

© Universidad Politécnica de Valencia Volume 12, no. 1, 2011

рр. 35-<mark>39</mark>

Hypercyclic abelian semigroup of matrices on \mathbb{C}^n and \mathbb{R}^n and k-transitivity $(k \geq 2)$

Adlene Ayadi*

Abstract

We prove that the minimal number of matrices on \mathbb{C}^n required to form a hypercyclic abelian semigroup on \mathbb{C}^n is n+1. We also prove that the action of any abelian semigroup finitely generated by matrices on \mathbb{C}^n or \mathbb{R}^n is never k-transitive for $k \geq 2$. These answer questions raised by Feldman and Javaheri.

2010 MSC: 37C85, 47A16

KEYWORDS: Hypercyclic, tuple of matrices, semigroup, subgroup, dense orbit, transitive, semigroup action.

1. Introduction

Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Following Feldman from [6], by an p-tuple of matrices, we mean a finite sequence of length p ($p \ge 1$) of commuting matrices A_1, A_2, \ldots, A_p on \mathbb{K}^n . We will let $G = \{A_1^{k_1} A_2^{k_2} \ldots A_p^{k_p} : k_1, k_2, \ldots, k_p \in \mathbb{N}\}$ be the semigroup generated by A_1, A_2, \ldots, A_p . For a vector $x \in \mathbb{K}^n$, the orbit of x under the action of G on \mathbb{K}^n is $O_G(x) = \{Ax : A \in G\}$. For a subset $E \subset \mathbb{K}^n$, denote by \overline{E} (resp. E) the closure (resp. interior) of E. A subset $E \subset \mathbb{K}^n$ is called G-invariant if $A(E) \subset E$ for any $A \in G$. The orbit $O_G(x) \subset \mathbb{K}^n$ is dense (resp. locally dense) in \mathbb{K}^n if $\overline{O_G(x)} = \mathbb{K}^n$ (resp. $\overline{O_G(x)} \ne \emptyset$). The semigroup G is called hypercyclic (or also topologically transitive) (resp. locally hypercyclic) if there exists a vector $x \in \mathbb{K}^n$ such that $O_G(x)$ is dense (resp. locally dense) in

^{*}This work is supported by the research unit: systèmes dynamiques et combinatoire: $99\mathrm{UR}15\text{--}15$

36 A. Ayadi

 \mathbb{K}^n . For an account of results and bibliography on hypercyclicity, we refer to the book [3] by Bayart and Matheron.

On the other part, let $k \geq 1$ be an integer. Denote by $(\mathbb{K}^n)^k$ the k-fold Cartesian product of \mathbb{K}^n . For every $u = (x_1, \dots, x_k) \in (\mathbb{K}^n)^k$, the orbit of u under the action of G on $(\mathbb{K}^n)^k$ is denoted

$$O_G^k(u) = \{(Ax_1, \dots, Ax_k) : A \in G\}.$$

When k = 1, $O_G^k(u) = O_G(u)$. We say that the action of G on \mathbb{K}^n is k-transitive if, the induced action of G on $(\mathbb{K}^n)^k$ is hypercyclic, this is equivalent to that for some $u \in (\mathbb{K}^n)^k$, $\overline{O_G^k(u)} = (\mathbb{K}^n)^k$. A 2-transitive action is also called weak topological mixing and 1-transitive means hypercyclic.

In [6], Feldman showed that in \mathbb{C}^n there exist a hypercyclic semigroup generated by (n+1)-tuple of diagonal matrices on \mathbb{C}^n and that no semigroup generated by n-tuple of diagonalizable matrices on \mathbb{K}^n can be hypercyclic. If one remove the diagonalizability condition, Costakis et al. proved in [4] that there exists a hypercyclic semigroup generated by n-tuple of non diagonalizable matrices on \mathbb{R}^n . However, they show in [5] that there exist a hypercyclic semigroup generated by (n+1)-tuple of diagonalizable matrices A_1, \ldots, A_{n+1} on \mathbb{R}^n .

The main purpose of this paper is twofold: firstly, we give a general result (with respect to the results above) by showing that the minimal number of matrices on \mathbb{C}^n required to form a hypercyclic tuple in \mathbb{C}^n is n+1. This answer a question raised by Feldman in ([6], Section 6). Secondly, we prove that the action of any abelian semigroup finitely generated by matrices on \mathbb{K}^n is never k-transitive for $k \geq 2$. This answer a question of Javaheri in ([7], Problem 3).

Our principal results are the following:

Theorem 1.1. For every $n \ge 1$, any abelian semigroup generated by n matrices on \mathbb{C}^n is not locally hypercyclic.

