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Abstract

A Tychonoff space X which satisfies the property that G(X) = C(Xδ) is
called an RG-space, where G(X) is the minimal regular ring extension
of C(X) inside F (X), the ring of all functions from X to R, and Xδ is
the topology on X generated by its Gδ-sets. We correct an error that
we found in the proof of [19, Theorem 3.4] and show that RG-spaces
must satisfy a finite dimensional condition.
We also introduce a new class of topological spaces which we call almost
k-Baire spaces. The class of almost Baire spaces is a particular instance.
We show that every RG-space is an almost Baire space but not neces-
sarily a Baire space. However RG-spaces of countable pseudocharacter
must be Baire and, furthermore, their dense sets have dense interiors.
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1. Introduction

Let X be a Tychonoff space, let C(X) be the ring of real-valued continuous
functions defined on X , and let F (X) be the ring of all real-valued functions
defined on X . It is clear that both of these are commutative semiprime rings
sharing the same identity. Moreover the ring F (X) is regular (in the sense of
Von Neumann). The (unique) smallest regular ring lying between C(X) and
F (X), denoted G(X), was studied intensively in [19].

For any function f ∈ F (X), the quasi-inverse of f is given by:
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f∗(x) =
{

0 if x ∈ Z(f)
1

f(x) if x ∈ coz(f)

where Z(f) = {x : f(x) = 0} and coz(f) = X − Z(f). A subset of X is
called a zero-set (cozero-set) if it has the form Z(f) (coz(f)) for some function
f ∈ C(X). The set of all zero-sets in X is denoted Z(X). For a topological
space X , a point p is called a P -point if p is in the interior of each zero-set
containing it. A topological space X is called a P -space if every point in X is a
P -point [10, 4L]. A space X is a P -space if and only if C(X) is a regular ring,
or equivalently if every Gδ-set is open [10, 4J]. A space X is called an almost P -
space if every non-empty zero-set has a non-empty interior. Details on almost
P -spaces appear in [15]. Algebraic background, for example on regular rings
and quasi-inverses, can be found in [13].

2. RG-spaces

If (X, τ) is a topological space then the family of its Gδ-sets forms an open
base for a (potentially) stronger topology on X known in the literature as the
δ-topology. It is denoted τδ and the new space is written as Xδ. In [12] it was
shown that G(X) = { ∑n

i=1 fig
∗
i : fi, gi ∈ C(X), n ≥ 1}, so each function

in G(X) is continuous in the δ-topology. Thus G(X) contains C(X) and is a
subring of C(Xδ).

Definition 2.1 ([12]). Let X be a topological space. Then X is called a
regular good space, denoted an RG-space, if G(X) = C(Xδ).

It is clear from the definition of RG-spaces that every P -space is an RG-
space because if X is a P -space, then G(X) = C(X) = C(Xδ). There are many
examples and non-examples of RG-spaces in the literature, for example in [12]
and [19]. Interestingly, for any space X , whether RG or not, any function in
G(X) is continuous on a dense open subset of X [12].

3. A Theorem revisited and repaired

We recall from [10] that a prime ideal P is called a z-ideal if a ∈ P whenever
b ∈ P and Z(a) = Z(b).

Definition 3.1. By the (Krull) z-dimension of a maximal ideal we mean the
supremum of the lengths of chains of prime z-ideals lying in it. The Krull
z-dimension of C(X) is the supremum of the dimensions of the maximal ideals
of C(X).

Our first goal in this note is to revisit [19, Theorem 3.4]. For completeness
let us recall the result that was claimed.

Theorem 3.2. If the Krull z-dimension of C(X) is infinite then X is not an
RG space and rg(X) = ∞.
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Regrettably, the proof given in [19] is mistaken. The assertion in the last
paragraph of the proof that clBk,t contains Qk,t and no other prime from the
array is not justified because a countably infinite operation is used in defining
Bk,t. Below we give a correct proof of the result.

