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One point compactification for generalized

quotient spaces

V. Karunakaran and C. Ganesan ∗

Abstract. The concept of Generalized function spaces which

were introduced and studied by Zemanian are further generalized as

Boehmian spaces or as generalized quotient spaces in the recent litera-

ture. Their topological structure, notions of convergence in these spaces

are also investigated. Some sufficient conditions for the metrizability

are also obtained. In this paper we shall assume that a generalized quo-

tient space is non-compact and realize its one point compactification as

a quotient space.
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1. Introduction

Schwartz distribution spaces are generalized in different ways in the litera-
ture. Some of these are “Generalized function spaces” (introduced and studied
in detail by Zemanian see [8]), “Boehmian spaces” (motivated by the concept
of regular operator introduced by Boehme (see [1]) and studied in [3, 4, 5]) and
most recently “The generalized quotient spaces” (see [6])

In [2] the authors introduce the concepts of δ-convergence and ∆-convergence
in these generalized quotient spaces and investigate the behavior of convergence
sequences and the topological properties of these spaces under the quotient
topology. Suitable conditions for metrizability of these spaces are also ob-
tained. It turns out that these generalized function spaces, in general, are not
compact. Further it is also difficult to find out suitable conditions under which
these spaces (under the canonical quotient topology) are locally compact and
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Hausdorff. Thus the problem of realizing the one point compactifications of
these spaces assumes significance. In this paper we shall identify the one point
compactification of a non-compact generalized quotient space as another quo-
tient space. The results in this paper are also motivated by a desire to find
an analogue of the following classical result which can be easily proved. Let X
and Y be locally compact non-compact Hausdorff spaces and p : X → Y be a
quotient map. Let p∗ : X∗ → Y ∗ be the natural extension of p to their respec-
tive one point compactifications. Then p∗ is continuous and hence a quotient
map if and only if p−1(K) is compact in X for every compact K in Y . Thus
under certain conditions the one point compactification of a quotient space be-
comes another quotient space. The analogue of this result in the context of a
generalized quotient space will be studied here. In Section 2 we shall develop
the required preliminaries and in Section 3 we shall state and prove the main
theorem. The conditions under which the one point compactifications of these
generalized quotient spaces can be realized as generalized quotient spaces also
guarantee that the original generalized quotient spaces are locally compact and
Hausdorff.

2. Preliminaries

We shall briefly recall the concept of generalized quotient spaces as described
in [6]. Let X be a non-empty set and let G be a commutative semi-group ac-
ting on X injectively. This means that to every g ∈ G there corresponds an
injective map g : X → X such that (g1g2)(x) = g1(g2(x)) for all g1, g2 ∈ G and
x ∈ X . For g ∈ G and x ∈ X , g(x) denotes the action of g on x in X .

Let A = X×G. For (x, f), (y, g) ∈ A we write (x, f) ∽ (y, g) if g(x) = f(y).
Then ∽ is an equivalence relation in A. We define the space of generalized
quotients as B = B(X,G) = A/ ∽. We denote the equivalence class containing

(x, f) by
[

x
f

]

.

Suppose G fails to act injectively on X then we proceed as follows: Let I
be a non-empty index set and let ∆ ⊂ GI be a semi-group (this only means
that ∆ is closed for the canonical semi-group operation available in GI which
is defined as follows: If α, β ∈ GI then (αβ)(i) = α(i)β(i) for all i ∈ I). For
α ∈ ∆ and x ∈ X define αx ∈ XI by (αx)(i) = α(i)(x), so that each α gives
rise to a mapping from X in to XI . We assume that these maps are injective.
For α ∈ ∆ and ψ ∈ XI we also define (αψ)(i) = α(i)(ψ(i)) so that αψ defines
an element of XI .

Suppose χ ⊂ XI satisfies the following conditions:

a: αx ∈ χ for all α ∈ ∆ and all x ∈ X .
b: αψ ∈ χ for all α ∈ ∆ and all ψ ∈ χ.

