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Introduction to generalized topological spaces

Irina Zvina

Abstract

We introduce the notion of generalized topological space (gt-space).
Generalized topology of gt-space has the structure of frame and is closed
under arbitrary unions and finite intersections modulo small subsets.
The family of small subsets of a gt-space forms an ideal that is compati-
ble with the generalized topology. To support the definition of gt-space
we prove the frame embedding modulo compatible ideal theorem. We
provide some examples of gt-spaces and study key topological notions
(continuity, separation axioms, cardinal invariants) in terms of gener-
alized spaces.

2010 MSC: 54A05, 06D22.

Keywords: generalized topology, generalized topological space, gt-space,
compatible ideal, modulo ideal, frame, order generated by ideal.

1. Introduction

The notion of i-topological space was presented in [9]. That was our first try
to develop the concept of topological space modulo small sets. Generalized
topological space presented in this paper also acts modulo small sets that are
encapsulated in an ideal, but has completely other form that makes things
easier. The new form let us easily profit from compatibility of ideal with
generalized topology, since now it is the basic property of generalized space
(we had to assume compatibility in the preceding work).

We start with developing the frame-theoretical framework for generalized
spaces and prove frame embedding modulo compatible ideal theorem that let
us to make the definitions of generalized topological notions more transparent.
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2. Frame embedding modulo compatible ideal

In what follows, we assume that a frame (T,≤,∨,∧) and a complete Boolean
lattice (F,≤,∪,∩, c) such that T ⊆ F are fixed. We also assume that the in-
clusion from T into F is an order embedding preserving zero. For all a, b ∈ F
we define the operation \ as follows: a \ b = a ∩ bc.

With respect to the fixed element z ∈ F , we say that a ∈ F is z-empty
iff a ≤ z, and z-nonempty in other case [8]. If the converse is not stated, we
always assume that some z ∈ F is fixed. We use the notion of z-emptiness in
order to use the following equivalent form of infinite distributivity.

Proposition 2.1 ([8]). The following are equivalent:

(ID1) T is infinitely distributive, i.e. for every b in T and every subset A ⊆ T ,

b ∧
∨

A =
∨

a∈A

(b ∧ a),

(ID2) for every d, z ∈ T and every A ⊆ T , if d is z-nonempty and d ≤
∨

A
then there exists a0 ∈ A such that d ∧ a0 is z-nonempty.

The notion of compatible ideal in topological spaces was studied in numerous
papers of T.R. Hamlett and D. Janković [3, 4, 5, 6, 7]. We generalize this notion
in the natural way.

Definition 2.2. We say that an element a ∈ F is small with respect to a sub-
family H ⊆ F iff there exists a family U ⊆ T such that

a ≤
∨

U and a ∩ u ∈ H for all u ∈ U .

Denote the family of all small elements by sm(H). We do not specify T in the
notation sm(H) since T is always fixed. The family H is said to be compatible
with T , denote by H ∼ T , iff it contains all small elements from sm(H).

An element a ∈ F is said to be join-generated by the family U ⊆ T iff
a ≤ (

∨

U ) \ (
⋃

U ). An element b ∈ F is said to be meet-generated by the
family V ⊆ T iff V is finite and b ≤ (

⋂

V ) \ (
∧

V ). In what follows, we are
going to consider the following families:

(1) G – the family of all join- and meet-generated elements,
(2) i(G) – the family of finite joins of elements of G,
(3) c(G) – the family of finite joins of elements of sm(G).

Lemma 2.3. The families i(G) and c(G) are ideals.

Proof. Both i(G) and c(G) are closed under finite joins. Thus, we have to show
that both families are lower sets.

Consider b ∈ F and a ∈ i(G) with b ≤ a. Then there exists finite A ⊆ G
such that a =

⋃

A. Then b = b ∩ a = b ∩
⋃

A =
⋃

a∈A

(b ∩ a). Clearly, b ∩ a ≤ a

and, hence, b ∩ a ∈ G holds for every a ∈ A, since a ∈ G and G is a lower set.
Hence, b lies in i(G) as a finite join of elements of G.
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Assume that b ∈ F and a ∈ sm(G) with b ≤ a. Then there exists a family
U ⊆ T such that a ≤

∨

U and a ∩ u ∈ G for all u ∈ U . Clearly, it holds that
b ≤

∨

U and b ∩ u ∈ G for all u ∈ U , since G is a lower set. We conclude that
sm(G) is a lower set.

Consider b ∈ F and a ∈ c(G) with b ≤ a. Then there exists finite A ⊆ sm(G)
such that a =

⋃

A. Then b = b ∩ a = b ∩
⋃

A =
⋃

a∈A

(b ∩ a). Clearly, b ∩ a ≤ a

and, hence, b ∩ a ∈ sm(G) holds for every a ∈ A, since a ∈ sm(G) and sm(G)
is a lower set. Hence, b lies in c(G) as a finite join of elements of sm(G). �

Lemma 2.4. The following inclusions hold: G ⊆ sm(G), i(G) ⊆ c(G),
i(G) ⊆ sm(i(G)) and c(G) ⊆ sm(c(G)).

Proof. Assume that H ⊆ F is a lower set, a ∈ H and there exists a family
U ⊆ T such that a ≤

∨

U . Then a ∈ sm(H). Since for every element a ∈ G
there is U ∈ T such that a ≤

∨

U , we conclude that G ⊆ sm(G). The other
inclusions are the corollary from the later one. �

Lemma 2.5. Given U = { u1, u2, ..., uk} ⊆ T and a z-nonempty v ∈ T such
that v ≤ u1, then there exists a z-nonempty w ∈ T that satisfies w ≤ v and one
of the following:

(i) w ≤
∧

U ;
(ii) w ∧ uj is z-empty for some uj ∈ U .

Proof. Define the decreasing chain V = { v1, v2, ..., vk } as follows:

v1 = v and vi = vi−1 ∧ ui for i ∈ { 2, 3, ..., k }.

At least one element of this chain is z-nonempty since v1 = v. Put w = vj

where vj is the last z-nonempty element of the chain. Clearly, it holds that
w ≤ v. There are two possibilities: either j < k and then w ∧ uj+1 is z-empty,
or j = k and then w ≤

∧

U . The lemma is proved. �

Lemma 2.6. Given z ∈ T , a z-nonempty y ∈ T satisfying y\z ≤
⋃

A for some
A = { a1, a2, ..., an } ⊆ G, then there exist a z-nonempty w ∈ T and aj ∈ A
such that w ≤ y and w ∩ aj = 0.

