

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 12, no. 1, 2011 pp. 1-13

# The structure of the poset of regular topologies on a set

OFELIA T. ALAS AND RICHARD G. WILSON

# Abstract

We study the subposet  $\Sigma_3(X)$  of the lattice  $\mathcal{L}_1(X)$  of all  $T_1$ -topologies on a set X, being the collections of all  $T_3$  topologies on X, with a view to deciding which elements of this partially ordered set have and which do not have immediate predecessors. We show that each regular topology which is not R-closed does have such a predecessor and as a corollary we obtain a result of Costantini that each non-compact Tychonoff space has an immediate predecessor in  $\Sigma_3$ . We also consider the problem of when an R-closed topology is maximal R-closed.

2010 MSC: Primary 54A10; Secondary 06A06, 54D10

KEYWORDS: Lattice of T<sub>1</sub>-topologies, poset of T<sub>3</sub>-topologies, upper topology, lower topology, R-closed space, R-minimal space, submaximal space, maximal R-closed space, dispersed space

# 1. INTRODUCTION

In a previous paper [3], we studied the problem of when a jump can occur in the order of the lattice  $\mathcal{L}_1(X)$ ; that is to say, when there exist  $T_1$ -topologies  $\tau$  and  $\tau^+$  on a set X such that whenever  $\mu$  is a topology on X such that  $\tau \subseteq \mu \subseteq \tau^+$  then  $\mu = \tau$  or  $\mu = \tau^+$ . The existence of jumps in  $\mathcal{L}_1(X)$  and in the subposet of Hausdorff topologies, has been studied in [5], [2], [10] and [16]; in the last two articles an immediate successor  $\tau^+$  was said to be a cover of (or simply to cover)  $\tau$ . In the above cited paper [3], when a topology  $\tau$  has a cover  $\tau^+$  we have called  $\tau$  a lower topology and  $\tau^+$  an upper topology and we continue to use this terminology here.

In the present work we study the structure of the subposet  $\Sigma_3(X)$  of all  $T_3$ -topologies of the lattice  $\mathcal{L}_1(X)$ , on a set X with a view to deciding which elements of this partially ordered sets have and which do not have covers.

In [1] it was shown that a  $T_3$ -topology on X which is not feebly compact is an upper topology in  $\Sigma_3(X)$  and in [6], Costantini showed that every noncompact Tychonoff topology on X is upper in  $\Sigma_3(X)$ . In Section 2 of this paper we generalize both these results by showing that every  $T_3$ -topology which is not R-closed is upper in  $\Sigma_3(X)$ . (A  $T_3$ -space is R-closed if it is closed in every embedding in a  $T_3$ -space.) In Section 3 we consider the problem of the existence of spaces which are maximal with respect to being R-closed and in Section 4 we study lower topologies in  $\Sigma_3$ . In the final section we pose a number of open problems.

A set X with a topology  $\xi$  will be denoted by  $(X, \xi)$  and if  $p \in X$ , then  $\xi(p, X)$  denotes the collection of all open sets in X which contain p. The closure (respectively, interior) of a set A in a topological space  $(X, \tau)$  will be denoted by  $cl_{\tau}(A)$  (respectively,  $int_{\tau}(A)$ ) or simply by cl(A) (respectively int(A)) when no confusion is possible. All undefined terms can be found in [7] or [13] and all spaces in this article are (at least)  $T_3$ . A comprehensive survey of results on R-closed spaces and many open questions can be found in [8]. We make the following formal definitions.

**Definition 1.1.** Say that two (distinct)  $T_3$ -topologies  $\tau_1$  and  $\tau_2$  on a set X are adjacent in  $\Sigma_3(X)$  if whenever  $\sigma \in \Sigma_3(X)$  and  $\tau_1 \subseteq \sigma \subseteq \tau_2$ , then either  $\sigma = \tau_1$  or  $\sigma = \tau_2$ . We say that  $\tau_1$  is a lower topology in  $\Sigma_3(X)$ ,  $\tau_2$  is an upper topology in  $\Sigma_3$  and  $\tau_2$  is an immediate successor of  $\tau_1$ . For a topology  $\tau$ ,  $\tau^+$  will always denote an immediate successor of  $\tau$ . A  $T_3$ -topology on X is R-minimal if there is no weaker  $T_3$ -topology on X; it is well known that an R-minimal topology is R-closed. Clearly an R-minimal topology is not upper in  $\Sigma_3(X)$ . In the sequel, whenever the space X is understood, we will write  $\Sigma_3$  instead of  $\Sigma_3(X)$ .

In [11], it was shown that the structure of basic intervals in  $\Sigma_3$  is essentially different from those of the poset  $\Sigma_t$  of Tychonoff spaces in that not every finite interval is isomorphic to the power set of a finite ordinal. The following result is Lemma 22 of [11].

**Lemma 1.2.** If  $\sigma$  is an immediate successor of  $\tau$  in  $\Sigma_3$ , then  $\tau$  and  $\sigma$  differ at precisely one point.

An open filter (that is, a filter with a base of open sets)  $\mathcal{F}$  is a regular filter if for each  $U \in \mathcal{F}$  there is  $V \in \mathcal{F}$  such that  $cl(V) \subseteq U$ . A simple application of Zorn's Lemma shows that every regular filter can be embedded in a maximal regular filter and furthermore, in a regular space, if a maximal regular filter has an accumulation point, then it must converge to that point.

By Theorem 4.14 of [4], a  $T_3$ -space is *R*-closed if and only if every regular filter has an accumulation point or equivalently, if and only if every maximal regular filter converges.

# 2. Upper topologies in $\Sigma_3$

The next result generalizes Theorem 2.14 of [1].

**Theorem 2.1.** Each  $T_3$ -topology which is not R-closed is upper in  $\Sigma_3$ .

*Proof.* Suppose that  $(X, \sigma)$  is a  $T_3$ -space which is not R-closed. Then there is some maximal regular filter  $\mathcal{F}$  in  $(X, \sigma)$  which is not fixed. Pick  $p \in X$  and define a new topology  $\tau$  on X as follows:

$$\tau = \{ U \in \sigma : p \notin U \} \cup \{ U \in \sigma : p \in U \in \mathcal{F} \}.$$

The topologies  $\tau$  and  $\sigma$  differ only at the point p and hence for each  $A \subseteq X$ ,  $\operatorname{cl}_{\tau}(A) \subseteq \operatorname{cl}_{\sigma}(A) \cup \{p\}$ .

