

CARTOGRAFÍA EN LAS CIENCIAS AMBIENTALES

PROBLEMAS RESUELTOS

Jesús L. Martí Gavilá Javier Estornell Cremades

Cartografía en las ciencias ambientales

Problemas resueltos

Jesús Martí Gavilá Javier Estornell Cremades

2017

EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Colección Punto de Partida

Para referenciar esta publicación utilice la siguiente cita: MARTÍ GAVILÁ, J., ESTORNELL CREMADES, J., (2017). *Cartografía en las ciencias ambientales. Problemas resueltos.* Valencia: Universitat Politècnica de València

Los contenidos de esta publicación han sido revisados por el Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría de la Universitat Politècnica de València

© Jesús Martí Gavilá Javier Estornell Cremades

© 2017, Editorial Universitat Politècnica de València distribución: www.lalibreria.upv.es / Ref.: 0578_04_01_01

Imprime: Byprint Percom, sl

ISBN: 978-84-9048-587-3 Impreso bajo demanda

La Editorial UPV autoriza la reproducción, traducción y difusión parcial de la presente publicación con fines científicos, educativos y de investigación que no sean comerciales ni de lucro, siempre que se identifique y se reconozca debidamente a la Editorial UPV, la publicación y los autores. La autorización para reproducir, difundir o traducir el presente estudio, o compilar o crear obras derivadas del mismo en cualquier forma, con fines comerciales/lucrativos o sin ánimo de lucro, deberá solicitarse por escrito al correo edicion@editorial.upv.es

Impreso en España

Prólogo

El objetivo de este libro es acercar al lector al mundo de la cartografía en el ámbito de las ciencias ambientales de una manera práctica a través de 157 problemas y del desarrollo de su marco teórico. Esta publicación, estructurada en seis capítulos, recoge en forma de teoría y fundamentalmente a través de ejercicios, la experiencia docente de más de 15 años en asignaturas relacionadas con la cartografía en el ámbito de ciencias ambientales en el Campus de Gandía de la Universitat Politècnica de València. En el primer capítulo se estudiarán las diferentes magnitudes utilizadas en cartografía y sus conversiones. El siguiente capítulo recogerá una serie de problemas relacionados con las escalas numéricas y gráficas. En el capítulo tres se proponen una serie de problemas cuya resolución se basa en teoremas y relaciones trigonométricas. Uno de los aspectos relevantes de la cartografía es el relieve. En el capítulo cuatro se proponen un conjunto de problemas relacionados con el cálculo de pendientes y alturas, así como la interpretación de mapas con curvas de nivel. Finalmente, los dos últimos capítulos recogen una colección de problemas relacionados con las coordenadas cartesianas, UTM y geográficas.

Índice

Prólogo		I	
Índice		III	
Capítul	0 1	1	
Convers	sión de magnitudes	1	
1.1.	Magnitudes angulares		
1.2.	Magnitudes lineales		
1.3.	Magnitudes superficiales 12		
Capítul	o 2	16	
Escalas		17	
2.1.	Escala numérica	17	
	2.1.1. Lineales	18	
	2.1.2. Superficiales	22	
2.2.	Escala gráfica	33	
2.3.	Error despreciable	37	
Capítul	o 3	39	
Trigono	metría plana	39	
3.1.	Trigonometría básica	39	
3.2.	Teorema del Seno	42	

3.3.	Teorema del Coseno	46
Capítul	0 4	49
Relieve.		49
4.1.	Cotas	49
4.2.	Pendiente	51
4.3.	Alturas	62
Capítul	5	71
Coorden	adas cartesianas y polares	71
5.1.	Coordenadas cartesianas	71
5.2.	Coordenadas polares	77
5.3.	Áreas	81
	5.3.1. Fórmula de Herón	81
	5.3.2. Formula del área de Gauss	88
Capítul	0 6	97
Coorden	adas UTM y geográficas	97
6.1.	Coordenadas UTM	98
6.2.	Coordenadas geográficas	119
Bibliogr	afia	145

Capítulo 1 Conversión de magnitudes

1.1. Magnitudes angulares

En topografía y cartografía los sistemas más frecuentes para expresar las medidas angulares son: sexagesimal, centesimal y radianes.

En el sistema sexagesimal los ángulos se expresan en grados (°), minutos (') y segundos (") sexagesimales. Un grado sexagesimal corresponde al ángulo formado por las dos rectas con origen el centro de la circunferencia y final, los extremos del arco cuya longitud es 1/360 de la longitud de la circunferencia; 1 grado sexagesimal tiene 60 minutos sexagesimales y 1 minuto sexagesimal tiene 60 segundos sexagesimales. Este sistema angular es muy utilizado en cartografía: coordenadas geográficas latitud y longitud, pendientes, convergencia de meridianos, declinación magnética, etc.