Let

A = {(ξ, α)/ξ ∈ χ, α ∈ ∆ and α(i)(ξ(j)) = α(j)(ξ(i)), i, j ∈ I} .
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For (f, φ), (g, ψ) ∈ A we write (f, φ) ∽ (g, ψ) if φ(i)(g(j)) = ψ(j)(f(i)), for all
i, j ∈ I. Then ∽ is an equivalence relation on A. We define the space of gene-
ralized quotients as B = B(χ,∆) = A/

∽
and we shall denote the equivalence

class containing (f, φ) by
[

f(i)
φ(i)

]

.

We shall assume that the reader is familiar with the above construction of
generalized quotient spaces. Further we shall assume the following:

(1) X is a non-compact locally compact Hausdorff space, G is a commu-
tative semi group acting continuously on X (but not necessarily injec-
tively) equipped with a Hausdorff topology.

(2) The mapping Λ : X ×G → X defined by Λ(x, g) = g(x) is continuous
and that Λ−1(K) is compact in X ×G for each compact K in X .

(3) χ ⊂ XI is closed in XI .
(4) ∆ ⊂ GI is compact.

With these assumptions, the constructed generalized quotient space will be
denoted by B. We explicitly assume that such a B is non-compact.

We shall now give an example to show that the above conditions are rea-
lizable. Let X = (−∞,−2] ∪ [2,∞) considered as a subspace of the real line
under the usual topology. Let G = Z \ {0} (the set of all non-zero integers)
with discrete topology. Note that G is a commutative semi-group under usual
multiplication. Let I = N (the set of natural numbers). We shall allow G to
act continuously on X by g(x) = x|n| where g = n ∈ G. Note that even though
G acts continuously on X the action is not injective for any even integer n. It
is now easy to prove the following points.

(1) Λ : X × G → X defined by Λ(x, n) = x|n| is continuous. (Note that
xj → x0 and nj → n0 as j → ∞ imply that sequence nj is eventually
a constant (= n0, say) and hence Λ(xj , nj) → Λ(x0, n0) as j → ∞).

(2) For any compact (and hence bounded) set K in X , Λ−1(K) ⊂ A × B
with A compact in X and B is a finite subset of G and hence Λ−1(K)
is compact.

We shall now take χ = XI so that χ is closed in XI . We shall also take

∆ =
{

(αn) ∈ GN/ αn = 1 for odd n and αn = ±1 for even n
}

⊂ SN

where S = {−1, 1}.
It is now easy to see that ∆ is a semi-group, is closed in SN and that it is

compact because SN is compact. Further each β ∈ ∆ induces an injective map
from X to XN given by (βx)(i) = β(i)(x) as required for the construction of a
generalized quotient space.

We shall need the following lemmas.

Lemma 2.1. Let X be locally compact non-compact Hausdorff space and G a

Hausdorff space. If Λ : X ×G → X is continuous and Λ−1(K) is compact in

X ×G for each K compact in X then g : X → X is continuous and g−1(K) is

compact in X for each K compact in X.
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Proof. Fix g ∈ G. Then g(x) = Λ(x, g) = Λg(x) is continuous in the variable
x. Let K be any compact set in X . Define a mapping F : X → X × G by
F (x) = (x, g). Then we have (Λ ◦ F )(x) = g(x) ∀ x ∈ X . Now

g−1(K) = {x ∈ X/g(x) ∈ K}

= (Λ ◦ F )−1(K)

= F−1(Λ−1(K)) = F−1(H) (where H = Λ−1(K) ⊂ X ×G is compact)

= {x ∈ X/F (x) ∈ H}

= {x ∈ X/(x, g) ∈ H}

= π(H ∩ (X × {g})) where π : X ×G→ X is defined by π(x, h) = x

Since X × G is Hausdorff and H is compact subset of X × G, H is closed in
X × G. It is clear that X × {g} is closed in X × G. Hence H ∩ (X × {g}) is
closed in X × G. But H ∩ (X × {g}) ⊂ H and H is closed in X × G implies
that H ∩ (X × {g}) is closed in H and hence H ∩ (X × {g}) is compact in H .
Thus H ∩ (X × {g}) is compact in X ×G. Now the continuity of π will show
that g−1(K) = π(H ∩ (X × {g})) is compact in X . �

Note that the condition on Λ already implies that G acts continuously on
X , a fact which we have explicitly assumed.

