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Abstract

A condensation is a one-to-one continuous function onto. We give suf-

ficient conditions for a Tychonoff space to admit a condensation onto

a separable dense subspace of the Tychonoff cube Ic and discuss the

differences that arise when we deal with topological groups, where con-

densation is understood as a continuous isomorphism. We also show

that every Abelian group G with |G| ≤ 2c admits a separable, precom-

pact, Hausdorff group topology, where c = 2ω.
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1. Introduction

A condensation is a bijective continuous function. If X and Y are spaces
and f : X → Y is a condensation, we can assume that X and Y have the same
underlying set and the topology of X is finer than the topology of Y . In this
case we say that the topology of Y is a subtopology of X or that X condenses

onto Y .
The problem of finding conditions under which a space X admits a subtopol-

ogy with a given property Q has been extensively studied by many authors.
It is known that every Hausdorff space X with nw(X) ≤ κ can be condensed
onto a Hausdorff space Y with w(Y ) ≤ κ (see [7, Lemma 3.1.18]). Similar
results remain valid in the classes of regular or Tychonoff spaces. In [16], the
authors found several necessary and sufficient conditions for a topological space
to admit a connected Hausdorff or regular subtopology. It is shown in [11] that
every non-compact metrizable space has a connected Hausdorff subtopology.
Druzhinina showed in [9] that every metrizable space X with w(X) ≥ 2ω and
achievable extent admits a weaker connected metrizable topology. Recently,
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Yengulalp [17] generalized this result by removing the achievable extent condi-
tion.

In topological groups (and other algebraic structures with topologies), the
concept of condensation has a natural counterpart: Continuous Isomorphism,
a homomorphism and a condensation at the same time.

At the end of the 70’s, Arhangel’skii proved in [2] that every topological
group G with nw(G) ≤ κ admits a continuous isomorphism onto a topological
group H with w(H) ≤ κ. In [15] Shakhmatov gave a construction that implies
similar statements for topological rings, modules, and fields. C. Hernández
modified Shakhmatov’s construction and extended that result to many alge-
braic structures with regular and Tychonoff topologies (see [8]).

As a corollary to Katz’s theorem about isomorphic embeddings into products
of metrizable groups (see [1, Corollary 3.4.24]) one can easily deduce that if G
is an ω-balanced topological group and the neutral element of G is a Gδ-set,
then there exists a continuous isomorphism of G onto a metrizable topological
group. Pestov showed that the condition on G being ω-balanced can not be
removed (see [14]).

In Theorem 3.2 of this paper we present conditions that a Tychonoff space
must satisfy in order to admit a condensation onto a separable dense subspace
of the Tychonoff cube of weight 2ω. In Corollary 4.2 we show that those
conditions are not sufficient if we want to have a continuous isomorphism from a
topological group to a separable group and in Theorem 4.3 we give sufficient and
necessary conditions in order for a topological isomorphism from a subgroup of
the product of compact metrizable Abelian groups onto a separable group to
exist.

As Arhangel’skii showed in [4], every continuous homomorphism of a count-
ably compact group X onto a compact group Y of Ulam nonmeasurable car-
dinality is open. In Example 4.4 we construct a condensation of a Tychonoff
countably compact space with cellularity 2ω onto a separable compact space
with cardinality 2c thus showing that Arhangel’skii result cannot be general-
ized to arbitrary spaces. Finally, we show in Theorem 5.11 that every Abelian
group of cardinality less than or equal to 2c admits a precompact separable
Hausdorff group topology.

2. Notation and terminology

We use I for the unit interval [0, 1], T for the unit circle, N for the set of
positive integers, Z for the integers, Q for the rational numbers, and R for the
set of real numbers.

Let X be a space. As usual, we denote by w(X), nw(X), χ(X), ψ(X),
d(X) the weight, network weight, character, pseudocharacter, and density of
X , respectively.

We say that Z ⊂ X is a zero-set if there exists a real-valued continuous
function f : X → R such that Z = f−1(0).
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Let {fα : α ∈ A} be a family of functions, where fα : X → Yα for each
α ∈ A. We denote by △{fα : α ∈ A} the diagonal product of the family
{fα : α ∈ A}.

Suppose that η = {Gα : α ∈ A} is a family of topological groups and
Πη =

∏
α∈AGα is the topological product of the family η. Then the Σ-product

of η, denoted by ΣΠη, is the subgroup of Πη consisting of all points g ∈ Πη
such that |{α ∈ A : πα(g) 6= eα}| ≤ ω and the σ-product of η, denoted by
σΠη is the subgroup of Πη consisting of all points g ∈ Πη such that |{α ∈ A :
πα(g) 6= eα}| < ω, where πα : Πη → Gα is the natural projection of Πη onto
Gα and eα ∈ Gα is the neutral element of Gα, for every α ∈ A. It is easy
to see that both ΣΠη and σΠη are dense subgroups of Πη. A description of
properties of these subgroups can be found in [1, Section 1.6].

If X is a Tychonoff space and G is a topological group, we denote by βX the
Čech-Stone compactification of X (see [7, Section 3.6]), and by ρG the Rǎıkov
completion of G (see [1, Section 3.6]).

The next definitions are standard in group theory (see [10, Section 1.1]). Let
G be a group, e the neutral element of G, and g ∈ G an element of G distinct
from e. We denote by 〈g〉 the cyclic subgroup of G generated by g. The order
of g is o(g) = |〈g〉|. If o(g) = ∞ then 〈g〉 is isomorphic to Z. The set tor(G)
of the elements g ∈ G with o(g) < ∞ is called the torsion part of G. If G is
Abelian, tor(G) is a subgroup of G.

We say that the group G is:

• torsion-free if for every element g ∈ G \ {e}, o(g) = ∞;
• a torsion group if for every element g ∈ G, o(g) <∞;
• bounded torsion if there exists n ∈ N such that gn = e for every g ∈ G;
• unbounded torsion if G is torsion and for each n ∈ N there exists g ∈ G
such that o(g) > n;

• a divisible group if for every g ∈ G and n ∈ N, there is h ∈ G such that
hn = g;

• a p-group, for a prime p, if the order of any element of G is a power of
p.

