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Random selection of Borel sets

Bernd Günther

Abstract. A theory of random Borel sets is presented, based on

dyadic resolutions of compact metric spaces. The conditional expecta-

tion of the intersection of two independent random Borel sets is inves-

tigated. An example based on an embedding of Sierpiński’s universal

curve into the space of Borel sets is given.
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1. Introduction

The theory of random sets is almost exclusively concerned with random
closed sets [11, 15, 9], the subject of random Borel sets hardly being touched
[11, Ch.I§2.5,p.41]. Probably the most elaborate exposition was given by Straka
and Štěpán [17] where it was observed that the distribution of a random Borel
subset A of the unit segment is uniquely determined by the distribution of
its inspection process At := λ ([0, t] ∩A), where λ denotes Lebesgue measure
on I; but no characterization of the inspections processes occuring thus was
given. This left the characterization of distributions essentially open. Also,
the concept of inspection process does not easily generalize from I to other
compact metric spaces.

The well studied random closed sets are usually considered as elements of
the hyperspace equipped with the Vietoris topology or some variation. We can
conceive of situations where this design choice is inadequate. For instance, a
probability measure on the compactum defines a function on its hyperspace
that is upper semicontinuous but not continuous: Any closed subset can be
arbitrarily closely approximated in the Vietoris topology by finite sets and
hence by subsets of measure 0. In Robbins’ classical papers [12, 13] probabilis-
tic properties of a randomly selected subset A are derived from the function
F (x) := P (x ∈ A); however, unless the point x carries mass we would prefer
to consider the sets A and A \ {x} equivalent, and thus events like “x ∈ A” for
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fixed x and random A would be probabilistically meaningless. In applications
such as image analysis using wavelets 0-sets are generally neglected. Allowing
a random set to assume its values among Borel subsets, not just closed ones,
leads to greater variety but reduces complexity by factoring out 0-sets.

We must therefore emphasize that the method we are going to propose is not
a generalization of the conventional one from closed subsets to Borel subsets,
but a different approach that is intended for a different sort of applications.
For instance, we are going to ask the following:

Question 1. If two players independently choose random subsets A and B

and announce their measures µ(A) and µ(B), what knowledge can we derive
about µ(A ∩B)?

A modification of this would be appropriate if A is a picture (hence deter-
ministic) submitted over a video channel and B is a random distortion:

Question 2. If A is known and B is random, what is the conditional distri-
bution of µ(A ∩B) given µ(B)?

This raises the question of invariance: If we were sure that the answer to
question 2 depended only on µ(A), that is: only on the size of A but not its
location, then both questions would be equivalent. The reader will probably
observe that in the finite case both questions lead to the same hypergeometric
distribution. Unfortunately, in the infinite case we have to settle for a slightly
weaker property, because complete location invariance will be shown to be
impossible.

The general setting of our paper will be as follows:

Standing Assumption. Let X denote a compact metric space equipped with
a non-atomic Borel probability measure such that Suppµ = X . Thus µ has
vanishing point masses and the only open 0-subset is the empty set1.

In section 2 the measure algebra Y (µ) of all Borel subsets of X (canceling
those with µ-measure 0) will be presented in an abstract setting. A geometric
model for this space will be developed in section 5, but first we need two
digressions. The first one is about isometries of Cantor’s discontinuum, which
will be utilized in context of the invariance property mentioned above. Larger
sets of automorphisms have been studied (eg. [14]), but it will follow from
section 9 that they wouldn’t be an improvement in our context. In section 4
we review Sierpińskis “intermediate value” theorem for measures [16] and the
Hausdorff-Alexandroff theorem representing compacta as continuous images
of the Cantor space ([1, Ch.II,§6,Thm.VI’] [6, Ch.6,§26.2]); in combination
they state that any compact metric probability space is (more or less) measure
isomorphic to Cantor’s discontinuum equipped with Haar measure. In section 5
we will study a particular subspace Y of the Hilbert cube that will be shown to
be isomorphic to Y (µ) in section 6, using the methods of section 4. This enables

1It can be shown that a measure with these properties exists if and only if X is dense in
itself.
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us to give a nice description of probability measures on Y (µ) in section 7.
Section 8 is devoted to the study of question 1. The impossibility to reach
the idealized design goal of complete location invariance will be established in
section 9. The space Y (µ) contains something like a 1-skeleton that will be
shown to be homeomorphic to Sierpinśki’s universal curve in section 10; this
also provides us with the easiest non trivial example of a probability measure
on Y (µ). The relation between random Borel and random closed sets will be
investigated in section 11.

2. The space of Borel sets

We denote by Y (µ) ⊆ L2(µ) the subset of all Borel sets in X , identifying a
set A with its characteristic function χA and considering two sets as equivalent
if their symmetric difference has measure 0. From L2(µ) it inherits the Hilbert
space topology and the weak topology. In addition, Y (µ) is an Abelian group
under the operation △ “symmetric difference” with ∅ as 0-element and with
−A = A for all A ∈ Y (µ). We define a group valuation on Y (µ) by |A| := µ(A);
evidently we have |A1△A2| ≤ µ (A1 ∪A2) ≤ |A1| + |A2|. Thus Y (µ) is a
topological group.

Notice that this space is the Lebesgue measure algebra familiar from de-
scriptive set theory [8, Exc.17.2,p.104].

Lemma 2.1. All three topologies on Y (µ) coincide:

(1) The group topology defined above.
(2) The Hilbert space topology induced from L2(µ).
(3) The weak topology induced from L2(µ).

Y (µ) is norm closed in L2(µ).

Proof. The first topology is induced by the metric d1(A, B) = µ (A△B) =
µ (A \B) + µ (B \A), the second one by d2(A, B) = ‖χA − χB‖2 =
√

µ (A \B)
2

+ µ (B \A)
2
. Therefore 1

2d1 ≤ d2 ≤ d1, and the two metrics

are equivalent.
Trivially, the weak topology on Y (µ) is coarser than the norm

topology, and we have to show the reverse relation. For A ∈ Y (µ) and ε > 0
the sets U1 :=

{

B | |〈χA, χB − χA〉| <
ε
2

}

=
{

B | µ (A \B) < ε
2

}

and U2 :=
{

B | |〈χ∁A, χB − χA〉| <
ε
2

}

=
{

B | µ (B \A) < ε
2

}

are weak neighborhoods of
A such that U1 ∩ U2 ⊆ {B | µ (A△B) < ε}, hence the weak topology is finer
than the group topology on Y (µ).

The last statement is obvious. �

We observe that the set operations ∩ and ∁ as well as the measure function
µ are continuous on Y (µ).

As an auxiliary object we denote by Z(µ) ⊂ L2(µ) the set of all functions
0 ≤ f ≤ 1. This set inherits the norm topology and the weak topology from
L2(µ); the latter is compact by the Banach-Alaoglu theorem.
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Lemma 2.2. Y (µ) is weakly dense in Z(µ).

Proof. Consider a function g ∈ Z(µ) and a weak neighborhood of g defined
as the set of all h ∈ Z(µ) such that |〈fi, h− g〉| < 1 with suitable functions
f1, . . . fn ∈ L2(µ). Without loss of generality (observe ‖h− g‖2 ≤ 1) we may
assume that each fi is a step function fi =

∑mi

j=1 αijχAij
and that g is a step

function g =
∑mn+1

j=1 αn+1,jχAn+1,j
with 0 ≤ αn+1,j ≤ 1 and Aij ∩ Aik = ∅

for j 6= k. If B1, . . . BN is the collection of all intersections Aij ∩Aℓk with non

zero measure, then we may write fi =
∑N

j=1 βijχBj
and g =

∑N
j=1 γjχBj

with
0 ≤ γj ≤ 1 and Bj ∩Bk = ∅ for j 6= k.

Choose points xj ∈ Bj . Then by our standing assumption 0 = µ ({xj}) <

µ (Bj) and therefore Sierpiński’s mean value theorem ensures the existence of

sets Cj ⊆ Bj with µ (Cj) = γjµ (Bj).
⋃N

j=1 Cj ∈ Y (µ) is contained in the given
weak neighborhood of g. �

There are two intrinsic characterizations of Y (µ) as a subset of Z(µ). First:
Y (µ) is the extreme set of the convex set Z(µ), because any f ∈ Z(µ) can
be written as f = 1

2f2 + 1
2

[

1− (1− f)2
]

. Second: pointwise multiplication
provides us with a product on Z(µ) (let’s not worry about its continuity here),
and Y (µ) is the set of idempotents. Furthermore, on Y (µ) the product equals
the intersection of sets. These observations will be utilized in section 5.

