

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 13, no. 1, 2012 pp. 1-10

On cofree S-spaces and cofree S-flows

Behnam Khosravi

Abstract

Let **S-Tych** be the category of Tychonoff S-spaces for a topological monoid S. We study the cofree S-spaces and cofree S-flows over topological spaces and we prove that for any topological space X and a topological monoid S, the function space C(S, X) with the compactopen topology and the action $s \cdot f = (t \mapsto f(st))$ is the cofree S-space over X if and only if the compact-open topology is admissible and Tychonoff. Finally we study injective S-spaces and we characterize injective cofree S-spaces, when the compact-open topology is admissible and Tychonoff. As a consequence of this result, we characterize the cofree S-spaces and cofree S-flows, when S is a locally compact topological monoid.

2010 MSC: 54C35, 22A30, 20M30, 54D45, 54H10.

KEYWORDS: S-space, S-flow, Cofree S-space, Cofree S-flow Compact-open topology, Injective S-space.

1. INTRODUCTION AND PRELIMINARIES

There are many works about S-spaces or more specially G-spaces and their applications, and some authors study the free and projective S-spaces (G-spaces) and their applications [1, 7, 10, 11, 13, 14, 15, 16, 18]. Also, there are some results about injective and cofree Boolean S-spaces (see [1]).

Recall that, for a monoid S, a set A is a left S-set (or S-act) if there is, so called, an action $\mu : S \times A \to A$ such that, denoting $\mu(s, a) := sa$, (st)a = s(ta) and 1a = a. The definitions of an S-subset A of B and an Shomomorphism (also called S-map) between S-sets are clear. In fact S-maps are action-preserving maps: $f : A \to B$ with f(sa) = sf(a), for $s \in S$, $a \in A$. Each monoid S can be considered as an S-set with the action given by its multiplication. Let S be a monoid and A be an S-set. Recall that for $s \in S$, the

S-homomorphism $\lambda_s : A \to A$ is defined by $y \mapsto sy$ for any $y \in A$. Similarly, for $a \in A$, the S-map $\rho_a : S \to A$ is defined by $t \mapsto ta$ for any $t \in S$.

Let \mathcal{C} be a concrete category over \mathcal{D} and $U : \mathcal{C} \to \mathcal{D}$ be the forgetful functor. An object K in \mathcal{C} with a morphism $\psi : K \to D$ in \mathcal{D} , where $D \in \mathcal{D}$, is the cofree object over D, if for every morphism $f : C \to D$ in \mathcal{D} there exists a unique morphism $\tilde{f} : C \to K$ in \mathcal{C} such that $\psi \circ \tilde{f} = f$ in \mathcal{D} .

For any two topological spaces X and Y, we denote the set of all continuous maps from X to Y by C(X, Y). If τ is a topology on the set C(X, Y), then the corresponding space is denoted by $C_{\tau}(X, Y)$. The category of all Tychonoff spaces is denoted by **Tych**.

Note that all of the spaces in this note are Tychonoff (completely regular and Hausdorff). A monoid S with a Hausdorff topology τ_S such that the multiplication $\cdot : S \times S \to S$ is (jointly) continuous, is called a *topological* monoid. For a topological monoid S, an S-space is an S-set A with a topology τ_A such that the action $S \times A \to A$ is (jointly) continuous. The category of all Tychonoff S-spaces with continuous S-maps is denoted by **S-Tych** (see [14, 15, 16, 18]). A compact Hausdorff S-space is called an S-flow (see [2, 13]).