Lemma 2.2. Let X, G, Λ and g be as in Lemma 2.1. Let X∗ be the one point

compactification of X and let g∗ : X∗ → X∗ be the natural extension of g to

X∗ ie., g∗|X = g and g∗(∞) = ∞. Then g∗ is continuous.

Proof. Follows easily using Lemma 2.1 and is left to the reader. �

Lemma 2.3. Let X, G and Λ be as in Lemma 2.1. The mapping Λ∗ : X∗×G→
X∗ defined by

Λ∗(x, g) = g∗(x) =

{

Λ(x, g) if x ∈ X
g∗(∞) = ∞ if x = ∞

is continuous

Proof. Follows easily using the property of Λ and is left to the reader. �

3. Construction of a new generalized quotient space

In this section we shall define a new generalized quotient space B∗ which
will be shown to be the one point compactification of the generalized quotient
space B constructed in Section 2.

Let A∗ = {(f, α) ∈ χ∗ × ∆/ α(i)(f(j)) = α(j)(f(i)) ∀ i, j ∈ I}, where χ∗ =

[closure of χ in X∗I

] ∪ {f∞} with f∞ : I → X∗ is defined by f∞(i) = ∞
∀ i ∈ I. Define a relation ∼ on A∗ as follows: (f, α) ∼ (g, β) if α(i)(g(j)) =
β(j)(f(i)) ∀ i, j ∈ I. It is clear that this relation ∼ is an equivalence relation

in A∗ (note that each element α ∈ ∆ gives raise to a map α∗ : X∗ → X∗I

defined by α∗|X = α and α∗(∞) = f∞ which is easily seen to be injective.



One point compactification for generalized quotient spaces 25

This observation is indeed crucial to the proof of the fact that ∼ is transitive
in the same way as in the proof of the transitivity of ∽ in A). We now observe
the following properties of χ∗.

a: αx ∈ χ∗ for all α ∈ ∆ and all x ∈ X∗.
b: αψ ∈ χ∗ for all α ∈ ∆ and all ψ ∈ χ∗.

Indeed property (a) can be easily proved where as property (b) can be proved

using the properties of net convergence in X∗ and X∗I

.

Now in a canonical manner we can define the generalized function space B∗

by B∗ = A∗|∼. We shall also give the quotient topology to B∗ given by the

map p∗ : A∗ → B∗ defined by p∗((f, α)) =
[

f(j)
α(j)

]

.

Lemma 3.1. A∗ = A ∪ {(f∞, α)/ α ∈ ∆}.

Proof. It is clear that A∪{(f∞, α)/ α ∈ ∆} ⊂ A∗. Let (f, α) ∈ A∗. If f = f∞
then there is nothing to prove. Therefore assume f(i0) 6= ∞ for some i0 ∈ I.
Then α(i)(f(j)) = α(j)(f(i)) ∀ i, j ∈ I will imply that f(i) 6= ∞ ∀ i ∈ I.
Hence f ∈ XI . But (f, α) ∈ χ∗ × ∆ will imply that f ∈ χ∗ ie., f is in

the closure of χ in X∗I

. This implies that f is in the closure of χ in XI

(indeed if W = Vα1
× Vα2

× · · ·Vαn
×

∏

X is any basic open set of f in XI

then W ∗ = Vα1
× Vα2

× · · ·Vαn
×

∏

X∗ is a basic open set of f in X∗I

.
Hence W ∩ χ = W ∗ ∩ χ 6= φ). Now χ is closed in XI implies that (f, α) ∈
χ × ∆ and as α(i)(f(j)) = α(j)(f(i)) ∀ i, j ∈ I, (f, α) ∈ A. Thus A∗ ⊂
A∪ {(f∞, α)/ α ∈ ∆}. This completes the proof. �

Lemma 3.2. A is open in A∗.