Y (µ) can easily be identified as a weak Gδ in Z(µ); in particular it is Polish
(cf. [8, Exc.17.43,p.117] and [2, Ch.IX,§6.1,Thm.1])

It should be observed that lemma 2.2 states a much stronger property
than would be obtained by an application of the Krein-Milman theorem [3,
Ch.II,§7.1,Thm1], which would merely assure us that the convex hull of Y (µ)
is weakly dense in Z(µ). However, the property is familiar from Lindenstrauss’
proof of Liapounoff’s theorem [10], applied to the measures fiµ.

3. Isometries of Cantor’s discontinuum

For us, Cantor’s discontinuum is the compact Abelian group C = Z
N
2 , equipped

with the dyadic ultrametric |t− t′|2 = 2−min{n:tn−t′n 6=0}, t = (tn), t′ = (t′n).
Observe that the ordering of the coordinates enters essentially. Furthermore,
C is a probability space equipped with the Haar measure.

By G∞ we denote the group of isometries of C; by the Arzela-Ascoli theorem
this group is compact. To obtain a simple description we consider the projection
maps pn : Z

N
2 → Z

n
2 onto the first n coordinates. It follows immediately from

the definition that every isometry must factor over pn and provide us with a
ladder of permutations πn ∈ S2n :
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Definition 3.1. A permutation π : Zn
2 ≈ Zn

2 is called filtered, if there exists
a commutative ladder of permutations (not necessarily automorphisms) as in
(3.1) with π = πn. The group of all filtered permutations is denoted Gn.

(3.1) Zn
2

πn≈

��

pn
n−1

// // Zn−1
2

πn−1≈

��

// // · · · // // Z2
2

π2≈

��

p2
1

// // Z1
2

π1≈

��

Zn
2

pn
n−1

// // Zn−1
2

// // · · · // // Z2
2

p2
1

// // Z1
2

We obtain G∞ = lim
←−n

Gn; as inverse limit of finite discrete (hence compact)

groups this is a compact group. Hence any isometry is measure preserving.
Furthermore, the action of G∞ on C is transitive but not 2-transitive: indeed,
for two pairs of points x,y ∈ C and x′,y′ ∈ C, an isometry γ ∈ G∞ with
γx = x′ and γy = y′ exists if and only if |x− y|2 = |x′ − y′|2.

4. Review of measurable dyadic spaces

The classical result obtained by Hausdorff and Alexandroff states that every
compactum can be represented as a dyadic space, i.e. as continuous image of
Cantor’s discontinuum. We have to squeeze measure theoretic properties out
of this theorem. The dyadic resolutions we are about to construct should be
compared to the “rastering” of an image and will be the fundamental tool in
our analysis of the space of Borel sets in section 6.

Lemma 4.1. Every point of x ∈ X has a fundamental sequence of open neigh-
borhoods U with µ (∂U) = 0.

Proof. For a given point x ∈ X choose a continuous function ϕ : X → I with
ϕ−1(0) = x. Let C ⊂ I be the at most countable subset of all points t ∈ I with
µ
(

ϕ−1(t)
)

> 0; for any t ∈ I \ C the open neighborhood U := ϕ−1 ([0, t[) of x

satisfies ∂U ⊆ ϕ−1(t) and therefore µ (∂U) = 0. �

Lemma 4.2. Suppose A is a locally closed subset of X with µ(A) > 0 and
µ (∂A) = 0. Then for any 0 < β < µ(A) there exists a locally closed subset
B ⊂ A with µ(B) = β and µ (∂B) = µ (∂ (A \B)) = 0.

We recall that a set is locally closed if it is the intersection of a closed
and an open set [2, Ch.I,§3.4]. This adds a condition about the boundary to
Sierpiński’s theorem [16].

Proof. We construct two sequences of open subsets Un, Vn ⊂ A◦ such that
Un ∩ Vn = ∅, Un ⊆ Un+1, Vn ⊆ Vn+1, β − 1

n
≤ µ (Un) < β, µ(A) − β − 1

n
≤

µ (Vn) < µ(A) − β and µ (∂Un) = µ (∂Vn) = 0. Clearly we can start with
U1 = V1 = ∅. At inductive stage n, if µ (Un) = β or µ (Vn) = µ(A) − β

we are finished, so let us assume 0 < β − µ (Un) < µ(A) − µ (Un) − µ (Vn).
Let K ⊆ A◦ \

(

Un ∪ V n

)

be a compact subset with µ(K) > β − µ (Un). Using
atomicity of µ and lemma 4.1 we can cover K by finitely many open subsets Wi

of A◦ \
(

Un ∪ V n

)

with µ (Wi) < 1
n+1 and µ (∂Wi) = 0. Let j be the maximal
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number such that µ (W1 ∪ . . . ∪Wj−1) < β−µ (Un). Then µ (W1 ∪ . . . ∪Wj) ≥
β−µ (Un) and, since µ (Wj) < 1

n+1 , µ (W1 ∪ . . . ∪Wj−1) >= β−µ (Un)− 1
n+1 .

Set Un+1 := Un ∪W1 ∪ . . . ∪Wj−1. Again, if µ (Un+1) = β we are finished.
Otherwise we have µ(A) − µ (Un+1) − µ (Vn) > µ(A) − µ (Vn) − β > 0. Let
K ′ ⊆ A◦ \

(

Un+1 ∪ V n

)

be a compact subset with µ (K ′) > µ(A)− µ (Vn)− β

and cover K ′ by finitely many open subsets W ′
i of A◦ \

(

Un+1 ∪ V n

)

with

µ (W ′
i ) < 1

n+1 and µ (∂W ′
i ) = 0. Let j be the maximal number such that

µ
(

W ′
1 ∪ . . . ∪W ′

j−1

)

< µ(A)−µ (Vn)−β. Then µ
(

W ′
1 ∪ . . . ∪W ′

j−1

)

≥ µ(A)−

µ (Vn)− β − 1
n+1 , set Vn+1 := Vn ∪W ′

1 ∪ . . . ∪W ′
j−1.

Now U :=
⋃

n Un and V :=
⋃

n Vn are disjoint open subsets of A◦ with

µ(U) = β and µ(V ) = µ(A) − β. Since ∂U ⊆ A \ (U ∪ V ) we must have
µ (∂U) = 0. �

Lemma 4.3. Suppose we are given real numbers βi > 0 with β :=
∑n−1

i=0 βi ≤ 1.

Then for any 0 < ε < 1 and N ≥ 4
ε

maxi
β
βi

we can find numbers ki ∈ N (in

particular ki > 0) such that
∑n−1

i=0 ki = N and
∣

∣

∣

βi

ki
− β

N

∣

∣

∣ ≤ ε
N

.

Proof. Set ϑ := maxi
β
βi

. First choose integer k′
i ∈ Z with

∣

∣

∣

Nβi

β
− k′

i

∣

∣

∣ ≤ 1
2 .

Then |N −
∑

i k′
i| =

∣

∣

∣

∑n−1
i=0

(

Nβi

β
− k′

i

)∣

∣

∣
≤ n

2 and hence, by adjusting at most

n
2 cases ki := k′

i ± 1 we can assure
∑n−1

i=0 ki = N and
∣

∣

∣

Nβi

β
− ki

∣

∣

∣ ≤ 3
2 . Since

N ≥ 4ϑ ≥ 4β
βi

we have Nβi

β
≥ 4 and in particular ki > 0. This gives us

∣

∣

∣

kiβ
Nβi
− 1
∣

∣

∣
≤ 3β

2Nβi
≤ 3ϑ

2N
≤ 1

2 and therefore
∣

∣

∣

Nβi

kiβ
− 1
∣

∣

∣
≤ 3ϑ

N
, hence

∣

∣

∣

βi

ki
− β

N

∣

∣

∣
≤

3βϑ
N2 ≤

3ϑ
N2 ≤

3ε
4N

. �

Definition 4.4. A type I resolution of X consists of a double sequence of
locally closed subsets Anm ⊆ X, n ∈ N0, 0 ≤ m < 2n, subject to the following
conditions:

(1) A00 = X

(2) Anm ∩Ank = ∅ for m 6= k

(3) An+1,2m ∪An+1,2m+1 = Anm

(4) lim
n→∞

max2n−1
m=0 diamAnm = 0

(5) µ (∂Anm) = 0
(6) There exists a sequence of numbers εn > 0 with

∑

n εn <∞ such that
1−εn

2 µ (Anm) ≤ µ (An+1,2m) , µ (An+1,2m+1) ≤
1+εn

2 µ (Anm)

Proposition 4.5. Every compactum satisfying our standing assumption has a
type I resolution.