Proof. For every ai ∈ A we denote by Ui the corresponding family of elements
from T by that ai is join- or meet-generated. We define the covering family as
follows:

C1 = { z } ∪ U1 ∪ U2 ∪ ... ∪ Un.

It holds that y ≤
∨

C1. By Proposition 2.1, we conclude that v1 = y ∧ u
is z-nonempty for some u ∈ C1. Without loss of generality, we assume that
v1 ≤ u ∈ U1. There are two possibilities for a1: either a1 is join-generated
and then v1 ∩ a1 = 0, we put w = v1 and the proof is complete, or a1 is
meet-generated and then, applying Lemma 2.5 for U1 and v1, we obtain a z-
nonempty element w1 ≤ v1. If w1 ≤

∧

U1 then w1 ∩ a1 = 0; we put w = w1

and the proof is complete. If the other case, we possess the element u1 ∈ U1
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such that w1 ∧u1 is z-empty. We repeat the whole process from the beginning.
Define the covering family C2 as follows:

C2 = { z } ∪ { u1 } ∪ U2 ∪ U3 ∪ ... ∪ Un.

It holds that w1 ≤
∨

C2. Again, by Proposition 2.1, v2 = w1∧u is z-nonempty
for some u ∈ C2. Without loss of generality, we assume that v2 ≤ u ∈ U2.
Again, there are two possibilities for a2: either a2 is join-generated and then
w = v2 satisfies the conditions of the theorem, or a2 is meet-generated and we
apply Lemma 2.5 for U2 and v2 and obtain a z-nonempty element w2 ≤ v2. If
it holds that w2 ≤

∧

U2 then w = w2 is the one we need. In the other case, we
possess the element u2 ∈ U2 such that w2 ∧ u2 is z-empty. We continue in the
same way as above defining the covering family C3.

Through the process, we obtain the decreasing chain of z-nonempty elements
y ≥ v1 ≥ w1 ≥ v2 ≥ . . . . If the process stops at some w = vj or w = wj , where
j ∈ { 1, . . . , n }, it means that the proof is complete. Let us consider the other
case. That is, we assume that the process did not stop and we possess the
chain y ≥ w1 ≥ w2 ≥ · · · ≥ wn. As above, we define the covering family Cn+1:

Cn+1 = { z } ∪ { u1 } ∪ { u2 } ∪ · · · ∪ { un−1 } ∪ { un }.

It holds that wn is z-nonempty and wn ≤
∨

Cn+1. Hence, by Proposition 2.1,
there exists u ∈ Cn+1 such that wn∧u is z-nonempty. But such u does not exist.
Means the process stopped at some previous step. The proof is complete. �

Lemma 2.7. For every y, z ∈ T , it holds that y \ z ∈ i(G) iff y ≤ z.

Proof. If y ≤ z then y \ z = 0 ∈ i(G). Let us proof the other implication.
Assume that y\z 6= 0. Then there exists the family A1 = { a1, a2, . . . , an } ⊆

G such that y \ z ≤
⋃

A1. Applying Lemma 2.6, we obtain a z-nonempty
element w1 ≤ y such that w1 ∩ a = 0 for some a ∈ A1. Without loss of
generality, assume that w1 ∩ a1 = 0. Then from w1 \ z ≤

⋃

A1 and infinite
distributivity of F we imply that

w1\z = (w1\z)∩
⋃

A1 =
⋃

a∈A1

((w1\z)∩a) =
⋃

a∈A2

((w1\z)∩a) = (w1\z)∩
⋃

A2,

that is w1 \ z ≤
⋃

A2 where A2 = { a2, . . . , an }. We continue this process and
obtain the decreasing chain of y ≥ w1 ≥ · · · ≥ wn of z-nonempty elements. For
the last element wn it holds that wn \ z ≤ 0. Means wn is z-empty. But an
element cannot be both z-nonempty and z-empty. Hence, our assumption that
y \ z 6= 0 was false, and we conclude that y \ z ∈ i(G) implies y ≤ z. �

Lemma 2.8. For every y, z ∈ T , it holds that y \ z ∈ c(G) iff y ≤ z.

Proof. If y ≤ z then y \ z = 0 ∈ c(G). Let us proof the other implication.
Assume that y \ z 6= 0. Then there exists the family A = { a1, a2, . . . , an } ⊆

sm(G) such that y \ z ≤
⋃

A. For every ai ∈ A we denote by Ui the corre-
sponding family of elements from T (Def. 2.2). We define the covering family
as follows:

C1 = { z } ∪ U1 ∪ U2 ∪ ... ∪ Un.
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It holds that y ≤
∨

C1. By Proposition 2.1, we conclude that v1 = y ∧ u1

is z-nonempty for some u1 ∈ C1.Without loss of generality, we assume that
u1 ∈ U1. Consider the following auxiliary families:

D1 = U2 ∪ ... ∪ Un and A1 = { a2, . . . , an }.

Assume that v1 ∧ u is z-empty for all u ∈ D1. Then it follows from infinite
distributivity that v1 ∩

⋃

A1 ≤ (v1 ∩
∨

D1) \ z ∈ G. On the other hand,
v1∩a1 ≤ u1∩a1 ∈ G since a1 is a small element. Hence, v1\z = v1∩

⋃

A ∈ i(G).
Applying Lemma 2.7, we conclude that v1 ≤ z – a contradiction! Means,
v2 = v1 ∧ u2 = y ∧ u1 ∧ u2 is z-nonempty for some u2 ∈ D1. Without loss of
generality assume that u2 ∈ U2.

As above, the assumption that v2 ∧ u is z-empty for all u ∈ U3 ∪ · · · ∪ Un

will bring us to the contradiction. Hence, v3 = v2 ∧ u3 = y ∧ u1 ∧ u2 ∧ u3 is
z-nonempty for, without loss of generality, some u3 ∈ U3.

We continue this process till we obtain a z-nonempty vn = u1 ∧ · · · ∧ un.
Since all ai ∈ A are small elements, we imply that ui ∩ ai ∈ G, for all ui that
form vn. Hence, it holds that vn\z ∈ i(G). This is a contradiction with Lemma
2.7, and we conclude that the assumption that y \ z 6= 0 is false. The proof is
complete. �

Lemma 2.9. Consider a ∈ F and U ⊆ T such that a ≤
∨

U and a∩ u ∈ c(G)
for all u ∈ U . Then there exist b, c ∈ F such that a = b ∪ c, b ∈ sm(G) and
c ∩ u ∈ sm(G) for all u ∈ U .