Let Y and Z be two topological spaces. A topology on the set C(Y,Z) is called *splitting* if for every space X, the continuity of a map $q: X \times Y \to Z$ implies that of the map $\widetilde{q}: X \to C_{\tau}(Y,Z)$ defined by $\widetilde{q}(x)(y) = q(x,y)$, for every $x \in X$ and $y \in Y$ (this topology is also called *proper* [3, 8] or *weak* [6]). A topology τ on C(Y,Z) is admissible if the mapping $\omega(y,f) := f(y)$ from $Y \times C(Y, Z)$ into Z is continuous in y and f. Equivalently, a topology τ on C(Y,Z) is admissible if for every topological space X, the continuity of an $f: X \to C_{\tau}(Y, Z)$ implies the continuity of $\widehat{f}: X \times Y \to Z$, where $\widehat{f}(x,y) := f(x)(y)$ for every $(x,y) \in X \times Y$ (see [8]) (the latter definition is usually used as the definition of admissible topology, but we use the former). A topological space Y is said to be exponential if for every space X there is an admissible and splitting topology on C(Y, X) (see [6]). For any topological spaces X and Y, we denote the set C(X, Y) with the compact-open topology by $C_{co}(X,Y)$. For any compact subset K of X and an open set U in Y, by (K, U) we mean the set $\{f \in C(X, Y) | f(K) \subseteq U\}$. For topological topics and facts about Stone-Cech compactification, we refer to [3, 9, 17].

In this note, we study the cofree and injective S-spaces and S-flows. Recall that for a set E and a monoid S, E^S , the set of all functions from S to Ewith the action $sf := (t \mapsto f(st))$, for any function $f : S \to E$ and $s \in S$, is the cofree S-set over E (see [12]). In Section 2, we study the cofree S-spaces and S-flows over topological spaces. As a consequence of these results, we characterize the cofree S-spaces and the cofree S-flows over topological spaces, when the compact-open topology is admissible and Tychonoff (more specially, when S is locally compact). Finally, in Section 3, we study injective cofree S-spaces and S-flows over topological spaces, when the compact-open topology is admissible and Tychonoff. Note that we state and prove our results for topological monoids and plainly all of our results hold for topological groups and G-spaces.

2. The Cofree S-spaces and S-flows over a topological space

One of the main steps in the study of injective objects in a category is the study of cofree objects. These objects can be used for presenting injective cover for objects in a category¹. In this section, first we study the cofree Tychonoff S-spaces over a Tychonoff space, then we study the cofree S-flow over a compact space². Finally in this section, as a consequence of these results, we will show that if S is a locally compact topological monoid, then the cofree S-space and the cofree S-flow exist and we present them explicitly.

Remark 2.1. It is a known fact that the cofree S-set over a set E, is the set E^S of all functions from S to E with the action defined by $s \cdot f := (t \mapsto f(st))$ for all $f \in E^S$, $s \in S$ and $t \in S$. Let E and D be two sets. Recall that for an S-set A and any function $h : A \to E$, the S-homomorphism $\overline{h} : A \to E^S$ defined by $\overline{h}(a) := h \circ \rho_a$ is the unique S-map such that $\psi \circ \overline{h} = h$, where $\psi : E^S \to E$ is defined by $\psi(f) := f(1)$, for any $f \in E^S$ (see [12]).

Remark 2.2. (i) Let S be a topological monoid and X be a topological space. The S-space $S \times X$ with the product topology and the action $\lambda_1 : S \times (S \times X) \to S \times X$, t(s,x) = (ts,x), is denoted by L(X). For a topological space X, the S-space X with the trivial action, sx := x, is denoted by T(X).

(ii) Note that for any topological space X and a non-empty topological space Y, if we define $c_x(y) := x$ for every $y \in Y$, and $C := \{c_x | x \in X\}$, then C as a subspace of $C_{co}(Y, X)$ is homeomorphic to X. So the function $j: X \to C_{co}(Y, X)$ defined by $j(x) := c_x$ is an embedding from X to $C_{co}(Y, X)$. From now on, we denote this embedding by j_X for any topological space X.

By Theorem 2.9 in [6], we have

Remark 2.3. Let X be a topological space. Then the following are equivalent

- (a) X is exponential;
- (a) For every space Y, there exists a splitting and admissible topology on C(X, Y);
- (c) X is core compact.

Note that for Hausdorff spaces (and more generally for sober spaces) core compactness is the same as local compactness (see [5]). Furthermore, it is a known fact that if X is locally compact, then the compact-open topology on C(X, Y)is admissible and splitting.

¹Note that the cofree objects in an arbitrary category are not injective in general.

²One can easily see that if the cofree S-flow exists over a space X, then X is compact. So this assumption is not an extra assumption.