(The method) We use the following idea. A space X can be shown not to
be RG if one can apply the following technique to its set of prime z-ideals. By
“the method” we mean the selection of a countably infinite array of prime
z-ideals belonging to disjoint chains, say Dn, of finite but globally unbounded
lengths. One also needs a countably infinite family of disjoint clopen sets in
Xδ such that each clopen set contains precisely one chain from the array in its
β(Xδ)-closure. Then an appropriate function is defined using the method of
[5, Theorem 3.1 part (3)]. This is done by assigning fixed values (taken from
C(X)) on each clopen set, and letting it be zero elsewhere. The constants
chosen come from the (proper) containment of a prime in its successor in its
chain. By virtue of the topology on Xδ the global function thus defined will be
in C(Xδ) but it will not lie in G(X) because of the unbounded nature of the
lengths of the chains Dn.

Lemma 3.3. Suppose the following three conditions hold for a space X.

1. X is an RG-space,
2. C(X) has a chain of prime z-ideals of length n, and
3. There is a subpace Yδ that is clopen in Xδ such that all of the primes

in the chain lie in the closure of Yδ in β(Xδ).

Then there is a function h ∈ G(X) that vanishes on X − Y and has regularity
degree at least n.

Proof. Construct a function k as in [19, Case 1, page 80]. Then get h by mul-
tiplying k by the idempotent that is 1 on Y and 0 and X−Y . The idempotent
is in G(X) = C(Xδ) so the product is as well. �
Lemma 3.4. Suppose that X is of infinite prime Krull z-dimension. Then
X contains a family of pairwise disjoint chains Dn indexed by n, so that the
length of the chain Dn is equal to n.

Proof. This is done by an easy induction. The case n = 1 is clear. Suppose
we have chosen disjoint chains D1, ....Dn. Since the lengths of the chains is
unbounded, there is one of length at least n(n + 1)/2 + (n + 1). Even if this
chain has some overlap with the chains D1, ..., Dn there must be n+ 1 primes
in it that do not occur in the previous chains. These n + 1 primes give us a
new chain Dn+1 disjoint from all of the previous chains. �
Lemma 3.5. Assume, if possible, that X is an RG-space of infinite Krull z-
dimension. Then X contains a countably infinite family of disjoint subspaces
Yn, each clopen in the δ-topology such that each Yn supports a function hn ∈
C(Xδ) that vanishes outside of Yn and has regularity degree at least n.

Proof. Since X is of infinite dimension Lemma 3.4 applies. Let Dn have the
same meaning as in Lemma 3.4.
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We construct the disjoint clopen sets inductively as follows.
First step. The sets D1 and D2 are finite and disjoint in the Boolean space

T = Spec(Xδ) = β(Xδ) so they can be separated by complementary clopen
sets U and T − U , say D1 ⊂ U , D2 ⊂ T − U . The subspaces A = U ∩Xδ and
B = (T − U) ∩ Xδ are clopen subsets of Xδ so the union of their T -closures
is T . They are also RG-spaces in the (relative) X-topology by [12, Theorem
2.3(a)].

We know that D1 is in the T -closure of A, D2 is in the T -closure of B,
and that the other Dn lie wholely or partly in the T -closures of A and B and
certainly in the union of the latter. Although we know that A and B are RG-
spaces with union X we do not assert that (at least) one of them is of infinite
dimension. This would hold if we knew that X were the free union of A and
B by [16, Prop 4.7] but we do not know this. Fortunately we only want to be
able to apply Lemma 3.3. Observe that one (or both) of A and B is “infinite”
with respect to X in the following sense: it is not possible that both A and B
have a finite bound on the cardinalities of their intersections with the chains
D3, D4, ..... If it is B that has this property then we let Y1 = A and continue to
the next step in which we will be working inside B. If, on the other hand, there
is a global finite bound on the cardinalities of the intersections of the chains
D3, D4, ... with B then we let Y1 = B in the knowledge that B has a chain of
length 2 and therefore one of length 1, and we continue with A. In both cases
Y1 is clopen in the δ-topology, has a chain of length 1 in its T -closure, and has
a complement X − Y1 with an “infinite” property.

Second step. We work with the space X − Y1 which has disjoint chains of
all finite lengths in its T -closure, in particular, one called S2 of length 2 and
one of length 3 called S3.