Proof. Fix u ∈ U . Since a ∩ u ∈ c(G), there exist A = { a1, . . . , an } ⊆ sm(G)
such that a ∩ u =

⋃

A. For every ai ∈ A there is Vi ⊆ T satisfying ai ≤
∨

Vi

and ai∩v ∈ G for all v ∈ Vi. Write V =
n
⋃

i=1

Vi. Then a∩u ⊆ u and a∩u ⊆
∨

V .

Hence, there exists bu ∈ G such that

(a ∩ u) \ bu ≤ u ∧
∨

V =
∨

v∈V

( u ∧ v ) .

Write ci = ai \ b
u and Wi = {u ∧ v | v ∈ Vi }.

Consider c1. It holds that c1 ∩ w ∈ G for all w ∈ W1. On the other hand,
n
∨

i=1

Wi ≤ u. Hence, w \
n
∨

i=2

Wi ∈ G holds for all w ∈ W1. Applying Lemma 2.7,

we conclude that w ≤
n
∨

i=2

Wi for all w ∈Wi. Thus, c1 = 0.

We continue this process for all ci where i = 2, . . . , n − 1. At the end, we
will imply that c1 = · · · = cn−1 = 0 and cn = (a ∩ u) \ bu. It is clear that
cn ∈ sm(G). Write cu = cn.

We do the same steps for each u ∈ U . Write b =
⋃

{ bu | u ∈ U } and
c =

⋃

{ cu | u ∈ U }. Then b and c satisfy the necessary properties. The proof
is complete. �

Lemma 2.10. It holds that c(G) is an ideal, sm(c(G)) = c(G) and, hence,
c(G) ∼ T .
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Proof. We already proved that c(G) is an ideal and that c(G) ⊆ sm(c(G))
(Lemmas 2.3 and 2.4). Let us prove that sm(c(G)) ⊆ c(G).

Consider a ∈ F and U ⊆ T such that a ≤
∨

U and a ∩ u ∈ c(G) for all
u ∈ U . Applying Lemma 2.9 and since c(G) contains finite joins of small
elements, without loss of generality, we can assume that a ∩ u ∈ sm(G) for all
u ∈ U .

Fix u ∈ U . Then there exists a family V u ⊆ T such that a ∩ u ≤
∨

V u and
a ∩ u ∩ v ∈ G for all v ∈ V u. Consider the family Wu = {v ∧ u | v ∈ V u}.
Clearly,

∨

Wu ≤ u and there exists cu ∈ G such that (a ∩ u) \ cu ≤
∨

Wu and
cu ≤ u.

Denote b =
⋃

{(a ∩ u) \ cu | u ∈ U} and c = {cu | u ∈ U}. Then a = b ∪ c
and both b and c are small elements. We conclude that a ∈ c(G). �

Proposition 2.11. Given an ideal I ⊆ F , then the relation � defined as
follows is a preorder on F :

a � b iff a \ b ∈ I.

The relation ≈ defined as follows is an equivalence on F :

a ≈ b iff a \ b ∈ I and b \ a ∈ I.

Proof. The reflexivity holds for � and ≈ since 0 ∈ I. The transitivity for �
and ≈ holds since I is closed under finite joins. The symmetry follows from
the definition of ≈. �

The relations � and ≈ considered in the previous proposition are called
the preorder generated by the ideal I and the equivalence generated by the ideal I,
respectively.

Now we are ready to prove the frame embedding modulo compatible ideal
theorem. Briefly speaking, this theorem says that an order embedding of
a frame into a complete Boolean lattice preserving zero is always a frame em-
bedding modulo compatible ideal. The assumption T ⊆ F simplifies the nota-
tions but is not essential. We could speak as well about an order embedding
ϕ : T → F preserving zero and consider the image ϕT ⊆ F instead of T .

Theorem 2.12. Let (T,∨,∧) be a frame and (F,∪,∩, ∗) be a complete Boolean
lattice such that T ⊆ F and the inclusion from T into F is an order embedding
preserving zero. Then I = c(G) is the least ideal satisfying the following:

(i) for every U ⊆ T there is a ∈ I such that
∨

U = (
⋃

U) ∪ a;
(ii) for every v, w ∈ T there is b ∈ I such that v ∧w = (v ∩w) \ b;
(iii) I ∩ T = {0};
(iv) for every u, v ∈ T , it holds that u � v iff u ≤ v;
(v) I ∼ T .

Proof. It follows from the construction of I that (i) and (ii) hold. The state-
ment (iv) is proved in Lemma 2.8 and applying Lemma 2.8 for all y ∈ T and
z = 0 we imply (iii). The statement (v) is proved in Lemma 2.10.
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The least ideal satisfying (i),(ii) and (v) should contain all elements of
sm(G). On the other hand, the least ideal that contains all elements of sm(G)
is c(G). Hence, c(G) is the least ideal satisfying (i), (ii) and (v). �

Remark 2.13. In Theorem 2.12, if we assume that T is not only a frame but
is a complete completely distributive lattice is it then possible to construct the
ideal in such a way that (i), (iii)-(v) hold and (ii) holds for arbitrary subfamilies
of T ? The counterexample for it was introduced in [8].

3. Definition of gt-space. Examples

We start with the immediate corollary from Theorem 2.12 that is the moti-
vation for the following definition of generalized topological space.

Corollary 3.1. Let X be a nonempty set. Assume that T ⊆ 2X forms a frame
with respect to ⊆ and ∅, X ∈ T . Then there exists the least ideal I ⊆ 2X such
that:

(i) for every U ⊆ T holds
∨

U \
⋃

U ∈ I;
(ii) for every V,W ∈ T holds (V ∩W ) \ (V ∧W ) ∈ I;
(iii) T ∩ I = {∅};
(iv) U � V (Prop. 2.11), i.e. U \V ∈ I, implies U ⊆ V for every U, V ∈ T ;
(v) U ≈ V (Prop. 2.11), i.e. U∆V ∈ I, implies U = V for every U, V ∈ T ;
(vi) the ideal I is compatible with T , write I ∼ T (Def. 2.2), i.e. A ⊆ X

and U ⊆ T with A ⊆
∨

U and A ∩ U ∈ I, for all U ∈ U, imply that
A ∈ I.