Theorem 2.4. Let S be a topological monoid. Then the following are equivalent

- (a) For every Tychonoff space X, the compact-open topology on C(S, X) is admissible and Tychonoff;
- (b) For every space X, $C_{co}(S, X)$ is Tychonoff and $C_{co}(S, X)$ with the action defined by $sf = (s' \mapsto f(ss'))$ is the cofree S-space over X.

Proof. (a) \Rightarrow (b) Let X be a topological space. First we show that $C_{co}(S, X)$ with its introduced action is an S-space, then we show that it has the cofree universal property. First, note that since S is a topological monoid, the action is well-defined. Let $f \in C(S, X)$, $s \in S$ and (K, U) be subbasis element for $C_{co}(S, X)$ containing sf. Therefore for any $k \in K$, $f(sk) = (sf)(k) \in U$. Since by the assumption, the compact-open topology on C(S, X) is admissible and since for any $k \in K$, we have $\omega(sk, f) \in U$, there exist open neighborhoods O_f and W_{sk} of f and sk, in $C_{co}(S, X)$ and S, respectively such that $\omega(W_{sk}, O_f) \subseteq U$. On the other hand, since S is a topological monoid, for $sk \in W_{sk}$, there exist open sets W_s^k and W_k in S which contain $\{s\}$ and $\{k\}$, respectively and $W_s^k \cdot W_k \subseteq W_{sk}$. Since K is compact and obviously $\{W_k\}_{k \in K}$ forms an open cover for K, there exist k_1, \dots, k_n in K such that $K \subseteq \bigcup_{i=1}^n W_{k_i}$. Define $W_s := \bigcap_{i=1}^n W_{s_i}^{k_i}$. Clearly for $W_s \in \tau_S$ we have

$$\omega(W_s \cdot K, O_f) \subseteq \omega(W_s \cdot (\bigcup_{i=1}^n W_{k_i}), O_f) \subseteq U \Rightarrow sf \in W_s O_f \subseteq (K, U).$$

Hence $C_{co}(S, X)$ with its introduced action is an S-space.

Now we prove the universal property. First note that the function ψ : $C_{co}(S, X) \to X$ is continuous. Let (A, τ_A) be an S-space and $h: (A, \tau_A) \to X$ be continuous. We show that for any S-space (A, τ_A) and a continuous function $h: (A, \tau_A) \to X$, the function $\overline{h}: (A, \tau_A) \to C_{\tau}(S, X)$ defined by $\overline{h}(a) = (s \mapsto h(sa))$ is continuous and $\psi \circ \overline{h} = h$. First, note that for every $a \in A$ and $s \in S, \overline{h}(a)(s) = h(sa) = h \circ \rho_a(s)$, and since (A, τ_A) is an S-space, for every $a \in A, \overline{h}(a) \in C(S, X)$, so \overline{h} is a well defined function. Consider the continuous function

Since τ is splitting, the function $(h \circ \lambda) : A \to C_{\tau}(S, X)$, where $(h \circ \lambda)(a) := (s \mapsto (h \circ \lambda)(s, a))$, is continuous. Therefore, \overline{h} is continuous. Hence $C_{co}(S, X)$ with its introduced action is the cofree S-space over X.

(b) \Rightarrow (a) Let λ denote the action of the cofree S-space over X. It is a known fact that the compact-open topology is splitting. On the other hand, since $C_{co}(S, X)$ with λ is an S-space and since $\psi : C_{co}(S, X) \to X$ is continuous, $\omega = \psi \circ \lambda$ is continuous. Therefore the compact-open topology is admissible. Therefore, the compact-open topology is admissible and Tychonoff. \Box

As a quick consequence of the above theorem, we have

Corollary 2.5. Let S be a locally compact topological monoid. Then for any Tychonoff space X, $C_{co}(S, X)$ with the action defined by $sf = f \circ \lambda_s$ is the cofree S-space over X.

Proof. Since S is locally compact, by Remark 2.3, the compact-open topology on C(S, X) is admissible. On the other hand, by [5, Corollary 3.8], $C_{co}(S, X)$ is Tychonoff. So by the above theorem we have the result.