If G is an Abelian torsion group, then G is the direct sum of p-groups Gp

(see [10, Theorem 8.4]). The subgroups Gp are called the p-components of G.
Let p be a prime number. The set of pnth complex roots of the unity, with

n ∈ N forms the multiplicative subgroup Zp∞ of T. For every prime p, the
group Zp∞ is divisible.

3. Condensations and subtopologies

Not every space has a separable subtopology. For example, a compact Haus-
dorff space X has a separable Hausdorff subtopology only if X is separable.
Let us extend this fact to a wider class of spaces.

We recall that a Hausdorff space X is ω-bounded if the closure of any count-
able subset of X is compact.
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Proposition 3.1. Let X be an ω-bounded non-separable space. Then X does

not admit a condensation onto a separable Hausdorff space.

Proof. By our assumptions, for every countable subset S of X we have that
X \ S̄ 6= ∅. Let f : X → Y be a condensation onto a Hausdorff space Y and
D a countable subset of Y . Then S = f−1(D) is a countable subset of X , and
S̄ is compact. Take an element x ∈ X \ S̄. Observe that f(S̄) is compact,
D ⊂ f(S̄) and f(x) 6∈ f(S̄), so D cannot be dense in Y . �

The next theorem gives sufficient conditions on a Tychonoff space to admit
a condensation onto a separable dense subspace of Ic, where c = 2ω.

Theorem 3.2. Let X be a Tychonoff space with nw(X) ≤ 2ω. Suppose that

X contains an infinite, closed, discrete, and C∗-embedded subset A. Then X
can be condensed onto a separable dense subspace of Ic.

Proof. We can assume that |A| = ω. By the Hewitt-Marczewski-Pondiczery
theorem, we know that d(Ic) = ℵ0. Let D = {dn : n ∈ ω} be a countable
dense subset of Ic, N a network for X , |N | ≤ 2ω, and A = {xn : n ∈ ω} an
enumeration of A. Let g : A → D be a bijection, where g(xn) = dn for each
n ∈ ω. For every α < c, let fα = pα ◦ g, where pα : Ic → I(α) denotes the
natural projection of Ic to the α-th factor.

Our goal is to construct a family of continuous functions {gα : X → I}α<c

such that gα extends fα for every α < c in a way that, given two different
points x, y ∈ X , there exists α < c such that gα(x) 6= gα(y).

If n,m ∈ ω are distinct, there exists α < c such that fα(xn) = pα(dn) 6=
pα(dm) = fα(xm). Therefore any family of extensions of fα’s separates the
points of A. So, given two distinct points x, y ∈ X , it is only necessary to
consider the cases when one point is in A and the other is not, and when
neither is in A.

Since A is closed and X is Tychonoff, for each y ∈ X \ A there exists
Vy ∈ N such that y ∈ Vy and A and Vy can be separated by zero-sets. Let
G1 = {Vy : y ∈ X \A} and note that G1 ⊂ N . In particular, |G1| ≤ c.

For each V ∈ G1, choose disjoint zero-sets ZV , Z
′
V in X such that V ⊂ ZV

and A ⊂ Z ′
V and let Z = {(ZV , Z

′
V ) : V ∈ G1} and C1 = A × Z. It is clear

that |C1| ≤ c.
Let F = {(x, y) : x, y ∈ X \ A, x 6= y}. For each pair (x, y) ∈ F , we can

find subsets U = U(x,y) ∈ N , V = V(x,y) ∈ N with x ∈ U and y ∈ V such
that there exist pairwise disjoint zero-sets Z(U,V ), ZU , ZV with A ⊂ Z(U,V ),
U ⊂ ZU and V ⊂ ZV . Let G2 = {(U(x,y), V(x,y)) : (x, y) ∈ F}. It is clear
that G2 ⊂ N ×N , therefore |G2| ≤ c. For each (U, V ) ∈ G2, choose pairwise
disjoint zero-sets Z(U,V ), ZU , ZV such that A ⊂ Z(U,V ), U ⊂ ZU and V ⊂ ZV

and let C2 = {(Z(U,V ), ZU , ZV ) : (U, V ) ∈ G2}. Then |C2| ≤ c.
Put C = C1 ∪ C2. Clearly |C| ≤ c. Let C = {Cα : α < c} be an enumeration

of C.
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Case 1: Cα ∈ C1. Then Cα has the form (xn, ZV , Z
′
V ), for some n ∈ N

and V ∈ G1. Since ZV and Z ′
V are disjoint zero-sets, there exists a continuous

mapping rα : X → I such that ZV = r−1
α (0) and Z ′

V = r−1
α (1). By the

definition of Z ′
V we have that A ⊂ Z ′

V . Since A is C∗-embedded in X , there

exists a continuous mapping f̃α : X → I that extends fα. We have two subcases,
fα(xn) 6= 0 or fα(xn) = 0.

If fα(xn) 6= 0, we define gα : X → I, by gα = f̃α · rα. Then gα(ZV ) ⊂ {0}
and for each x ∈ A, gα(x) = f̃α(x) · rα(x) = fα(x), therefore gα is an extension
of fα. In particular, gα(xn) = fα(xn) 6∈ gα(ZV ).

If fα(xn) = 0, we define gα : X → I, by gα = 1− rα+ f̃α ·rα. For any x ∈ A,

since A ⊂ Z ′
V we have that rα(x) = 1, therefore gα(x) = 1 − rα(x) + f̃α(x) ·

rα(x) = f̃α(x) = fα(x), so gα is a continuous extension of fα. If y ∈ ZV , then
gα(y) = 1, so gα(ZV ) ⊂ {1}.

In both subcases, we have extended fα to a continuous function gα such that
gα(xn) 6∈ gα(ZV ).