Definition 3.2. Let X be a nonempty set. A family T ⊆ 2X is called a
generalized topology (or topology modulo ideal) and the pair (X,T ) is called
a generalized topological space (gt-space for short, or topological space modulo
ideal) provided that:

(GT1) ∅, X ∈ T ;
(GT2) (T,⊆) is a frame.

The elements of X are called points, and the elements of T are called open sets.
We say that Y ⊆ X is a neighborhood of a point x iff there is U ∈ T such that
x ∈ U ⊆ Y . We use the notation T (x) for the family of all open neighborhoods
of a point x.

An ideal J ⊆ 2X satisfying (i)-(v) of Corollary 3.1 is called suitable. In
there is no chance for confusion, we keep the notation I, sometimes with the
appropriate index, to denote the least suitable ideal (the existence of it is proved
in Corollary 3.1). If the ideal is not specified in a definition or construction
then it is always the least suitable ideal.

If there is no specification or index, we use the symbols � and ≈ to denote
the preoder and equivalence, respectively, generated by the least suitable ideal
(Prop. 2.11). We keep the notations ∨ and ∧ for the frame operations of
generalized topology.
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A topological space is a trivial example of gt-space where the least suitable
ideal consists only of the empty set. In order to distinguish between topological
spaces and gt-spaces that are not topological spaces, we provide the following
classification.

Definition 3.3. A gt-space is called

(1) crisp gt-space (crisp space for short) iff its least suitable ideal is {∅};
(2) proper gt-space iff it is not crisp.

Example 3.4 (Right arrow gt-space). Consider the real line R and the family
of “right arrows”

A = { [a, b) | a, b ∈ R ∪ {−∞,+∞} and a < b } .

We say that a subfamily A′ ⊆ A is well separated iff for all [a, b), [c, d) ∈ A′ it
holds that b < c or d < a. Construct the family Tra as follows:

Tra = {∅,R } ∪
{

⋃

A′ | A′ ⊆ A and A′ is well separated
}

.

Clearly Tra is a complete lattice and it is also easy to see that Tra is infinitely
distributive (e.g. by Proposition 2.1). Then the pair (R, Tra) forms a gt-space.
The respective least ideal for this gt-space is the family D of nowhere dense
subsets of the real line. Let us prove that.

Consider a nowhere dense subset A ⊆ R and the open subset
U =

∨

{V ∈ Tra | V ∩A = ∅ }. Fix a point a ∈ A and assume that a /∈ U .
Assume that we could find the closest “right arrow” on the right from the point
a, that is there exists b = min { r ∈ U | r > a }. Then there is an interval
(c, d) ⊆ (a, b) such that (c, d) ∩ A = ∅, since A is nowhere dense, and, hence,
there is a non-empty open V ⊆ (c, d) with V ∩ A = ∅. The latter means that
V ⊆ U but this is a contradiction and we conclude that such minimal point b
does not exist.

Then the part of U lying on the right from the point a is a union of a well
separated subfamily of “right arrows”. This and the fact that A is nowhere
dense imply that there exists an interval (c, d) such that a < c, (c, d) ∩ U = ∅

and (c, d)∩A = ∅. Hence, there is a non-empty open V ⊆ (c, d) with V ∩U =
∅ and V ∩ A = ∅. The latter is a contradiction and we conclude that our
assumption that a /∈ U is false.

Thus, we proved that A ⊆ U . This means that U = R and, hence, A belongs
to the least suitable ideal as a join-generated subset of R.

Example 3.5. Consider the family TQ
ra = {U ∩ Q | U ∈ Tra } where Tra is a

generalized topology from the previous example. Then (Q, TQ
ra) is also a gt-

space.

Example 3.6. Let (X,T ) be a topological space. The family of all regular open
subsets of X is denoted by R(T ). It is known [2] that R(T ) forms a frame with
respect to ⊆. Clearly, ∅, X ∈ R(T ). Hence, (X,R(T )) is a gt-space.
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Example 3.7. Let T be a usual topology on R2. Consider the following family

τ =
{

R2 \ U | U ∈ R(T )
}

.

Then (X, τ) is a gt-space. Briefly speaking, this is a generalized topology
consisting of “2-dimensional figures without 1-dimensional protuberances and
cracks”.

Example 3.8. Let X be a nonempty set X and S ⊆ 2X . Assume that S
separates the elements of X, is a complete, completely distributive lattice with
respect to ⊆, contains ∅ and X, arbitrary meets coincide with intersections,
and finite joins with unions. Then (X,S) is called a texture [1].

A ditopology [1] on a texture (X,S) is a pair (τ, κ) of subsets of S, where
the set of open sets τ and the set of closed sets κ satisfy the following:

(1) S,∅ ∈ τ , (4) S,∅ ∈ κ,
(2) G1, G2 ∈ τ implies G1 ∩G2 ∈ τ , (5) K1,K2 ∈ κ implies K1 ∪K2 ∈ κ,
(3) G ⊆ τ implies

∨

G ∈ τ , (6) K ⊆ κ implies
⋂

K ∈ κ.

Let (τ, κ) be a ditopology on a texture (X,S). Then (X, τ) forms a gt-space.

4. Closed sets. Interior and closure operators

The concept of gt-space makes it possible to preserve the classical definition
for closed sets. Nevertheless, it would be interesting to consider the notion of
“closed subset modulo ideal” in the further research.

Definition 4.1. Let (X,T ) be a gt-space. A subset Y ⊆ X is called closed iff
Y = X \ U for some U ∈ T .

Proposition 4.2. Let (X,T ) be a gt-space. The family of all closed subsets of
X is a complete lattice where the join and meet operations are the following:

∨

A = X \
∧

{X \A | A ∈ A}

and
∧

A = X \
∨

{X \A | A ∈ A}

where A is a family of closed subsets of X.

Proof. The proof is an easy exercise since T is a complete lattice. �

Proposition 4.3. Let (X,T ) be a gt-space. For all closed subsets A,B ⊆ X,
it holds that A � B iff A ⊆ B.

Proof. Consider closed subsets A,B ⊆ X such that A � B. Then X \ A and
X \ B are open, and it holds that X \ B � X \ A. The latter implies that
X \B ⊆ X \A, and, hence, A ⊆ B. �

We use the set operator ψ [3] and the local function ∗ [5] as interior and
closure operators in gt-spaces. Note that these operators would not make so
much topological sense in our framework if the ideal would not be compatible
with a gt-topology (Def. 3.1). Indeed, to prove that ψ(A) � A � A∗ holds for
all A ⊆ X in a gt-space (X,T ) we need the ideal I to be compatible with T .
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Definition 4.4. Let (X,T ) be a gt-space. The operators ∗ : 2X → 2X and
ψ : 2X → 2X are defined as follows, for all A ⊆ X :

ψ(A) = {x ∈ X | exists U ∈ T (x) such that U � A},

A∗ = {x ∈ X | for all U ∈ T (x) it holds that A ∩ U /∈ I}.