We first show that  $(X, \tau)$  is a  $T_3$ -space; suppose that  $C \subseteq X$  is  $\tau$ -closed and  $q \notin C$ . There are three cases to consider.

1) If  $p \notin C \cup \{q\}$ , then there are  $\sigma$ -open sets U, V separating C and q in  $X \setminus \{p\}$  and U, V are  $\tau$ -open.

2) If  $p \in C$ , then C is  $\sigma$ -closed and hence there are disjoint  $\sigma$ -open sets U and V such that  $C \subseteq U$  and  $q \in V$ . Furthermore, since  $\mathcal{F}$  is a free regular filter, there is  $W \in \mathcal{F}$  such that  $q \notin \operatorname{cl}_{\sigma}(W)$  and hence  $q \notin \operatorname{cl}_{\tau}(W) = \operatorname{cl}_{\sigma}(W) \cup \{p\}$ . It is now clear that  $U \cup W$  and  $U \setminus \operatorname{cl}_{\tau}(W)$  are disjoint  $\tau$ -open sets containing C and q respectively.

3) If p = q, then since C is  $\tau$ -closed and  $p \notin C$ , it follows that there is some element  $W \in \mathcal{F}$  such that  $W \cap C = \emptyset$ . Furthermore, since C is  $\sigma$ -closed, there are disjoint sets  $U, V \in \sigma$  such that  $C \subseteq U$  and  $p \in V$ . Since  $\mathcal{F}$  is a regular filter, there is some  $T \in \mathcal{F}$  such that  $cl_{\sigma}(T) \subseteq W$ . Since  $cl_{\tau}(T) = cl_{\sigma}(T) \cup \{p\}$ , it is now clear that  $U \setminus cl_{\tau}(T)$  and  $V \cup T$  are disjoint  $\tau$ -open sets containing C and p respectively.

We claim that  $\tau$  is the immediate predecessor of  $\sigma$  in  $\Sigma_3$ . To see this, suppose that  $\mu$  is a  $T_3$ -topology on X such that  $\tau \subsetneq \mu \varsubsetneq \sigma$ ; note that  $\mu$  differs from  $\sigma$  and  $\tau$  only at the point p. If there is some  $\mu$ -neighbourhood U of pwhich misses some element  $F \in \mathcal{F}$ , then if W is a  $\sigma$ -open neighbourhood of p. But then  $(W \cup F) \cap U = W \cap U \subseteq W$  is a  $\mu$ -open neighbourhood of p, implying that  $\mu = \sigma$ . Hence every  $\mu$ -neighbourhood of p must meet every element of  $\mathcal{F}$ ; we claim that this implies that  $\mu = \tau$ . To prove our claim, let  $\mathcal{V}_p$  be the filter of  $\mu$ -open neighbourhoods of p and let  $\mathcal{G}$  be the open filter generated by  $\{F \cap V : F \in \mathcal{F} \text{ and } V \in \mathcal{V}_p\}$ . We will show that  $\mathcal{G}$  is a regular filter in  $(X, \sigma)$ , thus contradicting the maximality of  $\mathcal{F}$ . However, if  $F \in \mathcal{F}$  and  $V \in \mathcal{V}_p$ , then there is  $W \in \mathcal{V}_p$  and  $H \in \mathcal{F}$  such that  $V \supseteq \operatorname{cl}_{\mu}(W) \supseteq \operatorname{cl}_{\sigma}(W)$  and  $\operatorname{cl}_{\sigma}(H) \subseteq F$ . Hence  $W \cap H \in \mathcal{G}$  and  $\operatorname{cl}_{\sigma}(W \cap H) \subseteq F \cap V$ .

In [6], the concept of a strongly upper topology was defined. (A topology  $\tau$  is strongly upper if whenever  $\mu \subsetneq \tau$ , there is an immediate predecessor  $\tau^-$  of  $\tau$  such that  $\mu \subseteq \tau^- \subsetneq \tau$ .) A simple modification of the above proof shows that every regular topology which is not *R*-closed is in fact strongly upper.

Clearly every R-closed Tychonoff space is compact and hence the following result of [6] is an immediate corollary.

**Corollary 2.2.** Every Tychonoff topology which is not compact is (strongly) upper in  $\Sigma_3$ .

Every completely Hausdorff topology possesses a weaker Tychonoff topology (the weak topology induced by the continuous real-valued functions). Thus every completely Hausdorff R-minimal topology is compact. The following question then arises:

**Question 2.3.** Is every completely Hausdorff  $T_3$ -topology which is not compact an upper topology in  $\Sigma_3$ ?

**Question 2.4.** Is every regular topology which has a compact Hausdorff subtopology an upper topology in  $\Sigma_3$ ?

# 3. Maximal R-closed topologies

Recall that a space is submaximal if every dense set is open (we do not assume that a submaximal space must be dense-in-itself). It follows from 7M of [13] that each H-closed topology is contained in a maximal H-closed topology and that a space is maximal H-closed if and only if it is H-closed and submaximal. However, as we show below, the class of submaximal R-closed spaces is much more restricted. Recall that a space is feebly compact if every locally finite family of open sets is finite.

**Theorem 3.1.** Each submaximal regular, feebly compact topology has an isolated point.

*Proof.* Suppose that  $(X, \tau)$  is feebly compact, submaximal and has no isolated points. Fix  $p \in X$  and let  $\mathcal{C}$  be a maximal cellular family of open sets in X so that for each  $C \in \mathcal{C}$ , we have  $p \notin \operatorname{cl}_{\tau}(C)$ . The subset  $\bigcup \mathcal{C}$  is dense in X and hence  $F = X \setminus \bigcup \mathcal{C}$  is closed and discrete. Since  $p \in F$ , there are disjoint open sets U and V so that  $p \in U$  and  $F \setminus \{p\} \subseteq V$ . Let  $S = \{U \cap C : C \in \mathcal{C} \text{ and } U \cap$  $C \neq \emptyset\}$ ; since p is not isolated, it follows that S is an infinite cellular family of open sets. Since X is feebly compact, this family must have an accumulation point in F, and hence its only accumulation point is p. For each  $U \cap C \in S$ , pick  $x_C \in U \cap C$ ; since X has no isolated points, the set  $\{x_C : U \cap C \in S\} \cup \{p\}$ is closed and discrete and hence there are disjoint opens sets U' and V' such that  $p \in U'$  and  $\{x_C : U \cap C \in S\} \subseteq V'$ . It follows immediately that the infinite family of non-empty open sets  $\{C \cap U \cap V' : U \cap C \in S\}$  has no accumulation point in X, contradicting the fact that X is feebly compact.