Case 2: Cα ∈ C2. Then Cα has the form (Z(U,V ), ZU , ZV ) for some (U, V ) ∈
G2, where Z(U,V ), ZU , and ZV are disjoint zero-sets and A ⊂ Z(U,V ). As in

Case 1, there exists a continuous function f̃α : X → I that extends fα such that
f̃α(ZU ) ⊂ {1}. As Z = Z(U,V ) ∪ZU is a zero-set disjoint from ZV , there exists

a continuous function rα : X → I such that ZV = r−1
α {0} and Z = r−1

α {1}.
Let gα = f̃α · rα. For each x ∈ A, gα(x) = f̃α(x) · rα(x) = fα(x). If x ∈ ZU ,

then gα(x) = f̃α(x) · rα(x) = 1. If x ∈ ZV , then gα(x) = f̃α(x) · rα(x) = 0.
Therefore gα(ZU ) ∩ gα(ZV ) = ∅.

Thus, we have constructed a family {gα : alpha < c} of continuous functions.
Given two different elements x, y ∈ X , we have three possibilities: x, y ∈ A,
or x ∈ A and y 6∈ A, or x, y ∈ X \ A. The functions gα are extensions of the
mappings fα, therefore they separate the elements of A. If x ∈ A and y 6∈ A,
then we are in Case 1 and there exists α < c such that Cα = (xn, ZV , Z

′
V )

with x = xn and y ∈ ZV . Since gα(xn) 6∈ gα(ZV ), we have in particular
that gα(x) 6= gα(y). If both points x, y are in X \ A, we are in Case 2 and
there exists α < c such that Cα = (Z(U,V ), ZU , ZV ) with x ∈ ZU and y ∈ ZV .
Since gα(ZU ) ∩ gα(ZV ) = ∅ we have that gα(x) 6= gα(y). Hence the family
{gα : α < c} separates the elements of X .

Let g̃ : X → Ic, g̃ = ∆{gα : α < c} and Y = g̃(X). Since gα’s separate the
elements of X , g̃ is a continuous injective mapping. Besides, for each n ∈ ω
and every α < c, g̃(xn)(α) = gα(xn) = fα(xn), so D ⊂ g̃(X). Thus Y is a
dense separable subspace of Ic.

�

Since the space Y = g̃(X) in Theorem 3.2 is a dense subspace of Ic, it is
κ-metrizable and perfectly κ-normal (see [3], [13]). In particular, every regular
closed subset of Y is a zero-set.

Let us show that one cannot remove any assumption in Theorem 3.2.
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If we put X = βN and A = N, then we have an example showing that the
condition on A being closed can not be dropped in Theorem 3.2.

As to the condition on A being discrete, take a non-separable Hausdorff
compact space X with w(X) ≤ 2ω, for example, the Alexandroff double circle
[7, Example 3.1.26]. Let A be any infinite closed subset of X . By the Urysohn’s
Lemma, A is C∗-embedded, but there is no condensation of X onto a separable
space.

Let X = (W ×W0) \ {(ω1, ω)}, where W = {α : α ≤ ω1} and W0 = {α :
α ≤ ω} carry the order topology. This space, known as the Tychonoff plank,
is a Tychonoff space that has the property that the closure of any countable
subset A is also countable, and if A ⊂ (W \ {ω1})×W0, then Ā is compact. It
is not difficult to see that every continuous real-valued function on X can be
extended over W ×W0, that is, βX = W ×W0. Let A = {ω1} × (W0 \ {ω}).
Clearly A is an infinite closed discrete subset of X . Suppose that we have a
condensation f : X → Y onto a Tychonoff space Y . Let D ⊂ Y be a countable
subset of Y and S = f−1(D). Since f is a bijection we have that S is countable.
The closure S̄ of S in βX is a compact countable subset of βX , so X \ S̄ 6= ∅.
Take an element x ∈ X \ S̄. Let F : βX → βY be a continuous extension of
the mapping f . Observe that F (S̄) is countable and compact (hence closed in
Y ), F (x) 6∈ F (S̄), and F (S̄) contains D. Therefore D can not be dense in Y .
This example shows that the condition “A is C∗-embedded in X” cannot be
removed from Theorem 3.2.

4. Topological Groups: Continuous Isomorphisms

We recall that a topological group G is ω-narrow if it can be covered by
countably many translates of any neighborhood of the identity of G.

The following results show that the conditions on X in Theorem 3.2 are
not sufficient to ensure the existence of a continuous isomorphism of X onto a
separable topological group in the case when X is a topological group.

Theorem 4.1. Let κ be an infinite cardinal with κ ≤ 2ω, T the circle group, and

G a subgroup of ΣTκ. Then there exists a continuous isomorphism ϕ : G→ H
onto a separable topological group H if and only if ψ(G) ≤ ω.

Proof. Let ϕ : G→ H be a continuous isomorphism onto a separable topolog-
ical group H and D ⊂ H a countable dense subset. There exists a continuous
homomorphism ϕ : ̺G→ ̺H that extends ϕ. Note that the Rǎıkov completion
of G is the closure of G in Tκ, H ⊂ ϕ(̺G) ⊂ ̺H , and ϕ(̺G) is a compact
group containing H as a dense subgroup. Therefore ϕ(̺G) = ̺H .

Clearly ϕ−1(D) ⊂ G ⊂ Σ(Tκ) and |ϕ−1(D)| = ω, thereforeB = ϕ−1(D) (the
closure in Tκ) is a compact metrizable subspace of ΣTκ (see [1, Propositions
1.6.29 and 1.6.30]). So ϕ(B) is compact and contains D as a dense subspace,
which implies that ϕ(B) = ̺H . Also ̺H is compact and has a countable
network as a continuous image of B, so w(̺H) and w(H) are less or equal than
ω. Thus ϕ : G → H is a continuous isomorphism of G to a metrizable space,
therefore ψ(G) ≤ ω.
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Let us verify the other implication. Observe that the identity element e of
G is a Gδ-set, because ψ(G) ≤ ω. Since G is a subgroup of a compact group, it
is ω-narrow. By Corollary 3.4.25 of [1], there exists a continuous isomorphism
of G onto a second countable (hence separable) group. �

The next corollary follows from Theorem 4.1.