Working in the T -closure, again, find a clopen subspace W of T − clT (Y1)
that separates A2 and A3, say A2 ⊂ W,A3 ⊂ T − clT (Y1)−W . If the T -closure
of ((T − Y1)−W )∩X has the “infinite property” we let Y2 = W ∩Xδ. If not,
we let Y2 = ((T −Y1)−W )∩Xδ. In both cases Y2 is clopen in Xδ, has a chain
of length 2 in its T -closure, and (X − Y1)− Y2 has the ”infinite” property.

Now one simply continues the process to get the sequence Yn. �

We can now present our main result of this section.

Theorem 3.6. If X is an RG-space then X is of finite Krull z-dimension.

Proof. Let Yn denote the disjoint subsets given by Lemma 3.5. Each is clopen
in Xδ. Let Y = ∪Yn. By standard properties of P-spaces Y is also clopen. For
each n let hn be the function provided by Lemma 3.3 on Y . Let h be defined
on X by, h = hn on Yn for each n, and h is zero on X − Y . Then h ∈ C(Xδ)
and h /∈ G(X) by the argument of [19, Theorem 3.1] (see also [19, Theorem
3.4)].

Remark 3.7. As was shown in [1, p82] the spectrum of the epimorphic hull
is the set of prime d-ideals of C(X) under the patch topology. Exactly the
same arguments show that if dimension is measured using prime d-ideals, then
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an infinite dimension is inconsistent with having H(X) be a ring of continuous
functions when X is realcompact. Note as well that an infinite dimension when
measured using prime d-ideals will also prevent X from being an RG space.

Remark 3.8. Notice that the proof of Lemma 3.5 contains the following fact
of interest. If X is RG, and A is a subset of X which is clopen in X in the
δ-topology, then A is also an RG-space. This is simply an application of [12,
Theorem 2.3(a)]. There is no immediate converse however. The space Ψ is
known not to be RG. It is discrete in the δ-topology, both N and Ψ − N are
discrete, and therefore RG, and the idempotent function on Ψ which is 1 on N
and 0 on Ψ −N is certainly in G(Ψ). A converse can be achieved with lifting
properties, like the C∗-embeddedness of A and its complement. We can get by
with a bit less, as follows.

Proposition 3.9. Let X be the union of two disjoint subspaces A and B,
suppose A and B are RG-spaces which are G-embedded in X and suppose that
the function e that is 1 on A and 0 on B lies in G(X). Then X is an RG-space.

Proof. The proof is straightforward. Take f ∈ C(Xδ). It suffices to see that
both ef and (1− e)f lie in G(X). Let us check the result for ef . The function
f |A lies in C(Aδ) and therefore in G(A). That means it lifts to a function
h ∈ G(X). Now eh ∈ G(X) and coincides with ef . Similarly (1− e)f coincides
with (1− e)k for some k ∈ G(X) �

Corollary 3.10. Suppose that a space X is the union of two disjoint Lindelof
subspaces A and B which are RG one of which is open. Suppose further, that
the characteristic function of A lies in G(X). Then X is an RG-space.

Proof. Suppose that A is the open subspace. Since it is Lindelof, it is a cozero
set ofX and is thereforeG-embedded inX . The space B is closed in the normal
space X and is therefore C-embedded, hence G-embedded in X as well. �

4. Nowhere separable spaces

The following theorem can be compared with [12, 2.2].

Theorem 4.1. Let X be an RG-space and (Zn)
∞
n=1 be a sequence of nowhere

dense zero-sets in X. Then
⋃∞

n=1 Zn is a nowhere dense subset.

Proof. Let S =
⋃∞

n=1 Zn, A1 = Z1 and Am = Zm− (
⋃m−1

i=1 Zi) for each m ≥ 2.
Then by well-known properties of P -spaces, {An : n ∈ N} is a collection of
clopen subsets in Xδ, and therefore {An : n ∈ N} ∪ {X − S} is a clopen
partition of Xδ. Let f : Xδ −→ R be defined by f(An) = {n + 1} for each
n ∈ N and f(X − S) = {1}. Then f ∈ G(X), and since X is an RG-space
there is a dense open subset D of X on which f is continuous. Now suppose
that cl(

⋃∞
n=1 Zn) has an interior point p. Then there is an open subset Up

containing p such that Up ⊆ cl(
⋃∞

n=1 Zn), which means that for each y in Up

and each neighborhood Wy of y we have Wy ∩ (
⋃∞

n=1 Zn) �= φ. Since D is a
dense subset, then D ∩ Up �= φ. Let y ∈ D ∩ Up. There are two cases:
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(1) If f(y) = 1, then there is an open neighborhoodWy of y such that f(Wy) ⊆
(0, 32 ). So Wy ∩ (

⋃∞
n=1 Zn) = φ, which is a contradiction.