The following theorem is a result of Scarborough and Stone [14]. For completeness we include the simple proof.

4

### **Theorem 3.2.** An *R*-closed topology is feebly compact.

*Proof.* Suppose to the contrary that  $\mathcal{U} = \{U_n : n \in \omega\}$  is an infinite discrete family of open subsets of  $(X, \tau)$ . For each  $n \in \omega$ , pick  $x_n \in U_n$ . It is then straightforward to check that the family

$$\mathcal{B} = \{ U \in \tau : U \supseteq \{ x_n : n \ge k \} \text{ for some } k \in \omega \}$$

is a regular filter base on X with no accumulation point, contradicting the fact that  $(X, \tau)$  is R-closed.

**Corollary 3.3.** Each submaximal R-closed space has an isolated point.

**Lemma 3.4.** An *R*-closed space which is scattered and of dispersion order 2 is compact.

*Proof.* Suppose  $X = X_0 \cup X_1$  where  $X_0$  is the set of isolated points and  $X_1$  is the set of accumulation points of X. For each  $p \in X_1$ , there is a closed neighbourhood U of p such that  $U \subseteq X_0 \cup \{p\}$ . It is clear that U is clopen and so X is 0-dimensional and hence Tychonoff. Thus X is compact.  $\Box$ 

Stephenson's examples (see [15] and [9]) show that the previous result is false for *R*-closed scattered spaces of dispersion order 3.

Since a subspace of a submaximal space is submaximal, the closure of the set of isolated points of an R-closed submaximal space is scattered of dispersion order 2. Thus:

**Corollary 3.5.** Each submaximal *R*-closed space is a compact scattered space of dispersion order 2.

Proof. Suppose that  $(X, \tau)$  is an *R*-closed submaximal space and let  $X_0$  denote the set of isolated points of *X*; by Corollary 3.3,  $X_0 \neq \emptyset$ . Let  $C = \operatorname{cl}(X \setminus \operatorname{cl}(X_0))$ ; If  $C = \emptyset$  then we are done, so suppose to the contrary. Then *C* is a submaximal space without isolated points and so again by Corollary 3.3,  $(C, \tau|C)$  is not feebly compact. Thus there is an infinite locally finite family  $\mathcal{F}$ of open sets in  $(C, \tau|C)$ . But then,  $\{F \cap (X \setminus \operatorname{cl}(X_0)) : F \in \mathcal{F}\}$  is an infinite locally finite family of open sets in *X*, implying that *X* is not feebly compact, which is a contradiction.  $\Box$ 

# Theorem 3.6. A submaximal R-closed space is maximal R-closed.

Proof. Suppose that  $(X, \tau)$  is a submaximal *R*-closed space. By the previous corollary, *X* is compact scattered of dispersion order 2; let  $X_0$  denote the set of isolated points of *X* and  $X_1 = X \setminus X_0$ . Suppose that  $\sigma \supseteq \tau$  is a regular topology on *X* which differs from  $\tau$  at a point *p*. Then there is some  $\sigma$ -open neighbourhood *U* of *p* which is not  $\tau$ -open and hence does not contain any  $\tau$ -neighbourhood of *p*; there is also a compact  $\tau$ -neighbourhood *V* of *p* such that  $V \subseteq X_0 \cup \{p\}$ . It is then clear that  $V \setminus U$  is an infinite  $\sigma$ -closed subset of  $X_0$ , implying that  $(X, \sigma)$  is not feebly compact.  $\Box$  **Lemma 3.7.** A feebly compact regular space of countable pseudocharacter is first countable.

*Proof.* Suppose that  $(X, \tau)$  is feebly compact regular space and  $\psi(X, p) = \omega$ . There is a family  $\mathcal{B} = \{B_n : n \in \omega\}$  of open sets such that  $\bigcap\{B_n : n \in \omega\} = \{p\}$ and for each  $n \in \omega$ ,  $\operatorname{cl}(B_{n+1}) \subseteq B_n$ . If  $\mathcal{B}$  is not a local base at p, then there is some open neighbourhood U of p such that for each  $n \in \omega$ ,  $B_n \notin U$ . It is straightforward to check that the family of open sets  $\{B_n \setminus (\operatorname{cl}_\tau(B_{n+1} \cup U)) :$  $n \in \omega\}$  is an infinite locally finite family of open sets, contradicting the fact that X is feebly compact.

The next theorem should be compared with Theorem 2.20 of [12].

**Theorem 3.8.** A regular feebly compact first countable topology is maximal among regular feebly compact topologies.

*Proof.* Suppose that  $(X, \tau)$  is a regular feebly compact first countable space and  $\sigma \supseteq \tau$  is a regular topology on X; we will show that  $(X, \sigma)$  is not feebly compact.

To this end, suppose that  $U \in \sigma \setminus \tau$ ; then  $X \setminus U$  is  $\sigma$ -closed but not  $\tau$ -closed and so since  $(X, \tau)$  is first countable, there is some sequence  $\{p_n\}$  in  $X \setminus U$ convergent (in  $(X, \tau)$ ) to  $p \in U$ . By Lemma 4.1 of [2], there is a family of disjoint  $\tau$ -open sets  $\{U_n : n \in \omega\}$  whose only accumulation point (in  $(X, \tau)$ ) is p and such that  $p_n \in U_n$  for each  $n \in \omega$ . Now by regularity of  $(X, \sigma)$ there is  $W \in \sigma$  such that  $p \in W \subseteq \operatorname{cl}_{\sigma}(W) \subseteq U$ ; then, the collection of sets  $\mathcal{U} = \{U_n \setminus \operatorname{cl}_{\sigma}(W) : n \in \omega\}$  is a locally finite collection of open subsets of  $(X, \sigma)$ and so if an infinite number of elements of  $\mathcal{U}$  are non-empty, then  $(X, \sigma)$  is not feebly compact. However, if for some  $n_0 \in \omega$ ,  $U_n \setminus \operatorname{cl}_{\sigma}(W) = \emptyset$  for all  $n \geq n_0$ , then  $p_n \in U_n \subseteq \operatorname{cl}_{\sigma}(W)$  for all  $n \geq n_0$  contradicting the fact that  $p_n \in X \setminus U \subseteq X \setminus \operatorname{cl}_{\sigma}(W)$ .