Corollary 4.2. Let G = σ(Tκ) be the σ-product of κ-many copies of the circle

group, where κ is an infinite cardinal. If there exists a continuous isomorphism

ϕ : G→ H onto a separable topological group H, then κ = ω.

Proof. It is easy to verify that ψ(σ(Tκ)) = κ, so the conclusion follows from
Theorem 4.1. �

The topological group G = σ(Tκ) contains infinite, closed, discrete, C∗-
embedded subspaces. By Theorem 3.2, if κ ≤ 2ω we can find a condensation
of G onto a separable Tychonoff space, but if κ > ω, there is no continuous
isomorphism of G onto a separable topological group.

Theorem 4.1 can be generalized if we replace Tκ by the product of any family
of compact metrizable Abelian groups:

Theorem 4.3. Let η = {Gα : α ∈ κ} be a family of compact metrizable groups

with κ ≤ 2ω, and G be a subgroup of Σ = ΣΠη. Then there exists a continuous

isomorphism ϕ : G→ H of G onto a separable topological group H if and only

if ψ(G) ≤ ω.

The proof of this fact is almost the same as in the Theorem 4.1, and we
omitted.

Arhangel’skii showed in [4, Corollary 12] that every continuous homomor-
phism of a countably compact topological group onto a compact group of Ulam
nonmeasurable cardinality is open. In particular, if there exists a continuous
isomorphism of a countably compact topological group G onto a compact group
of Ulam nonmeasurable cardinality, then G is compact.

The next example shows that one cannot extent this result to topological
spaces.

Example 4.4. There exists a condensation of a countably compact non-separable
Tychonoff space onto a separable compact space of Ulam nonmeasurable car-
dinality, 2c.

Let Y = βN be the Čech-Stone compactification of the natural numbers and
Z = Y \ N. By [7, Example 3.6.18], Z contains a family A of cardinality c

consisting of pairwise disjoint non-empty open sets. Let π1 : Y × Z → Y and
π2 : Y × Z → Z be the natural projections to the first and the second factor
respectively. Since Y is compact, π2 is a closed mapping. By [7, Theorem
3.5.8], Z is a compact space because it is the remainder of a locally compact
space and so, π1 is a closed mapping too.

By [7, Theorem 3.6.14], every infinite closed subset S of both Y and Z has
cardinality equal to 2c. Let M be an infinite subset of Y × Z. It is clear that
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at least one of the set, π1(M) or π2(M), is infinite. Suppose that π1(M) is
infinite. Since the projection π1 is closed, π1(M) is a closed subset of Y , so
π1(M) and M have cardinality equal to 2c.

Our goal is to construct a countably compact non-separable subspace X ⊂
Y ×Z such that π1(X) = Y , π1|X is a one-to-one mapping, and π2(X)∩A 6= ∅

for every A ∈ A.
Recall that [Y ]ω is the family of subsets of Y with cardinality ω. Let A =

{Aα : α < c} be a faithful enumeration of A and choose zα ∈ Aα for each
α < c. Let also Y = {yβ : β < 2c} and [Y ]ω = {Fγ : c ≤ γ < 2c} be faithful
enumerations of Y and [Y ]ω respectively such that Fc ⊂ {yβ : β < c}.

We shall define a transfinite sequence {Xγ : c ≤ γ < 2c} of subsets of Y ×Z
satisfying the following conditions for each γ with c ≤ γ < 2c:

(iγ): Xβ ⊂ Xγ if c ≤ β < γ;
(iiγ): the restriction of π1 to Xγ is a one-to-one mapping;
(iiiγ): Fγ ⊂ π1(Xγ);

(ivγ): π
−1
1 (Fγ) ∩Xγ has an accumulation point in Xγ ;

(vγ): |Xγ | ≤ |γ|.

For every α < c put xα = (yα, zα) and let X ′
c
= {xα : α < c}. By our

enumeration of [Y ]ω, Fc ⊂ π1(X
′
c
). Put Bc = π−1

1 (Fc) ∩X ′
c
. Since π1 is closed

and Fc ⊂ π1(Bc), the cardinality of π1(Bc) is equal to 2c, so we can choose
xc ∈ Bc such that π1(xc) 6∈ π1(X

′
c
).

Put Xc = X ′
c
∪ {xc}. Conditions (iic), (iiic), (ivc), and (vc) are clearly

satisfied, condition (ic) is vacuous.
Suppose that for some γ with c ≤ γ < 2c, Xξ are defined for all ξ, c ≤ ξ < γ.

Let X̃γ =
⋃

c≤ξ<γ Xξ. We have two possibilities. If Fγ ⊂ π1(X̃γ), then put

X ′
γ = X̃γ . If Fγ \ π1(X̃γ) 6= ∅, then choose an arbitrary point xy ∈ π−1

1 (y)

for each y ∈ Fγ \ π1(X̃γ) and put X ′
γ = X̃γ ∪ {xy : y ∈ Fγ \ π1(X̃γ)}. In both

cases, Fγ ⊂ π1(X
′
γ).

Since conditions (iξ) and (vξ) are satisfied for all c ≤ ξ < γ, |X ′
γ | ≤ |γ| < 2c.

Let Bγ = π−1
1 (Fγ) ∩ X ′

γ . Since π1 is a closed mapping, |π1(Bγ)| = 2c, so
there exists xγ ∈ Bγ such that π1(xγ) 6∈ π1(X

′
γ).

Let Xγ = X ′
γ ∪ {xγ}. Clearly condition (iγ) is satisfied.

Since conditions (iξ) and (iiξ) are satisfied for every ξ with c ≤ ξ < γ,
π1|X̃γ

is a one-to-one mapping. By our definition of X ′
γ , π1|X′

γ
is a one-to-one

mapping too. Finally, by our choose of xγ , π1(xγ) 6∈ π1(X
′
γ), so π1|Xγ

is a
one-to-one mapping by (iiγ).