Theorem 2.6. Let S be a completely regular topological monoid³. Then the following are equivalent:

- (a) for every compact space X, the compact-open topology on C(S, X) is admissible and Tychonoff;
- (b) for every compact space X, $C_{co}(S, X)$ is completely regular and there exists an action $\tilde{\lambda} : S \times \beta(C_{co}(S, X)) \to \beta(C_{co}(S, X))$ such that $\tilde{\lambda}|_{C_{co}(S, X)}$ coincides with the action of $C_{co}(S, X)$ and $\beta(C_{co}(S, X))$ is the cofree S-flow over the space X.

Proof. (a) \Rightarrow (b) Let S be a topological monoid such that the compact-open topology on C(S, X) is admissible, for every compact space X. Let X be a compact space and let λ denote the action of the cofree S-space $C_{co}(S, X)$. First, we introduce $\tilde{\lambda}$ and we show that it is continuous, then we prove the universal property.

Since $S \times C_{co}(S, X)$ is Tychonoff, $\beta(S \times C_{co}(S, X))$ exists. By the characteristic of the Stone-Cech compactification, for the continuous action λ : $S \times C_{co}(S, X) \to C_{co}(S, X)$, there exists a continuous function $\overline{\lambda}$: $\beta(S \times C_{co}(S, X)) \to \beta(C_{co}(S, X))$ such that $\overline{\lambda}|_{S \times C_{co}(S, X)} = \lambda$. Fix an arbitrary $t \in S$ and define $k : C_{co}(S, X) \to S \times C_{co}(S, X)$ as follows k(f) := (t, f), for every $f \in C_{co}(S, X)$. Consider the closure of $k(C_{co}(S, X))$ in $\beta(S \times C_{co}(S, X))$. It is obvious that there exists a compact space B such that the closure of $k(C_{co}(S, X))$ in $\beta(S \times C_{co}(S, X))$. It is close that there exists a compact space B such that the closure of $k(C_{co}(S, X))$ in $\beta(S \times C_{co}(S, X))$ is equal to $\{t\} \times B$. Again by the characteristic of the Stone-Cech compactification, there exists a continuous function $h : \beta(C_{co}(S, X)) \to B$ such that $h \circ i = k$, where i is the natural inclusion map from $C_{co}(S, X)$ to $\beta(C_{co}(S, X))$. Define $\lambda' := \overline{\lambda}|_{S \times B}$. Now we define $\widetilde{\lambda} := \lambda' \circ (id_S \times h) : S \times \beta(C_{co}(S, X)) \to S \times B \to \beta(C_{co}(S, X))$ and we show that $\widetilde{\lambda}$ is an action. Let $b \in \beta(C_{co}(S, X))$ and $s, s' \in S$. Then since $g \in \beta(C_{co}(S, X))$, there exists a net $(f_{\alpha}) \subseteq C_{co}(S, X)$ such that $f_{\alpha} \to g$.

$$\begin{split} \widetilde{\lambda}(ss',g) &= \widetilde{\lambda}(ss', \lim_{\alpha} f_{\alpha}) = \lim_{\alpha} \lambda'(ss', k(f_{\alpha})) = \lim_{\alpha} \lambda(ss', f_{\alpha}) \\ &= \lim_{\alpha} \lambda(s, \lambda(s', f_{\alpha})) = \widetilde{\lambda}(s, \widetilde{\lambda}(s', g)). \end{split}$$

Therefore $\widetilde{\lambda}$ is a continuous action and $\beta(C_{co}(S, X))$ with action $\widetilde{\lambda}$ is an S-flow. Now we prove the universal property. First, let $\widetilde{\psi} : \beta(C_{co}(S, X)) \to X$ be the continuous extension of $\psi : C_{co}(S, X) \to X$ which exists by the characteristic of the Stone-Cech compactification. To prove the universal property, we show that for any S-flow (F, τ_F) and a continuous function $l : (F, \tau_F) \to X$, there

³Clearly for a topological group, this assumption is not necessary.

exists a continuous S-map $\overline{l}: (F, \tau_F) \to \beta(C_{co}(S, X))$ such that $\widetilde{\psi} \circ \overline{l} = l$. Let (F, τ_F) be an S-flow and let $l: (F, \tau_F) \to X$ be a continuous function. Since by Theorem 2.4, $C_{co}(S, X)$ with action λ is the cofree S-space over X, there exists a continuous S-map $\overline{l}: (F, \tau_F) \to C_{co}(S, X)$ such that $\psi \circ \overline{l} = l$. Since $\widetilde{\psi}|_{C_{co}(S,X)} = \psi$, we have clearly $\widetilde{\psi} \circ \overline{l} = l$. Therefore $\beta(C_{co}(S,X))$ with action $\widetilde{\lambda}$ is the cofree S-flow over the space X.