The operator ψ is called the interior operator (interior operator modulo ideal)
and ∗ is called the closure operator (closure operator modulo ideal).

Theorem 4.5. In a gt-space (X,T ), the following hold for every A,B ⊆ X:

(i) ψ(A) =
∨

{U ⊆ X | U � A, U is open}, and
A∗ =

∧

{B ⊆ X | A � B, B is closed} (Def. 4.1);
(ii) ψ(A) = X \ (X \A)∗;
(iii) A is open iff A = ψ(A), and A is closed iff A = A∗;
(iv) ψ(X) = X and ∅∗ = ∅;
(v) ψ(A) � A � A∗;
(vi) ψ(ψ(A)) = ψ(A) and (B∗)∗ = B∗;
(vii) ψ(A ∩B) = ψ(A) ∧ ψ(B) and (A ∪B)∗ = A∗ ∨B∗.

Proof. The statement (i) is a straight corollary from the definition of the in-
terior and closure operators. Let us prove (ii). Consider a subset A ⊆ X .
A point x ∈ X belongs to ψ(A) if there exists U ∈ T (x) such that U � A,
that is U ∩ (X \ A) ∈ I. The latter means that x /∈ (X \ A)∗ and, hence,
x ∈ X \ (X \A)∗. Then it follows that ψ(A) ⊆ X \ (X \A)∗.

Assume that x ∈ X \ (X \ A)∗, that is x /∈ (X \ A)∗. Then there exists
V ∈ T (x) such that V ∩ (X \ A) ∈ I. Hence, V � A and we conclude that
x ∈ ψ(A). The proof is complete.

For (iii)-(vii), we provide the proofs only for the interior operator. The
proofs for the closure operator could be done in the similar way.

Let us prove (iii). If A is open then A � A, and U � A implies U ⊆ A for
all open U . Hence, A = ψ(A). On the other hand, if A = ψ(A) then A is the
join of all such open U that U � A, that is A is open.

The statement (iv) is obvious. To prove (v), it is enough to remember that
I ∼ T . The property (vi) is a straight corollary from (iii).

To prove (vii), let us consider the following chain of implications: U ⊆
ψ(A ∩ B) iff U � A ∩ B iff U � A and A � B iff U ⊆ ψ(A) ∩ ψ(B) iff
U ⊆ ψ(A) ∧ ψ(B). The proof is complete. �

5. Generalized continuous (g-continuous) mappings

We generalize the notion of continuous mapping in a natural way. Like in
the previous section, note that the proof of the essential Theorem 5.2 is not
possible without the ideal being compatible with a gt-topology (Def. 3.1).

Definition 5.1. Let (X,TX) and (Y, TY ) be gt-spaces. A mapping f : X → Y
is called a generalized continuous mapping (or g-continuous mapping for short)
provided that there exists a frame homomorphism h : TY → TX such that
h(U) ≈ f−1(U) holds for every U ∈ TY .
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The g-continuous mapping f is called a generalized homeomorphism
(or g-homeomorphism for short) iff f is a bijection and f−1 is g-continuous.

Theorem 5.2. Given gt-spaces (X,TX) and (Y, TY ), and a g-continuous map-
ping f : X → Y , then the following hold:

(i) the corresponding frame homomorphism h : TY → TX is unique;
(ii) f−1(B) ∈ IX holds for all B ∈ IY .

Proof. Assume that there exists a frame homomorphism g : TY → TX such that
g(U) ≈ f−1(U) for every U ∈ TY . Then h(U) ≈ g(U) for every U ∈ TY . Since
h(U) ∈ TX and g(U) ∈ TX , it follows from Corollary 3.1 that h(U) = g(U) for
all U ∈ TY . Hence, h = g, and we proved (i).

Assume that B ⊆ Y is join-generated. Then there exists a family V ⊆ TY

such that B ⊆ (
∨

V ) \ (
⋃

V ). Denote by A the preimage of B:

A = f−1(B) ⊆ f−1
(

∨

V

)

\
⋃

V ∈V

f−1(V ).

Divide A in three subsets and prove that they belong to the ideal IX :

(1) A \ h (
∨

V ) ∈ IX holds since h (
∨

V ) ≈ f−1 (
∨

V );
(2) (A ∩ h (

∨

V ) ) \
⋃

V ∈V

h(V ) ∈ IX holds

since h (
∨

V ) =
∨

V ∈V

h(V ) and h (
∨

V ) \
⋃

V ∈V

h(V ) ∈ IX ;

(3) A ∩
⋃

V ∈V

h(V ) ∈ IX holds

since A ∩ h(V ) ⊆ h(V ) \ f−1(V ) ∈ IX , for all V ∈ V, and IX ∼ TX .

In a similar way, we prove that the preimage of every meet-generated subset of
Y lies in the ideal IX .

Now, consider a subset B ⊆ Y and a family V ⊆ TY satisfying the following:
for all V ∈ V, it holds that B ∩ V is a join- or meet-generated subset of Y .
Denote by A = f−1(B). As above, divide A in three subsets and prove that
they belong to the ideal IX :

(4) A \ h (
∨

V ) ∈ IX and (A ∩ h (
∨

V ) ) \
⋃

V ∈V

h(V ) ∈ IX as above;

(5) A ∩
⋃

V ∈V

h(V ) ∈ IX holds

since A ∩ h(V ) ≈ A ∩ f−1(V ) = f−1(B ∩ V ) ∈ IX , for all V ∈ V, and
IX ∼ TX .

The rest of the proof is obvious. �

Proposition 5.3. Given gt-spaces (X,TX), (Y, TY ) and (Z, TZ) and
g-continuous mappings f : X → Y and g : Y → Z, then the composition
g ◦ f : X → Z is also a g-continuous mapping.

Proof. Denote by hf and hg the corresponding frame homomorphisms for f
and g, respectively. It is known that the composition of frame homomorphisms
is also a frame homomorphism. Hence, hf ◦ hg is a frame homomorphism. We
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have to show that f−1
(

g−1(V )
)

≈ hf ( hg(V ) ) holds for all V ∈ TZ . The

latter holds, since f−1(B) ∈ IX for all B ∈ IY . �

The next proposition makes it easier to check if a mapping is g-continuous
in some particular cases. We will use it when proving Theorem 6.5 (Urysohn
Lemma for gt-spaces).