As Fγ ⊂ π1(X
′
γ) and xγ ∈ Xγ , (iiiγ) and (ivγ) are satisfied.

Since (vξ) and (iξ) are satisfied for every ξ with c ≤ ξ < γ, |X̃γ | ≤ |γ|. As

|Xγ \ X̃γ | ≤ ω, we conclude that |Xγ | ≤ |γ|
Put X =

⋃
c≤γ<2c Xγ and let f : X → Y be the restriction of π1 to X .

Since conditions (iγ) and (iiγ) are satisfied for all γ with c ≤ γ < 2c, f is a
continuous one-to-one function. Let y ∈ Y be an arbitrary element of Y and
F ∈ [Y ]ω be a subset of Y with y ∈ F . Then there exists γ, c ≤ γ < 2c such
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that F = Fγ . By (iiiγ),

y ∈ F = Fγ ⊂ π1(Xγ) ⊂ π1(X) = f(X),

so f(X) = Y . Therefore f is a condensation of X onto Y .
Let B be an arbitrary infinite countable subset of X . Then F = f(B) is an

infinite countable subset of Y and there exists γ < 2c such that F = Fγ . By

(ivγ), B = f−1(F ) = π−1
1 (Fγ) ∩ Xγ has an accumulation point in Xγ and in

X . This means that X is countably compact.
Since A∩π2(X) ⊃ A∩π2(Xc) 6= ∅ for every A ∈ A, X cannot be separable.

5. Separable Group Topologies for Abelian Groups

In this section we prove that every Abelian group G with |G| ≤ 2c admits a
separable precompact Hausdorff group topology. To do this, we divide the job
in three parts:

Case 1.: There is x ∈ G with o(x) = ∞.
Case 2.: G is a bounded torsion group.
Case 3.: G is an unbounded torsion group.

We say that a topological group is monothetic if it has a dense cyclic sub-
group. The next result is proved in [12, Corollary 25.15]:

Lemma 5.1. The group Tκ is monothetic if and only if κ ≤ c.

Let us begin with the case when G is a non-torsion group (Case 1).

Theorem 5.2. Let G be an Abelian group. Suppose that |G| ≤ 2c and there is

an element x ∈ G of infinite order. Then there exists a separable precompact

Hausdorff group topology on G.

Proof. The main idea of the proof is to define a monomorphism ϕ : G → Tc

such that ϕ(G) will be separable. First we do this in the case when G is
divisible.

Let H be a minimal divisible subgroup of G with x ∈ H . Since o(x) is
infinite, H is isomorphic to Q. By Lemma 5.1, there exists a ∈ Tc such that
〈a〉 = Tc. Let ϕ : H → Tc be a monomorphism such that ϕ(x) = a. For every
β < c, put ϕβ = pβ ◦ ϕ, where pβ = Tc → T(β) is the projection of Tc to the
β’s factor.

Let κ = |G| > ω. Since G is divisible, it is isomorphic to the direct sum
H ⊕

⊕
α∈AGα, where each Gα is a subgroup of G isomorphic either to Q or

Zp∞ for some prime number p, and A is an index set of cardinality κ (see [10,
Theorem 23.1]). For each α ∈ A, let ̺α : Gα → F be the isomorphism of Gα

onto F , where F is either Q or Zp∞ for some prime number p.
Consider A as a subspace of the space 2c with the product topology. Let B

be the canonical base of 2c, we know that |B| = c.
For each g ∈ G, let hg ∈ H and k ∈

⊕
α∈AGα be such that g = hg + k.

If g ∈ G \H , then k 6= e and there exists a non-empty finite subset c(g) ⊂ A
such that k ∈

⊕
α∈c(g)Gα. For every α ∈ c(g), take kα ∈ Gα such that k =
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∑
α∈c(g) kα. Choose an arbitrary α(g) ∈ c(g) such that kα(g) is not the identity

of the group Gα(g). Let Ug ∈ B be an open set satisfying Ug ∩ c(g) = {α(g)}.
Thus for each g ∈ G \H we have defined a pair (hg, Ug) ∈ H × B.

The cardinality of the set P = {(hg, Ug) : g ∈ G \H} is less than or equal
to |H × B| = ω · c = c. Let P = {Pβ : β < c} be an enumeration of P , where
Pβ is a pair (hβ , Uβ) with hβ ∈ H and Uβ ∈ B. For each β < c, we define a
homomorphism ψβ :

⊕
α∈AGα → T as follows:

If ϕβ(hβ) = 1, we can define ψβ such that ψβ |Gα
= ̺α if α ∈ Uβ, and

ψβ|Gα
= 1, otherwise. If ϕβ(hβ) 6= 1, we define ψβ ≡ 1.

Let ϕβ be the homomorphism defined by ϕβ = ϕβ ⊕ψβ . It is clear that, for
each β < c, ϕβ is an extension of ϕβ , therefore ϕ = △β<cϕβ is an extension of
ϕ and ker(ϕ) ∩H = ker(ϕ) = {e}.

Choose g ∈ G \ H . Then g = hg +
∑

α∈c(g) kα, where kα ∈ Gα for each

α ∈ c(g). There exists β < c such that hg = hβ and Ug = Uβ, so

ϕβ(g) = ϕβ(hβ) · ψβ(
∑

α∈c(g)

kα) = ϕβ(hβ) ·
∏

α∈c(g)

ψβ(kα) = ϕβ(hβ) · ψβ(kα(g)).

We have two cases. If ϕβ(hβ) = 1 then ψβ(kα(g)) = ̺α(g)(g(α(g))) 6= 1 and,
therefore ϕβ(g) 6= 1. If ϕβ(hβ) 6= 1, then ψβ ≡ 1. It follows that ϕβ(g) 6= 1.

