

© Universidad Politécnica de Valencia Volume 12, no. 1, 2011 pp. 15-16

The equality of the Patch topology and the Ultrafilter topology: A shortcut

Luz M. Ruza and Jorge Vielma

Abstract

In this work R denotes a commutative ring with non-zero identity and we prove that the patch topology and the ultrafilter topology defined on the prime spectrum of R are equal, in a different way as the given by Marco Fontana and K. Alan Loper in ([2]).

2010 MSC: 54E18, 54F65, 13C05.

KEYWORDS: Patch topology, ultrafilter topology, prime spectrum of a ring.

1. Terminology and basic definitions

Let R be a commutative ring with non-zero identity. Spec(R) denotes the set of all prime ideals of R. For every proper subset I of R, we denote by V(I) the set of all prime ideals of R containing I, and $D_0(I) = Spec(R) - V(I)$. V(a) will denote the set V(aR) and $D_0(a)$ the set $D_0(aR)$. The Zariski topology t_z on Spec(R) is the one that has as its closed sets those of the form V(I) ([1]). The patch topology on Spec(R) is defined as the smallest topology having the collections V(I) and $D_0(a)$ as closed sets. Let C be a subset of Spec(R), and let Ω be an ultrafilter on C. It was shown in ([2]) that the set $P_{\Omega} = \{a \in R : V(a) \cap C \in \Omega\}$ is a prime ideal of R. The set C is said to be ultrafilter-closed if for every ultrafilter Ω on C, $P_{\Omega} \in C$. The ultrafilter-closed sets define a topology on Spec(R) called the Ultrafilter topology ([2]), and is denoted by τ_U . In this work we prove that the patch topology and the ultrafilter topology are equal, in a different way as the given by Fontana and Loper in ([2]).

2. The shortcut

Theorem 2.1. The Ultrafilter topology τ_U is compact.

Proof. Let \mathcal{U} be a non principal ultrafilter in Spec(R). We want to prove that \mathcal{U} $\tau_{\mathcal{U}}$ -converge to $P_{\mathcal{U}}$. Let θ be a $\tau_{\mathcal{U}}$ -open set containing $P_{\mathcal{U}}$. Suppose that $\mathcal{A} = \theta^C$ belongs to \mathcal{U} and let $\mathcal{U}_{\mathcal{A}} = \{U \cap \mathcal{A} : U \in \mathcal{U}\}$ be the ultrafilter on \mathcal{A} induced by \mathcal{U} . Since \mathcal{A} is $\tau_{\mathcal{U}}$ -closed, then $P_{\mathcal{U}_{\mathcal{A}}} \in \mathcal{A}$. If $a \in P_{\mathcal{U}}$, $V(a) \in \mathcal{U}$, then $V(a) \cap \mathcal{A} \in \mathcal{U}_{\mathcal{A}}$ and therefore $a \in P_{\mathcal{U}_{\mathcal{A}}}$. Also, if $b \in P_{\mathcal{U}_{\mathcal{A}}}$ it follows that $V(b) \cap \mathcal{A} \in \mathcal{U}_{\mathcal{A}}$ and there exists $U \in \mathcal{U}$ such that $V(b) \cap \mathcal{A} = U \cap \mathcal{A}$. Since $U \cap \mathcal{A} \in \mathcal{U}$, then $V(b) \cap \mathcal{A} \in \mathcal{U}$ which implies that $V(b) \in \mathcal{U}$ and so $b \in P_{\mathcal{U}}$. Therefore $P_{\mathcal{U}} = P_{\mathcal{U}_{\mathcal{A}}} \in \mathcal{A}$ which is a contradiction.

Corollary 2.2. The Ultrafilter topology and the patch topology are equal.

Proof. Since the patch topology is Hausdorff ([3]), weaker than the ultrafilter topology ([2]) and the well known fact that any compact topology does not admit a weaker Hausdorff topology unless they are equal, the result follows. \Box

References

- M. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
- [2] M. Fontana and K. A. Loper, The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring, Comm. Algebra 36 (2008), 2917–2922.
- [3] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.

(Received November 2008 – Accepted September 2009)

LUZ M. RUZA (ruza@ula.ve)

Universidad de los Andes, Departamento de Matemática, Merida, Venezuela

JORGE VIELMA (vielma@ula.ve)

Universidad de los Andes, Departamento de Matemática, Merida, Venezuela