The following result is now an immediate consequence of Theorems 3.2 and 3.8 and Lemma 3.7.

**Corollary 3.9.** An *R*-closed space of countable pseudocharacter is maximal *R*-closed.

**Remark 3.10.** Note that we have proved something a little stronger: If  $(X, \tau)$  is *R*-closed and  $\sigma \supseteq \tau$  differs from  $\tau$  at a point of countable pseudocharacter, then  $(X, \sigma)$  is not *R*-closed.

**Corollary 3.11.** A regular space with a strictly weaker R-closed first countable topology is upper in  $\Sigma_3$ .

**Corollary 3.12.** A first countable compact Hausdorff space is maximal *R*-closed.

Question 3.13. Is a Fréchet compact Hausdorff space maximal R-closed?

#### 4. Lower topologies

A point p is a maximal regular point of a regular space  $(X, \tau)$  if the trace of the regular filter  $\mathcal{V}_p^{\tau}$  generated by  $\tau(p, X)$  on  $X \setminus \{p\}$  is a maximal regular filter.

**Lemma 4.1.** A point p in a regular topological space  $(X, \tau)$  is a maximal regular point of X if and only if whenever  $\tau \subsetneq \sigma$  is a regular topology on X such that  $\sigma|(X \setminus \{p\}) = \tau|(X \setminus \{p\})$  then p is an isolated point of  $(X, \sigma)$ .

*Proof.* For the sufficiency suppose that the regular filter  $\mathcal{V}_p^{\tau}$  generated by  $\tau(p, X)$  when restricted to  $X \setminus \{p\}$  is not maximal. Then there is some regular filter  $\mathcal{F} \supseteq \mathcal{V}_p^{\tau} | (X \setminus \{p\})$ . Define  $\sigma$  to be that topology on X generated by the subbase

$$\tau \cup \{V \cup \{p\} : V \in \mathcal{F}\};$$

it is straightforward to show that  $\sigma$  is a regular topology on X strictly finer that  $\tau$  in which p is not an isolated point.

To show the necessity, suppose that p is a maximal regular point of  $(X, \tau)$ . Then if  $\sigma \supseteq \tau$  and  $\sigma | (X \setminus \{p\}) = \tau | (X \setminus \{p\})$ , it follows that the trace of the neighbourhood filter  $\mathcal{V}_p^{\sigma}$  at p on  $X \setminus \{p\}$  is strictly larger than the trace of the neighbourhood filter  $\mathcal{V}_p^{\tau}$  at p on  $X \setminus \{p\}$  and since  $\sigma | (X \setminus \{p\}) = \tau | (X \setminus \{p\})$ ,  $\mathcal{V}_p^{\sigma} | (X \setminus \{p\})$  is a  $\tau$ -open collection strictly larger than the maximal regular filter  $\mathcal{V}_p^{\tau} | (X \setminus \{p\})$ . It follows that p is an isolated point of  $(X, \sigma)$ .  $\Box$ 

It was essentially shown in Theorem 2.13 of [1] that a point of first countability in a space is not a maximal regular point.

**Corollary 4.2.** If  $(X, \tau)$  has a maximal regular point then  $\tau$  is a lower topology in  $\Sigma_3$ .

In [3] we characterized lower topologies in the poset of Hausdorff spaces as those having a closed subspace with a maximal point. Example 4.10 below shows that having a closed subspace with a maximal regular point does not guarantee that a topology is lower in  $\Sigma_3$ . However, we have the following result:

**Lemma 4.3.** If  $\sigma \in \Sigma_3(X)$  is a simple extension of  $\tau \in \Sigma_3(X)$  which differs from  $\tau$  at precisely one point  $p \in X$ , then  $\sigma$  is upper and each lower topology  $\mu$  corresponding to  $\sigma$  has a closed subspace with a maximal regular point.

*Proof.* It was shown in [6] that if a  $T_3$ -topology  $\sigma$  is a simple extension of a  $T_3$ -topology  $\tau$  that differs from  $\tau$  at precisely one point p, then  $\sigma$  is upper in  $\Sigma_3(X)$  and is generated by the subbase  $\tau \cup \{U \cup \{p\}\}$  for some  $U \in \tau$ . Clearly  $\mu \cup \{U \cup \{p\}\}$  is also a subbase for  $\sigma$  and hence p is an isolated point of  $A = (X \setminus U) \cup \{p\}$  in the topology  $\sigma$  but not in  $\mu$ . Thus p is a maximal regular point of  $(A, \mu | A)$ .

**Remark 4.4.** If  $\tau$  is a lower topology in  $\Sigma_3$  and  $\tau$  and  $\tau^+$  differ at  $p \in X$  then there is some  $U_0 \in \tau$  such that  $U_0 \cup \{p\} \in \tau^+ \setminus \tau$ . Then since  $\tau^+$  is

regular, for each  $n \geq 1$  there is  $U_n \in \tau$  such that  $U_n \cup \{p\} \in \tau^+ \setminus \tau$  and  $U_n \cup \{p\} \subseteq \operatorname{cl}_{\tau^+}(U_n) \cup \{p\} \subseteq U_{n-1} \cup \{p\}$ . It is clear that  $\tau^+$  is generated by the subbase  $\tau \cup \{U_n \cup \{p\} : n \in \omega\}$  and hence the character of p in  $(X, \tau^+)$  is no greater than its character in  $(X, \tau)$ .

