
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Machine Learning based Models
for Matrix Factorization

DEGREE FINAL WORK

Degree in Computer Engineering

Author: Salvador Carrión Ponz

Tutor: Jon Ander Gómez Adrián

Course 2016-2017

Resum
El filtratge col·laboratiu (FC) és el procés de filtrat d’informació o patrons utilitzant tècniques

que impliquen la col·laboració entre múltiples agents o fonts de dades[1].

Aquest treball mostra la senzillesa i eficiència dels mètodes d’aprenentatge automàtic per a
resolver problemes de gran escala en temps lineal, així com els desafiaments de les optimitzacions
no-convexes en l’espai de problemes no-lineales.

En primer lloc, descric el camp del FC, els seus desafiaments i l’estat de l’art actual, centrant
el treball en els models basats en l’aprenentatge automàtic per a la factorització de matrius. Des-
prés, explique els problemes i desafiaments de les optimitzacions no-convexes, a més de introduir
diverses tècniques d’optimització i els seus avantatges sobre els mètodes d’optimització estocás-
tica clàssica. Més endavant, presente breument l’arquitectura d’una implementació eficient per a
Orange3, a fi d’incloure suport per al FC. Posteriorment, mostre diverses formes de visualitzar i
explotar els factors latents resultants produïts pels models, així com un add-on per a visualitzar el
comportament de diferents optimitzadors estocàstics.

Finalment, presente un model que té en compte les dinàmiques temporals, la informació addi-
cional i de confiança, tant explícita com implícita.

Paraules clau: aprenentatge automàtic, mineria de dades, factorització de matrius, optimització,
filtrat col·laboratiu, visualització, orange3

Resumen
El filtrado colaborativo (FC) es el proceso de filtrado de información o patrones utilizando

técnicas que implican la colaboración entre múltiples agentes o fuentes de datos[1].

Este trabajo muestra la sencillez y eficiencia de los métodos de aprendizaje máquina para
resolver problemas de gran escala en tiempo lineal, así como los desafíos de las optimizaciones
no convexas en el espacio de problemas no lineales.

En primer lugar, describo el campo del FC, sus desafíos y el estado del arte actual, centrando
el trabajo en los modelos basados en el aprendizaje automático para la factorización de matrices.
Después, explico los problemas y desafíos de las optimizaciones no convexas, además de introdu-
cir varias técnicas de optimización y sus ventajas sobre los métodos de optimización estocástica
clásica. Más adelante, presento brevemente la arquitectura de una implementación eficiente para
Orange3 a fin de incluir soporte para el FC. Posteriormente, muestro varias formas de visualizar
y explotar los factores latentes resultantes producidos por los modelos, así como un add-on para
visualizar el comportamiento de diferentes optimizadores estocásticos.

Finalmente, presento un modelo que tiene en cuenta las dinámicas temporales, la información
adicional y de confianza, tanto explícita como implícita.

Palabras clave: aprendizaje automático, mineria de datos, factorización de matrices, optimiza-
ción, filtrado colaborativo, visualización, orange3

Abstract
Collaborative filtering (CF) is the process of filtering for information or patterns using tech-

niques involving collaboration among multiple agents or data sources[1].

This dissertation presents the simplicity and efficiency of machine learning approaches to solve
CF large-scale problems in a linear time, along with the challenges of non-convex optimizations
in the space of non-linear problems.

iii

iv

First, I describe the field of CF, its challenges, and the current state-of-the-art, focusing the
work on ML1 based models for matrix factorization. After explaining the problems and challenges
of non-convex optimizations, along with several optimization techniques and their performance
advantage over the classical stochastic optimization. Later, I briefly outline the architecture of
an efficient implementation for Orange3 to include support for CF. Subsequently, I show several
ways to visualize and exploit the resulting latent factors produced by the models, as well as an
add-on for visualizing the behavior of different stochastic optimizers.

Finally, I present a model that takes into account temporal dynamics for side and trust infor-
mation, both explicit and implicit.

Key words: machine learning, data mining, matrix factorization, optimization, collaborative fil-
tering, visualization, orange3

1ML: Machine Learning

Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Work Structure . 2

2 State of the art 3
2.1 Overview . 3
2.2 Matrix Factorization Approaches . 3

3 Collaborative Filtering 5
3.1 Types of CF . 5

3.1.1 Memory-based . 5
3.1.1.1 Average-based . 5
3.1.1.2 User-based . 6
3.1.1.3 Item-based . 7

3.1.2 Model-based . 7
3.1.2.1 Clustering . 7
3.1.2.2 Association Rules . 8
3.1.2.3 Matrix Factorization . 8
3.1.2.4 Restricted Boltzmann Machine (RBMs) 9
3.1.2.5 Recurrent Neural Networks 10

3.2 Challenges of CF . 10
3.2.1 Cold Start . 10
3.2.2 Data sparsity . 11
3.2.3 Scalability . 11
3.2.4 Popularity Bias . 12
3.2.5 Diversity . 12

3.3 Models for Matrix Factorization . 12
3.3.1 Rating . 12

3.3.1.1 BRISMF . 12
3.3.1.2 SVD++ . 15
3.3.1.3 TimeSVD . 16
3.3.1.4 TrustSVD . 16

3.3.2 Ranking . 18
3.3.2.1 BPR . 18
3.3.2.2 CLiMF . 19

3.4 Evaluation and testing . 20
3.4.1 Rating . 22
3.4.2 Ranking . 24

3.5 Optimization . 24
3.5.1 Gradient descent . 24

v

vi CONTENTS

3.5.2 Optimizers for gradient descent . 26
3.5.2.1 Stochastic Gradient Descent (SGD) 26
3.5.2.2 Momentum . 27
3.5.2.3 Nesterov’s Accelerated Gradient (NAG) 28
3.5.2.4 AdaGrad . 29
3.5.2.5 RMSProp . 30
3.5.2.6 AdaDelta . 30
3.5.2.7 Adam . 31
3.5.2.8 Adamax . 31

3.5.3 Non-convexity of MF problems . 32

4 Software developed 35
4.1 Orange3 . 35
4.2 Orange3-Recommendation . 37

4.2.1 Architecture . 37
4.2.2 Technologies . 39
4.2.3 Workflow . 40
4.2.4 Documentation . 40
4.2.5 Blog . 41
4.2.6 Tutorials . 41
4.2.7 Data Representation . 42

4.2.7.1 Results from the TrustSVD experiment 44
4.2.7.2 Issue with the Prediction widget 45

4.2.8 Scripting . 46
4.2.9 Widgets . 48
4.2.10 Getting started . 48

4.2.10.1 Training a model . 48
4.2.10.2 Cross-Validation . 50
4.2.10.3 Making recommendations . 50
4.2.10.4 Analyzing low-rank matrices 51

4.3 Orange3-Educational . 53
4.3.1 Extension . 53

5 Experiments and Results 55
5.1 Datasets . 55
5.2 Performance Comparison . 55

5.2.0.1 Rating . 55
5.2.0.1.1 FilmTrust . 55
5.2.0.1.2 MovieLens100K . 56
5.2.0.1.3 MovieLens1M . 56
5.2.0.1.4 MovieLens10M . 57

5.2.0.2 Ranking . 57
5.2.0.2.1 Epinions . 57

5.3 Visualization techniques . 58
5.3.1 SGD optimizers . 58
5.3.2 Latent factors . 59

6 Conclusions and future work 63
Bibliography 65

List of Figures

3.1 Categorization of comedy domains [29] . 8
3.2 Matrix factorization . 8
3.3 Architecture of a RBM . 9
3.4 Architecture of a RNN for CF . 10
3.5 Cross-validation process [33] . 21
3.6 Evaluation metrics (RMSE) [7] . 23
3.7 Evaluation metrics (top-k rec.) [7] . 23
3.8 Local and global maxima and minima [34] . 25
3.9 A saddle point on the graph of z = x2y2 (in red) [35] 26
3.10 Fluctuation during a SGD optimization . 27
3.11 Momentum update Source: CS231n Convolutional Neural Networks for Visual

Recognition . 28
3.12 Momentum update Vs. Nesterov update Source: CS231n Convolutional Neural

Networks for Visual Recognition . 29

4.1 Orange3 Data Mining . 35
4.2 Terminal execution . 36
4.3 Python implementation . 36
4.4 Model-View-Controller (MVC) . 37
4.5 The class structure of Orange3-Recommendation 38
4.6 Orange3-Recommendation tutorial . 41
4.7 Prediction times . 46
4.8 Widgets in the Recommendation category . 48
4.9 Feeding a model with ratings . 48
4.10 Side/Trust information . 49
4.11 TrustSVD settings . 49
4.12 Cross-Validation flow . 50
4.13 TrustSVD settings . 50
4.14 TrustSVD settings . 51
4.15 Low-rank matrices . 51
4.16 Visualizing items . 52
4.17 Recommendation workflow . 52
4.18 Orange3-Educational . 53
4.19 Gradient Descent Widget . 54
4.20 Marching squares algorithm[36] . 54

5.1 Gradient Descent; α = 1.0 . 58
5.2 Vanilla SGD; α = 1.0 . 58
5.3 Nesterov Momentum; α = 1.0 . 58
5.4 RSMProp; α = 1.0 . 58
5.5 AdaGrad; α = 5.0 . 59
5.6 Adamax; α = 5.0 . 59
5.7 Different loss map . 59
5.8 Small divergence . 59

vii

5.9 Scatter plot (Movies) . 60
5.10 Linear projection (Fantasy) . 60
5.11 Linear projection (Sci-fi) . 60
5.12 Informative projections . 61
5.13 Ranked clusters (Crime) . 61
5.14 Ranked clusters (Romance) . 61
5.15 Scatter map . 62

List of Tables

3.1 Toy dataset . 21

4.1 Comparison of dense and sparse data representation. 42

5.1 Datasets overview . 55
5.2 Filmtrust benchmark results . 56
5.3 MovieLens100K benchmark results . 56
5.4 MovieLens1M benchmark results . 57
5.5 MovieLens10M benchmark results . 57
5.6 Epinions benchmark results . 57

viii

CHAPTER 1

Introduction

Over the past decade, the volume of data generated by users and companies has grown exponen-
tially and it’s likely to continue growing at an exponential rate.

Due to the new economies, companies such as retailers and content providers have been forced
to increase the amount of products and services available. The reason behind this is to stay com-
petitive and meet the variety of special needs and tastes of a worldwide market. This has had
important consequences for consumers, both positives and negatives. Among the negatives, one
of the most notable is that consumers are inundated with choices. Therefore, although a product
or service might exist, sometimes can it be really hard to find it. Consequently, companies have
tried to predict, segment and personalize the available offer by exploiting massive datasets. Thus,
matching consumers with the most appropriate products is a key factor to enhance the user loyalty
and satisfaction, namely, the numbers of sales. Because of the importance of good recommen-
dations, companies have invested great efforts in research for better and scalable collaborative
filtering algorithms. But it wasn’t until 2006 when Netflix opened a competition for the best col-
laborative filtering algorithm, when scientists began to see for the very first time an important
progress in the field.1

The Netflix Prized competition demonstrated that matrix factorization models are superior to
classical techniques, at least for contests. This, along with the recent advances in machine learning
has led to a new and interesting path for research with a very high economic potential.

1.1 Motivation

This work is focused on the study of machine learning models for matrix factorization. I chose this
topic due to its relevance in the field of collaborative filtering. Although other approaches for get-
ting good recommendations exist, ML2 approaches have demonstrated higher accuracy and more
flexibility than traditional ones. Furthermore, these models usually have to deal with enormously
large volumes of data so we have to come up with smart ideas to solve all those extra challenges
if we want to end with a decent model.

1.2 Goals

The goals for this project are the following:

1Prizes were based on improvements over Netflix’s own algorithm (Cinematch), or the previous year’s score if a
team has made improvement beyond a certain threshold. Furthermore, Netflix offered a grand prize of $1,000,000 to
the team who improves the score of their algorithms by at least 10%[31].

2ML: Machine Learning

1

2 Introduction

1. Research the field of collaborative filtering (CF)

2. Understand how ML can be applied to CF

3. Implement ML models able to deal with large volumes of data (TBs3)

4. Research optimization techniques for non-convex problems

5. Develop methods and techniques to visualize and exploit the outcome of the models

1.3 Work Structure

First, I introduce the state-of-the-art of collaborative filtering. Then, I describe the most relevant
techniques in the field, along with their problems and limitations. After that, factorization models
are studied in detail as well as optimization techniques for non-convex problems and their effects
on the presented models. Later, I analyze an add-on for Orange3 Data mining which I have devel-
oped in order to simplify the recommendation pipeline so you can train, test, score and visualize
matrix factorization models and its outputs using a unified and efficient interface. In addition, I
have also extended an educational add-on so students and researchers can easily understand the
behavior of different optimizers under different problems and settings. Finally, I cover a series of
methods to visualize and analyze the latent factors obtained by the models.

3TB: Terabytes

CHAPTER 2

State of the art

In 2006, Netflix opened a competition for the best collaborative filtering algorithm to predict user
ratings for films based on previous ratings[31]. They published a dataset with 100M ratings and
set a prize of $1,000,000 to the team who improve their own algorithm by at least a 10%. From
this point, thousands of contestants fight for the prize accelerating the research in the field of
collaborative filtering. In September of 2009, the BellKor’s Pragmatic Chaos won the contest
with a revolutionary idea inspired by Simon Funk which consisted in using ML to factorize a
given sparse matrix.

This was the breakthrough the industry needed to keep developing this field.

2.1 Overview

In the topic of collaborative filtering we can find many approaches, usually divided into memory-
based, model-based and hybrid.

Currently, the research of memory-based approaches for CF is pretty small so it is vastly
inferior to the model-based ones. Typically, these memory-based models are based on averages,
similarities and correlations. Consequently, they perform very poorly and too slow. However, they
are pretty useful as baselines for other models.

With regard to model-based approaches, matrix factorization and statistical linear models are
generally the by default choice for most of the CF problems. Nevertheless, there are other com-
pletely different approaches based on clustering, association rules, Restricted Boltzmann Machine
and Recurrent Neural Networks, that are either less flexible or perform worse on this kind of CF
problems.