En el sistema centesimal los ángulos se expresan en grados (g), minutos (c) y segundos (cc) centesimales. Si en la definición de grado sexagesimal en vez de dividir la longitud de la circunferencia en 360 partes se divide en 400 partes se obtiene 1 grado centesimal; 1 grado centesimal tiene 100 minutos centesimales y 1 minuto centesimal 100 segundos centesimales. Este sistema de medición angular es muy utilizado en topografía. Los instrumentos topográficos utilizan este sistema de medida angular para definir los ángulos horizontales (0 g – 400 g) y verticales (0 g – 200 g).

Un radián (rad) es la unidad de ángulo plano utilizado en el sistema internacional de unidades y se define como el ángulo central en una circunferencia cuyo arco tiene la misma longitud del radio. En la Tabla 1.1 se puede observar algunas equivalencias entre los diferentes sistemas de medición de ángulos.

Grados sexagesimales (°)	Grados centesimales (g)	Radianes (r)
90	100	π/2
180	200	π
270	300	$3\pi/2$
360	400	2 π

Tabla 1.1 Equivalencia sistema de medición de ángulos

Problemas

1. Transformar a notación decimal: 2º 35' 50"

Resolución

$$\alpha = 2^0 35' 50''$$

Transformar los minutos y segundos a grados.

Un grado sexagesimal equivale a 3600" y un minuto a 60", así pues:

35'50" = 35 · 60 + 50 = 2150"; por lo tanto
$$\frac{2150}{3600}$$
 = 0,5972° $\alpha = 2.5972^{\circ}$

Decimal = $2,5972^{0}$

2. Transformar a grados, minutos y segundos sexagesimales el ángulo 46,3250⁰

Resolución

$$\alpha = 46,3250^{\circ}$$

El primer paso es transformar la parte decimal a minutos y segundos sexagesimales:

Minutos: $0.3250 \cdot 60' = 19.5'$ obteniendo 19' y un resto de 0.5'

Segundos: $0.5 \cdot 60'' = 30''$

Por lo tanto se obtiene un ángulo de 46° 19 30"

Sexagesimal = $46^0 19' 30''$

3. Transformar a graduación centesimal el ángulo 1º 32' 25"

Resolución

$$\alpha = 1^0 32' 25''$$

En primer lugar, se transforma el ángulo sexagesimal a formato decimal.

Decimal

Un grado sexagesimal equivale a 3600" y un minuto a 60", así pues:

$$32'25'' = 32 \cdot 60 + 25 = 1945''$$
; por lo tanto $\frac{1945}{3600} = 0,5403^{\circ}$
 $\alpha = 1.5403^{\circ}$

Centesimal

$$\frac{360}{1.5403} = \frac{400}{x}$$
; $x = \frac{400 \cdot 1,5403}{360} = 1,7114^g = 1^g 71^c 14^{cc}$

Centesimal = 1 g 71 c 14 cc

4. Transformar a grados, minutos y segundos sexagesimales el ángulo 112,9835 g

Resolución

$$\alpha = 112.9835^{g}$$

En primer lugar, se transforma el ángulo centesimal a formato decimal.

Decimal

$$\frac{360}{x} = \frac{400}{112.9835}$$
; $x = \frac{360 \cdot 112,9835}{400} = 101,6852^{\circ}$

Sexagesimal

A continuación, se transforma la parte decimal a minutos y segundos sexagesimales:

Minutos:
$$0.6852 \cdot 60' = 41,112'$$
 obteniendo 41' y un resto de 0,112'

Segundos:
$$0,112 \cdot 60" = 6,72"$$

Por lo tanto se obtiene un ángulo de 101º 41 6,72"

Sexagesimal = 101⁰ 41' 6,72"

- 5. Resolver las siguientes cuestiones:
 - a. Transformar a sexagesimal el ángulo 382,7325 g
 - b. Transformar a centesimal el ángulo 245⁰ 25' 32''

Resolución

a) $\alpha = 382,7325$ g transformar a sexagesimal

En primer lugar, se transforma el ángulo centesimal a formato decimal.

Decimal

$$\frac{360}{x} = \frac{400}{382,7325} \; \; ; \; \; x = \frac{360 \cdot 382,7325}{400} = 344,4593^{\circ}$$

Sexagesimal

A continuación, se transforma la parte decimal a minutos y segundos sexagesimales:

Minutos:
$$0,4593 \cdot 60' = 27,558'$$

Segundos:
$$0,558 \cdot 60'' = 33,5''$$

Por lo tanto se obtiene un ángulo de 344º 27 33,5"

b)
$$\alpha = 245^{\circ} 25^{\circ} 32^{\circ}$$
 transformar a centesimal

En primer lugar, se transforma el ángulo sexagesimal a formato decimal.