Proof. We construct the sets Anm by induction on n, pushing ahead from
step n to step n + N for a suitable number N and then assembling the inter-
mediate sets as pairwise disjoint unions. Observing lemma 4.1 we can chop
up Anm into a disjoint union of locally closed sets Anm =

∐r
j=0 Bj with
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µ (∂Bj) = 0 and diamBj ≤
1
2 diamAnm; moreover, since Suppµ = X we have

µ (Bj) > 0. For any 0 < ε < 1 lemma 4.3 ensures the existence of numbers

kj ∈ N such that
∑

j kj = 2N and
∣

∣

∣

1
kj

µ (Bj)− 2−Nµ (Anm)
∣

∣

∣ ≤ ε
N2N , provided

2N

N
≥ 4(Anm)

εµ(Bj)
. Using lemma 4.2 we can partition each Bj into a disjoint union

of kj locally closed sets Bj =
∐

ℓ∈Ij
ANℓ, #Ij = kj , with µ (∂ANℓ) = 0 and

µ (ANℓ) = 1
kj

µ (Bj), so that in particular
∣

∣µ (ANℓ)− 2−Nµ (Anm)
∣

∣ ≤ ε
N2N .

Each of the intermediate sets An+v,w, 0 ≤ v ≤ N , 2vm ≤ w < 2v(m + 1),
is the disjoint union An+v,w =

∐

ℓ∈J ANℓ, #J = 2v. Thus 2−vµ (An+v,w) =
∑

ℓ∈J 2−vµ (ANℓ), and by convexity
∣

∣2−vµ (An+v,w)− 2−Nµ (Anm)
∣

∣ ≤ ε
N2N .

Equivalently,
∣

∣

∣2N−v µ(An+v,w)
µ(Anm) − 1

∣

∣

∣ ≤ ε
Nµ(Anm) and therefore2

∣

∣

∣

2µ(An+v+1,2w)
µ(An+v,w) − 1

∣

∣

∣

≤ 4ε
Nµ(Anm) and

∣

∣

∣

2µ(An+v+1,2w+1)
µ(An+v,w) − 1

∣

∣

∣ ≤ 4ε
Nµ(Anm) if ε is chosen small enough.

This takes care of condition 6 in definition 4.4, where the steps from n + 1 to

n + N contribute a total of at most
∑N

v=1
4ε

Nµ(Anm) = 4ε
µ(Anm) to the sum of all

error terms εn. �

Remark: The proof shows that we can arrange for the total error
∑

n εn

to be arbitrarily small.

Example 4.6. On Cantor’s discontinuum, construct a type I resolution as

follows. For 0 ≤ m < 2n consider the dual expansion m =
∑n−1

k=0 εn−k2k and
set Cnm := p−1

n (ε1, . . . εn). Notice that Cnm is closed and open, diam (Cnm) =
2−n−1 and ν (Cnm) = 2−n.

Lemma 4.7. For any type I resolution the finite unions of the sets Anm con-
stitute a dense subset of the space of all Borel sets Y (µ).

Proof. Inner and outer regularity of µ [8, Thm.17.10] and small diameter of
the sets Anm. �

Theorem 4.8. Each compactum X satisfying our standing assumption can be
represented as continuous image of Cantors discontinuum f : C ։ X, such
that there exists a measurable inverse function g : X → C whose points of
discontinuity constitute a 0-set, with fg = idX strictly and gf = idC a.s.
Moreover, there exists a continuous, strictly positive density function ϕ : C → R

with g∗µ = ϕν and f∗ν = 1
ϕg

µ, where ν is Haar measure on C. ϕ may be chosen

as close to 1 as we please.

Notice for instance that the fibers of f must be non void 0-sets. X can be
changed into Cantor’s discontinuum by altering it at a 0-set. The probability
spaces (X, µ) and (C, ϕν) are measure isomorphic.

Proof. Observe that for any sequence of numbers mn with mn+1 = 2mn or

mn+1 = 2mn + 1 for each n we have 2nµ (Anm) =
∏n−1

k=0

2µ(Ak+1,mk+1
)

µ(Ak,mk)
and

2Observe that |x − 1| ≤ ε ≤ 1
2

and |y − 1| ≤ ε ≤ 1
2

imply
∣

∣

∣

x

y
− 1

∣

∣

∣
≤ 4ε



142 B. Günther

that the product converges uniformly for all such sequences mn. Hence, if we
define a continuous function ϕn : C → R to assume the value 2nµ (Anm) on
Cnm, then this function will converge uniformly to a continuous function ϕ :

C → R, ϕ > 0. For N ≥ n we have
∫

Cnm
ϕNdν =

∑2N−n(m+1)−1

k=2N−nm

∫

CNk
ϕNdν =

∑2N−n(m+1)−1

k=2N−nm
µ (ANk) = µ (Anm) and therefore

∫

Cnm
ϕdν = µ (Anm).

Define fn : C → X to be the continuous map that assumes on Cnm a constant
value contained in Anm. This sequence of functions converges uniformly to a
map f : C → X with f (Cnm) ⊆ Anm. For a point x ∈ X consider the unique
sequence mn with x ∈ Anm. There is a unique point y ∈ C with y ∈ Cnmn

for
all n, therefore f(y) ∈

⋂

Anmn
. Hence f(y) = x.

Define gn : X → C to be the function that assumes on Anm a constant
value contained in Cnm; notice that gn is measurable and is continuous except
possibly at

⋃

m ∂Anm. This sequence converges uniformly to a function g : X →
C with g (Anm) ⊆ Cnm that is measurable and is continuous except possibly at
X0 :=

⋃

n,m ∂Anm; notice µ (X0) = 0. Since fg (Anm) ⊆ f (Cnm) ⊆ Anm we
must have fg = idX strictly, by the same argument as above.

g (Anm) ⊆ Cnm implies Anm ⊆ g−1 (Cnm), but since for fixed n these sets
constitute a partition of X we must have Anm = g−1 (Cnm). Hence

∫

Cnm
ϕdν =

µ (Anm) = µ
(

g−1Cnm

)

= (g∗µ)Cnm. Since the finite unions of the sets Cnm

generate all Borel sets we conclude ϕν = g∗µ.
Now let Y0 := f−1 (X0) ⊆ C be the inverse image of the singularity set of g.

Then g−1 (Y0) = g−1f−1 (X0) = (fg)−1 (X0) = X0 and in particular
∫

Y0
ϕdν =

µ
(

g−1Y0

)

= µ (X0) = 0. Since the continuous density ϕ is everywhere positive
we conclude ν (Y0) = 0.

Let’s consider a point y ∈ C \ Y0; for n pick m such that y ∈ Cnm. Then
f(y) ∈ Anm \ X0 ⊆ Anm and therefore gf(y) ∈ Cnm. This can happen for
arbitrary n only if gf(y) = y.

We claim f−1A◦
nm ⊆ Cnm. For a point y ∈ f−1A◦

nm we pick k such that
y ∈ Cnk, then f(y) ∈ Ank. If we had k 6= m we could conclude Ank ∩Anm = ∅

and hence Ank ∩ A◦
nm = ∅ and hence f(y) 6∈ A◦

nm, thus arriving at a contra-
diction. Therefore we have Cnm ⊆ f−1Anm ⊆ f−1 (A◦

nm ∪X0) ⊆ Cnm ∪ Y0.
This implies f−1 (Anm \X0) = Cnm \ Y0, in particular ν

(

f−1 (Anm) \ Y0

)

=

ν
(

f−1 (Anm \X0)
)

= 2−n and hence ν
(

f−1Anm

)

= 2−n. This implies
∫

Anm

1
ϕg

dµ =
∫

Anm
df∗ν and therefore 1

ϕg
µ = f∗ν.