2.2 Matrix Factorization Approaches

Nowadays, matrix factorization models deliver the highest accuracies but they come in all shapes
and sizes.

For instance, we can find two options: rating and ranking. The former is based on the contin-
uous error between the target and the hypothesized rating, and the latter is focused on predicting
the ranking at which an item is supposed to be found.

In the case of rating with MF, we have Funk’s SVD (a.k.a (BR)ISMF) which is a sort of iterative
version to compute the Single Value Decomposition of a matrix. Further modifications have been
made to model using side information (or implicit feedback) as SVD++, which was developed
by Yehuda Koren in 2008. Yehuda also developed a similar version named Asymmetric SVD++,
which has some interesting properties like: fewer parameters, handling of new users, explainability

3

4 State of the art

and efficient integration of implicit feedback, etc. But its accuracy is slightly lower than SVD++.
On the other hand, there are other models based on neighborhood methods and even integrated
models which combine both strategies and deliver better results.

In 2009, Yehuda Koren and his team won the Netflix using a similar version of TimeSVD.
This algorithm takes advantage of the temporal dynamics of the ratings, resulting in a significant
improvement in terms of accuracy.

Past the Netflix Prize, new approaches have shown up based on the modeling of social infor-
mation like: SocialMF (2010), SoRec (2011), TrustSVD (2015).

In contrast, ranking modeling has gained popularity in the last years. For instance, BPR (2009)
is a ranking model that ranks using a Bayesian analysis of the problem and side information. Then,
CLiMF (2012) is a model for scenarios with binary relevance data, based on directly maximizing
the Mean Reciprocal Rank (MRR). Finally, we can find new models that use social information
such as SBPR (2014)

CHAPTER 3

Collaborative Filtering

Collaborative filtering (CF) is the process of filtering for information or patterns using techniques
involving collaboration among multiple agents or data sources[1].

3.1 Types of CF

3.1.1. Memory-based

This approach uses the entire dataset for making recommendations.

3.1.1.1. Average-based

This is the most basic type CF possible so it only works with averages.

In its basic form, the model takes the mean value of all ratings in the dataset to make predic-
tions. Although it’s obvious that this model is useless for making recommendations, it can be used
as a baseline to test others.

r̂ui = µ (3.1)

where:

rui = User u’s rating of item i
µ = Overall average rating

In order to improve this model, we can also take into account the user or item deviation. For
instance, if the mean of ratings is 3.5, and the mean of the item Titanic is 4.0, the deviation of this
item is +0.5.

r̂ui = µ +bi (3.2)

where:

rui = User u’s rating of item i
µ = Overall average rating
bi = Deviation of item i

5

6 Collaborative Filtering

Using the principles described above, now we can design a model that takes into account both
the global average (as a reference) and the standard deviation of users and items to predict more
accurately the target rating. This model is named User-Item Baseline.

r̂ui = µ +bu +bi (3.3)

where:

rui = User u’s rating of item i
µ = Overall average rating
bu = Deviation of user u
bi = Deviation of item i

3.1.1.2. User-based

Suppose each user has expressed an opinion about certain elements, therefore, if we find the
similarity between the different users we can create a network of similarity on which to build our
predictions.

Algorithm 3.1 Pseudocode for User-based CF

Identify items rated by user u

Identify users that have at least one item rated in common with user u (neighborhood formation)

Compute similarity of neighbors with regard user u

Select k most similar neighbors

Predict missing ratings in user u using the similarity of neighbors and their known ratings.

return R matrix

To compute the similarity between users we can use whatever function we please, but it is
recommended to use the Pearson Correlation due to its well-known good results.

sim(u,v) =
∑i∈Iu,v

(yu,i− ŷu)(yv,i− ŷv)√
∑i∈Iu,v

(yu,i− ŷu)
2

∑i∈Iu,v
(yv,i− ŷv)

2
(3.4)

where:

Iu,v = Item rated by user u and i
yu,i = Rating by user u for item i

Then, we can predict ratings with:

y∗(u, i) = ŷu +
∑ j∈y∗ j 6=0 sim(v j,u)(yv j,i− ŷv j)

∑ j∈y∗ j 6=0

∣∣sim(v j,u)
∣∣ (3.5)

In this model, the main bottleneck is the similarity computation which is very time-consuming.
Due to this, we have a two-step process for making recommendations:

1. Offline: Precompute and store the similarity

2. Online: Prediction process

3.1 Types of CF 7

3.1.1.3. Item-based

This model is practically the same as the User-based but taking the items as the reference axis.

3.1.2. Model-based

These models are developed using ML algorithms for data mining to find patterns based on training
data. Later, these patterns are used to make predictions[5].

3.1.2.1. Clustering

In simple words, it tries to group elements in such a way that all the elements inside a group are
more similar between them than the elements in another group.

Once the clusters are defined, we make the recommendations at the cluster level. In addition,
this is a pretty interesting technique when the number of users or items is so big that we cannot
deal with them. Therefore, we can use clustering techniques to reduce the recommendation space.

However, one of its main drawbacks is that it leads to worse recommendations so we are
making predictions for a set of elements instead of an individual in particular.

For example, let’s suppose that we want to recommend funny things to a specific user. What
do we consider as funny? Maybe we can list all the items in a database that contain the word
funny either in its description or title, but if we do so, we are going to find that this will result
in: comedians, actors, TV presenters, shows, TV series, movies, etc. One way to approach this
problem is to use the above groups as clusters and then make k recommendations for each cluster.
But by doing so, we lose most of the intra-cluster relations and we won’t be able to find simple
relations such as an actor that appears both in movie A and show B that we may like.

To solve this problem, we can use clustering algorithms to discover hidden relations between
the items in the dataset and then make the recommendations upon these clusters.

8 Collaborative Filtering

Figure 3.1: Categorization of comedy domains [29]

3.1.2.2. Association Rules

With this technique, we try to discover relations between variables in a dataset.

To illustrate this, let’s suppose we are a supermarket trying to find a better distribution of the
products in the shelves. If we know association rules, we can analyze the tickets of our customers
and find relations such as {onions,potatoes} ⇒ {burger}. Then, we can place related items close
to each other in order to ease the purchase and increase our sales.

3.1.2.3. Matrix Factorization

The basic idea behind matrix factorization is to find two matrices P and Q that multiplied together
return a matrix R, which is the original matrix containing all the ratings.

P
Q

×

R

Figure 3.2: Matrix factorization

3.1 Types of CF 9

As most users have only rated a very small set of items, the sparsity of Ru×i is very high. Due
to this sparsity, the best approach we have is to fill Pu×k and Qi×k with random numbers, and then
minimize the error between the known ratings in Ru×i and R̂u×i = PQ.

The pseudocode for this kind of factorization models usually is something like this:

Algorithm 3.2 Pseudocode for MF algorithms

Initialize P* and Q* with small numbers

loop until final condition is met

for every rating rui do

Compute prediction r̂ui = qT
i pu

Compute error eui

Update rows pu and qi

end for

end loop

return P* and Q*

Furthermore, we can model more complex behaviors by increasing the number of latent factors
k and adding more matrix-features (Y , W ,...) for modeling aspects such as implicit information,
social information, temporal dynamics,...

3.1.2.4. Restricted Boltzmann Machine (RBMs)

RBMs1 are stochastic neural networks consisting of an input and a hidden layer where each visible
unit is connected to all the hidden units in an undirected way.

'd' 'e'
...

Figure 3.3: Architecture of a RBM

They can be seen as a generative model able to find out how two set of variables (visible and
hidden) are connected to each other by learning the joint probability distribution of hidden and
input variables.

1RBMs: Restricted Boltzmann Machines

10 Collaborative Filtering

Similarly, we can see hidden units as the number of latent factors and visible units as the users’
preferences.

3.1.2.5. Recurrent Neural Networks

Although RNNs2 are also a kind of neural network as RBMs, the way they work is completely
different. The connections of a RNN form a directed cycle creating a sort of internal state that can
be used for modeling temporal dynamics, making RNNs especially good at modeling arbitrary
sequences of inputs.

In order to exploit its benefits, we can try to predict what could be the next interesting item
that a user may like, given all the previous ones he (or others) liked.

Figure 3.4: Architecture of a RNN for CF

As the detailed explanation of how RNNs work and are trained is out of the scope of this work,
I will briefly summarize the process of recommendation. Let’s imagine that we already have our
network trained, now we can compute the probability distribution P(yi|hi) of the item yi at the
hidden state hi and then we can simply recommend the item with the highest probability. A good
idea is to use the Softmax distribution to output the conditional probability of each item at that
given moment hi.

3.2 Challenges of CF

3.2.1. Cold Start

Cold Start is the first and most important problem that we encounter in collaborative filtering and
it is found when a system cannot infer any useful information from its users or items because it
does not yet have enough information.

Although it is an intrinsic problem of information filtering approaches, it’s commonly found
in recommender systems.

Either if we are working with content-based or collaborative filtering approaches, a typical
system has to find at least one common feature upon which construct its recommendations. If these
common features don’t exist, the system won’t be able to provide any relevant recommendation.

2RNNs: Recurrent Neural Networks

3.2 Challenges of CF 11

For content-based approaches, item features are matched against user features so the model can
be constructed. This feature can be obtained either explicitly (by querying the user at any given
time) or implicitly (by monitoring the user’s behavior). Among the drawbacks of this approach
is the choice of either wasting the user’s time in doing test or having the system in a dumb state
(recommending top-popular or trending items) for a while until the user has provided us with
enough activity to start making smart recommendations based on that.

For collaborative filtering approaches, a system has to identify rating patterns amongst users
and then make recommendations based on the similarity with those users. This approach tries
to profile a user by finding the tastes of like-minded ones. But similar to the content-based ap-
proaches, what do we do when no one has rated an item previously? If no further information is
provided, this item will be always excluded from being recommended.

In order to solve these problems, we have lots of proposed solutions depending on the specific
type of problem that we have. For instance, in content-based approaches is more common to use
active learning3 so the performance of the recommender system increases. On the other hand,
in collaborative filtering approaches is more common to add new sets of data or more complex
modeling, although they can still use active learning techniques. In practice, the cold start problem
is often tackled by adopting hybrid approaches, this means combining the best of content-based
matching and collaborative filtering.

New items can be seeded with ratings of similar items. To determine the similarity of the
items, content-based information may be used and obtained through its tags or descriptions as
romance, action, year,... Meanwhile, user information can be obtained querying the user with:
profiling queries or personality test4 or analyzing their implicit information such as social groups,
browsing history, region, age,... Moreover, side information from other services can be included
as a seed.

3.2.2. Data sparsity

Collaborative filtering is mostly used in recommender systems. As the number of users and items
increase, the user-item matrix grows by its product O(R) = nusers× nitems resulting in extremely
large matrices with just a few thousand users and items.

Typically, a user is not able to rate all the items in the dataset when this is large enough.
Consequently, these matrices tend to be really sparse, with levels of sparsity ranging around 95-
99%. As a result of this sparsity, two things happen: [1], the cold start problem gains presence and
[2], we can have a relatively small spatial cost. With regard the former, I have already described
a couple solutions for it in the above section, and for the latter, we can simply use special data
structures to take advantage of this property (e.g. sparse-matrices).

3.2.3. Scalability

As commented above, CF algorithms usually suffer serious scalability problems (if not designed
properly) due to their n-dimensional structures.

For example, for a matrix of integers5, with a size of 1M users and 50,000 items may need
400GB of memory storage if not handled properly. Now, let’s add just a single new dimension for
modeling 1,000 possible context. This cube will now need 4 petabytes of memory, or what is the
same, a 4,000,000GB.

3Active learning is a technique of semi-supervised learning, in which an algorithm interactively queries a user to
obtain more data[2].

4A Five Factor Model can identify the personality characteristics for creating an initial profile.
5Normally (C/C++, gcc), an integer of x64 architecture is 8 bytes.

12 Collaborative Filtering

No matter how powerful computers are or they can be, these problems can not be solved like
this. In order to do so, we have to come up with smart solutions such as tensor factorization and
sparse matrices[3].

3.2.4. Popularity Bias

In most cases, biases are the core of the ratings, and latent factors only add (or subtract) small
values to those biases in order to predict a specific rating. This doesn’t mean that model-based
approaches are useless (actually is the opposite), the implication of this is the huge impact that it
has on the rating equation. As a result, the outcome of a recommender system for a specific item
can be altered relatively easily by a small amount of strongly biased ratings, items with too many
ratings, advertising campaigns, attacks,...

In order to make more robust a CF system, it’s advisable to clean and review the input data
giving a special treatment to cases such as:

1. Too popular items: Popular items tend to be recommended to users regardless whether they
are related to them or not.

2. Very few ratings: An item with a mean rating of 5/5 that has only been rated once, cannot
have the same relevance that item with 100,000 ratings and a score of 4/5.

3. Gray sheeps: Users whose opinions are not consistent with any group and thus do not
benefit from the CF.

4. Shilling attacks: A user or system that consistently gives lots of positive ratings that benefit
their items and negatives ones for the competitors.

5. Advertising campaigns: Massive advertising campaigns may have a high influence on
certain items that do not apply in a long-term view.

Moreover, if possible, it is valuable to attach confidence scores with the estimated preferences
so that the factorization is more robust[15].

3.2.5. Diversity

Sometimes it is not enough for a recommender system to be just accurate. It has to favor diver-
sity so that new products can be discovered. Paradoxically, most CF algorithms do exactly the
opposite due to the fact that they are based on past items and normally cannot discover new ones,
contributing to create a rich-get-richer effect. As a result, diversity generally needs to be forced.
Fortunately, nowadays there are many studies that have proposed several solutions to this problem
along with many others such as the well-known long-tail recommendation[4].

3.3 Models for Matrix Factorization

3.3.1. Rating

3.3.1.1. BRISMF

Biased Regularized Incremental Simultaneous Matrix Factorization (often shortened in BRISMF)
is a factorization-based algorithm for large scale recommendation systems.