Theorem 1.2. Let G be an abelian semigroup generated by p matrices $(p \ge 1)$ on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}). Then the action of G on \mathbb{K}^n is never k-transitive for $k \ge 2$.

2. On hyercyclic semigroups

Let $M_n(\mathbb{K})$ be the set of all square matrices of order $n \geq 1$ with entries in \mathbb{K} and $GL(n, \mathbb{K})$ be the group of invertible matrices of $M_n(\mathbb{K})$. Let G be an abelian semigroup generated by p matrices $(p \geq 1)$ on \mathbb{K}^n and we let $G' = G \cap GL(n, \mathbb{K})$.

Lemma 2.1. Under the notation above, let $k \geq 1$ be an integer and $u \in (\mathbb{K}^n)^k$.

- (i) $\overline{O_G^k(u)} = (\mathbb{K}^n)^k$ if and only if $\overline{O_{G'}^k(u)} = (\mathbb{K}^n)^k$.
- (ii) $\overline{O_G^k(u)} = \emptyset$ if and only if $\overline{O_{G'}^k(u)} = \emptyset$.

In particular, if the action of G on \mathbb{K}^n is k-transitive so is the action of G' on \mathbb{K}^n

<u>Proof.</u> (i) Suppose that $\overline{O_{G'}^k(u)} = (\mathbb{K}^n)^k$ for some $u \in (\mathbb{K}^n)^k$. Then since $\overline{O_{G'}^k(u)} \subset \overline{O_G^k(u)}$, we see that $\overline{O_G^k(u)} = (\mathbb{K}^n)^k$.

Conversely, suppose there exists $u \in (\mathbb{K}^n)^k$ such that $\overline{O_G^k(u)} = (\mathbb{K}^n)^k$. Denote by (A_1, \ldots, A_p) an p-tuple of matrices on \mathbb{K}^n which generate the semigroup G. One can suppose that for some $0 \le r \le p$, $A_1, \ldots, A_r \in \mathrm{GL}(n, \mathbb{K})$ and $A_{r+1}, \ldots, A_p \in M_n(\mathbb{K}) \backslash \mathrm{GL}(n, \mathbb{K})$. Then $G' = G \cap \mathrm{GL}(n, \mathbb{K})$ is the semigroup generated by A_1, \ldots, A_r . For $k = 1, \ldots, r$, write $\mathrm{Im}(A_k) = A_k(\mathbb{K}^n)$ the range of A_k . Then $\mathrm{Im}(A_k)$ is a vector subspace of \mathbb{K}^n of dimension < n, hence $\mathrm{Im}(A_k) = \varnothing$.

- If r = p then G = G' and so (i) is obvious.
- If r=0 then for every $u\in (\mathbb{K}^n)^k$, $\mathcal{O}_G^k(u)\subset \bigcup_{k=1}^p (\mathrm{Im}(A_k))^k\cup \{u\}$. Since

$$\bigcup_{k=1}^{p} (\operatorname{Im}(A_k))^k = \varnothing, \ \overline{O_G^k(u)} = \varnothing.$$

- If 0 < r < p then

$$O_G^k(u) \subset \left(\bigcup_{j=1}^r (\operatorname{Im}(A_j))^k\right) \cup O_{G'}^k(u).$$

It follows that

$$(\mathbb{K}^n)^k \subset \left(\bigcup_{j=1}^r (\operatorname{Im}(A_j))^k\right) \cup \overline{O_{G'}^k(u)}$$

and therefore $\overline{O_{G'}^k(u)} = (\mathbb{K}^n)^k$.

The proof of (ii) is the same as for (i).

Lemma 2.2 ([2], Corollary 1.5). Let G be an abelian subgroup of $GL(n, \mathbb{C})$. If G is generated by n matrices $(n \ge 1)$, it has no dense orbit.

Lemma 2.3 ([6], Corollary 5.7). Let G be an abelian semigroup generated by p matrices ($p \ge 1$) on \mathbb{C}^n . Then every locally dense orbit of G is dense in \mathbb{C}^n .

From Lemmas 2.2 and 2.3, we obtain the following:

Corollary 2.4. Any abelian semigroup generated by n matrices $(n \ge 1)$ of $GL(n, \mathbb{C})$ is not locally hypercyclic.