(2) If f(y) = k + 1, then y ∈ Ak, and therefore there is an open neighborhood
Wy of y such that f(Wy) ⊆ (k+ 2

3 , k+
4
3 ). Then Wy ⊆ Ak ⊆ Zk, which is also

a contradiction. Thus
⋃∞

n=1 Zn is a nowhere dense subset of X . �

Recall that a topological space X is called separable at a point p if there
exists an open set O containing p such that O is separable. A topological space
X is called nowhere separable if X is not separable at any of its points.
Details appear in [6].

It is an open question whether an RG-space must have almost P -points.
There certainly are separable RG-spaces, even countable ones and these have
isolated points. One does have the following implication.

Theorem 4.2. If X is an RG-space with no almost P -points then X is nowhere
separable.

Proof. Let X be an RG-space with no almost P -points that is separable at
some point. Then there is a countable subset {an : n ∈ N} such that
int(cl(

⋃∞
n=1{an})) �= φ. For each an pick a nowhere dense zero-set Zn such

that an ∈ Zn. Then int(cl(
⋃∞

n=1 Zn)) �= φ which contradicts theorem 4.1.
Thus X is a nowhere separable. �

5. Spaces of countable pseudocharacter and Blumberg spaces

Definition 5.1. A topological space X is said to be of countable pseu-
docharacter if every point in X is a Gδ-set. (This is equivalent to saying that
Xδ is discrete.)

Recall that a topological space X is called Blumberg if every real-valued
function defined on X has a continuous restriction to a dense subset [22]. In
[4] J. C. Bradford and C. Goffman proved that every Blumberg space is Baire
and in [14] R. Levy showed that there is consistently a compact Hausdorff, and
therefore Baire, space which is not Blumberg.

As noted below an RG-space need not be Baire and hence need not be
Blumberg. Hoever, we can obtain the Blumberg property for one particular
class of RG-spaces as follows.

Theorem 5.2. Let X be an RG-space of countable pseudocharacter. Then X
is Blumberg and hence also Baire.

Proof. Suppose X is an RG-space of countable pseudocharacter. Since Xδ is
a discrete space, every function on X is in G(X), and thus by [12, Prop. 2.1]
every real-valued function defined on X can be restricted continuously to a
dense open subset. So X satisfies the Blumberg property and hence X is a
Baire space. �

Definition 5.3 (cf [3]). Let X be a topological space. Then X is called an
almost resolvable space if it is a countable union of sets with void interiors.
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Theorem 5.4. If X is an RG-space of countable pseudocharacter then X is
not an almost resolvable space.

Proof. Let X be an RG-space of countable pseudocharacter and suppose X
is almost resolvable. Then there is a countable collection {Fn : n ∈ N} of
sets each with void interior such that X =

⋃∞
n=1 Fn. Let A1 = F1 and An =

Fn− (
⋃n−1

m=1 Fm) for each n ≥ 2. Then {An : n ∈ N} is a a countable collection
of disjoint sets with void interior and X =

⋃∞
n=1 An. Define f : X −→ R by

f(An) = n for each n ∈ N . Since Xδ is a discrete space, then f ∈ C(Xδ) =
G(X), which implies that f is continuous on a dense open subset D, which is a
contradiction because f is not continuous at any point. Thus X is not almost
resolvable. �

We know from Theorem 5.2 that RG-spaces of countable pseudocharacter
are Baire. In fact, one can do a bit better as follows.

Lemma 5.5. If X is an RG-space of countable pseudocharacter then every
countable union of nowhere dense subsets is nowhere dense.