Since ϕ is a monomorphism of G to the group Tc, with ϕ(〈x〉) = 〈a〉, and
〈a〉 is a dense subset of Tc, it follows that ϕ(G) is a precompact, separable,
Hausdorff topological group.

In general, every infinite Abelian group G can be seen as a subgroup of a
divisible group G̃ with |G̃| = |G| (see [10, Theorem 24.1]). As shown above,

there exists a monomorphism φ : G̃ → Tc such that φ(x) = a, where x ∈ G is
an element of infinite order and a ∈ Tc with 〈a〉 dense in Tc. Therefore φ(G)
contains 〈a〉 as a dense subset. So, the restriction ϕ = φ|G : G → φ(G) is the
isomorphism we are looking for.

�

The next step is to consider a bounded torsion group G (Case 2). In this
case we are going to use the next lemmas.

Lemma 5.3. Let p be a prime number, m ∈ N, and P the subgroup of T

consisting of all pm-th complex roots of unity. For every s ∈ P and k ≤ m with

o(s) ≤ pk, there exists sk ∈ P such that o(sk) = pk and s = s
pk/o(s)
k .

Proof. Since s ∈ P , the o(s) = pn for some n ≤ m and there exists a, a non-
negative integer number a < pn, such that s = e2aπi/p

n

. Observe that a is not

divisible by p. Let sk = e2aπi/p
k

. It is clear that o(sk) = pk and

s
pk/o(s)
k = (e2aπi/p

k

)p
k/o(s) = e2aπi/p

n

= s.

�

Lemma 5.4. Let p be a prime number, m ∈ N, P the subgroup of T consisting

of all pm-th complex roots of unity and H = P c. For every h ∈ H there exists

g ∈ H with o(g) = pm and h ∈ 〈g〉.
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Proof. Let h be an element of H . For every α < c, let nα ∈ N such that
o(h(α)) = pnα . Since nα ≤ m for every α < c, there exists

nh = max{kα : α < c}.

Denote by d = m − nh and, for every α < c, let kα = nα + d. It is clear
that kα ≤ m. By Lemma 5.3 for each α < c we can find h∗α ∈ P such that

o(h∗α) = pkα and h(α) = h∗α
pkα/o(h(α)). Note that pkα

o(h(α)) =
pkα

pnα
= pd.

Let g be the element of H such that g(α) = h∗α. Observe that for every
α < c, pd · g(α) = h(α), then h = pd · g.

By our definition of nh, there exists β < c such that o(h(β)) = pnh . Since the
order of h(β) is equal than pnh , o(h∗β) = pd · o(h(β)) = pm and then o(g) = pm.

�

Theorem 5.5. Let G be an Abelian bounded torsion group such that |G| ≤ 2c.
Then there exists a separable precompact Hausdorff group topology for G.

Proof. We can assume that |G| > ω. Suppose first that for every g ∈ G, the
order of g is a power of a fixed prime number p. Since G is a bounded torsion
group, we can find k ∈ N with o(g) ≤ pk for each g ∈ G. Hence there exists a set
{gα : α ∈ A} ⊂ G such that G =

⊕
α∈A〈gα〉 (see [10, Theorem 17.2]). For each

α ∈ A, let ̺α : 〈gα〉 → T be the monomorphism defined by ̺α(gα) = e2πi/nα ,
where nα = o(gα).

For every n ≤ k, put An = {α ∈ A : o(gα) = pn} and m = max{n :
|An| ≥ ω}. Let J0 = {αj : j ∈ ω} be an infinite countable subset of Am,
G0 =

⊕
α∈J0

〈gα〉, J = (
⋃

n≤mAn) \ J0 and F =
⋃

n>mAn. Observe that

G′ =
⊕

α∈F 〈gα〉 is finite and |G0| = ω. So G = G′ ⊕G0 ⊕
⊕

α∈J〈gα〉.
Let H = P c, where P is the subgroup of T consisting of all pm-th complex

roots of unity. By the Hewitt-Marczewski-Pondiczery theorem, H is separable.
Let D be a countable dense subgroup of H . Since D is a bounded torsion
group, it is direct sum of cyclic groups, i.e., D =

⊕
j∈ω〈dj〉. By Lemma 5.4 we

can assume that o(dj) = pm for every n ∈ ω.
Let ϕ be a monomorphism ϕ : G0 → H such that ϕ(gαj

) = dj for every

n ∈ ω. We will extend this monomorphism to Ḡ = G0 ⊕
⊕

α∈J〈gα〉. For every
β < c, let ϕβ = pβ ◦ ϕ, where pβ : H → P(β) is the natural projection of H
onto the β-th factor.

Consider J as a subspace of the space 2c endowed with the product topology.
Let B be the base of canonical open sets in 2c, |B| = c.

For every ḡ ∈ Ḡ, there exists ḡ0 ∈ G0 and a finite set c(ḡ) ⊂ J such that
ḡ = ḡ0+lḡ, where lḡ ∈

⊕
α∈c(ḡ)〈gα〉. If ḡ ∈ Ḡ\G0, then c(ḡ) 6= ∅. Let αḡ ∈ c(ḡ)

be an arbitrary element of c(ḡ) and choose Uḡ ∈ B such that Uḡ ∩ c(ḡ) = {αḡ}.
The set S = {(ḡ0, Uḡ) : ḡ ∈ Ḡ \ G0} has cardinality less than or equal to

|G0 × B| = ω · c = c. Let S = {Sβ : β < c} be an enumeration of S, where Sβ

is a pair (aβ , Uβ) with aβ ∈ G0 and Uβ ∈ B.
If ϕβ(aβ) = 1, then let ψβ :

⊕
α∈J〈gα〉 → P be a homomorphism such that

ψβ|〈gα〉 = ̺α for each α ∈ Uβ and ψβ(gα) = 1 if α ∈ J \Uβ . If ϕβ(aβ) 6= 1, put
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ψβ ≡ 1. Let ϕβ = ϕβ ⊕ ψβ . It is clear that, for each β < c, ϕβ is an extension
of ϕβ . Therefore ϕ = △β<cϕβ is an extension of ϕ and ker(ϕ)∩G0 = ker(ϕ) =
{e}.