Finally, ϕ can be made arbitrarily close to 1 because the error sum
∑

n εn

in condition 6 of definition 4.4 is completely at our disposal. �

Notice that theorem 4.8 allows to transport the group action of G∞ on C
onto X by πx := fπg(x). The map x 7→ πx is a measure isomorphism of 1

ϕg
µ

and is continuous except at a 0-set, and the equation (πσ)x = π (σx) holds for
almost all x, the exception set depending on σ. The action is transitive in the
strict sense, i.e. for each x ∈ X the orbit equals the entire space G∞x = X .
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Definition 4.9. A type II resolution of X consists of a double sequence of Borel
subsets Anm ⊆ X, n ∈ N0, 0 ≤ m < 2n, subject to the following conditions:

(1) A00 = X

(2) Anm ∩Ank = ∅ for m 6= k

(3) An+1,2m ∪An+1,2m+1 = Anm

(4) µ (An+1,2m) = µ (An+1,2m+1) = 1
2µ (Anm)

(5) The finite unions of the sets Anm are dense in Y (µ).

Type II resolutions have the advantage of reproducing the measure on X

exactly, but otherwise they are considerably weaker. Easy examples such as
taking X as disjoint union of two closed segments of length 1

3 and 2
3 show

that the properties of type I and type II resolutions are mutually exclusive in
general.

Proposition 4.10. Every compactum satisfying our standing assumption has
a type II resolution.

Evidently, this holds for the unit segment; the general case then follows from
the isomorphism theorem for measures (cf. [8, Thm.17.41], [5, §41]). For com-
parison: using type II resolutions instead of type II in the proof of theorem 4.8
just reproduces the ordinary isomorphism theorem. However, here it is not
necessary to adjust our measure by a density function.

Proposition 4.11. For any compactum X satisfying our standing assumption
there exists a measurable function g : X → C such that g∗µ = ν, where ν is
Haar measure on C. Moreover, for any Borel subset A ⊆ X there exists a Borel
subset B ⊆ C such that µ

(

A△g−1B
)

= 0. Thus Y (µ) ≈ Y (ν).

5. The coordinate space

Let Z denote the set of all sequences of real numbers xnm, n ∈ N0, 0 ≤ m <

2n, subject to the conditions

0 ≤ xnm ≤ 1(5.1)

xnm =
1

2
(xn+1,2m + xn+1,2m+1)(5.2)

Z is a closed subset of the Hilbert cube and thus inherits a compact topology,
that will be called the weak topology. Notice that Z is convex.

Lemma 5.1. For all (xnm) ∈ Z

(5.3) x2
nm +

∞
∑

r=n+1

(m+1)2r−n−1−1
∑

k=m2r−n−1

2n−r−1 (xr,2k − xr,2k+1)
2
≤ xnm

Proof. We show by induction on N ≥ n that
(5.4)

x2
nm +

N
∑

r=n+1

(m+1)2r−n−1−1
∑

k=m2r−n−1

2n−r−1 (xr,2k − xr,2k+1)
2

= 2n−N

(m+1)2N−n−1
∑

k=m2N−n

x2
Nk



144 B. Günther

The inductive step is as follows:

2n−N

(m+1)2N−n−1
∑

k=m2N−n

x2
Nk +

(m+1)2N−n−1
∑

k=m2N−n

2n−N−2 (xN+1,2k − xN+1,2k+1)
2

(5.5)

= 2n−N−2

(m+1)2N−n−1
∑

k=m2N−n

[

(xN+1,2k + xN+1,2k+1)
2 + (xN+1,2k − xN+1,2k+1)

2
]

(5.6)

= 2n−N−1

(m+1)2N−n−1
∑

k=m2N−n

(

x2
N+1,2k + x2

N+1,2k+1

)

(5.7)

= 2n−N−1

(m+1)2N+1−n−1
∑

k=m2N+1−n

x2
N+1,k(5.8)

Similarly one shows

(5.9) 2n−N

(m+1)2N−n−1
∑

k=m2N−n

xNk = xnm

and the asserted lemma follows from x2
Nk ≤ xNk. �

This implies in particular that Z is contained in the Hilbert space of all
sequences satisfying (5.2), equipped with the scalar product
(5.10)

〈xnm, x′
nm〉 := x00x

′
00 +

∞
∑

n=1

2n−1−1
∑

m=0

2−n−1 (xn,2m − xn,2m+1)
(

x′
n,2m − x′

n,2m+1

)

Thence Z inherits another topology, finer than the one above.

Lemma 5.2. On Z there is a product (xnm) = (x′
nm) ∧ (x′′

nm) defined by

(5.11) xnm = lim
N→∞

2n−N

(m+1)2N−n−1
∑

k=m2N−n

x′
Nkx′′

Nk

It satisfies xnm ≤
√

x′
nmx′′

nm and is continuous as a function Zh × Zh → Zw,
the suffixes indicating Hilbert space topology and weak topology, respectively.
The bilinear map Zw×Zw → Zw is separately continuous [3, Ch.III,§5.1]. The
∧-product is commutative and associative.
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Proof. For all N ≥ n we obtain

2n−N

(m+1)2N−n−1
∑

k=m2N−n

x′
Nkx′′

Nk

+

(m+1)2N−n−1
∑

k=m2N−n

2n−N−2
(

x′
N+1,2k − x′

N+1,2k+1

) (

x′′
N+1,2k − x′′

N+1,2k+1

)

(5.12)

= 2n−N−2

(m+1)2N−n−1
∑

k=m2N−n

[

(

x′
N+1,2k + x′

N+1,2k+1

) (

x′′
N+1,2k + x′′

N+1,2k+1

)

+
(

x′
N+1,2k − x′

N+1,2k+1

) (

x′′
N+1,2k − x′′

N+1,2k+1

)

]

(5.13)

= 2n−N−1

(m+1)2N−n−1
∑

k=m2N−n

(

x′
N+1,2kx′′

N+1,2k + x′
N+1,2k+1x

′′
N+1,2k+1

)

(5.14)

= 2n−N−1

(m+1)2N+1−n−1
∑

k=m2N+1−n

x′
N+1,kx′′

N+1,k(5.15)

Lemma 5.1 and the Cauchy-Schwarz inequality imply that the perturbation
term in (5.12) converges to 0. We obtain

(5.16) xnm := lim
N→∞

2n−N

(m+1)2N−n−1
∑

k=m2N−n

x′
Nkx′′

Nk

= x′
nmx′′

nm +

∞
∑

r=n+1

(m+1)2r−n−1−1
∑

k=m2r−n−1

2n−r−1
(

x′
r,2k − x′

r,2k+1

) (

x′′
r,2k − x′′

r,2k+1

)

This demonstrates the asserted joint continuity condition right away, as well
as the relation xnm ≤

√

x′
nmx′′

nm via another application of lemma 5.1 and the
Cauchy-Schwarz inequality. Obviously the so defined sequence xnm satisfies
(5.1) and (5.2). Commutativity and associativity are easily checked. For fixed
(x′

mk) the convergence of the series (5.16) is uniform, this implies separate
continuity on Zw × Zw. �

Proposition 5.3. For any x = (xnm) ∈ Z the following conditions are equiv-
alent:

(1) x is an extreme point of Z.
(2) x ∧ x = x

(3) x2
00 +

∑∞
n=1

∑2n−1−1
k=0 2−n−1 (xn,2k − xn,2k+1)

2
= x00

(4) limn→∞ 2−n
∑2n−1

m=0

(

xnm −
1
2

)2
= 1

4
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Proof. With 1− x := (1− xnm) we get x = 1
2x∧ x + 1

2 [1− (1− x) ∧ (1− x)],
hence (1)⇒(2). (3) is just the 00-component of (2). In terms of our scalar

product (5.10) condition (3) means ‖x‖
2

= x00. Now assume x = 1
2x

′ + 1
2x

′′.

Then, observing lemma 5.1 we can conclude x00 =
∥

∥

1
2x

′ + 1
2x

′′
∥

∥

2
= 1

4 ‖x
′‖2 +

1
2 〈x

′,x′′〉 + 1
4 ‖x

′′‖
2
≤
(

1
2 ‖x

′‖+ 1
2 ‖x

′′‖
)2
≤
(

1
2

√

x′
00 + 1

2

√

x′′
00

)2

≤ 1
2x′

00 +
1
2x′′

00 = x00. Therefore we must have 〈x′,x′′〉 = ‖x′‖ ‖x′′‖, i.e. x′ and x′′ must

be collinear, and 1
2

√

x′
00+ 1

2

√

x′′
00 =

√

1
2x′

00 + 1
2x′′

00, i.e. x′
00 = x′′

00. This implies

x′ = x′′ = x and establishes the equivalence of the first three conditions, and
the equation

2−n

2n−1
∑

k=0

(

xnm −
1

2

)2

= 2−n

2n−1
∑

k=0

x2
nm − x00 +

1

4

=

(

x00 −
1

2

)2

+

n
∑

r=1

2r−1−1
∑

k=0

2−r−1 (xr,2k − xr,2k+1)
2

(5.17)

takes care of (4). �

Remark 5.4. Equation (5.17) shows that the sequence 2−n
∑2n−1

m=0

(

xnm −
1
2

)2

increases with n and has limit ≤ 1
4 , for all (xnm) ∈ Z.