Proof. Let X be an RG-space and (An)
∞
n=1 be a sequence of nowhere dense

subsets of X . Let S =
⋃∞

n=1 An, F1 = A1 and Fm = Am − (
⋃m−1

i=1 Ai) for each
m ≥ 2. Then {Fn : n ∈ N} is a collection of disjoint nowhere dense subsets
of X , and therefore {Fn : n ∈ N} ∪ {X − S} is a partition of X . Now define
f : Xδ −→ R by f(Fn) = {n + 1} for each n ∈ N and f(X − S) = {1}.
Then f ∈ C(Xδ) = G(X), which implies that there is a dense open subset
D of X such that f |D is a continuous function. Suppose cl(

⋃∞
n=1 Fn) has

an interior point p. Then there is an open subset Up containing p such that
Up ⊆ cl(

⋃∞
n=1 Fn), that is ∀ y ∈ Up and for each neighborhood Wy of y we

have Wy ∩ (
⋃∞

n=1 Fn) �= φ. Since D ∩ Up �= φ, let y be any point in ∈ D ∩ Up.
Again we have two cases:
(1) If f(y) = 1, then there is an open neighborhoodWy of y such that f(Wy) ⊆
(0, 32 ). Hence Wy ∩ (

⋃∞
n=1 Fn) = φ, which is a contradiction.

(2) If f(y) = k + 1, then y ∈ Fk. So there is an open neighborhood Wy of y
such that f(Wy) ⊆ (k + 2

3 , k + 4
3 ), and therefore Wy ⊆ Fk ⊆ Ak, which is a

contradiction too.
Thus

⋃∞
n=1 An is a nowhere dense subset of X . �

A topological space X can have a dense subset K such that Kc is somewhere
dense or even a dense subset. This is will be a relevant point for RG-spaces.

Lemma 5.6. Let X be a topological space. Then X is either has the property
that every dense subset has a nowhere dense complement or X has a resolvable
cozero subspace.

Proof. Suppose D is a dense subset such that Dc is somewhere dense. Then
there is a non-empty cozero subset U such that U ⊆ cl(Dc). Let A = D ∩ U
and B = Dc ∩U . Then A and B are disjoint dense subsets of U . Hence U is a
resolvable cozero subspace. �
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Theorem 5.7. Let X be an RG-space of countable pseudocharacter. Then

(1) Every dense subset of X has a nowhere dense complement.
(2) Every countable intersection of dense sets has a dense interior.
(3) In particular, every dense set has a dense interior.

Proof. (1) Since every cozero subset of X is an RG-space of countable pseu-
docharacter then it cannot be resolvable. Thus the result follows directly by
lemma 5.6.
(2) Let (Dn)

∞
n=1 be a sequence of dense subsets of X . Let An = X −Dn for

each n ∈ N . Then (An)
∞
n=1 is a sequence of nowhere subsets of X , which

implies that
⋃∞

n=1 An is a nowhere dense subset of X . Hence the result follows
directly from the fact that cl(T )

c
= int(T c) for any subset T of X .

(3) This follows directly from (2). �
Recall that a topological space X is called open hereditarily irresolvable

(or simply o.h.i) if each open subspace of X is irresolvable [7, def 1.2]. In [9]
Ganster proved that a topological space X is open hereditarily irresolvable if
and only if every dense set of X has a dense interior. Since every RG-space
of countable pseudocharacter is open hereditarily irresolvable, one also deduce
part (3) of theorem 5.7 from an understanding of Ganster’s work.

Before finishing this section, we use work of Tamariz and Villegas to prove
that under the assumption V = L, every RG-space of countable pseudocharac-
ter has a dense set of isolated points. This matters because the presence of even
almost P -points in RG-spaces is an open question. First we recall proposition
4.10 of [21] which says that, assuming V = L, every space without isolated
points is almost resolvable.

Theorem 5.8. Assume V = L. Then every RG-space of countable pseudochar-
acter is scattered.