Decimal

Un grado sexagesimal equivale a 3600" y un minuto a 60", así pues:

25'32" = 25 · 60 + 32 = 1532"; por lo tanto
$$\frac{1532}{3600}$$
 = 0,4256° α = 245.4256°

Centesimal

$$\frac{360}{245,4256} = \frac{400}{x} \quad ; \quad x = \frac{400 \cdot 245,4256}{360} = 272,6951^g = 272^g \ 69^c \ 51^{cc}$$

Centesimal =
$$272^{g} 69^{c} 51^{cc}$$
 Sexagesimal = $344^{0} 27' 33,5''$

6. Transformar a graduación centesimal y a radianes el ángulo 27º 15' 30"

Resolución

$$\alpha = 27^0 \ 15' \ 30''$$

En primer lugar, se expresa el ángulo sexagesimal en formato decimal.

Decimal

Un grado sexagesimal equivale a 3600" y un minuto a 60", así pues:

15'30" = 15 · 60 + 30 = 930"; por lo tanto
$$\frac{930}{3600}$$
 = 0,2583° α = 27,2583°

Centesimal

$$\frac{\frac{360}{27.2583} = \frac{400}{x} \quad ; \quad x = \frac{400 \cdot 27,2583}{360} = 30,2870^{g} = 30^{g} \cdot 28^{c} \cdot 70^{cc}$$

Radianes

$$\frac{360}{27,2583} = \frac{2\pi}{x} \quad ; \quad x = \frac{2\pi \cdot 27,2583}{360} = 0,4757^{r}$$

Centesimal = 30 g 28 c 70 cc

Radianes = 0.4757^{r}

7. Transformar a graduación centesimal y a radianes el ángulo 75º 25' 33"

Resolución

$$\alpha = 75^{\circ} \ 25' \ 33"$$

En primer lugar, se expresa el ángulo sexagesimal en formato decimal.

Decimal

Un grado sexagesimal equivale a 3600" y un minuto a 60", así pues:

25'33" = 25 · 60 + 33 = 1533"; por lo tanto
$$\frac{1533}{3600}$$
 = 0,4285°
 $\alpha = 75.42853^{\circ}$

<u>Centesimal</u>

$$\frac{360}{75,4285} = \frac{400}{x} \quad ; \quad x = \frac{400 \cdot 75,4285}{360} = 83,8094^{g} = 83^{g} \cdot 80^{c} \cdot 94^{cc}$$

Radianes

$$\frac{360}{75,4285} = \frac{2\pi}{x}$$
; $x = \frac{2\pi \cdot 75,4285}{360} = 1,3165^{r}$

$$Centesimal = 83 g 80 c 94 c$$

Radianes = $1,3165^{r}$

8. Transformar a graduación sexagesimal y radianes el ángulo 379 g 73 c 53 cc

Resolución

$$\alpha = 379$$
 g 73 c 53 cc

En primer lugar, se transforma el ángulo centesimal a formato decimal.

Decimal

$$\frac{360}{x} = \frac{400}{379,7353}$$
; $x = \frac{360 \cdot 379,7353}{400} = 341,7618^{\circ}$

Sexagesimal

Se transforma la parte decimal a minutos y segundos sexagesimales:

Minutos:
$$0,7618 \cdot 60' = 45,708'$$

Segundos:
$$0,708 \cdot 60'' = 42,48''$$

Por lo tanto se obtiene un ángulo de 341º 45 42,48"

Radianes

$$\frac{400}{379,7353} = \frac{2\pi}{x} \quad ; \quad x = \frac{2\pi \cdot 379,7353}{400} = 5,96487^{r}$$

Sexagesimal = 341⁰ 45' 42,48"

9. Transformar a graduación sexagesimal y centesimal el ángulo 3,28 radianes

Resolución

 $\alpha = 3.28$ radianes

En primer lugar, se transforma el ángulo en radianes a formato decimal.

Decimal

$$\frac{360}{x} = \frac{2\pi}{3.28}$$
; $x = \frac{360 \cdot 3,28}{2\pi} = 187,9301^{\circ}$

Sexagesimal

Se transforma la parte decimal a minutos y segundos sexagesimales:

Minutos:
$$0,9301 \cdot 60' = 55,806'$$

Segundos: $0,806 \cdot 60'' = 48,36''$

Por lo tanto se obtiene un ángulo de 187º 55 48,36"

Centesimal

$$\frac{400}{x} = \frac{2\pi}{3.28}$$
 ; $x = \frac{400 \cdot 3.28}{2\pi} = 208.8113^g = 208^g 81^c 13^{cc}$

Centesimal = $208 \, ^{g} \, 81 \, ^{c} \, 13 \, ^{cc}$ Sexagesimal = $187^{0} \, 55' \, 48,36''$

1.2. Magnitudes lineales

El metro (m) es la unidad principal de longitud del Sistema Internacional de Unidades que se define como la distancia que recorre la luz en el vacío en un periodo de tiempo de 1/299 792 458 de segundo. En la Tabla 1.2 se pueden observar algunas equivalencias entre el sistema métrico decimal y el sistema anglosajón de medidas no métricas.