Definition 5.4. Let (X,T ) be a gt-space. A family B ⊆ T is called a base
for T provided that for every open set U there exists a subfamily B0 ⊆ B such
that U =

∨

B0.

Proposition 5.5. Let (X,TX) and (Y, TY ) be gt-spaces, B ⊆ TY be a base,
and f : X → Y be a mapping. Assume that

(1) f−1(B) ∈ IX holds for all B ∈ IY ,
(2) for every V ∈ B there is V ′ ∈ TX such that V ′ ≈ f−1(V ) ⊆ V ′.

Then f is a g-continuous mapping.

Proof. Define a mapping h0 : B → TX such that h0(V ) ≈ f−1(V ) ⊆ h0(V ),
for all V ∈ B. Such a mapping exists under our assumption, and is unique
since (X,TX) is a gt-space. Take an open subset U ⊆ Y , and consider a family
V ⊆ B such that U =

∨

V. Then

f−1(U) = f−1
(

∨

V

)

≈ f−1
(

⋃

V

)

=
⋃

V ∈V

f−1(V ) ⊆
⋃

V ∈V

h0(V ) ≈
∨

V ∈V

h0(V ).

Denote A =
⋃

V ∈V

h0(V ) \
⋃

V ∈V

f−1(V ). Then A ⊆
∨

V ∈V

h0(V ) and

A ∩ h0(V ) ∈ IX , for all V ∈ V. Since IX ∼ TX , we conclude that A ∈ IX .
Hence,

f−1(U) ≈
∨

V ∈V

h0(V ).

Consider V1,V2 ⊆ B such that U =
∨

V1 =
∨

V2. Then, according to the latter
observation, it holds that

f−1(U) ≈
∨

V ∈V

h0(V1) ≈
∨

V ∈V

h0(V2).

Since both joins
∨

V ∈V

h0(V1) and
∨

V ∈V

h0(V2) are open in TX , we conclude that

they are equal. Define the mapping h : TY → TX as follows, U ∈ TY :

h(U) = h0(U), if U ∈ B;

h(U) =
∨

V ∈V

h0(V ), if
∨

V = U /∈ B and V ⊆ B.

Then h(U) ≈ f−1(U) holds for all U ∈ TY . Note that h preserves arbitrary
joins of the elements of V. Let us prove that h preserves arbitrary joins of
arbitrary open subsets of Y . Consider U ⊆ TY and a family V ⊆ B satisfying
∨

U =
∨

V. We have to show that
∨

U∈U

h(U) = h
(

∨

U

)

.
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It holds that
∨

U∈U

h(U) ≈
⋃

U∈U

h(U), and it follows from the assumption (1) and

the construction of h that
⋃

U∈U

f−1(U) = f−1
(

⋃

U

)

≈ f−1
(

∨

U

)

≈ h
(

∨

U

)

=

= h
(

∨

V

)

= f−1
(

∨

V

)

≈ f−1
(

⋃

V

)

≈
⋃

V ∈V

f−1(V ).

Hence, to complete the proof, it is enough to show that the subsets A,B ⊆ X
defined as follows are elements of the ideal IX :

A =
⋃

U∈U

h(U) \
⋃

U∈U

f−1(U) and B =
⋃

V ∈V

f−1(V ) \
⋃

U∈U

h(U).

The subset A lies in the ideal, since IX ∼ TX . Under our assumption, for every
V ∈ V there is U ∈ U such that V ⊆ U . Then, for every such V and U , it
holds that f−1(V ) ⊆ h(V ) ⊆ h(U). Thus,

⋃

V ∈V

f−1(V ) ⊆
⋃

U∈U

h(U), that is

B = ∅ ∈ IX . The proof is complete. �

In the following example we show that for given gt-spaces (X,TX) and
(Y, TY ) and a frame homomorphism h : TY → TX it is possible that there does
not exist a g-continuous mapping f : X → Y such that h is its corresponding
frame homomorphism.

Example 5.6. Consider the gt-spaces (R, Tra) and (Q, Tra) (Examples 3.4 and
3.5). Assume that there exists a g-continuous mapping of the given gt-spaces
f : R → Q such that the corresponding frame homomorphism is the identity
mapping id : Tra → Tra.

We mentioned already that the least suitable ideal of the gt-space (R, Tra) is
the family D of nowhere dense subsets of R. Since f is a g-continuous mapping,
it follows that U∆f−1(U) ∈ D for every U ∈ Tra. Hence, |U∆f−1(U)| ≤ ℵ0

holds for every U ∈ Tra.
Assume that |f−1(q)| ≤ ℵ0 for every q ∈ Q. Then ℵ0 ≥ |f−1Q| 6= |R|.

The later inequality is a contradiction, and we conclude that there exists q ∈ Q

such that |f−1(q)| > ℵ0. Denote Uq = [q,+∞).
Since |Uq∆f

−1(U)q| ≤ ℵ0, we imply that |Uq ∩ f−1(U)q| > ℵ0. Then
there exists p ∈ Q such that |[p,+∞) ∩ f−1(q)| > ℵ0. Then it follows that
|[p,+∞)∆f−1[p,+∞)| > ℵ0, and we conclude that f is not a g-continuous
mapping.

6. Separation axioms

In this section, we consider T1 separation axiom and normal spaces. We use
the notation I for the real number interval [0, 1] with the usual topology of
open intervals.

Definition 6.1. The gt-space (X,T ) is said to be T1 iff for every x, y ∈ X
there is U ∈ T such that x ∈ U and y /∈ U .
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Proposition 6.2. Given a T1 gt-space (X,T ) and x ∈ T , then one and only
one of the following holds: { x } ∈ I or {x } is closed.

Proof. Consider the set A = {
⋃

U ∈ T | x /∈ U } = X \ {x }. There are two
possibilities: A is open or A is not open. Assume that A is open. Then { x } is
closed and it cannot be that { x } ∈ I, since it is impossible that X and A are
both open, X 6= A and X ≈ A.

Assume that {x } ∈ I. Then it is impossible that A is open, since it cannot
be that X and A are both open, X 6= A and X ≈ A. Hence, {x } is not
closed. �

In the following example we show that the property of T1 gt-space from the
previous proposition is necessary but not sufficient for T1.

