X \times Y'$, from Lemma 8.1 follow that $L(X \times Y) \leq L(X \times Y')$, and so $L(X \times Y') \geq \theta$. Now, let \mathcal{U} be an open cover for $X \times Y$ of size θ with no countable subcover. We have that $X \times Y'$ is homeomorphic to $(X \times Y) \oplus (X \times \alpha D(\kappa))$ hence it follows that \mathcal{U} is an open family in $X \times Y'$ such that $U \cap (X \times \alpha D(\kappa)) = \emptyset$ for every $U \in \mathcal{U}$. Let $\mathcal{V} = \mathcal{U} \cup \{X \times \alpha D(\kappa)\}$. Then \mathcal{V} is an open cover of Y' of size θ with no countable subcover. \Box

Remark 8.6. In other words we have that for a fixed topological space X and a cardinal θ , if there exists Y such that $P(X, Y, \theta)$, then the set $A_{X,\theta} = \{\kappa : \kappa \text{ is cardinal } \land \exists Y P(X, Y, \theta) \land |Y| = \kappa\}$ is non empty and $A_{X,\theta} = [\min A_{X,\theta}, +\infty)$.

We conclude this work showing that if there is a Michael space, then under some conditions involving singular cardinals, there must be one which is a Haydon plank.

Theorem 8.7. Let X be a Lindelöf space, Y a topological space such that $X \times Y$ is not Lindelöf, θ a cardinal with $cf\theta = \omega$ and $L(X \times Y) = |Y| = \theta$. Let cY be any compactification of Y. Then there exists a function $f : cY \to \theta + 1$ such that

- (i) $f^{-1}(\{\theta\}) = cY \setminus Y$,
- (ii) for every $\alpha \leq \theta$, f is Michael at α ,
- (iii) for every $\alpha < \theta$, $f(cY) \cap (\alpha, \theta) \neq \emptyset$.

Proof. Let $\theta = L(X \times Y)$, and \mathcal{U} be an open cover of $X \times Y$ witnessing $L(X \times Y)$. Fix an enumeration $\{y_{\xi}\}_{\xi < \theta}$ of Y of order type θ . Given $y \in Y$, let $\mathcal{U}(y) = \{U_n(y) : n \in \omega\} \subset \mathcal{U}$ a countable open subcover of $X \times \{y\}$. Thus $\mathcal{V} = \{U_n(y) : n \in \omega \land y \in Y\} \subset \mathcal{U}$ is an open cover of $X \times Y$, such that $|\mathcal{V}| = \theta$.

Let cY be a compactification of Y. Define the function $f : cY \to \theta + 1$ as follows: for every $y \in Y$, $f(y) = \sup\{\gamma \in \theta : X \times \{y\} \not\subseteq \bigcup_{\xi < \gamma} (\bigcup_{n \in \omega} \bigcup_n (y_\xi))\}$ and for every $y \in cY \setminus Y$ $f(y) = \theta$. Then, by definition of \mathcal{V} , there is not $y \in Y$ such that $X \times \{y\} \not\subseteq \bigcup_{\xi < \alpha} (\bigcup_{n \in \omega} \bigcup_n (y_\xi))$ for every $\alpha \leq \theta$. Thus $f^{-1}(\{\theta\}) = cY \setminus Y$.

Let $\alpha \in \theta$ with $cf\alpha > \omega$, and $F \subset cY$ closed such that $f(y) < \alpha$ for every $y \in F$. Assume by contradiction that $\sup_{y \in F} f(y) = \alpha$. By definition of α we have that $X \times F \subseteq \bigcup_{\xi < \alpha} (\bigcup_{n \in \omega} U_n(y_{\xi}))$. Then $\{U_n(y_{\xi}) : n \in \omega \land \xi < \alpha\}$ is an uncountable cover of $X \times F$ with F compact. We want to show that it has no countable subcover which contradict $X \times F$ to be Lindelöf. Indeed if $\{U_m(y_{\xi_n})\}_{n,m\in\omega}$ was a countable subcover of $X \times F$. Let $\nu = \sup_{n \in \omega} \xi_n$. Since $cf\alpha > \omega$, $\nu < \alpha$. By definition of ν there exists $y \in F$ such that $X \times \{y\} \nsubseteq \bigcup_{n \in \omega} U_m(y_{\xi_n})$ which is a contradiction.

Now, by contradiction, there exists $\alpha \in \theta$ such that $f(cY) \cap (\alpha, \theta) = \emptyset$, i.e., there exists $\alpha \in \theta$ such that for every $y \in Y$, $f(y) < \alpha$. Therefore for every $y \in Y$, $X \times \{y\} \subseteq \bigcup_{\xi < \alpha} (\bigcup_{n \in \omega} U_n(y_{\xi}))$. Thus $\{U_n(y_{\xi}) : n \in \omega \land \xi < \alpha\}$ is an open cover of $X \times Y$ with $\alpha < \theta$. By definition of $L(X \times Y) = \theta$, there exists a countable subcover for $X \times Y$ from $\{U_n(y_{\xi}) : n \in \omega \land \xi < \alpha\}$, and therefore from \mathcal{U} , which is a contradiction. \Box

Theorem 8.8. Let X be a Lindelöf space such that $X \times Y$ is not Lindelöf, θ a regular cardinal such that $L(X \times Y) = \theta$. Let cY be any compactification of Y. Then there exists a function $f: cY \to \theta + 1$ such that

- (i) $f^{-1}(\{\theta\}) = cY \setminus Y$,
- (ii) for every $\alpha \leq \theta$, f is Michael at α ,
- (iii) for every $\alpha < \theta$, $f(cY) \cap (\alpha, \theta) \neq \emptyset$.