A family  $S = \{S_n : n \in \omega\}$  is said to be strongly decreasing at p if for each  $n \in \omega$ ,  $cl(S_{n+1}) \cup \{p\} \subseteq S_n \cup \{p\}$ . We now formulate the above Remark as a lemma:

**Lemma 4.5.** Let  $(X, \tau)$  be a  $T_3$ -space; if  $\tau$  has an immediate successor  $\tau^+ \in \Sigma_3$ , then there is  $p \in X$  and a family  $\mathcal{U} = \{U_n : n \in \omega\} \subseteq \tau$  which is strongly decreasing at p, such that for each  $n \in \omega$ ,  $U_n \cup \{p\} \notin \tau$  and  $\tau^+$  is generated by the subbase  $\tau \cup \{U_n \cup \{p\} : n \in \omega\}$ .

This result allows us to characterize (rather abstractly it must be said) lower topologies in  $\Sigma_3$  in the next theorem. In order to simplify the notation somewhat, when  $\mathcal{W} = \{W_n : n \in \omega\} \subseteq \tau$  and  $\mathcal{V} = \{V_n : n \in \omega\} \in \tau$  are strongly decreasing families at (a fixed)  $p \in X$ ,  $\tau_{\mathcal{W}}$  will denote the topology generated by  $\tau \cup \{W_n \cup \{p\} : n \in \omega\}$  and  $\mathcal{W} \cap \mathcal{V}$  will denote the family  $\{W_n \cap V_n : n \in \omega\}$ which is also strongly decreasing at p.

**Theorem 4.6.** A topology  $\tau$  on X is lower in  $\Sigma_3$  if and only if there is  $p \in X$ and a strongly decreasing family  $\mathcal{U} = \{U_n : n \in \omega\} \subseteq \tau$  at p such that whenever  $\mathcal{V} = \{V_n : n \in \omega\} \subseteq \tau$  is strongly decreasing at p and  $\tau_{\mathcal{U}} = \tau_{\mathcal{U} \cap \mathcal{V}}$ , then either  $\tau_{\mathcal{V}} = \tau_{\mathcal{U}} \text{ or } \tau_{\mathcal{V}} = \tau$ .

*Proof.* Suppose that  $\tau$  is not lower and fix  $p \in X$ ; if  $\mathcal{U} = \{U_n : n \in \omega\} \subseteq \tau$  is strongly decreasing at p, then there is  $\sigma \in \Sigma_3$  such that  $\tau \subsetneq \sigma \subsetneq \tau_{\mathcal{U}}$ . We may then choose a strongly decreasing family (at p)  $\mathcal{V} = \{V_n : n \in \omega\} \subseteq \sigma$ , such that for each  $n \in \omega$ ,  $V_n \cup \{p\} \in \sigma \setminus \tau$  and so  $\tau \subsetneq \tau_{\mathcal{V}} \subsetneq \tau_{\mathcal{U}}$ . However, since for each  $n \in \omega$ ,  $V_n \cup \{p\} \in \tau_{\mathcal{U}}$ , we have that  $(U_n \cap V_n) \cup \{p\} \in \tau_{\mathcal{U}}$  which implies that  $\tau_{\mathcal{U}} = \tau_{\mathcal{U} \cap \mathcal{V}}$ , giving a contradiction.

Conversely, suppose that  $\tau$  is lower in  $\Sigma_3$ ; by Lemma 4.5, there is  $p \in X$ and a strongly decreasing family  $\mathcal{U}$  at p such that  $\tau^+ = \tau_{\mathcal{U}}$ . Then, if  $\mathcal{V} = \{V_n : n \in \omega\} \subseteq \tau$  is a strongly decreasing family at p such that  $\tau_{\mathcal{U}} = \tau_{\mathcal{U} \cap \mathcal{V}}$  it follows that for each  $n \in \omega$ ,  $V_n \cup \{p\} \in \tau_{\mathcal{U}}$  and so  $\tau_{\mathcal{V}} \subseteq \tau_{\mathcal{U} \cap \mathcal{V}} = \tau_{\mathcal{U}}$ .

# Theorem 4.7. A compact LOTS is maximal R-closed.

Proof. Suppose that  $(X, \tau, <)$  is a compact LOTS and  $\sigma \supseteq \tau$ . Then there is some  $U \in \sigma \setminus \tau$  and  $p \in U$  such that U is not a  $\tau$ -neighbourhood of p, and hence  $L_p \setminus U$  is cofinal in  $L_p \setminus \{p\}$  or  $R_p \setminus U$  is cofinal in  $R_p \setminus \{p\}$ , where  $L_p = \{x \in X : x \leq p\}$  and  $R_p = \{x \in X : x \geq p\}$ . It is easy to see that  $(X, \tau)$  is maximal R-closed if and only if both of the compact subspaces  $(L_p, \tau)$ and  $(R_p, \tau)$  are maximal R-closed. Thus, if p is a point of first countability of  $(X, \tau)$ , then it is also of first countability in both  $(L_p, \tau)$  and  $(R_p, \tau)$  and so the result is an immediate consequence of Remark 3.10.

Suppose then that  $\chi(p, X) > \omega$ , say  $\chi(p, L_p) = \kappa > \omega$  (where  $\kappa$  is a regular uncountable cardinal); in the sequel we consider only the subspace  $L_p$ . Let

 $V \in \sigma$  be such that  $p \in V \subseteq \operatorname{cl}_{\sigma}(V) \subseteq U$ , then clearly, either,  $V = \{p\}$  or  $V \setminus \{p\}$  is a cofinal  $\sigma$ -closed subset of  $L_p \setminus \{p\}$ . If the former occurs, then clearly  $L_p \setminus \{p\}$  is open and closed in  $(L_p, \sigma)$  which then cannot be *R*-closed.

If  $V \setminus \{p\}$  is cofinal in  $L_p \setminus \{p\}$  then, inductively we may construct interpolating sequences  $\{v_n : n \in \omega\} \subseteq V \setminus \{p\}$  and  $\{w_n : n \in \omega\} \subseteq L_p \setminus U$  such that  $w_n < v_n < w_{n+1}$  for all  $n \in \omega$ . Since (X, <) is complete,  $q = \sup\{v_n : n \in \omega\}$  $= \sup\{w_n : n \in \omega\}$  exists. Now for each  $n \in \omega$ , let  $O_n = V \cap (w_n, w_{n+1})$ . The sets  $\{O_n : n \in \omega\}$  are  $\sigma$ -open and their only possible accumulation point in  $(X, \sigma)$  is q. There are now two possibilities:

1) If  $q \in cl_{\sigma}(\{w_n : n \in \omega\})$ , then  $q \in L_p \setminus U$  and so q is not an accumulation point in  $(X, \sigma)$  of the family  $\{O_n : n \in \omega\}$ , showing that  $(X, \sigma)$  is not feebly compact and hence not R-closed.