3.3 Models for Matrix Factorization 13

BRISMF has many names and variations such as: BiasedMF, RISMF, SVD, Funk’s SVD,...
But from a historical point of view, it was created based on the idea of Simon Funk for decom-
posing a very sparse matrix into two low-rank matrices that represent user factors and item factors
of SVD[6]. This factorization can be done by using an iterative approach to minimize the loss
function.

The intuition behind this idea is that for a given user u there is a vector pu which measures the
interest of the user u in the available items. Similarly, for an item i there is a vector qi that measures
the relevance of those items amongst the users. As a result of this interaction, the resulting dot
product q>i · pu captures the interaction between user u and the item i[15]. The main advantage of
this method is that by capturing the overall interest of user u in the item i, we can approximate the
user u’s rating over that item i.

So that future (and more complex) models are easily understood, let’s present Funk’s SVD
approach, the most basic version for factorizing matrices in an iterative way.

As explained above, we want to predict ratings as follows:

r̂ui = qT
i pu (3.6)

where:

r̂ui = Predicted rating of user u on item i
pu = User u factor vector
qi = Item i factor vector

But now, the main challenge is to compute the mapping between users and items to the latent
factors qi, pu ∈R f . One way to learn the factor vectors pu and qi is to minimize the error between
the hypothesised rating and the target ratings, we can do this by minimizing an objective function:

min
p∗,q∗ ∑

(u,i∈k)
(rui−qT

i pu) (3.7)

Although this objective function may work, in practice is too simple and can lead to pretty
serious problems. As this function tries to minimize the error between the real rating and the
target rating, a negative error (no matter how large) would cause the model to think that it is
improving. However, the opposite would be happening. In addition, it is a good idea to emphasize
large errors to apply a more aggressive solution. Consequently, we can solve these problems by
squaring the difference and if needed, we can square root its error value to return to the original
units.

Besides squaring the error, we have to take care of the overfitting which in simple words is
when the complexity of a model allows to memorize the training set instead of learning a solution
from it. To overcome this problem we can apply regularization techniques, and for this kind of
models, the L2 regularization turns to be the best due to its differentiable properties and how it
shrinks the coefficients without eliminating them as oppose to L1.

Therefore, we can now transform our previous (silly) model to a functional one: (The constant
λ controls the extent of regularization)

min
p∗,q∗ ∑

(u,i∈k)
(rui−qT

i pu)
2
+λ (‖pu‖2 +‖qi‖2) (3.8)

Despite the fact that this model can deliver good results, we want to make even better. One
problem that it has right now is that the latent factors P and Q are responsible for the whole rating

14 Collaborative Filtering

r̂ui and because of that, some ratings can be completely out of range. To solve this, we can initialize
a rating rui as: (it’s the same process as the User-Item baseline model described before 3.1.1.1)

r_tempui = µ +σu +σi (3.9)

where:

r_tempui = Temporal user u’s rating of item i
µ = Overall average rating
σu = Standard deviation of user u
σi = Standard deviation of item i

With this temporal rating, P and Q will learn less aggressively leading to better results. Now
we can combine the above-presented ideas to construct the BRISMF model as follows:

r̂ui = µ +σu +σi +qT
i pu

= µ +bu +bi +qT
i pu

(3.10)

where:

r̂ui = Predicted rating of user u on item i
µ = Overall average rating
bu = Standard deviation user
bi = Standard deviation item
qT

i pu = user-item interaction

The final model (BRISMF) learns, as the others, by minimizing the squared error function:

min
p∗,q∗,b∗ ∑

(u,i∈k)
(rui−µ−bu−bi−qT

i pu)
2
+λ (‖pu‖2 +‖qi‖2 +bu

2 +bi
2) (3.11)

For minimizing the objective function there are two by default options: stochastic gradient
descent (SGD) and alternating least squares (ALS). Both of them will be discussed in the following
sections but for now, we only need to know that the modification of the parameters is done by
moving the current solution in the opposite direction of the gradient:

In this case, the partial derivatives of J(θ)6 yields to:

• bu← bu + γ1 · (eui−λ1 ·bu)

• bi← bi + γ1 · (eui−λ1 ·bi)

• pu← pu + γ2 · (eui ·qi−λ2 · pu)

• qi← qi + γ2 · (eui · pu−λ2 ·qi)

where:

γ = Denotes the learning rate
λ = Denotes the regularization factor
eu,i = Denotes the absolute error between the hypothesis and the target value (eu,i = ru,i−qT

i pu).

6J(θ): Cost function

3.3 Models for Matrix Factorization 15

Finally, it is important to point out two things: First, P and Q are matrices that must be ini-
tialized with small random numbers to break the symmetry and ease the convergence. If not done,
many parameters would receive the same updates and thus not reduce the error. And second, it
is not mandatory to consider the bias as a learning parameter, but we do so, the accuracy of the
model is going to increase because the additional parameters are learned in the context of other
parameters that compose the objective function. Besides, we can set the regularization factor to
zero and we will obtain the same results as before.

3.3.1.2. SVD++

In many scenarios, we have explicit and implicit information available in a dataset. Nevertheless,
the latter is not available most of the time and also can be really hard to get. A classical example
of implicit information can be a dataset with a search history per user, which can tell us the user’s
preferences or even the login times. What’s more, sometimes we have less obvious but fantastic
sources of implicit information in front of us and we don’t notice. An example of this could be a
dataset with only explicit ratings. The simple act of rating an item with a numeric score is giving us
information about which items the user has reviewed (binary information; implicit) and how they
rated these items (score value; explicit). Once we know that, we can now design better models
that account for both explicit and implicit information. Hence, we can get more juice from our
datasets allowing us to increase the prediction accuracy of the previous models.[7, 15]

In order to solve this problem, Yehuda Koren came in 2008 with the idea of SVD++, which is
an enhanced version of the classical Funk’s SVD to support the use of implicit feedback information[7].

r̂ui = µ +bu +bi +

(
pu +

1√
|N(u)| ∑

j∈N(u)
y j

)T

qi (3.12)

where:

r̂ui = Predicted rating of user u on item i
µ = Overall average rating
bu = Standard deviation user
bi = Standard deviation item
N(u) = Set of all items for which u provided an implicit preference
pu = User-factors vector
qi = Item-factors vector
y j = Implicit-factors vector

Unlike previous models, in SVD++ each item i is associated with three factor vectors qi, pu,y j ∈
R f . Model parameters are learnt by minimizing the corresponding squared error loss function:

min
p∗,q∗,y∗,b∗ ∑

(u,i∈k)
(rui−µ−bu−bi−qT

i

(
pu +

1√
|N(u)| ∑

j∈N(u)
y j

)
)

2

+λ (bu
2 +bi

2 +‖pu‖
2
+‖qi‖2 + ∑

j∈N(u)

∥∥y j
∥∥2
)

(3.13)

To train the model using SGD we have to loop through all the ratings, modifying the parameters
by moving in the opposite direction of the gradient. Hence, the partial derivatives of J(θ) yields
to:

• bu← bu + γ1 · (eui−λ1 ·bu)

16 Collaborative Filtering

• bi← bi + γ1 · (eui−λ1 ·bi)

• pu← pu + γ2 · (eui ·qi−λ2 · pu)

• qi← qi + γ2 · (eui · (pu + |N(u)|−
1
2 ∑ j∈N(u) y j)−λ2 ·qi)

• ∀ j ∈ N(u) :
y j← y j + γ2 · (eui · |N(u)|−

1
2 ·qi−λ2 · y j)

Looking at the cost function, the inversion of |N(u)|−
1
2 is simply a mechanism for normal-

ization. But the reason behind the square root is still unclear. One of the best explanation that
I currently have is related with the radical properties, so the less frequent a user or item is, the
stronger the penalization or the control over their parameters will be.

3.3.1.3. TimeSVD

We can improve SVD++ in order to model temporal dynamics. In order to do so, we can think
of classical time-window or instance-decay approaches, but they don’t usually work because they
lose too much signal when discarding data instances. So that we can get better distinctions between
transient effects and long-term patterns, Yehuda Koren came up in 2009 with TimeSVD. These
models tracks the time changing behavior throughout the life span of the data, allowing us to
exploit relevant components of all data instances, while discarding only what is modeled as being
irrelevant[9].

As an intuition, it’s a sort of SVD++ that uses framed information in a fixed set of temporals
bins. In such a way that the predictions are compute as:

r̂ui(t) = µ +bu(t)+bi(t)+

(
pu(t)+

1√
|N(u)| ∑

j∈N(u)
y j

)T

qi (3.14)

Note: This model will be implemented in a future version of our library due to temporal
constraints.

3.3.1.4. TrustSVD

So far we have introduced a very simple model, on which we have been introducing more and
more modifications to model increasingly complex behaviors.

Therefore, I present TrustSVD, which is trust-based matrix factorization technique. What this
means is that it takes into account both the explicit and implicit influence of rated items as well
as the explicit and implicit influence of trusted users on the prediction of items for active user
items[8]. Or in simple terms, it uses friendship information to improve SVD++.

This model is build on top of SVD++ so to simplify things, we can say that TrustSVD is the
combination of the classical SVD++ plus a modified version of SVD++ to model trust information.

In order to understand how this model works, first we need to know the premises on which it
is built[8]:

1. Trust information is very sparse, yet is complementary to rating information.

2. A user’s ratings have a weakly positive correlation with the average of her social neighbors
under the concept of trust-alike relationships, and a strongly positive correlation under the
concept of trust relationships.

3.3 Models for Matrix Factorization 17

First, let’s suppose that we want to decompose a matrix Rm×n (as Funk’s SVD), where m
denotes users and n denotes items. So we have to find two low rank matrices R ≈ P>Q where
P ∈ Rd×m and Q ∈ Rd×n (being d the number of latent factors). The resulting loss function is:7

Lr = ∑
(u,i∈k)

(ru,i−qT
i pu)

2
+λ (‖pu‖2

F +‖qi‖2
F) (3.15)

Secondly, now we have to do pretty much the same but to decompose a trust-matrix T = [tu,v]m×m,
where u denotes users and tu,v the extent to which users u trust user v[8]. Similarly to the previous
rating loss function, we have to find another two low rank matrices T ≈ P>W where P∈ Rd×m and
W ∈ Rd×m (being d the number of latent factors). The resulting loss function is:

Lt = ∑
(u,v∈k)

(tu,v−wT
v pu)

2
+λ (‖pu‖2

F +‖wv‖2
F) (3.16)

The next stage is to transform the above loss functions to account for implicit information
as Koren shown in 2008 with his model SVD++ and also including the implicit effect of trusted
users on item ratings using the same techniques (3.3.1.2). Hence, the rating equation will result as
follows:8

r̂ui = µ +bu +bi +qi
>

(
pu + |Iu|−

1
2 ∑

i∈Iu

yi + |Tu|−
1
2 ∑

v∈Tu

wv

)
(3.17)

where:

r̂ui = Predicted rating of user u on item i
µ = Overall average rating
bu = Standard deviation user
bi = Standard deviation item
pu = User-factors vector
qi = Item-factors vector
wv = Trustee-factors vector
yi = Implicit-factors vector
Iu = Set of items rated by user u
Tu = Set of users trusted by user u

With regard the final loss function, it will be the sum of the two previously commented loss
function:

L = Lr +Lt +[reg.params]

= ∑
(u,i∈k)

(ru,i−qT
i pu)

2
+ ∑

(u,v∈k)
(tu,v−wT

v pu)
2
+[reg.params] (3.18)

7F denotes the Frobenius norm
8The product qT

j wu can be seen as the influence of trustees on the rating prediction

18 Collaborative Filtering

The regularization strategy is based on high regularizations for cold-start users and niche items
and small penalizations for popular users and items due to their smaller chance of being overfitted.
Finally, taking these things into account and other small modifications we obtain:

L =
1
2 ∑

u
∑
j∈Iu

(r̂u, j− ru, j)
2 +

λt

2 ∑
u

∑
v∈Tu

(t̂u,v− tu,v)
2

+
λ

2 ∑
u
|Iu|−

1
2 b2

u +
λ

2 ∑
j

∣∣U j
∣∣− 1

2 b2
j

+∑
u
(
λ

2
|Iu|−

1
2 +

λt

2
|Tu|−

1
2)‖pu‖2

F

+
λ

2 ∑
j

∣∣U j
∣∣− 1

2
∥∥q j
∥∥2

F +
λ

2 ∑
i
|Ui|−

1
2 ‖yi‖2

F

+
λ

2

∣∣T+
v

∣∣− 1
2 ‖wv‖2

F

(3.19)

where:

U j,Ui = Set of users who rated items j and i
tu,v = User u that trust v.
Iu = Set of items rated by user u
T+

v = Set of users who trust user v
Tu = Set of users trusted by user u
‖·‖F = Denotes the Frobenius norm

To optimize this model, its partial derivatives are:

• ∂L
∂bu

= ∑ j∈Iu
eu, j +λ |Iu|−

1
2 bu

• ∂L
∂b j

= ∑ j∈U j
eu, j +λ

∣∣U j
∣∣− 1

2 b j

• ∂L
∂ pu

= ∑ j∈Iu
eu, jq j +λt ∑v∈Tu eu,vwv +(λ |Iu|−

1
2 +λt |Tu|−

1
2)pu

• ∂L
∂q j

= ∑u∈U j
eu, j(pu + |Iu|−

1
2 ∑i∈Iu yi + |Tu|−

1
2 ∑v∈Tu wv)+λ

∣∣U j
∣∣− 1

2 q j

• ∀i ∈ Iu,
∂L
∂yi

= ∑ j∈Iu
eu, j|Iu|−

1
2 q j +λ |Ui|−

1
2 yi

• ∀i ∈ Tu,
∂L
∂wv

= ∑ j∈Iu
eu, j|Tu|−

1
2 q j +λteu,v puλ |T+

v |
− 1

2 wv

3.3.2. Ranking

3.3.2.1. BPR

BPR is a model that uses a bayesian personalized ranking from implicit feedback in order to make
recommendations.