38 A. Ayadi

Proof of Theorem 1.1. Let G be an abelian semigroup generated by n matrices on \mathbb{C}^n and we let $G' = G \cap GL(n, \mathbb{C})$. By Corollary 2.4, $\overline{O_{G'}^k(u)} = \emptyset$ for every $u \in (\mathbb{C}^n)^k$ and hence by Lemma 2.1, $\overline{O_G^k(u)} = \emptyset$. The proof is complete. \square

3. On k-transitivity $(k \ge 2)$

Let recall first the following result:

Proposition 3.1 ([1], Theorem 4.1). Let G be an abelian subgroup of $GL(n, \mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}). Then there exists a G-invariant dense open subset U in \mathbb{K}^n such that if, $u, v \in U$ and $(B_m)_{m \in \mathbb{N}}$ is a sequence of G such that $\lim_{m \to +\infty} B_m u = v$ then $\lim_{m \to +\infty} B_m^{-1} v = u$.

Corollary 3.2. Let G be an abelian subgroup of $GL(n, \mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and let U be a G-invariant dense open subset of \mathbb{K}^n as in Proposition 3.1. Then for every $k \geq 2$, if $v \in U^k$ and $w \in \overline{O_G^k(v)} \cap U^k$ then $\overline{O_G^k(v)} \cap U^k = \overline{O_G^k(w)} \cap U^k$.

<u>Proof.</u> Write $v=(v_1,\ldots,v_k),\ w=(w_1,\ldots,w_k)\in U^k$. Suppose that $w\in \overline{O_G^k(v)}\cap U^k$. Then there exists a sequence $(B_m)_{m\in\mathbb{N}}$ in G such that

$$\lim_{m \to +\infty} (B_m v_1, \dots, B_m v_k) = (w_1, \dots, w_k).$$

Then $\lim_{m\to+\infty} B_m v_j = w_j$, for every $1 \leq j \leq k$. Since v_j , $w_j \in U$, so by Proposition 3.1, $\lim_{m\to+\infty} B_m^{-1} w_j = v_j$ and hence

$$\lim_{m \to +\infty} (B_m^{-1} w_1, \dots, B_m^{-1} w_k) = v \in \overline{O_G^k(w)}.$$

It follows that $\overline{O_G^k(v)} \cap U^k = \overline{O_G^k(w)} \cap U^k$.

Proof of Theorem 1.2. Suppose the action of G is k-transitive $(k \geq 2)$, then there exists $v = (v_1, \ldots, v_k) \in (\mathbb{K}^n)^k$ so that $\overline{O_G^k(v)} = (\mathbb{K}^n)^k$. We let $G' = G \cap \operatorname{GL}(n, \mathbb{K})$. By Lemma 2.1, $\overline{O_{G'}^k(v)} = (\mathbb{K}^n)^k$. Denote by G'' the group generated by G' and by U a G''-invariant dense open subset in \mathbb{K}^n as in Proposition 3.1. Then $\overline{O_{G''}^k(v)} = (\mathbb{K}^n)^k$ and hence $v \in U^k$. Write

 $w := (v_1, \ldots, v_1)$. Then $w \in U^k$ and by Corollary 3.2, $\overline{O_{G''}^k(w)} = (\mathbb{K}^n)^k$ (since U^k is dense in $(\mathbb{K}^n)^k$). It follows that $\overline{O_{G''}(v_1)} = \mathbb{K}^n$.

Let $\varphi: \mathbb{K}^n \longrightarrow (\mathbb{K}^n)^k$ be the homomorphism defined by

$$\varphi(x) = (x, \dots, x), \ x \in \mathbb{K}^n.$$

Then $\mathcal{O}_{G''}^k(w) = \varphi(\mathcal{O}_{G''}(v_1)) \subset \varphi(\mathbb{K}^n)$. As $\varphi(\mathbb{K}^n)$ is a vector subspace of $(\mathbb{K}^n)^k$ of dimension n < nk, $\mathcal{O}_{G''}(w)$ cannot be dense in $(\mathbb{K}^n)^k$ (since $k \geq 2$), this is a contradiction and the theorem is proved.

References

- 1. A. Ayadi and H. Marzougui, Dynamic of Abelian subgroups of $GL(n, \mathbb{C})$: a structure Theorem, Geom. Dedicata 116 (2005), 111–127.
- 2. A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of $GL(n, \mathbb{C})$, Foliations 2005: World Scientific, Hackensack, NJ (2006), 47–69.
- F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, 2009.
- G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137, no. 3 (2009), 1025–1034.
- G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), 229– 237.
- N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98.
- M. Javaheri, Topologically transitive semigroup actions of real linear fractional transformations, J. Math. Anal. Appl. 368 (2010), 587–603.

(Received June 2010 - Accepted January 2011)

ADLENE AYADI (adleneso@yahoo.fr) University of Gafsa, Department of Mathematics, Faculty of Science of Gafsa, 2112, Gafsa, Tunisia.