Example 6.3. Let X = { 0 } ∪ [1, 2). Consider a family

A = { { 0 } ∪ [1, b) | b ∈ (1, 2) } ∪ { (a, b) | a, b ∈ (1, 2) and a ≤ b } .

Define T as a family consisting of empty set, the elements of A and such
disjoint units of elements of A that, for every U ∈ T and b ∈ (1, 2), it holds
that (1, b) ⊆ U implies { 0, 1 } ⊆ U . Then (X,T ) is a gt-space and the least
suitable ideal is I = { {∅ } , { 0 } , { 1 } , { 0, 1 } }.

For every point x ∈ (1, 2), it holds that {x } is a closed set, since { 0 } ∪
[1, x)∪ (x, 2) ∈ T . On the other hand, { x } is not an element of the ideal. The
sets { 0 } and { 1 } are elements of the ideal and are not closed sets.

This gt-space is not T1 since we cannot separate 0 and 1.

Definition 6.4. A gt-space (X,T ) is called normal iff for every disjoint
nonempty closed A,B ⊆ X there exist U, V ∈ T such that A ⊆ U , B ⊆ V
and U ∧ V = ∅.

Theorem 6.5 (Urysohn’s Lemma for gt-spaces). Let (X,T ) be a normal
gt-space and A,B ⊆ X be disjoint nonempty closed subsets. Assume that
finite meets of open subsets coincide with intersections. Then there exists
a g-continuous mapping f : X → I such that f(A) = 0 and f(B) = 1.

Proof. Let us organize the rational numbers from I into a sequence r0, r1, r2, . . .
where r0 = 0 and r1 = 1. For every rational number r, we are going to define
an open subset Wr such that the following is satisfied for every index k:

(6.1) W ∗

ri
⊆Wrj

for ri < rj and i, j ≤ k.

Consider disjoint nonempty closed subsets A,B ⊆ X . Since X is normal, there
exist U, V ∈ T such that A ⊆ U , B ⊆ V and U ∧ V = ∅. Denote

W0 = U and W1 = X \B.

Then W0 � X \ V = (X \ V )∗ ⊆ W1. By Theorem 4.5, we conclude that
W ∗

0 ⊆W1, and, hence, ( 6.1) is satisfied for k = 1.
Assume that the open subsets Wri

satisfying ( 6.1) are already constructed
for all i ≤ n ≥ 1. Denote by

rl = max{ri | i ≤ n and ri < rn+1} andrm= min{ri | i ≤ n and rn+1 < ri}.
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It holds that rl ≤ rm, and, hence, W ∗

rl
⊆ Wrm

. Since X is normal, there
exist open U, V such that W ∗

rl
⊆ U , X \Wrm

⊆ V , and U ∧ V = ∅. Then
U � X \ V = (X \ V )∗ ⊆ Wrm

, and U∗ ⊆ Wrm
. Denote Wn+1 = U . By the

finite induction, we obtained the sequence Wr0
,Wr1

,Wr2
, . . . satisfying (6.1)

for all indexes k, and

(6.2) A ⊆W0 and B ⊆ X \W1.

We define the function f : X → I as follows:

f(x) =

{

inf{r | x ∈ Wr}, if x ∈W1,

1, if x ∈ X \W1.

Consider x ∈ X and a, b ∈ I. It holds that f(x) < b iff there is a rational
number r < b such that x ∈ Wr. Hence, f−1 ( [0, b) ) =

⋃

{Wr | r < b}. It holds
that f(x) > a iff there are rational numbers r and r′ such that a < r < r′ and
x /∈ Wr′ . Then it follows from (6.1) that x /∈ W ∗

r ⊆ Wr′ and f−1 ( (a, 1] ) =
⋃

{X \W ∗

r | r > a}. For every a < b, define the corresponding open subset of
X as follows:

Ua,b =
(

∨

{X \W ∗

r | r > a}
)

∧
(

∨

{Wr | r < b}
)

.

Then, under the assumption of the current theorem, the following holds for all
intervals (a, b), which form a base for the topology of I:

f−1 ( (a, b) ) =
(

⋃

{X \W ∗

r | r > a}
)

∩
(

⋃

{Wr | r < b}
)

⊆
(

∨

{X \W ∗

r | r > a}
)

∩
(

∨

{Wr | r < b}
)

= Ua,b ∈ T

and

Ua,b \ f
−1 ( (a, b) ) ∈ IX .

Since I is a crisp space (Def. 3.3), it holds that f−1II = f−1{∅} ⊆ IX . Then,
by Proposition 5.5, the mapping f is g-continuous. Finally, it follows from (6.2)
that f(A) = 0 and f(B) = 1. �

7. Normalized spaces. Cardinal invariants

We introduce the notion of normalized gt-space. We exploit it as an auxiliary
tool to prove some results in this section.

Definition 7.1. Let (X,T ) be a gt-space. The operator N : T → 2X is called
the normalization operator provided that, for every U ∈ T :

UN = {x ∈ U | U ∧ V 6= ∅ for all V ∈ T (x)}.

The family TN = {UN | U ∈ T } is called the normalization of T .

Proposition 7.2. Given a gt-space (X,T ), then the following hold:

(i) TN is a frame, isomorphic to T ;
(ii) (X,TN) is a gt-space.

And the following conditions are equivalent:
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(iii) T = TN ;
(iv) U ∧ V = ∅ iff U ∩ V = ∅ for all U, V ∈ T .

Definition 7.3. A gt-space (X,T ) is called normalized iff T = TN .

Cardinal invariant is a function associating a cardinal number to each space
and taking the same value on homeomorphic spaces.

Definition 7.4. Let (X,T ) be a gt-space and B ⊆ T be a base (Def. 5.4).
The smallest cardinal number of the form |B|, where B is a base, is called the
weight of the given space and is denoted by w(X,T ), w(X), or w(T ).

Definition 7.5. Let (X,T ) be a gt-space. A family N ⊆ 2X is called a network
for T provided that for every open set U there exists a subfamily N0 ⊆ N and
A ∈ I such that U = A ∪ (

⋃

N0 ). The smallest cardinal number of the form
|N|, where N is a network, is called the network weight of the given space and
is denoted by nw(X,T ), nw(X), or nw(T ).

The statement of the following theorem is the immediate corollary from the
fact that every base is a network.

Theorem 7.6. In a gt-space (X,T ), it holds that nw(T ) ≤ w(T ).