Definition 5.5. We denote by Y ⊆ Z the subspace of all points satisfying the
equivalent conditions of proposition 5.3.

Now observe that on Y we have ‖(xnm)‖
2

= x00. Hence for fixed (x′
nm) the

norm distance ‖(x′
nm − x′′

nm)‖ =
√

x′
00 + x′′

00 − 2 〈(x′
nm) , (x′′

nm)〉 is continuous
as a function of (x′′

nm) on Yw. Therefore the weak topology and the Hilbert
space topology coincide on Y .

This subspace is closed with respect to the ∧-product, because for x,y ∈ Y

we have (x ∧ y) ∧ (x ∧ y) = (x ∧ x) ∧ (y ∧ y) = x ∧ y, hence x ∧ y ∈ Y . Thus
∧ induces a continuous product on Y . Y is a weak Gδ in Z, in particular it is
Polish.

We can easily establish the density of Y in Z. For given R, N and (xnm) ∈ Z

we will construct (ynm) ∈ Y with |xNm − yNm| ≤ 2−R; then |xnm − ynm| ≤

2−R for n ≤ N follows from (5.2). Pick numbers km ∈ N0 such that
∣

∣xNm −
km

2R

∣

∣ ≤

2−R. We now define yN+R,ℓ such that it assumes the value 1 exactly km times in
the range m2R ≤ ℓ < (m+1)2R and is 0 otherwise. Observing (5.2) this defines
(ynm) uniquely, and yNm = km

2R . Moreover, (ynm) ∈ Y because ynm −
1
2 = ± 1

2
for n ≥ N + R.

The group G∞ we encountered in section 3 acts continuously on Y . Suppose
we are given a ladder of filtered permutations πn like in diagram (3.1), and

consider the dual expansion m =
∑n−1

i=0 εn−i2
i of a number 0 ≤ m < 2n. Set

(ε′1, . . . ε
′
n) := πn (ε1, . . . εn) and πn(m) :=

∑n−1
i=0 ε′n−i2

i. Since xn,πn(m) =
1
2

(

xn+1,πn+1(2m) + xn+1,πn+1(2m+1)

)

this induces an operation of G∞ on Z,
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continuous in the topology of your choice. Condition 4 of proposition 5.3 is
obviously invariant under G∞, therefore G∞Y ⊆ Y .

6. The isomorphism theorem

Theorem 6.1. Let (Anm) be a resolution of either type, and define a map
h : Y (µ) → Y , h(B) = (xnm) by xnm := 2n

∫

B∩Anm

1
ϕg

dµ (where ϕ and g are

as in theorem 4.8) in case of type I, and xnm := 2nµ (B ∩Anm) in case of type
II. h is a homeomorphism. The intersection corresponds to the ∧-product, and
the complement of a set represented by (xnm) corresponds to (1− xnm).

Notice that in particular, x00 =
∫

B
1

ϕd
dµ in case of type I and x00 = µ(B)

in case of type II.

Proof. We consider h as map h : Z(µ)→ Z and observe that it is continuous if
the spaces are equipped with either weak or Hilbert space topology, using the
same choice for both spaces. We will show h (Y (µ)) ⊆ Y below.

Let B =
⋃

i Anmi
be a finite union of elements of the resolution (n is some

fixed number); then xnm = 1 if m appears among the mi and xnm = 0 oth-
erwise. The collection of all sequences of this form has been recognized as
dense at the end of section 5, and by compactness (weak topology) we have
h (Z(µ)) = Z. The equation h (f1f2) = h (f1) ∧ h (f2) is immediate for finite
unions

⋃

i Anmi
and hence for step functions

∑

i αiχAnmi
, but since the map

(f1, f2) 7→ h (f1) ∧ h (f2) is continuous as a map Z(µ)h × Z(µ)h → Zw and
since the described step functions are norm dense, it must hold generally. In
particular we obtain h(f) = h

(

f2
)

= h(f) ∧ h(f) and therefore h(f) ∈ Y if
f ∈ Y (µ).

Now assume h (f1) = h (f2). For abbreviation, let’s write µ̃ = 1
ϕg

µ in

case I and µ̃ = µ in case II, then by definition the 00-component of h equals
h00(f) =

∫

fdµ̃. Therefore
∫

f1f2dµ̃ = h00 (f1f2) = (h (f1) ∧ h (f2))00 =

(h (f1) ∧ h (f1))00 = h00

(

f2
1

)

=
∫

f2
1 dµ̃ and similarly

∫

f1f2dµ̃ =
∫

f2
2 dµ̃.

Therefore
∫

(f1 − f2)
2
dµ̃ = 0.

Hence h : Z(µ) ≈ Z is a homeomorphism (in either kind of topology). �

The reader may notice that the homeomorphism h transports the “a.s.-
action” of G∞ on X defined after theorem 4.8 to the action on Y from section 5.

7. Probability measures on the space of Borel sets

For us, a probability measure on Y (µ) ≈ Y is a Borel probability measure
ν on the compact space Z (weak topology) such that ν (Z \ Y ) = 0, this being
computable by condition 4 of proposition 5.3.

The definition of the compact space Z may be rephrased as follows: Denote

by pn+1
n : I2n+1

→ I2n

the map pn+1
n (x0, . . . x2n+1−1) =

(

x′
0, . . . x

′
2n−1

)

, x′
m :=

1
2 (x2m + x2m+1), Then Z = lim

←−n
I2n

taken along the maps pn+1
n . Let pn :

Z → I2n

be the natural projection, and consider the measures νn := pnν on
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I2n

. They determine ν uniquely [4, Ch.III,No.4,§5]. We arrive at the following
characterization:

Theorem 7.1. A probability measure ν on Y corresponds bijectively to a se-
quence of probability measures νn = pnν on I2n

such that pn+1
n νn+1 = νn and

for all ε > 0

(7.1) lim
n→∞

νn

{

2−n

2n−1
∑

m=0

(

xnm −
1

2

)2

≤
1

4
− ε

}

= 0

ν is invariant under G∞ if and only if each νn is invariant under Gn.

The reader will have noticed that the sequence of numbers in (7.1) is de-
creasing, and we just have to exclude a strictly positive limit. Also, the event in
(7.1) is invariant under Gn because Gn simply permutes the coordinates xnm.

We can now construct the measures νn inductively subject to the conditions
above, starting with an arbitrary measure ν0 on the unit segment. νn+1 can
be chosen Gn+1-invariant if νn is Gn-invariant. The inductive step requires the
distribution of mass along the fibers of pn+1

n , to which end we must surmount
a difficulty displayed in figure 1. Assume ε > 0 and N > n are fixed. We say

that a point (xk) ∈ I2n

with 2−n
∑2n−1

k=0

(

xk −
1
2

)2
≤ 1

4 − ε is critical if the

entire fiber
(

pN
n

)−1
(xk) is contained in the ball 2−N

∑2N−1
k=0

(

x′
k −

1
2

)2
≤ 1

4 −ε.

Figure 1. Critical and non critical fibers of q : I2 → I

Lemma 7.2. Let 0 < x < 1 and consider the “projection” q : Im → I,

q (x1, . . . xm) = 1
m

∑m
k=1 xk. Then max

{

∑m
k=1

(

xk −
1
2

)2
: 1

m

∑m
k=1 xk = x

}

=

m−1
4 +

(

mx− ⌊mx⌋ − 1
2

)2
.
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Proposition 7.3. (xk) ∈ I2n

is critical if and only if

2n−1
∑

k=0

(

2N−nxk −
⌊

2N−nxk

⌋

−
1

2

)2

< 2n−2 − 2Nε.

Hence it suffices to choose N large enough such that 2N−nε > 1
4 to exclude any

critical points.