This model uses a generic optimization criterion BPR-Opt for personalized ranking that is the
maximum posterior estimator derived from a Bayesian analysis of the problem[10].

Note: As TimeSVD, this model will be implemented in a future version of our library due to
temporal constraints.

3.3 Models for Matrix Factorization 19

3.3.2.2. CLiMF

Collaborative Less-is-More Filtering (often shortened as CLiMF) is a matrix factorization model
used in scenarios with binary relevance data.

In simple terms, it’s been designed for scenarios where a user has had (or not) a binary action
over a specific item such as un/watched, un/liked, un/read,...

Apart from the binary relevance, there is another thing to take into account... It’s a ranking
model! What this means is that it doesn’t care about the predicted score itself but the position
at which the item was recommended. To illustrate the point, a good example is the Amazon’s
recommender system where showing you the right item is more important that the accuracy of
which they did. Although the goal of all recommender systems is to recommend you the best
items, in many services the most important measure in the sorting position.

For instance, let’s suppose that we have two items that you may like: item A with predicted
score of 3.89 and item B with 3.90. Clearly, both items have practically the same score and the
scoring difference between them could be due to small nuances produced by the input data, the
tuning of the model, the initial seed,... But when these two items have to be sorted, this negligible
difference is very important because one of them is going to be at the i-th position and the other at
the (i-th + 1) position.

As a result of this, CLiMF tries to improve top-k recommendations through ranking by directly
maximizing the Mean Reciprocal Rank (MRR).

RRi =
N

∑
j=1

Yi, j

Ri, j

N

∏
k=1

(1−Yi, jI(Ri,k < Ri, j)) (3.20)

where:

RRi = Reciprocal Rank (RR) of a ranked list for user i
Ri, j = Denotes the rank of item j in the ranked list of items for user i
Yi, j = Denotes the binary relevance score of item j to user i
I(x) = Function that indicates whether x is True or False

The first problem that we encounter is that ranking implies integer values and discrete op-
timizations are simply unfeasible. In order to overcome this problem, the authors decided to
transform the non-smoothed loss function to a smoothed one. To achieve so, they use a logistic
function to derive an approximation for I(x):

I(Ri,k < Ri, j)≈ g(fi,k− fi, j) (3.21)

where:

g(t) = Sigmoid function: g(t) = 1
1+e−t

fi, j = Predictor function that maps user u and item i to a relevance score

Despite the fact that the loss function is smoothed, there are more problems that we need to
address such as the intractability of the gradient O(N2). The authors solved this second problem
by deriving a lower bound based on the Jensen’s inequality (3.23) and the monotonic properties
of the logarithmic functions (3.22) so that the loss function is concave.

ln(
1

n+i
RRi) (3.22)

f (tx1 +(1− t)x2) ≤ t f (x1)+(1− t) f (x2) (3.23)

20 Collaborative Filtering

After modifying the previous loss function by the techniques described above, we obtain the
final loss function. A continuous function that is differentiable and convex:9

F(U,V) =
M

∑
i=1

N

∑
j=1

Yi j[ln g(UT
i Vi)

+
N

∑
k=1

ln(1−Yikg(UT
i Vk−UT

i Vj))]

− λ

2
(‖U‖2 +‖V‖2)

(3.24)

where:

U = User-feature matrix
V = Item-feature matrix

Now we can use stochastic gradient ascent to maximize the objective function F(U,V). Its
corresponding partial derivatives are:

• ∂F
∂Ui

= ∑
N
j=1Yi j[g(− fi j)Vj +∑

N
k=1

Yikg′(fik− fi j)
1−Yikg(fik− fi j)

(Vj−Vk)]−λUi

• ∂F
∂Vj

= Yi j[g(− fi j)+∑
N
k=1Yikg′(fi j− fik)(

1
1−Yikg(fik− fi j)

− 1
1−Yikg(fi j− fik)

)]Ui−λVj

The matrices U and V should be randomly initialized with small values (close to zero with a
standard deviation equal to one) in the exact same way as the models previously described.

Moreover, it’s worth to mention that the product of Ui×Vj indicates the relevance score of
user i in the item j. In order to get the top-k best items, we have to sort in descending order
the values of product Ui×V T but preserving their original index as the item reference. Then we
simply recommend the first k values.

3.4 Evaluation and testing

First of all, we have to see the matrix factorization problem as a regression problem. The described
matrix factorization models in this work are all statistical models. The models try to estimate re-
lationships among variables (users, items, friends,..) so that we can make predictions of unknown
inputs. Unfortunately, training a model is just the beginning of a very long process of evaluation
and testing because once the estimations are obtained we need a validation model. This valida-
tion model will allow us to decide whether results quantifying hypothesized relationships obtained
from regression analysis are acceptable or not.

In collaborative filtering we usually deal with lots of data so cross-validation processes are
the way to go. With cross-validation we can assess how the results obtained with a model will
generalize to an independent dataset. The process basically consists in splitting the dataset in
k parts, using k-1 folds to train the model and the remaining part to validate it. We repeat the
process k times, each time using another part for the validation. Additionally, it is convenient
to use a completely different dataset to test the model after the cross-validation so the resulting
scoring is more robust.

9In practice these functions are non-convex but due to other properties can be considered as they were.

3.4 Evaluation and testing 21

Figure 3.5: Cross-validation process [33]

Basically, we try to know how good is the design and tuning of our model. If the measured
error in the training set is significantly lower than the one in the validation or testing set, our model
probably needs some modifications. Once, we’ve got a final model, we should use all the available
data to train the model.

So far everything seems okay, but the evaluation and testing in matrix factorization models are
slightly different than most regression models. Why? Because when removing information from
our data set, we may lose the shape of the final matrix.

For example, let’s suppose that we want to train a recommender system with 10 users and 7
items, using the following dataset:

Table 3.1: Toy dataset

User ID Item ID Rating
1 5 6 3.5
2 2 1 4.0
3 6 4 3.0
4 1 4 4.0
5 7 5 3.5
6 8 2 2.0
7 4 3 3.0
8 4 7 5.0
9 1 2 2.5
10 9 7 4.5

The matrix R has a shape (10,7). If we perform cross-validation on a blank-model10 with a
k = 3 the resulting shapes of R will be something like this:

• Fold 1: trained with rows: 1-7; R shape: (8, 6)

• Fold 2: trained with rows: 4-10; R shape: (9, 7)
10Not pretrained

22 Collaborative Filtering

• Fold 3: trained with rows: 1-3 and 8-10; R shape: (9, 7)

It is not hard to see that the model is going to have problems during the validation part of the
first-fold. As the model has been trained to make recommendations up to the user 8-th and the
6-th item, as soon as the model is asked for user 9 in the validation set, the model is going to have
problems.

In order to solve these problems we have several options:

• Set the shape of R before the cross-validation

• Ignore that rating

• Return the overall average rating

• Return the user-item baseline rating (rui = µ +σu +σi)

Depending on the case we may apply one solution or another. But a strong point in favor of
the last solution is that if at least we know the user or the item we’re trying to predict, the model
can make use of the known information to improve the accuracy even in situations where part of
the data is missing.

3.4.1. Rating

Models that use numeric ratings need regression metrics. To assess the model, a function measures
the prediction error given a ground truth and the predicted value. There are many metrics to assess
the rating models as:

• Root Mean Squared Error (RMSE)

• Relative Squared Error (RSE)

• Mean Absolute Error (MAE)

• Relative Absolute Error (RAE)

• Coefficient of Determination (R2)

To the best of my knowledge, RMSE is the most common metric11 for rating models. Ad-
ditionally, there are popular benchmarks which also provide the MAE measure but it is not as
common as RMSE.

Back in 2008, during the Netflix challenge, Yehuda Koren and other contestants observed
that a solution with a slightly better RMSE can lead to completely different results and better
recommendations[7].

Based on this observation, Yehuda K. developed a new evaluation metric based on a top-k
recommendation. The evaluation metric works as follows: For each movie i rated 5-stars by user
u we select additional 1,000 random movies and then we predict the ratings by user u for each one
of the 1,001 movies. As the 1,000 movies were random, statistically we know that most of them
are of no interest to the user u so we hope that movie i will precede the rest 1,000 once they are
sorted by rating. In this case there are 1,001 different possible ranks for movie i so the closer to
the 1-st position, the better (percentile 100% - any other movie above it).12

11In the scientific papers
12Example extracted from the SVD++, Yehuda K. 2008 paper [7]

3.4 Evaluation and testing 23

Figure 3.6: Evaluation metrics (RMSE) [7]

Figure 3.7: Evaluation metrics (top-k rec.) [7]

The main advantage of this method is that it evaluates through a top-K recommender so it
sharpens the differences between models, giving better and more accurate picture of the perfor-
mance than traditional evaluation metrics can not provide.

24 Collaborative Filtering

3.4.2. Ranking

Ranking is a central part of many information retrieval problems[32], such as document retrieval,
collaborative filtering, sentiment analysis, online advertising, machine translation, computational
biology, and many others.

Ranking metrics assess how well a model is performing with regard certain parameters and
intrinsic constraints such as the natural values that an object can hold when ranked. In simple
words, when a F1 overtakes another, it takes the position of the overtaken car. (It would be a
non-sense to be at the position 2.76)

Hence, as opposed to rating models in which the error between the original rating and the
predicted one matters, in ranking models it doesn’t (at least not directly). As a result of this,
ranking metrics are going to be focused on the relative position of an item within a defined set.

There are many ranking measures, but amongst the most popular we found:

• Mean Reciprocal Rank (MRR)

• Mean Average Precision (MAP)

• Discounted Cumulative Gain (DCG)

• Normalized Discounted Cumulative Gain (NDCG)

In the area of collaborative filtering, there are two non-exclusive standard measures MRR and
MAP, as it happened with the evaluation of rating models. Additionally, the top-k recommender
technique introduced by Yehuda K. and described in the previous section might be applied too.
(See 3.4.1).

3.5 Optimization

The optimization process is a crucial component for this topic that cannot be separated from the
models. Maybe we have an astonishing and super fancy model but if this model cannot be trained
in a reasonable amount of time then it’s useless.

In this section, the discussion will be focused on the well-known gradient based methods.
Thus, I will explain how they work, why they can be used for matrix factorization, modifications
to gain robustness and how to visualize their behavior under different circumstances.

3.5.1. Gradient descent

The objective function is the function that we want to either maximize or minimize. So that its
parameters can be optimized using first-order optimization methods, it has to be differentiable and
convex. Without these properties, the optimization process cannot be guaranteed.

Typically, gradient descents approaches are the by default option for most model-based ap-
proaches in CF since it combines an easy implementation with a relatively fast running time.
Gradient descent finds the local minimum of a function by taking steps that are proportional to the
opposite direction of the gradient of the function at the current point.

Let’s illustrate this with a mathematical description. J(θ) is the cost function and ∂J(θ)
∂θ j

the
partial derivative w.r.t θ j. Therefore,

Jtrain(θ) =
m

∑
i=1

(hθ (x(i))− y(i))
2

(3.25)

3.5 Optimization 25

and this:

θ j := θ j−α

m

∑
i=1

(hθ (x(i))− y(i))x(i)j (3.26)

...is the equation to move the solution in the opposite direction of the gradient so that J can
be minimized. This last step must be repeated until the solution has converged or until some
termination criteria is met.

Likewise, if the steps are taken in the direction of the gradient and proportional to it, the
method will find a local maximum. This procedure is known as gradient ascent. Depending on
the problem, sometimes is easier to just multiply the objective function by -1 and apply gradient
descent.

Gradient descent presents several problems related with slow convergence rates and getting
stuck in suboptimal solutions. The latter is produced because gradient descent might find a local
minima instead of the global minima. The nuance might seem small but it has huge implications in
practice. For example, if we are trying to minimize the parameters of a function we can get stuck
in a local minima (suboptimal solution) instead of finding the global minima (optimal solution):

Figure 3.8: Local and global maxima and minima [34]

Additionally, we find saddle points: A saddle point is a point in the domain of a function
where the slopes (derivatives) of orthogonal function components defining the surface become
zero (a stationary point) but are not a local extremum on both axes.13 One of the implications of
these points in gradient descent methods is that the solution might get stuck as the derivative is
close to zero, being unable to escape.

13Mathematical definition [35]

26 Collaborative Filtering

Figure 3.9: A saddle point on the graph of z = x2y2 (in red) [35]

To overcome this problem, we can modify the gradient descent method so it gains robustness
against saddle points. Later we will discuss these modifications in detail but a simple way to make
gradient descent approaches more robust to saddle points is to add a sort of linear momentum to
it. Adding momentum means that the current solution has kind of inertia that will push it away
from the saddle point.

3.5.2. Optimizers for gradient descent

3.5.2.1. Stochastic Gradient Descent (SGD)

Stochastic gradient descent is a stochastic approximation of the gradient descent optimization
method. The main advantage of this method is that it converges significantly faster than gradient
descent. Although the taken step might not be optimal, it usually converges faster and making the
pertinent corrections at each new step.

Mathematically is defined exactly as the deterministic version of gradient descent, but the key
difference is that instead of looping through the entire dataset to make one update of j, we make
one update per sample.

θ j := θ j−α(hθ (x(i))− y(i))x(i)j (3.27)

Similarly, we can write the pseudo code as follows:

Algorithm 3.3 Pseudocode for SGD

Initialize the vector of parameters θ and set learning rate α

Repeat until the termination criteria is met

Shuffle the set of samples (optional, but recommended)

for i = 1,2, ...,m do

θ := θ −α∇Ji(θ)

end for

3.5 Optimization 27

As it is been said before, SGD may not take the right step towards the minimum at given point
but we know that statistically speaking, in future iterations it will go back towards to minimum
converging faster than gradient descent. As a result of this stochastic behavior, the loss function
might fluctuate over the time (iterations) creating the appearance that the solution is diverging at a
certain point when in reality is not, namely, just noise. In addition, this event might even happen
because the optimizers applied to SGD are pushing the current solution away in order to escape
from a local minima or simply because of the momentum.