(b) \Leftarrow (a) Suppose that there exists a continuous action λ on $\beta(C_{co}(S, X))$ such that $\beta(C_{co}(S, X))$ with this action is an S-flow and $\lambda|_{C_{co}(S,X)} = \lambda$, where λ is the action of $C_{co}(S, X)$. Therefore $C_{co}(S, X)$ is an S-space. On the other hand, since $\psi : C_{co}(S, X) \to X$ is continuous, $\omega = \psi \circ \lambda : S \times C_{co}(S, X) \to C_{co}(S, X) \to X$ is continuous. Therefore the compact-open topology on C(S, X) is admissible and Tychonoff. \Box

Recall that for a topological group G, a G-space $(A.\tau_A)$ is called G-compactificable or G-Tychonoff, if (A, τ_A) is a G-subspace of a G-flow (compact G-space) (see [14, 15]). Since S is locally compact, it is a Tychonoff space. Therefore by the above theorem, we have

Corollary 2.7. (a) Let S be a locally compact topological monoid. Then for any compact space X, there exists an action λ on $\beta(C_{co}(S,X))$ such that $\beta(C_{co}(S,X))$ with this action is the cofree S-flow over the space X.

(b) Let G be a locally compact topological group and X be a topological space. Then the cofree G-space over X is G-compactificable.

3. Injective cofree S-spaces and S-flows

Recall that by an embedding of topological spaces (S-spaces) we mean a homeomorphism (homeomorphism S-map) onto a subspace (an S-subset). A topological space (S-space) Z is called injective over an embedding of topological spaces (of S-spaces) $j : X \hookrightarrow Y$ if any continuous map (continuous S-homomorphism) $f : X \to Z$ extends to a continuous map (continuous Shomomorphism) $\overline{f} : Y \hookrightarrow Z$ along j. A space (an S-space) is injective if it is injective over embeddings (see [5]).

Proposition 3.1. Let S be a completely regular topological monoid and (E, τ) be an S-space. If (E, τ) is an injective S-space, then $(|E|, \tau)$ is injective in **Tych**.

Proof. Suppose that we are given the following diagram in Tych

$$\begin{array}{cccc} & i \\ X & \hookrightarrow & Y \\ f & \downarrow \\ (E, \tau) \end{array}$$

where X and Y are topological spaces and f is a continuous function. Now consider the following diagram

$$\begin{array}{ccccc} & id \times i \\ & L(X) & \hookrightarrow & L(Y) \\ id \times f & \downarrow & & \\ & S \times E & \swarrow & \\ \lambda & \downarrow & h & \\ & E & & \end{array}$$

Since (E, τ) is an injective S-space, there exists a continuous S-map h from L(Y) to (E, τ) such that $h(id \times i) = \lambda(id \times f)$. (Note that $\lambda(id \times f)$ is a continuous S-homomorphism.)

Note that for any topological space Z, the spaces Z and $Z \times \{1\}$ with the product topology are homeomorphic. Furthermore, we have $(id \times i)|_{\{1\} \times X} : \{1\} \times X \hookrightarrow \{1\} \times Y$, and

$$\lambda \circ (id \times i)(1, x) = h \circ (id \times i)(1, x) = f(x).$$

Now, define $h' := h|_{\{1\} \times Y} : \{1\} \times Y \to E$ and consider the following diagram

$$\begin{array}{cccc} (\operatorname{id} \times \operatorname{i})|_{\{1\} \times X} & & (\operatorname{id} \times \operatorname{i})|_{\{1\} \times X} \\ \{1\} \times X & \longrightarrow & \{1\} \times Y & \subseteq & S \times Y \\ g_1 & \downarrow & & \downarrow g_2 \\ X & \longrightarrow & Y \\ f & \downarrow & i \\ E & & E \end{array}$$

where g_1 and g_2 are the following homeomorphisms

$$g_1: \{1\} \times X \to X, \quad \text{and} \quad g_2: \{1\} \times Y \to Y$$
$$(1, x) \mapsto x \qquad (1, y) \mapsto y.$$