Example 7.4. We define νN inductively using a function ϕ : I2n

× I2N

→ R
+

such that

ϕ (x,x′) 6= 0⇒ pN
n (x′) = x(7.2)

∀x ∈ I2n

:

∫

x′∈(pN
n )−1(x)

ϕ (x,x′)λ (dx′) = 1(7.3)

where λ denotes Lebesgue measure on R
2N−2n

. Then for any function f :

I2N

→ R we define

(7.4)

∫

fdνN :=

∫ ∫

ϕ (x,x′) f (x′)λ (dx′) νn (dx)

One could for example take the following choice:

A (x) :=







x′ ∈
(

pN
n

)−1
(x) : 2−N

2N−1
∑

k=0

(

x′
k −

1

2

)2

>
1

4
− ε







(7.5)

ϕ (x,x′) :=

{

λ (A (x))
−1

x′ ∈ A (x)

0 x′ 6∈ A (x)
(7.6)

Notice that λ (A (x)) > 0 if N is chosen according to proposition 7.3. Then

(7.7) νN



(x′
k) ∈ I2N

: 2−N

2N−1
∑

k=0

(

x′
k −

1

2

)2

>
1

4
− ε



 = 1

Example 7.5. Let’s consider our random Borel sets as stochastic process as
follows: at time n+1 we split up the random variable xnm into two random vari-
ables xn+1,2m, xn+1,2m+1 subject to the condition xnm = 1

2 (xn+1,2m + xn+1,2m+1),
thus picking a point in the fiber displayed in figure 1. This forces the difference
of the new values into the interval xn+1,2m−xn+1,2m+1 ∈ [−2 min (xnm, 1− xnm) ,

2 min (xnm, 1− xnm)]. Except for the necessary scaling this is done inde-
pendently and with identical distribution defined by a density function ϕn :

[−1, +1]→ R
+

subject to the conditions ϕn(−t) = ϕn(t),
∫ +1

−1 ϕn(t)dt = 1 and

(7.8) lim
n→∞







∫

|t|≥1−ε

ϕn(t)dt







2n

= 1

for each ε > 0. For instance we could use ϕn(t) := cn exp
(

(nt)2
)

, with suitable
normalization factors cn.
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This leads to measures νn on I2n

with density functions Φn : I2n

→ R
+

defined inductively as follows:

Φn+1 (x0, . . . x2n+1−1) := Φn (x̃0, . . . x̃2n−1)

2n−1
∏

i=1

ϕn

(

x2m−x2m+1

2 min(x̃m,1−x̃m)

)

2 min (x̃m, 1− x̃m)
(7.9)

x̃m :=
1

2
(x2m + x2m+1)(7.10)

where Φ0 : I → R
+

must satisfy
∫ 1

0 Φ(t)dt = 1, otherwise arbitrary. Gn-
invariance is immediate, and the following lemma ensures the assumptions of
theorem 7.1:

Lemma 7.6. Suppose ε > 0 and δ > 0 are given. Choose

(1) r ∈ N such that 2−r < 3ε
1−ε

,

(2) ϑ > 0 such that (1− ϑ)r > 1− δ,

(3) N ∈ N such that for all n ≥ N the inequality

[

∫

|t|≥1−2−r−2ε

ϕn(t)dt

]2n

≥

1− ϑ holds.

Then for all n ≥ N+r we obtain νn

(

(xk) ∈ I2n

: 2−n
∑2n−1

k=0

(

xk −
1
2

)2
≥ 1

4 − ε
)

> 1− δ.

Proof. Let us define points (xsm)0≤m<2s ∈ I2s

for n− r ≤ s ≤ n by downward

induction xnm := xm and xs−1,m := 1
2 (xs,2m + xs,2m+1); we consider the coor-

dinate xs−1,m as “parent” of the “children” xs,2m and xs,2m+1. This provides
us with a set of trees with nodes labeled xsm, with root nodes xn−r,m and leave
nodes xm.

A leave node xm = xnm will be called “good” if at least one element
of its chain of ancestors xs,ms

for n − r ≤ s ≤ n satisfies
∣

∣xs,ms
− 1

2

∣

∣ ≥
1
2 − 2−r−2ε. Since we must necessarily have ms2

n−s ≤ m < (ms + 1) 2n−s

and 2−(n−s)
∑(ms+1)2n−s

i=ms2n−s xi = xs,ms
we conclude

1
2 − 2−r−2ε ≤ 2−(n−s)

∣

∣

∣

∑(ms+1)2n−s

i=ms2n−s

(

xi −
1
2

)

∣

∣

∣ ≤ 2−(n−s)
∑(ms+1)2n−s

i=ms2n−s

∣

∣xi −
1
2

∣

∣

≤ 2−(n−s)−1 (2n−s − 1) + 2−(n−s)
∣

∣xm −
1
2

∣

∣ and therefore
∣

∣xm −
1
2

∣

∣ ≥
1
2 − 2n−s−r−2ε ≥ 1

2 −
ε
4 for every good leave node xm.

We claim that with probability ≥ (1 − ϑ)r at most one leave node in each
of the 2n−r trees is bad, more generally: at most one level ℓ node in each tree
is bad with probability ≥ (1− ϑ)ℓ for 1 ≤ ℓ ≤ r. We start by considering level
1, i.e. the 2n−r pairs of children xn−r+1,2m, xn−r+1,2m+1 of the root nodes.
At least one child of a root node is good with probability

∫

|t|≥1−2−r−2ε

ϕn(t)dt;

hence each of the trees contains at most one bad node of level 1 with probability
[

∫

|t|≥1−2−r−2ε

ϕn(t)dt

]2n−r

≥ (1 − ϑ)2
−r

≥ 1 − ϑ. By definition both children

of a good level ℓ node are good level ℓ + 1 nodes, and we have at most 2n−r
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bad ones at level ℓ with probability (1 − ϑ)ℓ. Each of these has at least one
good child with probability ≥ 1− ϑ by the same estimate as above, leading to
a probability ≥ (1− ϑ)ℓ+1 of our event at level ℓ + 1.

We conclude that with probability ≥ 1 − δ at least 2n − 2n−r leave nodes

xm satisfy
∣

∣xm −
1
2

∣

∣ ≥ 1
2 −

ε
4 and therefore

(

xm −
1
2

)2
≥ 1

4 −
ε
4 . Hence

2−n
∑2n−1

m=0

(

xm −
1
2

)2
≥ (1− 2−r)

(

1
4 −

ε
4

)

≥ 1
4 − ε. �

Example 7.7. We could opt to push the entire mass of I2n

onto its 1-skeleton.
This choice will be discussed in depth in section 10.

8. Conditional expectation and variance

The coordinates xnm in Y may be considered as random variables ξnm : Y →

I with ξnm = 1
2 (ξn+1,2m + ξn+1,2m+1) and limn→∞ 2−n

∑2n−1
m=0

(

ξnm −
1
2

)2
= 1

4
a.s. The intersection of random sets is represented by the ∧-product. We
will be using a G∞-invariant probability measure on Y as constructed in sec-
tion 7; furthermore we will assume that ξ00 equals the measure of our ran-
dom set, so either type II resolutions have to be used or adjustment by a
density function must be allowed. For two numbers 0 ≤ k 6= m < 2n we
consider their dual expansions k =

∑n−1
i=0 δn−i2

i m =
∑n−1

i=0 εn−i2
i and define

v(m, k) := min {i : εi 6= δi} = − lb |m− k|2. We prepare to answer question 1.

Lemma 8.1. There exists a sequence of functions fn : I → I such that

E (ξnm|ξ00) = ξ00(8.1)

E
(

ξ2
nm|ξ00

)

= fn (ξ00)(8.2)

E (ξnmξnk|ξ00) = 2fv(m,k)−1 (ξ00)− fv(m,k) (ξ00) if m 6= k(8.3)

lim
n→∞

fn = idI ν0-a.s.(8.4)

Proof. Trivially, ξ00 is G∞-invariant. Invariance of ν therefore implies that

E (ξnm|ξ00) is independent of m, and (8.1) follows from ξ00 = 2−n
∑2n−1

m=0 ξnm.