2) If on the other hand,  $q \notin cl_{\sigma}(\{w_n : n \in \omega\})$ , then  $\{w_n : n \in \omega\}$  is closed and discrete in  $(X, \sigma)$ . Since  $\sigma$  is regular, we may construct a discrete family of  $\sigma$ -open sets  $\{W_n : n \in \omega\}$  such that  $w_n \in W_n$ , again showing that  $(X, \sigma)$  is not feebly compact.

The same proof essentially shows that:

**Theorem 4.8.** If  $(X, \tau, <)$  is a LOTS and  $\chi(p, L_p) > \omega$ , then p is a maximal regular point of  $L_p$ .

**Corollary 4.9.** A compact LOTS is lower in  $\Sigma_3$  if and only if it is not first countable.

*Proof.* The sufficiency follows from Theorem 4.8 and Corollary 4.2. The necessity was proved in Theorem 2.13 of [1].

Compactness is essential in the previous theorem. It is straightforward to show that the one-point Lindelofication of a discrete space of cardinality  $\omega_1$  is a LOTS but is neither first countable nor lower in  $\Sigma_3$ .

From Theorem 4.8 we see that if  $\kappa$  is an uncountable regular cardinal, then  $\kappa$  is a maximal regular point of  $\kappa + 1$  (with the order topology).

**Example 4.10.** Let  $\kappa$  denote the first ordinal of cardinality  $\mathfrak{c}^+$  and let X denote the set  $(\kappa + 1) \times [0, 1]$ ,  $\tau$  the product topology on X and  $\sigma$  the topology generated by  $\tau \cup \{(\kappa, 1)\}$ . We will show that  $\sigma = \tau^+$ . To this end, suppose that  $\mu$  is a regular topology such that  $\tau \subsetneq \mu \subseteq \sigma$ ; clearly  $\mu$  differs from  $\tau$  and  $\sigma$  only at the point  $(\kappa, 1)$  and hence there is some open  $\mu$ -neighbourhood V which is not a  $\tau$ -neighbourhood of  $(\kappa, 1)$  and some  $\mu$ -neighbourhood U of  $(\kappa, 1)$  such that  $cl_{\mu}(U) \subseteq V$ . Since  $\kappa > \mathfrak{c}$ , there are a number of possibilities:

1) There is an infinite set  $J = \{r_n : n \in \omega\} \subseteq [0,1)$  with  $1 \in cl(J)$  and for each  $n \in \omega$  a set  $S_n \subseteq \kappa$  such that either,

a)  $S_n$  is cofinal in  $\kappa$  or

b)  $\kappa \in S_n$ 

and  $\bigcup \{S_n \times \{r_n\} : n \in J\} \cap V = \emptyset$ . Or,

2) There is a cofinal set  $S_{\omega} \subset \kappa$  such that  $(S_{\omega} \times \{1\}) \cap V = \emptyset$ ; furthermore, since  $V \setminus \{(\kappa, 1)\}$  is  $\tau$ -open, we may assume that  $S_{\omega}$  is  $\tau$ -closed in  $\kappa$ .

If 1a) occurs, then  $\{\kappa\} \times J \subseteq X \setminus V \subseteq X \setminus \operatorname{cl}_{\mu}(U)$ ; and if 1b) occurs, then since  $V \setminus \{(\kappa, 1)\}$  is  $\tau$ -open, it follows that  $\{\kappa\} \times J \subseteq X \setminus V \subseteq X \setminus \operatorname{cl}_{\mu}(U)$ .

Thus in either case 1a) or 1b), there is an infinite subset  $J \subseteq [0,1)$  with  $1 \in \operatorname{cl}(J)$  such that  $\{\kappa\} \times J \subseteq X \setminus V \subseteq X \setminus \operatorname{cl}_{\mu}(U)$ . It then follows that for each  $r_n \in J$  there is  $\alpha_n \in \kappa$  such that  $\bigcup \{(\alpha_n, \kappa] \times \{r_n\} : n \in J\} \subseteq X \setminus \operatorname{cl}_{\mu}(U)$ . Letting  $\alpha = \sup\{\alpha_n : n \in J\} \in \kappa$  we have that  $(\alpha, \kappa] \times J \subseteq X \setminus \operatorname{cl}_{\mu}(U)$  and so  $(\alpha, \kappa) \times \{1\} \subseteq X \setminus U$ . Again using regularity of  $(X, \mu)$ , there is some  $\mu$ -open neighbourhood W of  $(\kappa, 1)$  such that  $\operatorname{cl}_{\mu}(W) \subseteq U$  and hence  $\operatorname{cl}_{\mu}(W) \cap ((\alpha, \kappa) \times \{1\}) = \emptyset$ .

If on the other hand, 2) occurs, then since  $cl_{\mu}(U)$  is also  $\tau$ -closed and it follows that  $cl_{\mu}(U) \cap (\kappa \times \{1\})$  is a  $\tau$ -closed subset of  $\kappa \times \{1\}$ ). Thus, since  $\kappa$  is a regular cardinal with uncountable cofinality and  $cl_{\mu}(U) \cap S_{\omega} = \emptyset$ , it follows that there is some  $\alpha \in \kappa$  such that  $cl_{\mu}(U) \cap ((\alpha, \kappa) \times \{1\}) = \emptyset$ .

Thus in both cases 1) and 2) we have shown that there is a  $\mu$ -open neighbourhood O of  $(\kappa, 1)$  and  $\alpha \in \kappa$  such that  $\operatorname{cl}_{\mu}(O) \cap ((\alpha, \kappa) \times \{1\}) = \emptyset$ .