Since g_1 and g_2 are homeomorphisms and, $h'((id \times i)|_{\{1\} \times X}) = \lambda((id \times f)|_{\{1\} \times X}) = fg_1$, we have

$$h' \circ (id \times i)|_{\{1\} \times X} \circ g_1^{-1} = f.$$
 (I)

On the other hand, since the rectangular in the above diagram is commutative, we have

$$(id \times i)|_{\{1\} \times X} \circ g_1^{-1} = g_2^{-1} \circ i.$$
 (II)

Now, define $f^\circ := h' \circ g_2^{-1}$. Clearly, by the Relations (I) and (II), f° is a continuous function from Y to E such that

$$f^{\circ}i = h'g_2^{-1}i = h' \circ (id \times i)|_{\{1\} \times X} \circ g_1^{-1} = f.$$

similarly, we can prove that

Proposition 3.2. Let S be a compact topological monoid and (F, τ_F) be an S-flow. If (F, τ_F) is an injective S-flow, then $(|F|, \tau_F)$ is injective in the category of compact Hausdorff spaces.

It is known that the cofree S-spaces are not injective in general. In the next proposition, we characterize the injective cofree S-spaces when S is a locally compact topological monoid.

Proposition 3.3. For a locally compact monoid S and a topological space X, the cofree S-space over X, $C_{co}(S, X)$ is injective in **S-Tych** if and only if X is injective in **Tych**.

Proof. (\Rightarrow) Suppose that we are given the following diagram in **Tych**

$$\begin{array}{cccc} Z & \hookrightarrow & Y \\ {}_{f} \downarrow & & \\ X & & \end{array}$$

Consider the following diagram in **S-Tych**.

$$\begin{array}{rcc} T(Z) & \hookrightarrow & T(Y) \\ & & \\ j_X \circ f \downarrow \\ C_{co}(S, X) \end{array}$$

Since $C_{co}(S, X)$ is injective, there exists a continuous S-homomorphism $h : T(Y) \to C_{co}(S, X)$ such that $h \circ i = j_X \circ f$. Therefore, $f = \psi \circ h \circ i$. Take $k := \psi \circ h$. Hence $f = k \circ i$ and X is injective.

 (\Leftarrow) Suppose that we are given $i : (A, \tau_A) \hookrightarrow (B, \tau_B)$ and $f : (A, \tau_A) \to C_{co}(S, X)$ for two S-spaces (A, τ_A) and (B, τ_B) . Consider the following diagram

$$\begin{array}{cccc}
i \\
(A, \tau_A) & \stackrel{i}{\hookrightarrow} & (B, \tau_B) \\
f & \downarrow \\
C_{\rm co}(S, X) \\
\psi & \downarrow \\
X
\end{array}$$

Since X is injective in **Tych**, there exists $g: (B, \tau_B) \to X$ such that $g \circ i = \psi \circ f$. Since $C_{co}(S, X)$ is the cofree S-space over X, there exists $h: (B, \tau_B) \to C_{co}(S, X)$ such that $\psi \circ h = g$. We claim that $h \circ i = f$. Clearly we have $\psi \circ h \circ i = \psi \circ f$. So for every $a \in A$ and $s \in S$, we have $h \circ i(a)(s) = h \circ i(a) \circ \lambda_s(1) = \psi(h \circ i(a) \circ \lambda_s) = \psi(f(a) \circ \lambda_s) = f(a) \circ \lambda_s(1) = f(a)(s)$. Hence, $h \circ i = f$, as we wanted. So $C_{co}(S, X)$ is an injective S-space. Hence $C_{co}(S, X)$ is injective in **Tych**.

Similarly we have

Proposition 3.4. For a completely regular monoid S and a compact Hausdorff space X, the cofree S-flow over X, $\beta(C_{co}(S,X))$ is injective in the category of S-flows if and only if X is injective in the category of compact Hausdorff spaces.