Choose ḡ ∈ Ḡ \G0. Then ḡ = ḡ0 + lḡ where lḡ =
∑

α∈c(ḡ) lα ∈
⊕

α∈c(ḡ)〈gα〉.
There exists β < c such that ḡ0 = aβ and Uḡ = Uβ . By our definition of Uβ,
Uβ ∩ c(ḡ) = {αḡ} and lαḡ

is different from the identity element. It follows that

ϕβ(ḡ) = ϕβ(ḡ0+lḡ) = ϕβ(aβ)·ψβ(lḡ) = ϕβ(aβ)·
∏

α∈c(ḡ)

ψβ(lα) = ϕβ(aβ)·ψβ(lαḡ
).

If ϕβ(aβ) = 1 then ψβ(lαḡ
) = ̺α(lαḡ

) 6= 1 because ̺α is an isomorphism and
lαḡ

is different from the neutral element. Therefore

ϕβ(ḡ) = ϕβ(aβ) · ψβ(lαḡ
) = 1 · ψβ(lαḡ

) 6= 1.

If ϕβ(aβ) 6= 1, then ψβ(lαḡ
) = 1. It follows that

ϕβ(ḡ) = ϕβ(aβ) · ψβ(lαḡ
) = ϕβ(aβ) · 1 6= 1.

So ϕ is a monomorphism of Ḡ to P c such that D ⊂ ϕ(G0). Hence ϕ(Ḡ) is
a precompact, separable topological group.

Let us consider G′ as a finite subgroup of TF . If g ∈ G, then there exist
g′ ∈ G′ and ḡ ∈ Ḡ such that g = g′+ ḡ. Let ϕ̃ : G→ G′×P c, ϕ̃(g) = (g′, ϕ(ḡ)).
Then ϕ̃ is a monomorphism of G to G′×P c and therefore G has a precompact,
separable, Hausdorff group topology.

Now, suppose that G is an arbitrary bounded torsion Abelian group and let
G =

⊕
i≤nGpi

be the decomposition of G into the direct sum of p-primary

components (see [10, Theorem 8.4]). As shown above, each Gpi
admits has a

precompact, separable, Hausdorff group topology. Since the number of factors
is finite,

⊕
i≤nGpi

is algebraically isomorphic to
∏

i≤nGpi
, so G admits a

precompact, separable, Hausdorff group topology as well.
�

5.1. The Case of Unbounded Torsion Groups. The case when G is an
unbounded torsion Abelian group requires special attention. In this case, we
will adapt some ideas from the proof of [5, Theorem 2.3].

We call a connected open subset V of T an open arc, and we denote by l(V )
the length of V .

Lemma 5.6. Suppose that V is an open arc in T, z1, z2 ∈ T, n, m ∈ N,

1 ≤ n < m, and 4π/m < l(V ). Then there exists y ∈ V such that my = z1 and

ny 6= z2.

Proof. Let z ∈ T and k ∈ N. The distance between any two different k-th roots
of z is a multiple of 2π/k. Since l(V ) > 4π/m, there are two distinctm-th roots
of z1 in V . Let y1, y2 be two elements of V such that my1 = my2 = z1 and
the distance between y1 and y2 is 2π/m. Note that y1 and y2 can not be both
n-th roots of z2, otherwise the distance between them would be greater than or
equal to 2π/n, and it would follow that m ≤ n contradicting the assumptions
of the lemma. �
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Lemma 5.7. Let K be a countable subgroup of Tc and f ′ ∈ K, m ≥ 2. Suppose
that {Vα : α < c} is a family of open arcs of T such that 4π/m < l(Vα), for
every α < c. Then there exists f ∈

∏
{Vα : α < c} such that mf = f ′ and

nf 6∈ K for each n with 1 ≤ n < m.

Proof. Let K × {1, ...,m − 1} = {(hk, nk) : k ∈ ω} be an enumeration of
K×{1, ...,m−1}. For each k < ω we will define αk < c and xαk

∈ T satisfying
the following conditions:

(ik): αk 6= αj if j < k;
(iik): xαk

∈ Vαk
;

(iiik): mxαk
= f ′(αk);

(ivk): nkxαk
6= hk(αk).

Let α0 < c be an arbitrary ordinal. By Lemma 5.6 (with V = Vα0
, z1 =

f ′(α0), z2 = h0(α0), n = n0) we can choose an element xα0
∈ Vα0

that satisfies
(ii0), (iii0) and (iv0). Condition (i0) is vacuous.

Suppose that for every j < k we have chosen αj and xαj
such that conditions

(ij) - (ivj) are satisfied. We can pick αk < c that satisfies (ik). By Lemma 5.6
with V = Vαk

, z1 = f ′(αk), z2 = hk(αk), and n = nk, we can choose xαk
that

satisfies (iik) - (ivk).
Finally, for each α ∈ c \ {αk : k ∈ ω} we use Lemma 5.6 again with V = Vα,

z1 = f ′(α), z2 = 1, n = 1 to select xα ∈ Vα such that mxα = f ′(α).
We define f ∈ Tc by f(α) = xα for each α < c. Then:

• f(α) ∈ Vα for each α < c, therefore f ∈
∏
{Vα : α < c}.

• mf(α) = mxα = f ′(α) for each α < c, so mf = f ′.
• Given n ∈ {1, ...,m − 1} and h ∈ K, there exists k ∈ ω such that
(h, n) = (hk, nk). By conditions (iiik) and (ivk), we have that

nf(αk) = nkxαk
6= hk(αk) = h(αk).

Since h ∈ K is arbitrary, nf 6∈ K for every n < m.