Now, since  $1 \in cl(J)$ , it follows that  $\{(r_n, 1] : n \in J\}$  is a local base at 1 and so for each  $\alpha < \gamma \in \kappa$ , there is  $r_{n_{\gamma}} \in J$  and  $O_{\gamma}$  open in  $\kappa$  such that  $O_{\gamma} \times (r_{n_{\gamma}}, 1] \subseteq X \setminus cl_{\mu}(O)$ . Now denoting by  $L_n$  the set  $\{\gamma : n_{\gamma} = n \in J\}$  and by  $M_n$  the set  $\bigcup \{O_{\gamma} : \gamma \in L_n\}$  we have that for each  $n \in J$ ,  $M_n \times (r_n, 1] \subseteq$  $X \setminus cl_{\mu}(O)$ . However,  $\bigcup \{M_n : n \in J\} \supseteq (\alpha, \kappa)$  and hence there is a finite subset  $\{M_{n_1}, \ldots, M_{n_k}\}$  which covers  $(\alpha, \kappa)$ . Letting  $r = \max\{r_{n_1}, \ldots, r_{n_k}\}$ , we have that  $(\alpha, \kappa) \times (r, 1] \subseteq S \setminus cl_{\mu}(O)$  and hence  $O \cap ((\alpha, \kappa + 1] \times (r, 1]) \subseteq \{\kappa\} \times [0, 1]$ . Since  $O \cap (X \setminus \{(\kappa, 1)\})$  is  $\tau$ -open this shows that  $O \cap ((\alpha, \kappa + 1] \times (r, 1]) = \{(\kappa, 1)\}$ , that is to say,  $(\kappa, 1)$  is an isolated point of  $(X, \mu)$ .

Of course, for each  $r \in [0, 1]$ , the same argument applies to the point  $(\kappa, r) \in X$ . Thus each point of X is either a maximal regular point or a point of first countability; it follows that  $(\kappa + 1) \times [0, 1]$  is maximal R-closed and is lower in  $\Sigma_3$ .

Now let L denote the ordered set  $(\kappa + 1) \bigoplus \omega^{-1}$  (that is to say,  $\kappa + 1$  with its usual ordering followed by  $\omega$  with its reverse ordering, with the order topology) and  $Y = L \times [0,1]$  with the product topology  $\tau$ . The space Y is the product of two LOTS, is not first countable and contains X as a closed subspace. Nonetheless, we claim that Y is not lower in  $\Sigma_3$ . To see this suppose that  $\tau \subsetneq \sigma$  and that  $\tau$  and  $\sigma$  differ at precisely one point  $p \in Y$ . By Theorem 2.13 of [1], p is not a point of first countability, hence  $p = (\kappa, r) \in {\kappa} \times [0,1]$ . Clearly the neighbourhood filter  $\mathcal{V}_p^{\sigma}$  of p in  $(Y, \sigma)$  must differ from that in  $(Y, \tau), \mathcal{V}_p^{\tau}$ , either on the subset  $(\kappa + 1) \times [0,1]$  or on  $Y \setminus (\kappa \times [0,1])$ . Suppose then that the traces of  $\mathcal{V}_p^{\sigma}$  and  $\mathcal{V}_p^{\tau}$  on  $(\kappa + 1) \times [0,1]$  are the same; then  $\mathcal{V}_p^{\sigma}$  and  $\mathcal{V}_p^{\tau}$  differ on  $Z = Y \setminus (\kappa \times [0,1])$ , however,  $(Z, \tau)$  is first countable and hence again by Theorem 2.13 of [1] there are T<sub>3</sub>-topologies on it lying strictly between  $\tau$ and  $\sigma$ . Thus  $\tau$  and  $\sigma$  differ on  $(\kappa + 1) \times [0,1]$  and so by what we showed above, p must be an isolated point of  $((\kappa + 1) \times [0,1], \sigma)$  and hence also of  $\{\kappa\} \times [0,1], \sigma)$ . However, the topology on  $Y \setminus (\kappa \times [0,1])$  obtained by declaring  $\{\kappa\} \times ([0,1] \setminus \{r\})$  to be closed is not regular, and an argument similar to that employed in Theorem 2.13 of [1] shows that there is no topology, minimal in the class of regular topologies larger than it.

With a little more work, using the fact that [0, 1] is second countable, it is possible to substitute  $\omega_1$  instead of  $\kappa$  in the previous example.

However the following questions remain open.

**Question 4.11.** If a regular topology is lower does some closed subspace have a maximal regular point?

**Question 4.12.** Is there an internal concrete characterization of lower topologies in  $\Sigma_3$ ?

# 5. FIRST COUNTABLE REGULAR TOPOLOGIES

Denote by  $\Sigma'_3(X)$  the partially ordered set of first countable  $T_3$ -topologies on a set X.

**Theorem 5.1.** There are no jumps in  $\Sigma'_3(X)$ ; between any two first countable  $T_3$ -topologies on X there are at least  $\mathfrak{c}$  incomparable first countable  $T_3$ topologies.

Proof. Suppose that  $\xi$  and  $\tau$  are two first countable  $T_3$ -topologies on X which differ precisely at the point  $x \in X$ , Let  $\{V_n : n \in \omega\}$  and  $\{W_n : n \in \omega\}$  be nested local bases at x in the topologies  $\xi$  and  $\tau$  respectively. We may now choose a sequence  $\{x_m\}_{m\in\omega}$  which converges to x in  $(X,\xi)$  but not in  $(X,\tau)$ and by passing to a subsequence if necessary, we may assume that  $x_m \in V_m$ and  $\{x_m : m \in \omega\}$  is a closed, discrete subset of  $(X,\tau)$ . For each  $m \in \omega$ , let  $\{U_m^n : n \in \omega\}$  be a local base of  $\tau$ -open sets at  $x_m$  such that  $x \notin \operatorname{cl}_{\tau}(U_m^{n+1}) \subseteq$  $U_m^n \subseteq V_m$  for each  $m, n \in \omega$ ; since  $(X,\tau)$  is regular, we may assume that  $\{U_m^n : m \in \omega\}$  is a discrete family of  $\tau$ -open sets. Note that each set  $U_m^n$ is  $\xi$ -open and for each  $n \in \omega$ , the family  $\{U_m^n : m \in \omega\}$  has x as its unique accumulation point in  $(X,\xi)$ . Now let  $\mathcal{A}$  be an almost disjoint family of subsets of  $\omega$  of size  $\mathfrak{c}$  and for each  $A \in \mathcal{A}$  we define