To illustrate this point, just take a look at the image below. Although there are strong fluctu-
ations during the training, we can see that at the same time the solution is converging towards a
better local minima.

Figure 3.10: Fluctuation during a SGD optimization

Even though the benefits of SGD are pretty clear, sometimes we may want to get a compromise
between the true gradient of the deterministic gradient descent and the fast converge rate of the
stochastic approaches at a single sample. Fortunately, we can get the best of both approaches by
using mini-batches. This means to use batches of b samples (with b < m) taken from the original
dataset with m samples, to compute the gradient against more than one training example.

For i to m, step b:

θ j := θ j−α

i+(b−1)

∑
k=1

(hθ (x(k))− y(k))x(k)j (3.28)

Likewise, it’s interesting to mention that in most real life problems there is no way to find
a global minimum so stochastic approaches usually outperform the classical gradient descent in
terms of accuracy and time.

3.5.2.2. Momentum

The optimization process through gradient descent methods is hard and usually very complex, so
many improvements on it have been proposed to make it easier and less painful. Typical problems
relate with the learning parameter α , which tends to be quite problematic because if set too low,
it can make the convergence rate of the solution too small, but in the contrary, if it is set too high,
the solution might diverge. Or other problems previously mentioned such as the saddle points or
the loss fluctuations.

This update is strongly related to physics, so let’s explain it somehow. First, we have to
consider the loss surface as a valley and the initial solution is a football ball located somewhere in

28 Collaborative Filtering

that valley. The initial velocity can be considered equal to zero because the random initialization
of the parameters (usually) has a mean in zero. Then, the potential energy of the ball is probably
not zero (can be located somewhere within the valley); PEnergy = mgh. Hence, the force felt by the
ball is the (negative) gradient of the loss function (valley); F = −∇U . Therefore, as soon as the
ball starts rolling down due to the gravity, it will gain kinetic energy in exchange for the potential
energy at the rate of the gradient; PEnergy +KEnergy = k. Finally, we know that the ball will stop
at the bottom of the valley, but maybe not at the lowest part. Besides, before losing all its kinetic
energy the ball will oscillate around the bottom (local minima) until it loses all its kinetic energy.

Additionally, the value of the hyperparameter momentum can be seen as the coefficient of
friction in a physical interpretation since its value (typically around 0.9) reduces the kinetic energy

Analytically, it is pushing the solution a bit further:

Figure 3.11: Momentum update
Source: CS231n Convolutional Neural Networks for Visual Recognition

Mathematically, a SGD with momentum can be expressed as follows:

vt = γvt−1 +η∇θ J(θ)

θ = θ − vt
(3.29)

I prefer to simplify things even more and see the Momentum update as: an update with inertia,
expressed by:

velocity := momentum · velocity− learning_rate ·gradient

param := param+ velocity
(3.30)

3.5.2.3. Nesterov’s Accelerated Gradient (NAG)

NAG, also known as Nesterov Momentum has been gaining popularity lately, especially in the field
of deep learning. With regard to the theory, the Nesterov Momentum has stronger theoretical con-
verge guarantees for convex functions than standard momentum. Besides, in practice consistently
works slightly better.

Following the previous analogy, a ball with momentum reaches faster the bottom of the valley,
but it doesn’t know where is going. To do so, we need a smarter ball, a ball with a notion of where
it is going. This smarter ball might not follow the optimal path towards the bottom of the valley,
but we’re confident that its step down to the hill will be closer to the optimal one than the step that
blindly ball with momentum would have taken.

So that we can translate this analogy to a mathematical expression, let’s say that NAG performs
the standard momentum update but looking ahead into the future. As we cannot look into the

3.5 Optimization 29

future, we have to guess the future position through an approximation which makes use of the
current momentum.

Figure 3.12: Momentum update Vs. Nesterov update
Source: CS231n Convolutional Neural Networks for Visual Recognition

Mathematically, the Nesterov update can be expressed as follows:

vt = γvt−1 +η∇θ J(θ − γvt−1)

θ = θ − vt
(3.31)

Following the philosophy of simplicity, we can see the Nesterov momentum update as: an
update with momentum that looks ahead into the future, expressed by: 14

param_ahead := param+momentum · velocity

velocity := momentum · velocity− learning_rate ·gradient_ahead

param := param+ velocity

(3.32)

Although the previous form is easier to understand, from a programming perspective reusing
chunks of code is very valuable (here, the momentum update function). Accordingly, we can
express this update in such a way that it looks as the vanilla SGD:

v_prev := velocity

velocity := momentum · velocity− learning_rate ·gradient

param := param−momentum · v_prev+(1+momentum) · velocity

(3.33)

3.5.2.4. AdaGrad

AdaGrad is an adaptive gradient algorithm, what means that it adapts the learning rate to the
parameters. There is one learning rate per parameter and the algorithm adapts them in order to
deal with the sparsity of the parameters, giving larger values for sparse parameters and shorter
ones for less sparse parameters. A consequence of this approach is the significant improvement
in the convergence rate over other stochastic gradient-based approaches where the data is sparse.
Because of that, it can be a good option in problems such as natural language processing, image
recognition or basically, for training large-scale neural networks.

One important downside to AdaGrad is that its monotonic learning rate can be too aggressive
so it stops learning too early. This is produced because it accumulates the squared gradients in the

14 param_ahead is equivalent to say x_ahead (future “ball position”), therefore, gradient_ahead is the same as saying
dx_ahead. In other words, gradient_ahead is the gradient at x_ahead instead of at x

30 Collaborative Filtering

denominator. Then, after each iteration the learning rate shrinks until it becomes infinitesimally
small and the learning is stopped.

Mathematically, the AdaGrad update can be expressed as follows:

gt,i = ∇θ J(θi)

θt+1,i = θt,i−η · gt,i√
Gt,ii + ε

(3.34)

To grasp the concept and thus get a better intuition of what AdaGrad does, it could be seen as
an optimizer that adapts its learning rate during the process, expressed by:

cache := cache+gradient2

param := param− learning_rate · gradient√
cache+ epsilon

(3.35)

3.5.2.5. RMSProp

RMSProp (Root Mean Square Propagation) is a method that adapts the per-parameter learning
rate, as AdaGrad does. But here, the idea is to divide the learning rate for a weight by a running
average of the magnitudes of recent gradients for that weight[22].

Basically, RMSProp modifies Adagrad in order to reduce its aggressiveness by monotonically
decreasing its learning rate.

Mathematically, it can be expressed as follows:

E[g2]t = 0.9E[g2]t−1 +0.1g2
t

θt+1 = θt −η · gt√
E[g2]t + ε

(3.36)

Again, to get a better intuition of what RMSProp does, it could be seen as a leaky AdaGrad,
expressed by:

cache := decay_rate · cache+(1−decay_rate) ·gradient2

param := param− learning_rate · gradient√
cache+ epsilon

(3.37)

3.5.2.6. AdaDelta

Similar to RMSProp, AdaDelta is a method that adapts the per-parameter learning rate and seeks
to reduce the aggressiveness of AdaGrad by monotonically decreasing learning rate.

The main difference with regards to RMSProp is that instead of accumulating all past squared
gradients, AdaDelta restricts the window of accumulated past gradients to some fixed size w[17].

Mathematically, it can be expressed as follows:

E[∆θ
2]t = γE[∆θ

2]t−1 +(1− γ)∆θ
2
t

RMS[∆θ]t =
√

E[∆θ 2]t + ε

∆θt =−
RMS[∆θ]t−1

RMS[g]t
gt

θt+1 = θt +∆θt

(3.38)

3.5 Optimization 31

To grasp the concept of AdaDelta, it could be seen as an extension of Adagrad that seeks to
reduce its aggressiveness, expressed by:

cache := decay_rate · cache+(1−decay_rate) ·gradient2

update := gradient ·

√
delta_cache

cache+ epsilon

param := param− learning_rate ·update

delta_cache := decay_rate ·delta_cache+(1−decay_rate) ·update2

(3.39)

3.5.2.7. Adam

Adam (for Adaptive Moment Estimation) is a method that adapts the learning rates for each pa-
rameter. Basically, it is an update to RMSProp optimizer. Hence, it is practically the same as
RMSProp except that it uses a smooth version of the gradient. A possible explanation for this
smoothed version of the gradient may lie in trying to remove part of the maybe noisy original
gradient.

Mathematically, it can be expressed as follows:

mt = β1 ·mt−1 +(1−β1) ·gt

vt = β2 · vt−1 +(1−β2) ·g2
t

θt+1 = θt −η · mt√
vt + ε

(3.40)

Usually, mt and vt are initialized as a vectors of zeros. The problem of this initialization is that
mt and vt will be biased towards zero. In order to counteract these biases, the authors presented a
corrected version[24]:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(3.41)

In simple words, Adam is a method similar to AdaGrad and RMSProp but with an exponen-
tially decaying average of past gradients. Another way to see it is like a RMSProp with momentum,
expressed by:

m := beta1 ·m+(1−beta1) ·gradient

v := beta2 · v+(1−beta2) ·gradient2

param := param− learning_rate · m√
v+ epsilon

(3.42)

3.5.2.8. Adamax

Adamax is practically the same method as Adam, but based on the infinity norm. The only differ-
ence is that instead of always using the smoothed version of the gradient, it takes the maximum
between this version and the original gradient (max(vt ,gt)). For practical purposes, the single most
important feature w.r.t Adam is that the infinity norm makes the algorithm surprisingly stable[24].

32 Collaborative Filtering

Hence, the mathematical definition will be expressed as follows:

mt = β1 ·mt−1 +(1−β1) ·gt

vt = β2 · vt−1 +(1−β2) ·g2
t

θt+1 = θt −η · mt√
max(vt , |gt |)+ ε

(3.43)

The intuition remains as the Adam’s one. At best we could add a comment as Adamax is Adam
based on the infinity norm.. Similarly, it would be expressed by:

m := beta1 ·m+(1−beta1) ·gradient

v := beta2 · v+(1−beta2) ·gradient2

param := param− learning_rate · m√
max(v, |gradient|)+ epsilon

(3.44)

3.5.3. Non-convexity of MF problems

A linear model is defined as a model which is linear in the parameters which have to be estimated
but not necessarily in the independent variables.

Therefore, this is a linear model:

hθ (x) = θ0 +θ1x1 +θ2x2 +θ3x3 + ...+θnxn (3.45)

...and this too:
hθ (x) = θ0 +θ1x1 +θ2x2

2 (3.46)

...but not this:
hθ (x) = θ0 +

x1

θ1
(3.47)

It is straightforward to see the partial derivatives of the first model do not depend on unknowns
(x is a known value; Input data). Hence it’s linear. The second model is also linear, technically
curvilinear. Although x2 is not a linear function, the model is linear in the parameters so we don’t
care about the x power. (Actually, this can be a trick to train linear models with nonlinear data).
Finally, the third model is not linear so the parameter θ1 is powered to −1, what means that the
derivative of the second term depends on this parameter.

∂hθ (x)
∂θ1

=− x1

θ 2
1

(3.48)

It’s important to highlight that linearity is also a point of view. Depending on the field and the
problem, the linearity of a model can be defined in different ways or under certain constraints. To
sum up, we can say that a model is nonlinear if it is not linear in at least one parameter. Or even
easier: a nonlinear model is a model that is not linear.

The linearity of a model has huge implications for the optimization of its parameters. In a
nonlinear space, convexity is the exception. Hence, the convexity of a problem is something that
has to be proven, not assumed.

To prove the non-convexity of a simple matrix factorization model, let’s use Funk’s SVD
model:

min
p∗,q∗ ∑

(u,i∈k)
(rui−qT

i pu)
2 (3.49)

3.5 Optimization 33

As the rating matrix R is defined as Rm×n, let’s considering the simplest case where m = 1 and
n = 1; R1×1:

min
p∗,q∗ ∑

(u,i∈k)
(rui−qT

i pu)
2⇒ min

p∗,q∗
(r−qT p)2 = min

p∗,q∗
(r2−2rqp+q2 p2) (3.50)

One of the properties of the Hessian matrix is that it describes the local curvature of a function
of many variables. Thus, we can use it to study the convexity of our model which it will be
redefined as:

hr(p,q) = r2−2rqp+q2 p2 (3.51)

...where h stands for hypothesis.

Then, the gradient and the Hessian matrix is:

∇hr(p,q) =
[

2pq2−2rq
2p2q−2rp

]
(3.52)

∇
2hr(p,q) =

[
2q2 4pq−2r

4pq−2r 2p2

]
(3.53)

Consequently, if the Hessian is positive semidefinite in the entire domain, then the function
will be convex. Since it is not, it’s non-convex.

∇
2h1(2,1) =

[
2 6
6 8

]
(3.54)

Moreover, the sign of its eigenvalues is different, so the concavity of the surface is inconsistent
at (p,q) = (2,1); λ1 > 0 and λ2 < 0[26]:

λ1 = 11.7082

λ2 =−1.7082
(3.55)

To sum up, in the space of nonlinear problems, convexity is the exception, not the rule. There-
fore, convexity is something to be proven, not assumed.

Now that we know that MF problems are usually non-convex, it is interesting to understand
why gradient-descent methods work here. Gradient descent is a generic method for continuous
optimization so in non-convex problems the solution will eventually converge to a stationary point
(either a local minimum or a saddle point). The reason why gradient-descent methods tend to
work so well with this kind of problems in many situations is related to the dimensionality of the
problem and the properties of quasiconvex functions. Additionally, small tricks and optimization
on the gradients allow the algorithms to escape from certain stationary and saddle points.

Another approach we can take to optimizing the loss function is using Alternating Least
Squares (ALS), which is a two-step iterative optimization process. With ALS we can turn a non-
convex optimization problem into a quadratic problem that can be solved optimally. The algorithm
works by fixing one of the unknowns and solving for the other, alternating these in each iteration.

In general, SGD approaches are easier and faster than ALS, but ALS is usually preferred for
systems centered on implicit data or when the system can use parallelization.