Proof. Let $\theta = L(X \times Y)$. Fix an enumeration $\{U_{\xi}\}_{\xi < \theta}$ of an open cover of $X \times Y$ witnessing $L(X \times Y)$. Let cY be a compactification of Y. Define the function $f : cY \to \theta + 1$ as follows: for every $y \in Y$, $f(y) = \sup\{\gamma \in \theta : X \times \{y\} \notin \bigcup_{\xi < \gamma} \bigcup_{\xi}\}$ and for every $y \in cY \setminus Y$ $f(y) = \theta$. Since θ is regular and $\{U_{\xi}\}_{\xi < \theta}$ is an open cover of $X \times Y$, there is not $y \in Y$ such that for every $\alpha \le \theta \ X \times \{y\} \notin \bigcup_{\xi < \alpha} U_{\xi}$. Thus $f^{-1}(\{\theta\}) = cY \setminus Y$.

Let now $\alpha \in \theta$ with $\operatorname{cf} \alpha > \omega$, and $F \subset cY$ closed such that $f(y) < \alpha$ for every $y \in F$. Assume by contradiction that $\sup_{y \in F} f(y) = \alpha$. By definition of α we have that for every $\beta \ge \alpha$, $X \times \{y\} \subseteq \bigcup_{\xi < \beta} U_{\xi}$ for every $y \in F$, therefore $X \times F \subseteq \bigcup_{\xi < \alpha} U_{\xi}$. Then $\{U_{\xi}\}_{\xi < \theta}$ is an uncountable cover of $X \times F$ with Fcompact. We want to show that it has no countable subcover which contradict $X \times F$ to be Lindelöf. Indeed if $\{U_{\xi_n}\}_{n \in \omega}$ was a countable subcover of $X \times F$. Let $\nu = \sup_{n \in \omega} \xi_n$. Since $\operatorname{cf} \alpha > \omega$, $\nu < \alpha$. By definition of ν there exists $y \in F$ such that $X \times \{y\} \nsubseteq \bigcup_{n \in \omega} U_{\xi_n}$, contradiction.

Now, by contradiction, there exists $\alpha \in \theta$ such that $f(cY) \cap (\alpha, \theta) = \emptyset$, i.e., there exists $\alpha \in \theta$ such that for every $y \in Y$, $f(y) < \alpha$. Therefore for every $y \in Y$, $X \times \{y\} \subseteq \bigcup_{\xi < \alpha} U_{\xi}$. Thus $\{U_{\xi}\}_{\xi < \alpha}$ is an open cover of $X \times Y$ with $\alpha < \theta$. By definition of $L(X \times Y) = \theta$, there exists a countable subcover for $X \times Y$ from $\{U_{\xi}\}_{\xi < \alpha}$, and therefore from $\{U_{\xi}\}_{\xi < \theta}$, which is a contradiction. \Box

In the Theorem 8.8, θ is a regular cardinal, we do not need any assumption about the cardinality of Y (as in Theorem 8.7) because the open cover $\{U_{\xi}\}_{\xi < \theta}$ witnessing $L(X \times Y) = \theta$ is never cofinal. This guarantee that $f^{-1}(\{\theta\}) = cY \setminus Y$.

From Theorem 7.7 it follows:

Theorem 8.9. Let M be a Michael space, θ a regula cardinal such that $L(M \times \mathbb{P}) = \theta$. Then there exists a function f and $Y_f \subseteq (\theta + 1) \times \mathbb{C}$ which is a Michael space.

The aim of Proposition 8.7 and Proposition 8.8 is to produce the following statement: given a Lindelöf space X such that $L(X \times Y) = \theta$, there exists f and $Y_f \subseteq (\theta + 1) \times cY$ such that Y_f is Lindelöf and $Y_f \times Y$ is not Lindelöf, where cY is any compactification of Y.

We require the property that for all $\alpha \leq \theta$, $f^{-1}([\alpha, \theta])$ is Lindelöf. Clearly this is always true when Y admits an hereditarily Lindelöf compactification. When does the property hold?

Is there a function $f: cY \to \theta + 1$ such that satisfy the property of Proposition 8.7 when X is a Lindelöf space, Y a topological space such that $X \times Y$ is not Lindelöf, θ a cardinal of countable cofinality such that $L(X \times Y) = \theta$, and $|Y| > \theta$?

References

- M. Burke and M. Magidor, Shelah's pcf theory and its applications, Ann. Pure Appl. Logic 50, (1990) 207–254.
- [2] E. K. van Douwen, *The integers and topology*, in K. Kunen and J. Vaughan, editors, Handbook of Set-Theoretic Topology, 111–169, North-Holland, Amsterdam, (1984).
- [3] C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford 2 (1990), no. 6, 101–120.
- [4] R. Engelking, General Topology, Heldermann Verlag, Berlin 1989.
- [5] R. Haydon, On compactness in spaces of measure and measure compact spaces, Proc. London Math. Soc. 29 (1974), no. 6, 1–16.
- [6] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam 1980.
- [7] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376.
- [8] J. Tatch Moore, Some of the combinatorics related to Michael's problem, Proc. Amer. Math. Soc. 127, (1999), no. 8, 2459–2467.
- S. Watson, The Construction of Topological Spaces: Planks and Resolutions, in M. Hušek and J. van Mill (eds.), Recent Progress in General Topology, 673–757, North-Holland 1992.

Received January 2009

Accepted June 2009

A. CASERTA (agata.caserta@unina2.it)

Dipartmento di Matematica, Seconda Universitá degli Studi di Napoli, Caserta 81100, Italia

S. WATSON (watson@hilbert.math.yorku.ca)

Department of Mathematics and Statistics, York University, Toronto M3J1P3, Canada