The same argument shows that E
(

ξ2
nm|ξ00

)

is independent of m, and (8.2)
may be taken as definition of the function fn. (8.4) follows from limn→∞ 2−n

∑2n−1
m=0 ξ2

nm = ξ00 a.s. Again by G∞-invariance, E (ξnmξnk|ξ00) =: F (n, v(m, k),
ξ00) for m 6= k depends only on n, v(m, k) and ξ00. Observing

ξnmξnk = 1
4 (ξn+1,2mξn+1,2k + ξn+1,2m+1ξn+1,2k + ξn+1,2mξn+1,2k+1

+ξn+1,2m+1ξn+1,2k+1)

and
v(2m, 2k) = v(2m + 1, 2k) = v(2m, 2k + 1) = v(2m + 1, 2k + 1) = v(m, k) we
can drop the first argument of F and write E (ξnmξnk|ξ00) = F (v(m, k), ξ00).
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In the equation

ξ2
nm = 22(n−N)

(

∑(m+1)2N−n−1
ℓ=m2N−n ξNℓ

)2

= 22(n−N)
(

∑(m+1)2N−n−1
ℓ=m2N−n ξ2

Nℓ

+
∑(m+1)2N−n−1

a6=b=m2N−n ξNaξNb

)

for N ≥ n we count the number of pairs a, b with specific dyadic distance and

obtain fn (ξ00) = 2n−NfN (ξ00)+
∑N

r=n+1 2n−rF (r, ξ00) = 2n−N−1fN+1 (ξ00)+
∑N+1

r=n+1 2n−rF (r, ξ00) and hence 2fN (ξ00) = fN+1 (ξ00) + F (N + 1, ξ00). �

Theorem 8.2. For two any two independent random variables A and B as-
suming Borel subsets of X as values we obtain

(8.5) E (µ(A ∩B)|µ(A), µ(B)) = µ(A)µ(B)

(8.6) Var (µ(A ∩B)|µ(A), µ(B))

=
∞
∑

n=0

2−n−1
[

2fn (µ(A)) − fn+1 (µ(A)) − µ(A)2
]

[2fn (µ(B))

−fn+1 (µ(B)) − µ(B)2
]

Here Var (η|F) = E
(

η2|F
)

− E (η|F)2. The functions fn are those from
lemma 8.1. In general context, this is about all that can be said concerning
intersections of independent random sets. More specific results will be obtained
in section 10.

Proof. In coordinate representation, let the random Borel set A correspond to
the process ξ′nm and B to the independent process ξ′′nm, then A∩B corresponds
to

ξnm = limN→∞ 2n−N
∑(m+1)2N−n−1

k=m2N−n ξ′Nkξ′′Nk. Therefore

E (ξ00|ξ
′
00, ξ

′′
00) = lim

N→∞
2−N

2N−1
∑

k=0

E (ξ′Nkξ′′Nk|ξ
′
00, ξ

′′
00)(8.7)

= lim
N→∞

2−N

2N−1
∑

k=0

E (ξ′Nk|ξ
′
00)E (ξ′′Nk|ξ

′′
00)(8.8)

= ξ′00ξ
′′
00(8.9)

and that proves (8.5). Similarly,

(8.10) E
(

ξ2
00|ξ

′
00ξ

′′
00

)

= lim
N→∞

2−2N





2N−1
∑

k=0

E
(

ξ′2Nk|ξ
′
00

)

E
(

ξ′′2Nk|ξ
′′
00

)

+
2N−1
∑

a6=b=0

E (ξ′Naξ′Nb|ξ
′
00)E (ξ′′Naξ′′Nb|ξ

′′
00)





Counting the number of pairs with specific dyadic distance and applying
lemma 8.1 now proves (8.2). �
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9. Impossibility of complete location invariance

Through the action of G∞ our compactum X is “measure homogeneous”.
For any two raster blocks Anm and Ank of the same level n there is a transfor-
mation π ∈ G∞ taking the one to the other modulo a 0-set. Because of the fail-
ure of 2-transitivity this does not extend to more general subsets, for instance,
Anm = An+1,2m∪An+1,2m+1 cannot be transformed into An+1,2m∪An+1,2m+2.
Consequently, question 2 in the introduction does not have a general answer
derivable from knowledge of µ(A) alone.

One could try to improve this state of affairs by picking a larger trans-
formation group than G∞. This, however, turns out to be impossible ex-
cept in trivial cases. If we had such a group whose operation was at least
2-transitive, then (8.3) would imply that 2fn−1 − fn is ν0-almost surely inde-
pendent of n and therefore, observing (8.4), fn = idI ν0-a.s. for all n. But
then E (ξnm (1− ξnk) |ξ00) = ξ00 − fn (ξ00) = 0 ν0-a.s. for all n, m, k, which is
only possible if all mass of ν0 is located at the two points 0 and 1.

10. The Sierpiński example

Let E∞ ⊆ Z be the set of all points (xnm), such that at each level n, all
xnm ∈ {0, 1} with at most one permissible exception. Since any such sequence

satisfies 2−n
∑2n−1

k=0

(

xnk −
1
2

)2
≥ 1

4 − 2−n we actually have E∞ ⊆ Y . It can
also be described as the set of all points of Z which are carried to the 1-skeleton
of I2n

by the natural projection map pn : Z → I2n

, hence E∞ is a compact
subspace of Y that could be called its 1-skeleton.

Figure 2. Sierpiński’s universal curve

Not the entire 1-skeleton of the cubes will be used by this construction. The
projection p2

0 : I2 → I maps the four vertices (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)
and (1, 0, 1, 0) to the interior point

(

1
2 , 1

2

)

; these vertices must be avoided.

Hence we define E1 as 1-skeleton of I2 and, for n > 1, En ⊆ I2n

as the
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1-skeleton of
(

pn
n−1

)−1
En−1. This inverse image consists of a collection of 2-

dimensional faces, one for each edge of En−1, whose interior is disregarded.
Hence En is obtained from En−1 by replacing each edge by the boundary of a
square. E4 is displayed in figure 2. Evidently, E∞ = lim

←−n
En is homeomorphic

to Sierpiński’s universal curve [7, Ex.I.1.11,p.9].

En consists of 4n edges, labeled σab for a = (a1, . . . an) ∈ İn and b =
(b1, . . . bn) ∈ Z

n
2 as follows: For any number 0 ≤ m < 2n we construct the dual

expansion m =
∑n−1

i=0 mn−i2
i; if now k is such that mk 6= bk but ∀ℓ < k :

mℓ = bℓ, then we stipulate that the points (x0, . . . x2n−1) ∈ σab must satisfy
the equation xm = ak. Identifying m with the sequence m = (m1, . . . mn) ∈
Z

n
2 , the condition means in terms of the dyadic ultrametric distance in Z

n
2 :

xm = a− lb|m−b|
2

In particular, for any filtered permutation g ∈ Gn we have
gσab = σa,gb. Observe that we obtain one equation for all coordinates except

for xr with r =
∑n−1

i=0 bn−i2
i. Furthermore

(10.1) pn
0 (σab) =

[

n
∑

k=1

ak2−k, 2−n +

n
∑

k=1

ak2−k

]

in particular, any such interval is covered 2n-fold.
We want to construct a G∞-invariant probability measure on E∞, starting

from a probability measure ν0 on the unit segment with 0 point masses and
Supp ν0 = I. Equation (10.1) tells us how to distribute mass along the edge
σab, where all such edges bearing the same first index a will be served evenly.
A compatible sequence of measures on En is obtained, leading to a measure on
E∞ ⊂ Y . For this measure we can give a much stronger version of theorem 8.2
and can determine the conditional distribution of µ(A ∩ B) given µ(A) and
µ(B) completely:

Theorem 10.1. Suppose two Borel sets A and A′ are randomly and indepen-
dently chosen. If µ(A) and µ (A′) are given, then µ (A ∩A′) can assume only
countably many values. These occur with the following probabilities:

(10.2) P

(

µ (A ∩A′) = a′
n

∞
∑

k=n+1

2−kak + an

∞
∑

k=n+1

2−ka′
k +

n−1
∑

k=1

aka′
k2−k

∣

∣

∣

µ(A) = t, µ (A′) = t′
)

= 2−n

for all n ∈ N, where t =
∑∞

k=1 ak2−k and t′ =
∑∞

k=1 a′
k2−k are dual expansions

and the “Sierpiński” measure constructed above is used on Y (µ).