CHAPTER 4

Software developed

4.1 Orange3

Orange is an open-source, cross-platform, component-based data mining and machine learning
software suite which features friendly yet powerful and flexible visual programming front-end for
exploratory data analysis, visualization, model construction, evaluation, and forecast[30].

Orange allows you to do interactive data analysis workflows with a large toolbox:

Figure 4.1: Orange3 Data Mining

35

36 Software developed

Additionally, it also can be used from an interactive notebook like iPython or simply from the
terminal:

Figure 4.2: Terminal execution

...and as a library, which can be installed from pip install orange3. (If you want to install this
add-on directly, you can use pip install orange3-recommendation):

Figure 4.3: Python implementation

4.2 Orange3-Recommendation 37

4.2 Orange3-Recommendation

Orange3-Recommendation is an add-on for Orange3 to include support for recommender systems.
For this purpose, we’ve built an efficient and unified interface to tackle the problem of collaborative
filtering (CF). The scripting library is the core of the add-on, which includes a number of published
factorization algorithms as well as methods to optimize them and analyze their outcomes.

4.2.1. Architecture

Orange3-Recommendation uses a model-view-controller (MVC)1 design pattern as all official Or-
ange3 add-ons.

Basically, MVC is a software design pattern for implementing user interfaces, in which the
software application is divided into several interconnected parts, so to separate the internal repre-
sentation of information from the user’s final presentation.

MODEL

Figure 4.4: Model-View-Controller (MVC)

At a conceptual level, this add-on follows a representation in which every model belongs to a
parent node (group):

Collaborative filtering

Memory-Based

Average-based User-based Item-based

Model-Based

Matrix factorization

BRISMF SDV++ CLiMF TrustSVD

Restricted Boltzmann Machines

1Image source: Wikimedia, MVC diagram

38 Software developed

In practice, it’s pretty complicated to strictly follow this previous architecture due to problems
such as Orange architecture constraints, add-on homogenization problems, code re-usability,... As
a result of these problems, we needed to use a different architecture.

The architecture presented here is a simplification of the real one, which will be introduced
later. Orange3-Recommendation is built on top of Orange3 but preserving a relative independence
with regard to the middle-high level model abstractions and the data structures. For example,
recommender algorithms are independent of Orange, but to do so, they need more abstraction
(provided by the generic interfaces). Similarly, the models can work with many types of different
data structures such as Orange Tables, Numpy matrices, python lists, scipy sparse matrices,... but
as Orange mainly works with its own data structures (Orange Tables), we need a new layer of
abstraction.

Generic interfaces orangecontrib recommendation

• BaselineRecommender
• IterativeRecommender
• SocialRecommender
• ContextRecommender

Recommender algorithms
Baselines

• GlobalAvgLearner
• UserAvgLearner
• UserItemBaselineLearner
• ...

Rating
• BRISMFLearner
• SVDPlusPlusLearner
• TrustSVDLearner
• ...

Ranking
• CLiMFLearner
• ...

Orange3 Data Mining

Data structures
• Orange Table
• Numpy matrices
• Python lists
• Scipy sparse matrices

Figure 4.5: The class structure of Orange3-Recommendation

All Orange3 add-ons must be included inside a folder named orangecontrib, which tells Or-
ange where is located the core of the add-on so it can be added as a valid extension. Besides this
folder, there are many others that need a special treatment. It’s not hard to see, that one of the most
important problems that we encounter with this kind of structure is that it might produce a couple
headaches in novel users and developers. To solve it, all users (and developers) can have access to
all the models directly from the root, with no need to import or write the whole path. In this way,
they can get focus on the things that matter such as solving the problem, instead of wasting their
time in writing long paths or in trying to remember the name of a certain parent node.

orangecontrib

Global average User-Item baseline BRISMF SVD++ TrustSVD CLiMF ...

4.2 Orange3-Recommendation 39

Currently, the folder structure of the package is defined by representative folders in such a way
that it gives a rough idea of how it is organized internally:

orangecontrib

recommendation

baseline

Global average

User average

Item average

User-item baseline

...

datasets

optimizers

SGD; Momentum; Nesterov momentum; AdaGrad; RMSProp; AdaDelta; Adam; Adamax

ranking

BPR*

CLiMF

...

rating

BRISMF

SVD++

TimeSVD*

TrustSVD

...

tests

coverage

debugging

tutorials

utils

widgets

4.2.2. Technologies

Following the Orange3 requirements and back-compatibility, this will be the libraries used:

40 Software developed

• Python == 3.4

• Scikit-Learn ≥ 0.16

• Scipy ≥ 0.11.0

• Numpy ≥ 1.9.0

• Theano ≥ 0.8

• Keras ≥ 0.3.2 or Lasagne ≥ 0.1

• Cython ≥ 0.23.4

• Bottlechest ≥ 0.7.1

• Nose == 1.2

• Unittest ≥ 2.1

4.2.3. Workflow

The development workflow was based on the SCRUM methodology, where every Friday there was
a meeting to discuss new aspects of the software, designs, implementations and problems.

All the code is available on Github2 and as many other open source organizations, Orange has
some development guidelines to ensure the quality and correctness of our code.

For example, we use TravisCI for the continuous integration, which builds and tests projects
hosted at Github. By doing so, we can partially ensure that new commits haven’t broken anything.
As a rule of thumb, every official add-on in Orange must ensure a coverage of at least a 90%,
although the more, the better. A fantastic tool to check this coverage automatically is Codecov,
so with every new commit in our repo, it checks automatically the new changes. Regarding the
quality, this was optional, but I used Codacy with a custom arrange of settings for my purposes.

Furthermore, we had to follow some extra guidelines such as a maximum of 79 chars per
line, PEP8 rules, Napoleon-compatible docstrings (Google Style Python Docstrings), Google Style
Guide, OS X Human Interface Guidelines, bug reporting guidelines3, Git Commit-Guidelines,
Orange3 Contributing guidelines, etc.

Finally, after the completion of the add-on, was mandatory to write a few entries in the official
blog and a tutorial.

4.2.4. Documentation

A well documented open source project is a must. Therefore, all the methods in our code are well
documented using the Google Style Python Docstrings Guide.

The second requirement was to pass the add-on into Sphinx so it could build the local documen-
tation. Additionally, every repo must be connected to ReadTheDocs, which is a hosting for docu-
mentation (free for open source projects). This tool builds the online documentation of the project
with every new commit on Github. (See more: http://orange3-recommendation.readthedocs.io/)

2https://Github.com/biolab/orange3-recommendation
3http://www.chiark.greenend.org.uk/ sgtatham/bugs.html

http://orange3-recommendation.readthedocs.io/

4.2 Orange3-Recommendation 41

4.2.5. Blog

Similar to the online documentation, every add-on or important feature in Orange3 must have an
entry in their official blog explaining the main aspects of the add-on in a really simple way. This
blog is mostly oriented towards beginners or non-programmer scientists.

My entry is pretty visual, with plenty step-by-step pictures and short descriptions. In it, I
explain the graphical part and as well as the scripting one. (See more: http://blog.biolab.si/2016/
08/19/making-recommendations/)

4.2.6. Tutorials

Orange3 tutorials are more like a splash screen with a list of projects, that consists of simple
pipelines to do a specific task and lots of descriptions for each part or widget use it.

For this add-on I wrote two tutorials, the first one is a simple pipeline for baselines recom-
menders and the second one is a slightly more complex flow that shows how to use the rest of the
widgets.

Figure 4.6: Orange3-Recommendation tutorial

http://blog.biolab.si/2016/08/19/making-recommendations/
http://blog.biolab.si/2016/08/19/making-recommendations/

42 Software developed

4.2.7. Data Representation

Users usually rate a very small subset of available items. Since it wouldn’t make sense to store all
the missing information as a dense matrix, a sparse matrix data structure must be used.

To support this decision, several datasets have been studied under dense and sparse represen-
tations:

Dataset Ratings Dense-Matrix Sparse-Matrix
MovieLens 100k 100,000 1.5MB 100KB
MovieLens 1M 1,000,209 23MB 1MB
Netflix Price 100,480,507 8GB 100MB

Table 4.1: Comparison of dense and sparse data representation.

After this trivial experiment, the need for a sparse representation is evident. Consequently, our
first choice was to use Scipy sparse matrices so it’s a package for numeric data represented as a
sparse matrix with lots of functions.

There are many types of sparse matrices such as:

• BSR: Block Sparse Row matrix

• COO: A sparse matrix in COOrdinate format.

• CSC: Compressed Sparse Column matrix

• CSR: Compressed Sparse Row matrix

• DIA: Sparse matrix with DIAgonal storage

• DOK: Dictionary Of Keys based sparse matrix.

• LIL: Row-based linked list sparse matrix

Each of these matrices has specific properties, so we carefully study all of them, both theoret-
ically and practically. In theory, Compressed Sparse Column matrix seemed to be a really good
option but in practice was a complete disaster, and more o less the same with the other matrices.
Finally, the reason behind this problem was because when a transpose was needed, scipy instead
of simply change the view or the pointers of the matrix, it transforms the matrix to a different
structure and then transforms the matrix back to its original structure. At the end, we were able to
reduce the iteration time of a model from 2 days to 2.5 seconds. (See 4.2.7.1)

Fortunately, we didn’t have to work too much with the format of the input data, so the vast
majority of it was already defined by Orange3. With regard to the few problems that we had, such
as the definition of timestamps, they were easy to solve by simply introducing minor modifications
to the core of Orange.

Orange can read files in native tab-delimited format or load data from any major standard
spreadsheet file types like CSV or Excel. Native format starts with a header row with feature
(column) names. Second header row gives the attribute type, which can be continuous, discrete,
string or time. The third header line contains meta information to identify dependent features
(class), irrelevant features (ignore) or meta-features (meta). Here, we can see the first few lines
from a typical dataset:

tid user movie score
string discrete discrete continuous

4.2 Orange3-Recommendation 43

meta row=1 col=1 class
1 Breza HarrySally 2
2 Dana Cvetje 5
3 Cene Prometheus 5
4 Ksenija HarrySally 4
5 Albert Matrix 4
...

The third row is mandatory in this kind of datasets, in order to know which attributes corre-
spond to the users (row=1) and which ones to the items (col=1). For the case of big datasets, users
and items must be specified as a continuous attributes due to efficiency issues. Again, here are the
first few lines from a typical dataset:

user movie score tid
continuous continuous continuous time
row=1 col=1 class meta
196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806
...

44 Software developed

4.2.7.1. Results from the TrustSVD experiment

In other to tackle the efficiency problems related to the original implementation of TrustSVD,
several implementations with different configurations of data structures were studied so that we
could find a good trade-off between time and space requirements.

Approach 0

- Data structure: Ratings_LIL, Trust_LIL, Feedback_LIL
- Space complexity: 1+1+1= 3 (100%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 2 days
Note: Impractical

Approach 1

- Data structure: Ratings_CSR, Ratings_CSC, Trust_CSR, Trust_CSC, Feedback_CSR
- Space complexity: 1+1+1+1+1 = 5 (165%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 168.738s
Note: CSR and CSC return a instance of itself when call ‘.getrow(i)‘ or
‘.getcol(j)‘, then select tuple ‘[0] or [1]‘, later cast _numpy.int_ to
python int for indices (array of np.int32 to list of int)

Approach 2

- Data structure: Ratings_LIL, Trust_LIL, Feedback_LIL, cache_users,
cache_items, cache_trusters, cache_trustees, cache_feedback

- Space complexity: 1+1+1+0.5+0.5+0.5+0.5+0.5 = 5.5 (180%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 30s
Note: The bottleneck in this function is the transpose (ratings.T, trust.T),
precomputing this would make the algorithm faster (sacrificing memory)

Approach 3

- Data structure: Ratings_LIL, Ratings_LIL_T, Trust_LIL, Trust_LIL_T,
Feedback_LIL, cache_users, cache_items, cache_trusters,
cache_trustees, cache_feedback

- Space complexity: 1+1+1+1+1+0.5+0.5+0.5+0.5+0.5 = 7.5 (250%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 5s
Note: Too much memory consumption

4.2 Orange3-Recommendation 45

Approach 4

- Data structure: Ratings_LIL, Trust_LIL, Feedback_LIL, cache_users,
cache_items, cache_trusters, cache_trustees, cache_feedback

- Space complexity: 1+1+1+0.5+0.5+0.5+0.5+0.5 = 5.5 (180%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 30s

Note: Approach 2 but transposing in the outer loops. There’s is no gain due
to the cache. (Everything is transposed once)

Approach 5

- Data structure: Ratings_CSR, Ratings_CSC, Trust_CSR, Trust_CSC,
Feedback_CSR, cache_users, cache_items, cache_trusters,
cache_trustees, cache_feedback

- Space complexity: 1+1+1+1+1+0.5+0.5+0.5+0.5+0.5=7.5 (250%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: Approach 2 < x < Approach 1

Approach 6 (Final)

- Data structure: Ratings_LIL, Ratings_LIL_T, Trust_LIL, Trust_LIL_T,
Feedback_LIL, cache_users, cache_trusters, cache_feedback

- Space complexity: 1+1+1+1+1+0.5+0.5+0.5=6.5 (215%)
- Time complexity: linear; O(d|R|+d|T|c*)
- Running time: 2.5s (from 2 days to 2.5s)
Note: Cache rows of users, trusters and feedback, cache norms in a numpy
array (python list are faster, 5s Vs. 12s; but numpy arrays allow
vectorization (from 12s to 2.5s)) -> Method to vectorize what can be
vectorized in that moment, and the rest is computed and stored in cache
sequentially

4.2.7.2. Issue with the Prediction widget

With Orange 3.3.7, the predictions widget should take more or less the same time as the required
to compute the predictions. But instead of that, it takes too much time when it has to predict lots
of samples (n> 100.000).

A simple way to reproduce the behavior is to open the Orange3 application, then take a learner
which outputs a dumb prediction (e.g return 0) and finally try to predict lots of elements (n>
100,000).

To show this issue, I did a simple experiment in which I used the widget Baselines (Global
avg.) in add-on Orange3-Recommender with the MovieLens100K dataset as an input.

