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The equality of the Patch topology and the
Ultrafilter topology: A shortcut
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ABSTRACT

In this work R denotes a commutative ring with non-zero identity and
we prove that the patch topology and the ultrafilter topology defined
on the prime spectrum of R are equal, in a different way as the given
by Marco Fontana and K. Alan Loper in ([2]).
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1. TERMINOLOGY AND BASIC DEFINITIONS

Let R be a commutative ring with non-zero identity. Spec(R) denotes the
set of all prime ideals of R. For every proper subset I of R, we denote by V(I)
the set of all prime ideals of R containing I, and Dy (I) = Spec(R)—V(I). V(a)
will denote the set V(aR) and Dy(a) the set Dy(aR). The Zariski topology ¢,
on Spec(R) is the one that has as its closed sets those of the form V(I) ([1]).
The patch topology on Spec(R) is defined as the smallest topology having the
collections V(I) and Dg(a) as closed sets. Let C' be a subset of Spec(R), and
let  be an ultrafilter on C. It was shown in ([2]) that the set Po = {a € R :
V(a) N C € Q} is a prime ideal of R. The set C is said to be ultrafilter-closed
if for every ultrafilter Q on C, Po € C. The ultrafilter-closed sets define a
topology on Spec(R) called the Ultrafilter topology (]2]), and is denoted by 7.
In this work we prove that the patch topology and the ultrafilter topology are
equal, in a different way as the given by Fontana and Loper in ([2]).
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2. THE SHORTCUT
Theorem 2.1. The Ultrafilter topology Ty is compact.

Proof. Let U be a non principal ultrafilter in Spec(R). We want to prove that
U Ty-converge to Py. Let 6 be a 1y-open set containing Py. Suppose that
A = 0 belongs to U and let Uy = {UN A : U € U} be the ultrafilter on A
induced by U. Since A is 1y-closed, then Py, € A. If a € Py, V(a) € U,
then V(a) N A € Uy and therefore a € Py,. Also, if b € Py, it follows that
V() N A € Uy and there exists U € U such that V(b)N A = U N .A. Since
UNnA eU, then V(b) N A € U which implies that V(b) € U and so b € Py.
Therefore By = Py, € A which is a contradiction. [l

Corollary 2.2. The Ultrafilter topology and the patch topology are equal.

Proof. Since the patch topology is Hausdorff ([3]), weaker than the ultrafilter
topology ([2]) and the well known fact that any compact topology does not
admit a weaker Hausdorff topology unless they are equal, the result follows. [
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