Proof. Since ν0 is assumed not to have any point masses it is sufficient to give
the proof for irrational numbers t, t′, where the dyadic expansion is unique. We
define for b,b′ ∈ Z

n
2 :

(10.3) Nn (b,b′) := 2−n
∑

m6=b,b′

a− lb|m−b|
2
a′
− lb|m−b′|

2
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then Nn converges almost surely to µ (A ∩A′). For the evaluation of the prod-
uct on the right hand side of (10.3) we have to distinguish three cases (observe
the special properties of the dyadic ultrametric):

(1) |m− b|2 < |m− b′|2 = |b− b′|2
(2) |b− b′|2 < |m− b|2 = |m− b′|2
(3) |m− b′|2 < |m− b|2 = |b− b′|2

Observing #
{

m ∈ Z
n
2 | |m|2 = 2−k

}

= 2n−k we obtain

(10.4) 2nNn (b,b′) = a′
− lb|b−b

′|
2

∑

0<|m−b|2<|b−b
′|

2

a− lb|m−b|2
+

∑

|m−b|2=|m−b
′|

2
>|b−b

′|
2

a− lb|m−b|2
a′

− lb|m−b|2
+a− lb|b−b

′|
2

∑

0<|m−b
′|

2
<|b−b

′|
2

a′
− lb|m−b

′|
2

(10.5) = a′
− lb|b−b

′|
2

∑

0<|m|2<|b−b
′|

2

a− lb|m|2
+ a− lb|b−b

′|
2

∑

0<|m|2<|b−b
′|

2

a′
− lb|m|2

+
∑

|m|2>|b−b
′|

2

a− lb|m|2
a′

− lb|m|2

(10.6) = a′
− lb|b−b

′|
2

∑

k>− lb|b−b
′|

2

2n−kak + a− lb|b−b
′|

2

∑

k>− lb|b−b
′|

2

2n−ka′
k

+
∑

k<− lb|b−b
′|

2

2n−kaka′
k

The theorem follows. �

11. On the relation of random closed and random Borel sets

In the introduction it has been emphasized that our approach to random
Borel sets is not an extension of the theory of random closed sets. In this
section we are going to investigate the relation.

Let T = 2X denote the hyperspace of X , i.e. the space of non void closed
subsets carrying the Vietoris topology. Since any closed subset is Borel we
obtain a natural, non continuous function q : T → Y (µ).

Proposition 11.1. There exists a finer topology on T generating the same
Borel sets, turning T into a Polish space and q : T → Y (µ) into a continuous
map. In particular, q : T → Y (µ) is measurable with respect to the Vietoris
topology.

Proof. i) For any fixed B ∈ Y (µ) the graph Γ (fB) ⊆ T × Y (µ) of the upper
semicontinuous function fB : T → R, fB(A) := µ (A ∩B) is a Gδ, hence Polish.
For fB is the infimum of a decreasing sequence of continuous functions ϕn ↓
fB [2, Ch.IX,§1.6,Prop.5] and Γ (fB) =

⋂

n

{

(x, y) ∈ T × Y (µ)
∣

∣fB(x) − 1
n

< y

< ϕn(x) + 1
n

}

.
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ii) For any dense sequence (Bn)n∈N
in Y (µ) the graph Γ(F ) of the function

F : T → R
N with coordinates fBn

is Polish because it is homeomorphic to
∏

n Γ (fBn
).

iii) The graph Γ
(

F̃
)

of the function F̃ : T → R
Y (µ) with coordinates fB

is Polish; we show that it is homeomorphic to Γ(F ). The restriction from all
Borel sets to the sequence (Bn)n∈N

provides us with a natural (hence contin-

uous) projection map π : Γ
(

F̃
)

→ Γ(F ), π
(

A, F̃ (A)
)

= (A, F (A)) which is

bijective. To show that the inverse π−1 is bijective too it suffices to prove that
for each Borel set B the function gB : Γ(F ) → R, gB (A, F (A)) = fB(A)
is continuous. This is evidently true if B is an element of our dense se-
quence, because then fB(A) is simply the B-coordinate of F (A). In the gen-
eral situation we select a subsequence (Bnk

)k∈N
of Borel sets converging to

B. Then
∣

∣

∣
gB (A, F (A)) − gBnk

(A, F (A))
∣

∣

∣
=
∣

∣

∣
fB(A) − fBnk

(A)
∣

∣

∣
= |µ (A ∩B)

−µ (A ∩Bnk
)| ≤ µ (B△Bnk

) and therefore limk→∞ gBnk
= gB uniformly.

iv) The graph Γ(q) ⊆ T × Y (µ) of q : T → Y (µ) is Polish and therefore

a Gδ in T × Y (µ). We claim Γ(q) ≈ Γ
(

F̃
)

and have to show that the map

(A, q(A)) ↔
(

A, F̃ (A)
)

is continuous in both directions. For any Borel set B

the B-coordinate of
(

A, F̃ (A)
)

equals fB(A) = µ (A ∩B) which is a continuous

function of q(A) because intersection is continuous on Y (µ). For the reverse it is
sufficient to observe d (q(A), q (A0)) = µ (A△A0) = f∁A0

(A)− fA0
(A)+µ (A0).

v) We now identify T with the graph Γ(q) by means of the bijection i : T ≈
Γ(q) defined by i(A) = (A, q(A)) and consider the topology on T obtained by
transporting back the topology of Γ(q) over i. Since i−1 (Γ ∩ (U × Y (µ))) = U

the new topology is finer than the Vietories topology. Under this identification
the map q corresponds to the projection map Γ →֒ T × Y (µ) → Y (µ) and is
therefore continuous.

It remains to show that for any Borel subset B ⊆ Γ(q) the inverse i−1(B) ⊆
T is Borel with respect to the Vietoris topology. We observe that the natural
projection π : T × Y (µ) → T provides us with a continuous bijection π :
Γ(q) → T and our inverse image i−1(B) = q(B) is the continuous bijective
image of a Borel set. We now observe that the spaces T and Γ(q), being Polish,
are in particular Lusin [2, Ch.IX,§6.4,Prop.12]. Then B as Borel subset of a
Lusin space is a Lusin space itself [2, Ch.IX,§6.7,Thm.3], hence its continuous
bijective image π(B) is again a Lusin space and therefore Borel. �

Proposition 11.1 allows to consider any random closed set, i.e. any random
variable with values in T , as random Borel set by composition with the mea-
surable map q : T → Y (µ). However, this may involve a loss of information
by generating a coarser event algebra. It can be shown that no information
is lost if and only of there exists a subset B ⊆ T of probability 1 such that
q is one-to-one on B. Since this applies for instance to random closed sets
which are almost certainly regular closed [11, Def.4.29,p.63] this covers quite a
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few examples. The obvious counterexamples are random closed sets that have
almost certainly measure 0, such as random finite sets or Buffon’s needle.

On the other hand, random Borel sets are better adapted to image processing
than random closed sets, for instance because of their relation to wavelets (see
below). It is no accident that random Borel sets cannot distinguish sets that
differ only by a 0-set, since such a small difference would not be visible in an
image.

Lemma 11.2. The sequence of vectors e(Nk) =
(

e
(NK)
nm

)

n≥0,0≤m<2n
with N ≥

0 and 0 ≤ k < 2N−1, defined by
(11.1)

e(Nk)
nm =



















1 N = 0, k = 0

2
N−1

2 n ≥ N > 0, k2n+1−N ≤ m <
(

k + 1
2

)

2n+1−N

−2
N−1

2 n ≥ N > 0,
(

k + 1
2

)

2n+1−N ≤ m < (k + 1)2n+1−N

0 else

constitutes a complete ON-system in the Hilbert space considered in section 5.

For any vector x = (xnm) we have
〈

x, e(00)
〉

= x00 and
〈

x, e(Nk)
〉

= 2−
N+1

2

(xN,2k − xN,2k+1) for N > 0.

Proof. Observing that our system of numbers can satisfy e
(Nk)
n,2m − e

(Nk)
n,2m+1 6= 0

only if n = N > 0 and m = k all computations are rather straightforward. (5.1)

checks easily, and so does
∥

∥e(Nk)
∥

∥

2
= 1. The relations

〈

x, e(00)
〉

= x00 and
〈

x, e(Nk)
〉

= 2−
N+1

2 (xN,2k − xN,2k+1) for N > 0 are obvious. This immediately

implies orthonormality; furthermore any vector x perpendicular to all e(Nk)

must satisfy x00 = 0, xN,2k = xN,2k+1 for all N > 0 and all k as well as (5.1)
and hence x = 0. �

From the lemma above it should be clear that our approach to random Borel
sets is essentially an expansion in terms of the ON-base e(Nk). On the unit seg-

ment this corresponds to the L2-functions 2−
N+1

2

(

χ[ 2k

2N
, 2k+1

2N [ − χ[ 2k+1

2N
, 2k+2

2N [

)

,

i.e. to the Haar wavelet [18, Def.1.1] or rather to those constituents of the Haar
wavelet that live on the unit segment.
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