Theorem 7.7. Let (X,T ) be a gt-space. Assume that nw(T ) ≤ m. Then
for every family U of of open sets there exists a subfamily U0 ⊆ U such that
|U0| ≤ m and

∨

U0 =
∨

U.

Proof. Fix a network N with |N| ≤ m. Consider a subfamily N0 ⊆ N with the
following property: M ∈ N0 iff there exists U ∈ U satisfying M ⊆ U . Clearly,
it holds that |N0| ≤ m and for every U ∈ U holds U \ (

⋃

N0 ) ∈ I.
Consider a mapping ϕ : N0 → U such that M ⊆ ϕ(M), for every M ∈ N0.

Denote U0 = ϕN0. Then it holds that |U0| ≤ |N0| ≤ m and
⋃

N0 ⊆
∨

U0.
Take U ∈ U. Since U \ (

⋃

N0 ) lies in the ideal, it holds that U \ (
∨

U0 )
also lies in the ideal, and, hence, U ⊆

∨

U0. Thus, we proved the inclusion
∨

U ⊆
∨

U0. The converse inclusion is obvious. The proof is complete. �

Definition 7.8. Let (T,X) be a gt-space. A family C ⊆ T is called a cover of
X iff

∨

C = X . A subfamily C0 ⊆ C is called a subcover iff it is a cover.
The smallest cardinal number m such that, for every cover C there exists

a subcover C0 satisfying |C0| ≤ m is called the Lindelöf number of the given
space and is denoted as l(X,T ), l(X), or l(T ).

The following result is the immediate corollary from Theorem 7.7.

Theorem 7.9. In a gt-spaced (X,T ), it holds that l(T ) ≤ nw(T ).

Lemma 7.10. In a normalized gt-space (X,T ), for every U ⊆ T and every
V ∈ T that satisfies V ∩ (

∨

U ) 6= ∅ there exists a nonempty open W ⊆ V such
that W ⊆

⋃

U.

Proof. Under the assumption, V ∩ (
∨

U ) 6= ∅ implies that W0 = V ∧ (
∨

U ) is
nonempty. Then there exists U ∈ U such that W0 ∧ U 6= ∅, since W0 ⊆

∨

U.
Put W = W0 ∧ U . It holds that W ⊆ U ⊆

⋃

U. The proof is complete. �
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Lemma 7.11. In a normalized gt-space (X,T ), for every finite family U ⊆ T
and every V ∈ T that satisfies V ∩ U1 6= ∅ for some U1 from U there exists a
nonempty open W ⊆ V such that the intersection of W and (

⋂

U ) \ (
∧

U ) is
empty.

Proof. Put U = {U1, U2, . . . , Uk }, and A = (
⋂

U ) \ (
∧

U ).

(1) V ∩ U1 6= ∅ implies W1 = V ∧ U1 is nonempty.
If W1 ∩A = ∅ then put W = W1.

(2) If W1 ∩A 6= ∅ then W2 = W1 ∧ U2 is nonempty.
If W2 ∩A = ∅ then put W = W2.
. . .

(k) If Wk−1 ∩A 6= ∅ then Wk = Wk−1 ∧ Uk is nonempty.

If the process stops at some W = Wi, where 1 ≤ i ≤ k − 1, then the proof
is complete. Otherwise, we obtain a nonempty W = Wk and then W ⊆

∧

U.
Hence, W ∩A = ∅. The proof is complete. �

Proposition 7.12. In a normalized gt-space (X,T ), for every nonempty V ∈ T
and every A ∈ I the inclusion A ⊆ V implies that there exists a nonempty open
W ⊆ V such that W ∩A = ∅.

Proof. Apply Lemma 7.10 and Lemma 7.11 to verify that for every V ∈ T and
A = A1 ∪ A2 ∪ · · · ∪ An ∈ I, where every Ai is join- or meet-generated, the
inclusion A ⊆ V implies that there exists a nonempty open W ⊆ V such that
W ∩A1 = ∅. The remainder of the proof is obvious. �

Definition 7.13. Let (X,T ) a gt-spaces. A subset A ⊆ X is called dense if
A∗ = X (Def. 4.4). The smallest cardinal number of the form |A|, where A is
a dense subset of X , is called the density of the given gt-space and is denoted
by d(X,T ), d(X), or d(T ).

Proposition 7.14. In a normalized gt-space (X,T ), it holds d(T ) ≤ nw(T ).

Proof. Let N be a network for X satisfying nw(T ) = |N|. Fixing an arbitrary
point in every set from N, we construct the set A. Then it holds that |A| ≤
|N| = nw(T ). On the other hand, for every x ∈ X and every V ∈ T (x), if
V ∩A ∈ I then, by Proposition 7.12, there exists an open subset W such that
W ∩ A = ∅. But the latter equality is impossible, since A has a nonempty
intersection with every member of the network. Therefore, we conclude that A
is dense, and hence d(X) ≤ |A| ≤ |N| = nw(T ). The proof is complete. �

Definition 7.15. In a gt-space (X,T ), the least cardinal number m such that
|S| ≤ m holds for every family of nonempty open subsets S with the property
that U∧V = ∅ holds for all U, V ∈ S is called the Suslin number and is denoted
by c(X,T ), c(X), or c(T ).

Proposition 7.16. In a normalized gt-pace (X,T ), it holds that c(T ) ≤ d(T ).

Proof. Consider A ⊆ X such that |A| = d(T ), and a family of nonempty open
subsets S with the property that U ∧ V = ∅ holds for all U, V ∈ S. Assume
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that |A| < |S|. Then there exists a nonempty U ∈ S such that A ∩ U = ∅.
The latter statement is a contradiction, since A is dense. Hence, we conclude
that |S| ≤ |A|, and this holds for all S ⊆ T with the mentioned property. Then
c(T ) ≤ d(T ). �

Proposition 7.17. Let (X,T ) be a gt-space and (X, T̃ ) be its normalization
(Def. 7.1). Then the following hold:

(i) c(T ) = c(T̃ );

(ii) d(T ) = d(T̃ );

(iii) nw(T ) = nw(T̃ );

(iv) w(T ) = w(T̃ );

(v) l(T ) = l(T̃ ).

Proof. We omit the proof, since it is a long but rather easy exercise. �

The following result is the natural corollary from Propositions 7.14, 7.16,
and 7.17.

Theorem 7.18. In a gt-space (X,T ), it holds c(T ) ≤ d(T ) ≤ nw(T ).
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