Proof. Since every cozero subspace of X is also an RG-space of countable pseu-
docharacter, then by proposition 4.10 of [21] and theorem 5.4, every cozero set
has an isolated point. It follows immediately that X has a dense set of isolated
points. Now if Y is any subspace of X then Y is also of countable pseudochar-
acter, and since it is C-embedded in X in the δ-topology Y is RG itself by [12,
Theorem 2.3(a)]. Thus Y has a dense set of isolated points by the first part of
the proof, which means that X is scattered. �

6. Almost Baire spaces

Recall that a topological spaceX is called k-Baire, where k is a fixed cardinal
number, if the intersection of fewer than k dense open sets is dense [20]. Thus
the usual Baire spaces are ℵ1-Baire spaces. It is clear that the intersection of
all dense open subset of X is a dense subset if and only if X has a dense subset
of isolated points, which means that if X has a dense subset of isolated points
then X is a k-Baire space for any cardinal number k. Thus every scattered
space is a k-Baire space for any cardinal number k.
In a general Tychonoff space an open subset need not be a cozero-set, and the
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collection of all dense cozero-sets can have any cardinality. For these reasons
we will introduce the following class of spaces.

Definition 6.1. Let X be a topological space and k be a cardinal number.
Then we will call X an almost k-Baire space if any collection of fewer than k
dense cozero-sets has a dense intersection. We will call X almost-Baire if X is
an almost ℵ1-Baire space.

If X is a topological space and k is a fixed cardinal number, then X is almost
k-Baire if and only if the union of fewer than k nowhere dense zero-sets has an
empty interior. It is clear that every clopen subspace of almost k-Baire space is
an almost k-Baire space, and a space X is almost k-Baire if and only if X has
a dense subspace which is almost k-Baire. Every k-Baire space is an almost
k-Baire space, but the converse is not true in general as we will see next.
If X is an RG-space then it is clear from theorem 4.1 that every countable in-
tersection of dense cozero subsets of X has a dense interior. Recall that a space
X is an almost P -space if and only if every non-empty countable intersection
of open sets has a non-empty interior. It is clear that every almost P -space is
almost k-Baire for each cardinal number k.

Corollary 6.2. Every RG-space is an almost-Baire space.

Proof. This follows directly from theorem 4.1. �
RG-spaces need not be Baire. In [8] the authors gave two examples. First

they gave a regular P -space without isolated points. Secondly they gave an
example of a Tychonoff space X with a dense set of isolated points such that
Xδ is not a Baire space. Thus an RG-space does not have to be Baire, and
consequently an almost k-Baire space need not be a k-Baire space.

Corollary 6.3. The cozero-sets and zero-sets of RG-spaces are almost-Baire
spaces.

Definition 6.4 (cf [18]). Let X be a topological space. Then the subset gX
is defined to be the intersection of all dense cozero subsets of X .

It is clear that gX is the set of almost P -points in X . If X is an RG-space,
then it follows from theorem 4.2 that every countable subset of X − gX is a
nowhere dense subset of X .

Proposition 6.5. Let X be a topological space. Then:

(1) X is almost Baire implies that every dense open C∗-embedded subset
in X is almost Baire.

(2) X is almost k-Baire for each cardinal number k if and only if gX is
dense.

Proof. (1) Let X be an almost Baire space, let U be a dense open C∗-embedded
subset in X and let Vn, n = 1, 2, 3, .... be a collection of dense cozero-sets in
U . Since U is C∗-embedded in X then for each n, there is a dense cozero-set
Wn in X such that Wn ∩U = Vn. But X is almost Baire. Therefore

⋂∞
n=1 Wn
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is a dense subset of X which implies that
⋂∞

n=1 Wn ∩ U =
⋂∞

n=1 Vn is a dense
subset of U . Thus U is almost Baire.
(2) (=⇒) Let X be almost k-Baire for each cardinal number k. Suppose there
exists a non-empty open subset U such that U ∩ gX = φ. For each x ∈ U
choose a nowhere dense zero-set Zx such that x ∈ Zx and let Vx = X − Zx.
Then Vx is a dense cozero-set for each x ∈ U and U ∩ ⋂

x∈U Vx = φ, which
contradicts the fact that X is an almost k-Baire space for each cardinal number
k. Thus gX is a dense subset of X .
(⇐=) This is clear from the fact that gX is contained in every dense cozero-
set. �

7. Open questions

Question 7.1 (cf [19]). Are all RG-spaces of finite regularity degree?

Question 7.2 (cf Corollary 3.10). If X is the union of two disjoint Lindelof
RG-subspaces, must X be RG?

Question 7.3. Is the intersection of two RG-spaces RG? What about the case
where both of the spaces are Lindelof?
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