Tabla 1.2 Equivalencias entre sistema anglosajón y métrico decimal

Sistema anglosajón	Sistema métrico decimal
Pulgada (Inch)	0,02540 m
Pie (Foot)	0,30479 m
Yarda (Yard)	0,91438 m
Milla Terrestre (Mile)	1.609,31 m

La relación existente entre ellas es:

1 Yarda equivale a 3 pies o a 36 pulgadas

Es importante también conocer las unidades de medida náuticas, Tabla 1.3

Tabla 1.3 Equivalencias entre unidades náuticas y sistema métrico decimal

Unidades Náuticas	Sistema métrico decimal
Legua náutica (nl)	5.555,5 m
Milla Marina (nmi)	1.852,50 m
Cable (cbl)	185,2 m
Braza (ftm)	1,829 m

La relación existente entre ellas es:

1 legua náutica equivale a 3 millas náuticas o a 30 cables

Problemas

10. Transformar a pulgadas, pies y yardas la distancia de 325 metros

Resolución

$$D = 325 \text{ m}$$

Pulgadas =
$$\frac{325}{0,0254}$$
 = 12.795,3 in
Pies = $\frac{325}{0,30479}$ = 1.066,31 ft
Yardas = $\frac{325}{0,91438}$ = 355,43 yd

11. Transformar a millas terrestres y marinas la distancia de 4.750 m

Resolución

D = 4.750 m

Millas terrestres =
$$\frac{4750}{1610}$$
 = 2,95 mi
Millas marinas = $\frac{4750}{1850}$ = 2,567 nmi

2,95 mi

2,567 nmi

12. Transformar en anotación de yardas, pies y pulgadas las siguientes mediciones lineales: 225,35 m; 15,24 dm; 81,5 cm y 59 mm

Resolución

D = 225,35 m

D = 15,24 dm = 1,524 m

D = 81.5 cm = 0.815 m

D = 59 mm = 0.059 m

Teniendo en cuenta que 1 yarda = 3 pies = 36 pulgadas

225,35 m

Yardas =
$$\frac{225,35}{0,91438}$$
 = 246,451 yd = 246 yd y un resto de 0,451
Pies = 0,451 · 3 = 1,353 ft = 1 ft y un resto de 0,353
Pulgadas = 0,353 · 12 = 4,24 in

246 yd 1 ft 4,24 in

1,524 m

Yardas =
$$\frac{1,524}{0,91438}$$
 = 1,667 yd = 1 yd y un resto de 0,667

Pies =
$$0,667 \cdot 3 = 2$$
 ft

1 yd 2 ft

0,815 m

Pies =
$$\frac{0,815}{0,30479}$$
 = 2,674 ft = 2 ft y un resto de 0,674

Pulgadas =
$$0,674 \cdot 12 = 8,1$$
 in

2 ft 8,1 in

0,059 m

Pulgadas =
$$\frac{0.059}{0.0254}$$
 = 2.3 in

2,3 in

13. Expresar en metros las siguientes medidas: 62 yd 1 ft; 25 yd 2 ft; 5 ft 9 in; 62 in

Resolución

62 yd 1 ft

$$D = (62 \cdot 0.9144) + (1 \cdot 0.3048) = 56.998 \text{ m}$$

25 yd 2 ft

$$D = (25 \cdot 0.9144) + (2 \cdot 0.3048) = 23.467 \text{ m}$$

5 ft 9 in

$$D = (5 \cdot 0.3048) + (9 \cdot 0.0254) = 1.7526 \text{ m}$$

62 in

$$D = 62 \cdot 0.0254 = 1.575 \text{ m}$$

56,998 m 23,467 m 1,7526 m 1,575 m

14. Cuánto tardará una embarcación, a una velocidad media de 15 nudos, en realizar el trayecto Gandía - Palma de Mallorca si la distancia entre las ciudades es de 254 km y sabiendo que un nudo equivale a 1 nmi/h

Resolución

$$D = 254 \text{ km}$$
 Velocidad = 15 nudos = 15 nmi/h

$$D = \frac{254}{1,85} = 137,29 \text{ nmi}$$

Tiempo =
$$\frac{137,29}{15}$$
 = 9,15 h = 9^h 9'

$Tiempo = 9^h 9'$