Proof. Equivalently we shall show that the set D = {(f∞, α)/ α ∈ ∆} is closed
in A∗. Let (f, α) ∈ A∗ be a limit point of D. Suppose f(i0) 6= ∞ for some
i0 ∈ I. Then there are open sets U and V in X∗ containing f(i0) and ∞
respectively such that U ∩ V = φ. Then it is clear that W1 = U ×

∏

i6=i0

X∗

is a basic open neighbourhood of f in X∗I

such that f∞ 6∈ W1. If W2 is any
open set in GI containing α then W1 ×W2 is an open set containing (f, α) in

X∗I

× GI but not containing any element of the form (f∞, β), β ∈ ∆. This
shows that (f, α) is not a limit point ofD in A∗ which is a contradiction. Hence
f(i) = ∞ ∀ i ∈ I and hence (f, α) = (f∞, α) ∈ D. Thus D is closed in A∗. �

Lemma 3.3. A∗ is a compact Hausdorff space.

Proof. Since X∗I

× GI is Hausdorff and a subspace of a Hausdorff space is
Hausdorff, A∗ is Hausdorff. Since A∗ ⊂ χ∗ × ∆ which is compact (note that

χ∗ is a closed subset of the compact space X∗I

and ∆ is compact), we merely
show that A∗ is closed in χ∗ × ∆.

Let (f, α) ∈ χ∗ × ∆ be a limit point of A∗. Then there is a net (fγ , αγ)
of points from A∗ such that (fγ , αγ) → (f, α) in χ∗ × ∆. From this we have
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fγ(i) → f(i) in X∗ and αγ(i) → α(i) in G for each i ∈ I. Since (fγ , αγ) ∈ A∗

we have , αγ(i)(fγ(j)) = αγ(j)(fγ(i)) ∀ i, j ∈ I. Using Lemma 2.3 we now have
α(i)(f(j)) = α(j)(f(i)) for each i, j ∈ I. Hence (f, α) ∈ A∗. This completes
the proof. �

Lemma 3.4. The set kerp∗ = {((f, α), (g, β)) ∈ A∗ ×A∗/ (f, α) ∼ (g, β)} is

closed in A∗ ×A∗.

Proof. Follows using net convergences and arguments similar to the one given
in Lemma 3.3 and is left to the reader. �

Let us now recall the following theorem (see [7] , pp 183).

Theorem 3.5. Let X be a non-compact topological space. Then X is locally

compact and Hausdorff if and only if there exists a topological space Y satisfying

the following conditions

(1) X is a subspace of Y .

(2) The set Y \X consists on a single point.

(3) Y is a compact Hausdorff space.

We now make the following observations.

(1) (f, α) ∼ (g, β) in A∗ if and only if (f, α), (g, β) ∈ A and (f, α) ∼ (g, β)

or (f, α) = (f∞, α), (g, β) = (f∞, β). In particular B∗ = B∪
{[

f∞(j)
α(j)

]}

.

(2) Since X is a subspace of X∗ (ie., the original topology of X is the same
as the subspace topology of X in X∗), the product space XI ×GI is a

subspace of the product space X∗I

×GI . In particular A is a subspace
of A∗ (in the above sense) and hence B is a subspace of B∗.

(3) B∗ = p∗(A∗) ⇒ B∗ is compact (note that A∗ is compact and p∗ is
continuous).

(4) Since kerp∗ is closed (Lemma 3.4) and A∗ is a compact Hausdorff space
it follows that B∗ is Hausdorff.

(5) Since B∗ \ B is a singleton and B is non-compact we have B = B∗.

Using all the above observations together with Theorem 3.5 we now get the
following main theorem.

Theorem 3.6. B is locally compact, Hausdorff and its one point compactifi-

cation is B∗.
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