 $\mathcal{F}_A = \{ U \in \tau : \text{if } x \in U \text{ then there is } n \in \omega \text{ and some} \\ \text{finite } F \subseteq \omega \text{ such that } U \supseteq \bigcup \{ U_m^n : m \in A \setminus F \} \}.$ 

It is clear that this is a sub-base for a first countable topology  $\mu_A \subseteq \tau$  on X and since  $\{x_m\}_{m \in A}$  converges to x in  $(X, \mu_A)$  it follows that  $\mu_A \neq \tau$ . Furthermore, since  $U_m^n \subseteq V_m$  for each  $m, n \in \omega$ , it follows that  $\xi \subseteq \mu_A$  and since  $\{x_m\}_{m \in \omega \setminus A}$ does not converge to x in  $(X, \mu_A)$  it follows that  $\mu_A \neq \xi$ . Finally, note that if  $A, B \in \mathcal{A}$  are distinct, then  $\mu_A$  and  $\mu_B$  are incomparable topologies. Finally, we need to show that each topology  $\mu_A$  is regular. To this end, suppose that  $x \in U \in \mu_A$ ; then there is some finite set  $F \subseteq \omega$  such that  $U \supseteq \bigcup \{U_m^n : m \in A \setminus F\}$ . It follows that  $\bigcup \{cl_\tau(U_m^{n+1}) : m \in A \setminus F\}$  is a  $\mu_A$ -closed neighbourhood of x which is contained in U. If  $x \neq z \in U \in \tau$ , then there is some  $\tau$ -closed neighbourhood  $W \subseteq U$  of z and some  $n \in \omega$  such that  $W \cap \bigcup \{U_m^n : m \in \omega\} = \emptyset$ and hence W is a  $\mu_A$ -closed neighbourhood of z contained in U. Thus  $(X, \mu_A)$ is regular. In Theorem 2.13 of [1] it was shown that a sequential  $T_3$ -topology of countable pseudocharacter is not a lower topology in  $\Sigma_3$ . However, we do not know the answer to the following question:

**Question 5.2.** Is every first countable  $T_3$ -topology which is not R-minimal, upper in  $\Sigma_3$ ?

# 6. Some more open problems

The supremum of a chain of regular topologies is regular. Thus a positive answer to the first question would imply a positive answer to the second.

Question 6.1. Is the supremum of a chain of R-closed topologies R-closed?

**Question 6.2.** Is every R-closed topology contained in a maximal R-closed topology ?

Note: There are maximal R-closed topologies which are not compact. In [15], Stephenson gave an example under CH of a first countable non-compact R-closed topology - by Corollary 3.9, this must be maximal R-closed. In [9] it was shown that the same construction can be done in ZFC. This space is scattered and has dispersion order 3. The topology contains a weaker compact Hausdorff topology of dispersion order 3 (which is clearly not maximal R-closed).

**Question 6.3.** Is a maximal R-closed topology which is not R-minimal, upper in  $\Sigma_3$ ?

Stephenson's examples show that maximal *R*-closed topologies need not be lower. Finally, the most general question of all:

**Question 6.4.** Is every regular topology which is not R-minimal an upper topology in  $\Sigma_3$ ?

ACKNOWLEDGEMENTS. Research supported by Programa Integral de Fortalecimiento Institucional (PIFI), grant no. 34536-55 (México) and Fundação de Amparo a Pesquisa do Estado de São Paulo (Brasil). The second author wishes to thank the Departament de Matemàtiques de la Universitat Jaume I for support from Pla 2009 de Promoció de la Investigació, Fundació Bancaixa, Castelló, during the preparation of the final version of this paper.

#### References

- O. T. Alas, S. Hernández, M. Sanchis, M. G. Tkachenko and R. G. Wilson, Adjacency in the partial orders of Tychonoff, regular and locally compact topologies, Acta Math. Hungar. 112, no. 3 (2006), 2005–2025.
- [2] O. T. Alas, M. G. Tkachenko and R. G. Wilson, Which topologies have immediate predecessors in the poset of Hausdorff topologies?, Houston Journal Math., to appear.
- [3] O. T. Alas and R. G. Wilson, Which topologies can have immediate successors in the lattice of T<sub>1</sub>-topologies?, Appl. Gen. Topol. 5, no. 2 (2004), 231–242.
- [4] M. Berri, J. Porter and R. M. Stephenson, A survey of minimal topological spaces, Proc. Kanpur Conference, 1968.
- [5] N. Carlson, Lower and upper topologies in the Hausdorff partial order on a fixed set, Topology Appl. 154 (2007), 619–624.
- [6] C. Costantini, On some questions about posets of topologies on a fixed set, Topology Proc. 32 (2008), 187–225.
- [7] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [8] L. M. Friedler, M. Girou, D. H. Pettey and J. R. Porter, A survey of R-, U-, and CHclosed spaces, Topology Proc. 17 (1992), 71–96.
- [9] S. H. Hechler, Two R-closed spaces revisited, Proc. Amer. Math. Soc. 56 (1976), 303-309.
- [10] R. E. Larson and W. J. Thron, Covering relations in the lattice of T<sub>1</sub>-topologies, Trans. Amer. Math. Soc. 168 (1972), 101–111.
- [11] D. W. McIntyre and S. W. Watson, Finite intervals in the partial orders of zerodimensional, Tychonoff and regular topologies, Topology Appl. 139 (2004), 23–36.
- [12] J. Porter, R. M. Stephenson and R. G. Woods, *Maximal feebly compact spaces*, Topology Appl. **52** (1993), 203–219.
- [13] J. Porter and R. G. Woods, Extensions and Absolutes of Topological Spaces, Springer Verlag, New York, 1987.
- [14] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147.
- [15] R. M. Stephenson, Two R-closed spaces, Canadian J. Math. 24 (1972), 286–292.
- [16] R. Valent and R. E. Larson, Basic intervals in the lattice of topologies, Duke Math. J. 379 (1972), 401–411.

(Received October 2008 – Accepted September 2009)

# O. T. ALAS (alas@ime.usp.br)

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, 05311-970 São Paulo, Brasil.

#### R. G. WILSON (rgw@xanum.uam.mx)

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., México.