When I ran it from the terminal (scripting), I got these results:

• For 100,000 samples, it takes 0.001s.

46 Software developed

• For 1,000,000 samples, it takes 0.010s.

• For 10,000,000 samples, it takes 0.150s.

But when I run the exact same model using the GUI (not in debugging mode), I got this:

• For 100,000 samples, it takes 23.04s.

• For 1,000,000 samples, it takes 240.03s (3m 50s)

• For 10,000,000 samples, it takes 2500s (40m)

This difference is due to the construction of PyQt table. The table should show the view of
the returned array, not re-build it into a PyQt Table. This problem causes among other things, that
Orange3 cannot be used to work big datasets. Something required for recommender systems.

Figure 4.7: Prediction times

4.2.8. Scripting

As Orange3-Recommendation follows a Model-View-Controller architecture, we can use it from
the terminal or as a library.

For instance, let’s train make a Python script to train a BRISMF model. First, we import
Orange and the learner that we want to use:

1 import Orange

2 from orangecontrib.recommendation import BRISMFLearner

After that, we have to load a dataset:

1 data = Orange.data.Table(’movielens100k.tab’)

Then we set the learner parameters, and finally we train it passing the dataset as an argument
(the returned object will be our model trained):

4.2 Orange3-Recommendation 47

1 learner = BRISMFLearner(num_factors=15, num_iter=25, learning_rate=0.07,

2 lmbda=0.1)

3 recommender = learner(data)

Finally, we can make predictions (in this case, for the first three pairs in the dataset):

1 prediction = recommender(data[:3])

2 print(prediction)

3 >>> [3.79505151 3.75096513 1.293013]

Additionally, if we want to train more complex models that require additional information, we
can write something as:

1 import Orange

2 from orangecontrib.recommendation import TrustSVDLearner

3

4 # Load data and train the model
5 data = Orange.data.Table(’filmtrust/ratings.tab’)

6 trust = Orange.data.Table(’filmtrust/trust.tab’)

7 learner = TrustSVDLearner(num_factors=15, num_iter=25, learning_rate=0.07,

8 lmbda=0.1, social_lmbda=0.05, trust=trust)

9 recommender = learner(data)

10

11 # Make predictions
12 prediction = recommender(data[:3])

13 print(prediction)

So far, I have shown how to train and work with rating models. But what if we want to train
a ranking model? This case is a little bit different. To explain it, let’s make recommendations for
a dataset in which only binary relevance is available. Specifically, the CLiMF model will suit our
needs.

1 import Orange

2 import numpy as np

3 from orangecontrib.recommendation import CLiMFLearner

4

5 # Load data
6 data = Orange.data.Table(’epinions_train.tab’)

7

8 # Train recommender
9 learner = CLiMFLearner(num_factors=10, num_iter=10, learning_rate=0.0001,

10 lmbda=0.001)

11 recommender = learner(data)

12

13 # Make recommendations
14 recommender(X=5)

15 >>> [494, 803, 180, ..., 25520, 25507, 30815]

Similarly, if we want to evaluate our model with MeanReciprocalRank (for example), we can
do it like this:

1 import Orange

2

3 # Load tes t
4 dataset_testdata = Orange.data.Table(’epinions_test.tab’)

5

48 Software developed

6 # Sample users
7 num_users = len(recommender.U)

8 num_samples = min(num_users , 1000) # max. number to sample
9 users_sampled = np.random.choice(np.arange(num_users), num_samples)

10

11 # Compute Mean Reciprocal Rank (MRR)
12 mrr, _ = recommender.compute_mrr(data=testdata , users=users_sampled)

13 print(’MRR: %.4f’ % mrr)

14 >>> MRR: 0.3975

4.2.9. Widgets

Orange Widgets are components in Orange Canvas, a visual programming environment of Or-
ange. They represent some self-contained functionalities and provide a graphical user interface
(GUI). Widgets communicate with each other and pass objects through communication channels
to interact with other widgets.4

For this add-on, each widget belongs to the Recommendation category and each one of them
has an associated priority within that category. Currently, there are just four widgets available in
the last release (v0.1.3):

Figure 4.8: Widgets in the Recommendation category

4.2.10. Getting started

First of all, we need to start Orange3 app (GUI). Then, we only have to drag&drop widgets
creating the workflow we need for our purposes. But enough theory, so let’s get started!

4.2.10.1. Training a model

To train a model we have to load the data as described above and connect it to the learner. (Don’t
forget to click apply)

Figure 4.9: Feeding a model with ratings

4Orange Development 3 documentation - Widgets

4.2 Orange3-Recommendation 49

If the model uses side information, we only need to add an extra file.

Figure 4.10: Side/Trust information

In addition, we can set the parameters of our model by double-clicking it:

Figure 4.11: TrustSVD settings

By using a fixed seed, we make random numbers predictable. Therefore, this feature is useful
if we want to compare results in a deterministic way.

50 Software developed

4.2.10.2. Cross-Validation

Cross-Validation in Orange3 is as simple as it seems. The only thing to point out is that side
information must be connected to the model we’re evaluating.

Figure 4.12: Cross-Validation flow

Still, cross-validation is a robust way to see how our model will performs under different
samples. I consider that it’s a good idea to check how our model performs with respect to the
baseline. This presents a negligible overload* in our pipeline and makes our analysis more robust.
(*For 1,000,000 ratings, it can take 0.027s).

To do so, we can add a baseline leaner to Test&Score and select the model we want to apply.

Figure 4.13: TrustSVD settings

4.2.10.3. Making recommendations

Then, we can make recommendations following the same pipeline as we would with the other
widgets in Orange3.

4.2 Orange3-Recommendation 51

Figure 4.14: TrustSVD settings

4.2.10.4. Analyzing low-rank matrices

Finally, we can output the resulting low-rank matrices after training our model so that they can be
studied.

Figure 4.15: Low-rank matrices

Once we’ve output the low-rank matrices, we can play around the vectors in those matrices
to discover hidden relations or understand the known ones. For instance, here we plot vector 1
and 2 from the item-feature matrix by simply connecting Data Table with selected instances to the
widget Scatter Plot.

52 Software developed

Figure 4.16: Visualizing items

Using similar approaches we can discover pretty interesting things like the similarity between
movies or users, how movie genres relate to each other, changes in users’ behavior, popularity of
movies risen due to commercial campaigns, and many others.

Finally, a simple pipeline to do all of the above can be something like this:

Figure 4.17: Recommendation workflow

On the left side we connected several models to the widget Test&Score in order to cross-
validate them. Later, we trained a SVD++ model, made some predictions, got the low-rank matri-
ces learned by the model and plotted some vectors of the Item-feature matrix.

4.3 Orange3-Educational 53

Additionally, a more comprehensive tutorial can be found at:

• Blog: http://blog.biolab.si/2016/08/19/making-recommendations/

• Documentation: http://orange3-recommendation.readthedocs.io/en/latest/user/tutorial.html

4.3 Orange3-Educational

Orange3-Educational is an educational add-on for machine learning and data mining in Orange3.

This add-on demonstrates several key data mining and machine learning procedures. There-
fore, it is oriented towards beginners and teachers, so beginners can easily understand the inner
working of key algorithms in the data mining, and teachers can visually explain these algorithms.

Figure 4.18: Orange3-Educational

4.3.1. Extension

In order to get a better understanding of the behavior of SGD optimizers under different set of
problems, the Gradient Descent widget was extended to support this type of analysis.

Hence, it was extended to visualize the following optimizers: Vanilla SGD, Momentum, Nes-
terov Momentum, AdaGrad, RMSProp, AdaDelta, Adam and Adamax.

http://blog.biolab.si/2016/08/19/making-recommendations/
http://orange3-recommendation.readthedocs.io/en/latest/user/tutorial.html

54 Software developed

Figure 4.19: Gradient Descent Widget

So that these counter lines could be plotted, we have used an algorithm known as Marching
squares, which allow us to generates contours for a two-dimensional scalar field[36]. The exact
description of this algorithm is out of the scope of this project, but to grasp the intuition under it,
it could be summarized as:

1

2 3

1 1 1 1

1

1

1

1 1 1 1 1

1

1

1

3

3

3 3

2 2

2

1

1

1

1

1

1

1 1 1

0 0 0 0 0

0

0 0

0 0 0 0 0

00

0

13 12 12 14

9 0 0 6

9

11

0

3

0

3 7

6

1

2 3

1 1 1 1

1

1

1

1 1 1 1 1

1

1

1

3

3

3 3

2 2

2

Case 0

Case 5

Case 8

Case 13

Case 11

Case 14

Case 6

Case 1 Case 2

Case 4

Case 9

Case 12 Case 15

Case 10

Case 7

Case 3

1 2

48

Give every cell a

number based on

which corners are

true/false

Look up the contour

lines in the database

and put them in

the cells

Look at the original

values and use linear

interpolation to

determine a

more accurate position

of all the line end-points

Threshold

with iso-value

Binary image

to cells

Look-up table contour lines

Figure 4.20: Marching squares algorithm[36]

CHAPTER 5

Experiments and Results

5.1 Datasets

Most of the algorithms have been tested with the main datasets used in each one of the original
papers in which the model was presented. In addition, we have benchmarked all the algorithms
implemented using popular datasets that exploit specific strengths of each model.

Table 5.1: Datasets overview

Dataset Basic data User context SourceUsers Items Ratings Scale Density Users Links Type
FilmTrust 1,508 2,071 35,497 [0.5, 4.0] 1.14% 1,642 1,853 Trust LibRec
MovieLens100K 943 1,682 100,000 [1, 5] 6.30% - - - GroupLens
MovieLens1M 6,040 3,706 1,000,209 [1, 5] 4.47% - - - GroupLens
MovieLens10M 71,567 10,681 10,000,054 [1, 5] 1.308% - - - GroupLens
Epinions* 4,718 49,288 23,590 [0*, 1] 0.0101% - - - Trustlet

5.2 Performance Comparison

In this section, I benchmark the implemented models in Orange3 against popular datasets. All
initializations have been computed in a deterministic way using 42 as a random seed. The reason
behind this is simply to consistently evaluate the performance of the model without the interference
of stochastics. In other words, by using a fixed seed, we make random numbers predictable.
Therefore, we can compare results in a deterministic way.1

5.2.0.1. Rating

5.2.0.1.1. FilmTrust FilmTrust is a small dataset crawled from the entire FilmTrust website in
June, 2011.2

This dataset contains user-item ratings and a trust-network matrix made up by trusters and
trustees.

Additional information:

• Loading time: 0.748s

• Training dataset: users=1,508; items=2,071; ratings=35,497; sparsity: 1.14%

1More information: http://orange3-recommendation.readthedocs.io/en/latest/performance/benchmarks.html
2Librec.net

55

56 Experiments and Results

• Optimization: No optimizers for SGD were used.

Table 5.2: Filmtrust benchmark results

Algorithm RMSE MAE Train time Settings
Global Average 0.919 0.715 0.000s -
Item Average 0.861 0.674 0.000s -
User Average 0.785 0.606 0.000s -
User-Item Baseline 0.738 0.566 0.001s -

BRISMF 0.712 0.551 0.820s/iter
num_factors=10; num_iter=15; learning_rate=0.01;
lmbda=0.1

SVD++ 0.707 0.546 1.974s/iter
num_factors=10; num_iter=15; learning_rate=0.01;
lmbda=0.1;

TrustSVD 0.677 0.520 3.604s/iter
num_factors=10; num_iter=15; learning_rate=0.01;
lmbda=0.12; social_lmbda=0.9

5.2.0.1.2. MovieLens100K GroupLens Research has collected and made available rating data
sets from the MovieLens website (http://movielens.org). The data sets were collected over various
periods of time, depending on the size of the set3.

Basically, it contains user-item information, timestamps, and a few demographic parameters.

Additional information:

• Loading time: 0.748s

• Training dataset: users=943; items=1,682; ratings=100,000; sparsity: 6.30%

• Optimization: No optimizers for SGD were used.

Table 5.3: MovieLens100K benchmark results

Algorithm RMSE MAE Train time Settings
Global Average 1.126 0.945 0.001s -
Item Average 1.000 0.799 0.001s -
User Average 1.031 0.826 0.001s -
User-Item Baseline 0.938 0.738 0.001s -

BRISMF 0.810 0.642 2.027s/iter
num_factors=15; num_iter=15; learning_rate=0.07;
lmbda=0.1

SVD++ 0.823 0.648 7.252s/iter
num_factors=15; num_iter=15; learning_rate=0.02;
bias_learning_rate=0.01; lmbda=0.1; bias_lmbda=0.007

5.2.0.1.3. MovieLens1M GroupLens Research has collected and made available rating data
sets from the MovieLens website (http://movielens.org). The data sets were collected over various
periods of time, depending on the size of the set30.

Basically, it contains user-item information, timestamps, and a few demographic parameters.

Additional information:

• Loading time: 5.144s

• Training dataset: users=6,040; items=3,706; ratings=1,000,209; sparsity: 4.47%

• Optimization: No optimizers for SGD were used.

3GroupLens.org

5.2 Performance Comparison 57

Table 5.4: MovieLens1M benchmark results

Algorithm RMSE MAE Train time Settings
Global Average 1.117 0.934 0.010s -
Item Average 0.975 0.779 0.018s -
User Average 1.028 0.823 0.021s -
User-Item Baseline 0.924 0.727 0.027s -

BRISMF 0.886 0.704 19.757s/iter
num_factors=15; num_iter=15; learning_rate=0.07;
lmbda=0.1

SVD++ 0.858 0.677 98.249s/iter
num_factors=15; num_iter=15; learning_rate=0.02;
bias_learning_rate=0.01; lmbda=0.1; bias_lmbda=0.007

5.2.0.1.4. MovieLens10M GroupLens Research has collected and made available rating data
sets from the MovieLens website (http://movielens.org). The data sets were collected over various
periods of time, depending on the size of the set30.

Basically, it contains user-item information, timestamps, and a few demographic parameters.