As an immediate result of Propositions 3.1 and 3.3, we have

Proposition 3.5. Let S be a locally compact monoid. $C_{co}(S, X)$ is injective in **Tych** if and only if $C_{co}(S, X)$ is injective in **S-Tych**.

Proof. (\Leftarrow) Since for any space Z, T(Z) is an S-space, the result is obvious. (\Rightarrow) Suppose that $C_{co}(S, X)$ is injective in **Tych** and we are given $i : (A, \tau_A) \hookrightarrow (B, \tau_B)$ and $f : (A, \tau_A) \to C_{co}(S, X)$ for two S-spaces (A, τ_A) and (B, τ_B) . Since $C_{co}(S, X)$ is injective in **Tych**, there exists a continuous function $g : (B, \tau_B) \to C_{co}(S, X)$ such that $g \circ i = f$.

Since $C_{co}(S, X)$ is the cofree S-space over X and $\psi \circ g : (B, \tau_B) \to X$ is continuous, there exists a continuous S-homomorphism $h : (B, \tau_B) \to C_{co}(S, X)$ such that $\psi \circ h = \psi \circ g$. Clearly we have $\psi \circ h \circ i = \psi \circ g \circ i$. So, by the same argument as the proof of Proposition 3.3, we have $h \circ i = f$. Hence $C_{co}(S, X)$ is injective in **S-Tych**.

ACKNOWLEDGEMENTS. The author would like to imply his gratitude to the referee and Professor Sanchis for their kindness and helps.

References

- R. N. Ball, S. Geschke and J. N. Hagler, *Injective and projective T-Boolean algebras*, J. Pure Appl. Algebra 209, no. 1 (2007), 1–36.
- [2] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups. Function spaces, compactifications, representations Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1989.
- [3] J. Dugundji, Topology, Wm. C. Brown Publishers, 1989.
- [4] M. M. Ebrahimi and M. Mahmoudi, The Category of M-sets, Ital. J. Pure Appl. Math. 9 (2001), 123–132.
- [5] M. H. Escardo, Function-Space Compactifications of Function Spaces, Topology Appl. 120, no. 3 (2002), 441–463.
- [6] M. H. Escardo, J. Lawson and A. Simpson, Comparing Cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143, no. 1-3 (2004), 105–144.
- [7] E. Glasner and M. G. Megrelishvili, New algebras of functions on topological groups arising from G-spaces, Fund. Math. 201 (2008), 1–51.
- [8] D. N. Georgiou, Topologies on function spaces and hyperspaces, Appl. Gen. Topol. 10, no. 1 (2009), 159–170.
- [9] N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification. Theory and applications, Walter de Gruyter & Co., Berlin, 1998.
- [10] B. Khosravi, On free and projective S-spaces and flows over a topological monoid, Asian European Journal of Math. 3, no. 3 (2010), 443–456.
- [11] B. Khosravi, Free topological acts over a topological monoid, Quasigroup and Related systems 18, no. 1 (2010), 25–42.

- [12] M. Kilp, U. Knauer and A. Mikhalev, *Monoids, Acts and Categories*, Walter de Gruyter, Berlin, New York, 2000.
- [13] J. Lawson and A. Lisan, Flows, congruences, and factorizations, Topology Appl. 58, no. 1 (1994), 35–46.
- [14] M. G. Megrelishvili, Free topological G-groups, New Zealand J. Math. 25, no. 1 (1996), 59–72.
- [15] M. G. Megrelishvili, Topological Transformation Groups: Selected Topics, in: Elliott Pearl, Editor, Open problems in topology. II. Elsevier B. V., Amsterdam, 2007.
- [16] M. G. Megrelishvili, Reflexively representable but not Hilbert representable compact flows and semitopological semigroups, Colloq. Math. 110 (2006), 383–407.
- [17] J. R. Munkres, Topology, 2nd Ed., Prentice-Hall, New Jersy, 2000.
- [18] P. Normak, Topological S-acts: Preliminaries and Problems, Transformation semigroups 199 (1993), 60–69, Univ. Essex, Colchester.

(Received November 2009 – Accepted December 2011)

BEHNAM KHOSRAVI (behnam_kho@yahoo.com) Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran

10