Additional information:

• Loading time: 55.312s

• Training dataset: users=71,567; items=10,681; ratings=10,000,054; sparsity: 1.308%

• Optimization: No optimizers for SGD were used.

Table 5.5: MovieLens10M benchmark results

Algorithm RMSE MAE Train time Settings
Global Average 1.060 0.856 0.150s -
Item Average 0.942 0.737 0.271s -
User Average 0.970 0.763 0.293s -
User-Item Baseline 0.877 0.677 0.393s -

BRISMF - - 230.656s/iter
num_factors=15; num_iter=15; learning_rate=0.07;
lmbda=0.1

5.2.0.2. Ranking

5.2.0.2.1. Epinions This dataset is a modified version of the original Epinions dataset that only
contains a binary relation of user-item interaction. In other words, it’s a sparse boolean matrix
which known interactions are set to 1, as opposed to missing information that remains unknown
with 0 as an implicit value.

Additional information:

• Loading time (training dataset): 0.094s

• Loading time (test dataset): 1.392s

• Training dataset: users=4,718; items=49,288; ratings=23,590; sparsity: 0.0101%

• Testing dataset: users=4,718; items=49,288; ratings=322,445; sparsity: 0.1386%

• Optimization: No optimizers for SGD were used.

Table 5.6: Epinions benchmark results

Algorithm MRR (train) MRR (test) Train time Settings

CLiMF 0.0758 0.3975 1.323s/iter
num_factors=10; num_iter=10; learning_rate=0.0001;
lmda=0.001

58 Experiments and Results

5.3 Visualization techniques

5.3.1. SGD optimizers

As it has been previously discussed in section 4.3.1, this extension allows us to visualize the
behavior of different optimization techniques under different problems and configurations.

Generally, there is a trade-off between speed and determinism, this means that stochastic ap-
proaches converge much faster than deterministic ones but at the same time we can have more
problems if not done correctly. In practice, SGD approaches are not an option so we have to play
around with different optimizers and tunings to find one that suits our needs.

For example, these are a few experiments that we have done, initializing the solution always at
the same point. It is not hard to see that some SGD optimizers converge much faster and smoothly
than others, but this can vary depending on the problem.

Figure 5.1: Gradient Descent; α = 1.0 Figure 5.2: Vanilla SGD; α = 1.0

Figure 5.3: Nesterov Momentum; α = 1.0 Figure 5.4: RSMProp; α = 1.0

If we increase the learning rate, we can find a (local) minimum in just a few iterations, but we
have to be careful because if the learning rate is too large, the solution might diverge.

5.3 Visualization techniques 59

Figure 5.5: AdaGrad; α = 5.0 Figure 5.6: Adamax; α = 5.0

Now, let’s take a look at these two new maps where we have changed the loss surface and a few
settings. For the one on the left, the optimizer finds the minimum directly with no problems. On
the contrary, the optimizer used in the second image first diverges and then corrects its deviation
reaching the minimum again. (This last event might not happen in a different scenario)

Figure 5.7: Different loss map Figure 5.8: Small divergence

5.3.2. Latent factors

There are many ways to analyze the resulting low-rank matrices of the trained models, so here we
are going to describe the very basic idea of this analysis.

First of all, we need to know what do we want to discover. For the sake of this example, we
are going to try to find whether movie genres cluster in a specific way or not.

To do so, in the image below we have plotted just the top k most popular movies in 2-
dimensions to make it easier to find patterns. Once they are plotted, we can use a different color
to identify a specific genre category. In addition, we can play around with its settings by changing
the colored category and the latent factors used as axes so that new patterns can emerge.

Of course this a pretty simple technique just to do an exploratory analysis and see how difficult
could be to extract relevant information from this set.

60 Experiments and Results

Figure 5.9: Scatter plot (Movies)

If the previous analysis hasn’t return anything relevant, we can try to take a similar approach
but this time using a linear projection of n latent factors. Now we see that these two categories
(fantasy and sci-fi) follow a slightly different cluster, but this could be simply due to the frequency
of the movies in their respective category, because of noise in the data or many other things.

Figure 5.10: Linear projection (Fantasy) Figure 5.11: Linear projection (Sci-fi)

To overcome this previous problem, we can perform an informative projection using clustering
algorithms (this time I used K-means) so that it scores the clusters found in the projected view.
As extra information, I like the Silhouette Coefficient which is a method of interpretation and
validation of consistency within clusters of data.

5.3 Visualization techniques 61

Figure 5.12: Informative projections

Now that we have scored the latent factors as axis (for a specific category), we can repeat the
initial analysis using the resulting axes so that we can take a cleaner look at our visualization.

Figure 5.13: Ranked clusters (Crime) Figure 5.14: Ranked clusters (Romance)

If this does not result, we can try using different visualization techniques such as heatmaps,
dendrograms, sieve diagrams,...

62 Experiments and Results

Figure 5.15: Scatter map

Finally, if any of the above techniques results in solid conclusions or patterns, then we can
work in the normalization of the low-rank matrices, side information, modify programmatically
some values, combine interesting data with our results,... and so on, until either we find an inter-
esting pattern or we prove that we cannot extract relevant information using this model.

Additionally, I’d like to point out that a Non-Negative Matrix Factorization tends to work
better for this kind of analysis, but at the same time there are some other properties that we might
lose.

CHAPTER 6

Conclusions and future work

This work proposed a research plan for Collaborative Filtering (CF) along with the development
of a recommendation library for Orange3 Data Mining.

First I introduced the state-of-the-art for CF as well as the main types of CF, challenges, mod-
els for matrix factorization (MF), evaluation and optimization techniques. Then I described the
architecture and implementation of a library for CF, and a few non-technical aspects related with
its diffusion in an open source community. Additionally, I presented an extension for Orange3-
Educational that allows to visualize the behavior of several SGD optimizers under different prob-
lems and settings. Finally, I benchmarked my library using the same datasets as the original papers
in which the implemented algorithms were described for the first time. And later, I described a
few visualization techniques for the stochastic optimizers in order to perform analysis over the
resulted latent factors.

Future work involves a few interesting directions. First, I would like to develop a model to suit
domains with side information, explicit and implicit trust information, and also, able to take into
account the temporal dynamics. The intended model could be initially defined as something like
this:

r̂ui(t) = µ +bu(t)+bi(t)+qi
>

(
pu(t)+

1√
|N(u)| ∑

j∈N(u)
y j +

1√
|T (u)| ∑

v∈T (u)
wv

)
(6.1)

Second, it is interesting to transform the previously described model to be able to optimize
it by maximizing the mean reciprocal rank (MRR) as it is done in CLiMF. In order to do so, we
need to smooth the reciprocal rank function. To achiev this, we can take some direct continuous
approximations such as the logistic function to transform the previous discrete function to a con-
tinuous function. Then, we just need to make sure that this function can be now optimized using
gradient-based approaches. A way to work around this problem is by deriving a lower bound,
therefore, applying the Jensen’s inequality and taking advantage of the concavity and monotonic-
ity of logarithms we can check for the existence of this bound. Finally, we can simply maximize
this function or minimize its negative version.

63

Bibliography

[1] Loren Terveen and Will Hill Beyond Recommender Systems: Helping People Help Each
Other. Addison-Wesley. p. 6. Retrieved 16 January 2012.

[2] Burr Settles Active Learning Literature Survey. Computer Sciences Technical Report 1648,
2010.

[3] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas and Nuria Oliver. Multiverse
Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Fil-
tering. ACM Recommender Systems 2010.

[4] Daniel M. Fleder and Kartik Hosanagar. Blockbuster Culture’s Next Rise or Fall: The Impact
of Recommender Systems on Sales Diversity. 2007.

[5] Xiaoyuan Su and Taghi M. Khoshgoftaar A survey of collaborative filtering techniques.
Advances in Artificial Intelligence archive, 2009.

[6] Simon Funk. Netflix Update: Try This at Home. Dec, 2006 http://sifter.org/~simon/journal/
20061211.html

[7] Yehuda Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filter-
ing Model. KDD 2008.

[8] Guibing Guo, Jie Zhang, Neil Yorke-Smith. TrustSVD: Collaborative Filtering with Both the
Explicit and Implicit Influence of User Trust and of Item Ratings. AAAI 2015.

[9] Yehuda Koren. Collaborative Filtering with Temporal Dynamics. KDD 2009.

[10] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme. Bayesian
Personalized Ranking from Implicit Feedback. UAI 2009.

[11] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver, Alan Han-
jalic. CLiMF: Learning to Maximize Reciprocal Rank with Collaborative Less-is-More Fil-
tering. RecSys 2012.

[12] Mohsen Jamali, Martin Ester. A Matrix Factorization Technique with Trust Propagation for
Recommendation in Social Networks. RecSys 2010.

[13] Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk. Scalable Collaborative
Filtering Approaches for Large Recommender Systems. RecSys 2012.

[14] Stephen Gower. Netflix Prize and SVD. 2014.

[15] Yehuda Koren, Robert Bell and Chris Volinsky. Matrix Factorization Techniques for Recom-
mender Systems. IEEE 2009.

[16] Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl. Item-based Collaborative
Filtering Recommendation Algorithms. WWW10 2001.

65

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html

66 BIBLIOGRAPHY

[17] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.

[18] Toby Segaran. Programming Collective Intelligence. Building Smart Web 2.0 Applications.
O’Reilly Media, August 2007, ISBN 978-0-596-52932-1.

[19] Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman. Mining Of Massive Datasets. Wi-
ley India, 2nd edition, 2016, ISBN-13 978-1316638491.

[20] Ian H. Witten, Eibe Frank, Mark A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 3rd edition (January 20, 2011), ISBN-13 978-
0123748560.

[21] John Duchi, Elad Hazan, Yoram Singer. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. JMLR 2011.

[22] Tieleman, T. and Hinton, G. [Coursera] Neural Networks for Machine Learning, Lecture
6.5 - rmsprop. 2012. http://americanhistory.si.edu/comphist/pr1.pdf.

[23] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012.

[24] Diederik Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization. ICLR 2015.

[25] Zico Kolter Convex Optimization Overview, Oct. 2008.

[26] Bro. David E. Brown The Hessian matrix: Eigenvalues, concavity, and curvature,
BYU–Idaho Dept. of Mathematics. 2014.

[27] Sebastien Bubeck. Nesterov’s Accelerated Gradient Descent https://blogs.princeton.edu/
imabandit/2013/04/01/acceleratedgradientdescent/

[28] Sebastien Bubeck. Revisiting Nesterov’s Acceleration https://blogs.princeton.edu/imabandit/
2015/06/30/revisiting-nesterovs-acceleration/

[29] Glenn Fox Collecting and Connecting Millions of Opinions http://blog.ranker.com/category/
data/data-science

[30] Orange3 https://Github.com/biolab/orange3/wiki/Google-Summer-of-Code

[31] Wikipedia Netflix Prize. https://en.wikipedia.org/wiki/Netflix_Prize

[32] Wikipedia Learning to rank https://en.wikipedia.org/wiki/Learning_to_rank

[33] Brett Romero Data Science: A Kaggle walkthrough - Creating a model http://brettromero.
com/wordpress/data-science-kaggle-walkthrough-creating-model/

[34] Wikipedia Maxima and minima http://commons.wikimedia.org/wiki/File:Extrema_example.
svg

[35] Wikipedia Saddle point https://en.wikipedia.org/wiki/Saddle_point

[36] Wikipedia Marching squares https://en.wikipedia.org/wiki/Marching_squares

http://americanhistory.si.edu/comphist/pr1.pdf
https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
https://blogs.princeton.edu/imabandit/2015/06/30/revisiting-nesterovs-acceleration/
https://blogs.princeton.edu/imabandit/2015/06/30/revisiting-nesterovs-acceleration/
http://blog.ranker.com/category/data/data-science
http://blog.ranker.com/category/data/data-science
https://Github.com/biolab/orange3/wiki/Google-Summer-of-Code
https://en.wikipedia.org/wiki/Netflix_Prize
https://en.wikipedia.org/wiki/Learning_to_rank
http://brettromero.com/wordpress/data-science-kaggle-walkthrough-creating-model/
http://brettromero.com/wordpress/data-science-kaggle-walkthrough-creating-model/
http://commons.wikimedia.org/wiki/File:Extrema_example.svg
http://commons.wikimedia.org/wiki/File:Extrema_example.svg
https://en.wikipedia.org/wiki/Saddle_point
https://en.wikipedia.org/wiki/Marching_squares

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Work Structure

	State of the art
	Overview
	Matrix Factorization Approaches

	Collaborative Filtering
	Types of CF
	Memory-based
	Average-based
	User-based
	Item-based

	Model-based
	Clustering
	Association Rules
	Matrix Factorization
	Restricted Boltzmann Machine (RBMs)
	Recurrent Neural Networks

	Challenges of CF
	Cold Start
	Data sparsity
	Scalability
	Popularity Bias
	Diversity

	Models for Matrix Factorization
	Rating
	BRISMF
	SVD++
	TimeSVD
	TrustSVD

	Ranking
	BPR
	CLiMF

	Evaluation and testing
	Rating
	Ranking

	Optimization
	Gradient descent
	Optimizers for gradient descent
	Stochastic Gradient Descent (SGD)
	Momentum
	Nesterov's Accelerated Gradient (NAG)
	AdaGrad
	RMSProp
	AdaDelta
	Adam
	Adamax

	Non-convexity of MF problems

	Software developed
	Orange3
	Orange3-Recommendation
	Architecture
	Technologies
	Workflow
	Documentation
	Blog
	Tutorials
	Data Representation
	Results from the TrustSVD experiment
	Issue with the Prediction widget

	Scripting
	Widgets
	Getting started
	Training a model
	Cross-Validation
	Making recommendations
	Analyzing low-rank matrices

	Orange3-Educational
	Extension

	Experiments and Results
	Datasets
	Performance Comparison
	Rating
	FilmTrust
	MovieLens100K
	MovieLens1M
	MovieLens10M

	Ranking
	Epinions

	Visualization techniques
	SGD optimizers
	Latent factors

	Conclusions and future work
	Bibliography