�

The proof of the following lemma can be found in [1, Lemma 1.1.5]:

Lemma 5.8. Let G and G∗ be Abelian topological groups, K and K∗ subgroups

of G and G∗, respectively. Suppose that there exist x ∈ G, x∗ ∈ G∗, m ∈ N,

m ≥ 2 and an isomorphism ψ : K → K∗ that satisfy the following conditions:

• mx ∈ K and mx∗ ∈ K∗;

• nx 6∈ K and nx∗ 6∈ K∗ for every n ∈ N, 1 ≤ n < m;

• ψ(mx) = mx∗.

Then there exists a unique isomorphism ϕ : K + 〈x〉 → K∗ + 〈x∗〉 extending ψ
such that ϕ(x) = x∗.

Now we are going to give some definitions from group theory. A system
{a1, ..., ak} of a group G is called independent if

n1a1 + ...+ nkak = 0 (ni ∈ Z)

implies
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n1a1 = ... = nkak = 0.

We say that an infinite system L of the group G is independent if any finite
subset of L is independent. By the rank r(G) of an Abelian group G is meant
the cardinal number of a maximal independent system in G. The torsion-free

rank r0(G) is the cardinal of the maximal independent system which contains
only elements of infinite order. For each prime number p, the p-rank rp(G) of G
is the cardinal of a maximal independent system which contains only elements
whose orders are powers of p.

The next lemma can be found in [6, Lemma 3.17].

Lemma 5.9. Let G and G∗ be Abelian groups such that |G| ≤ r(G∗) and

|G| ≤ rp(G
∗) for every prime number p. Suppose that H is a subgroup of G

satisfying r(H) < r(G∗) and rp(H) < rp(G
∗) for every prime p. If G∗ is a

divisible group, then every monomorphism ϕ : H → G∗ can be extended to a

monomorphism ψ : G→ G∗.

Now we are in position to prove the following theorem.

Theorem 5.10. Let G be an unbounded torsion Abelian group with |G| ≤ 2c.
Then G admits a separable, precompact, Hausdorff group topology.

Proof. Let V be a countable base for the topology of T consisting of open arcs
such that T ∈ V . Since G is an unbounded torsion group, we can choose a
subset S ⊂ G \ {e} such that |nS| = ω for every n ∈ N, where e is the unity of
G.

Consider c as the topological space 2ω and let B be the canonical base for
2ω consisting of non-empty clopen subsets of 2ω. Then |B| = ω.

Let U be the set of all finite open covers of 2ω formed by pairwise disjoint
sets. For U ∈ U and α < c let Uα,U denote the unique U ∈ U such that α ∈ U .
Put E = {(U , υ) : U ∈ U and υ : U → V is a function}. For (U , υ) ∈ E, let
F (U , υ) =

∏
{υ(Uα,U) : α < c}.

Clearly E is countable. Let E = {(Uk, υk) : k ∈ ω} be an enumeration of E
such that U0 = {2ω} and υ0(2

ω) = T.
For each k < ω, choose nk ∈ N such that

4π/nk < min {l(υ(U)) : U ∈ Uk}.

By recursion on k ∈ ω we will choose an element xk ∈ S and define a map
ϕk : Hk = 〈{xj : j ≤ k}〉 → Tc satisfying the following conditions:

(ik): ϕk(xk) ∈ F (Uk, υk);
(iik): ϕk is a monomorphism;
(iiik): ϕk|Hj

= ϕj for all j < k.

Pick any element x0 in S and let ϕ0 : 〈x0〉 → Tc be an arbitrary monomor-
phism. Then conditions (i0) and (ii0) are satisfied, while condition (iii0) is
vacuous. Now let k ∈ N, and suppose that xj ∈ S and a map ϕj satisfying (ij),
(iij) and (iiij) have already been constructed for every j < k.

Put H ′
k =

⋃
j<k Hj . Since (iij), (iiij) hold for every j < k, the function

ϕ′
k =

⋃
j<k ϕj : H ′

k → Tc is a monomorphism. Since {xj : j < k} ⊂ S is
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finite, nk!S \ H ′
k 6= ∅. Therefore there exists xk ∈ S such that nk!xk 6∈ H ′

k.
In particular, nxk 6∈ H ′

k for all n ≤ nk. Let K = ϕ′
k(H

′
k). For α < c, put

Vα = υk(Uα,U). By the choice of nk we have that 4π/nk ≤ l(υk(Uα,U)) = l(Vα)
for every α < c.

Let m = min {n ∈ N : nxk ∈ H ′
k} and f ′ = ϕ′

k(mxk) ∈ K. Then m > nk

and 4π/m < 4π/nk < l(Vα) for every α < c. Note that m ≥ 2. By Lemma 5.7
we can find f ∈ F (U , υ) =

∏
{υ(Uα,U) : α < c} such that mf = f ′ and nf 6∈ K

for n < m. Put Hk = 〈{xj : j ≤ k}〉. By Lemma 5.8 we can extend ϕ′
k to a

monomorphism ϕk : Hk → Tc with ϕk(xk) = f .
We are going to verify that ϕk satisfies (ik), (iik) and (iiik). As ϕk(xk) = f ∈

F (U , υ), the condition (ik) is satisfied. By Lemma 5.8, ϕk is a monomorphism
that extends ϕ′

k, so (iik) and (iiik) are satisfied.
Let H =

⋃
k∈ωHk and ϕ =

⋃
k∈ω ϕk. Since (iik) and (iiik) are fulfilled for

every k ∈ ω, we have that ϕ : H → Tc is a monomorphism.
We claim that ϕ(H∩S) is a dense subset of Tc. LetW be a non-empty open

set of Tc. Then there exist a finite subset I = {α1, ..., αn} of c and non-empty
open arcs Vα1

, ..., Vαn
∈ V such that

∏
α<c

Wα ⊂ W , where Wα = Vα if α ∈ I
and Wα = T otherwise. Let U = {U1, ..., Un} ∈ U be such that αi ∈ Ui for
every i ≤ n and take υ : U → V , υ(Ui) = Vαi

. Then (U , υ) ∈ E and therefore
there exists k ∈ ω such that (U , υ) = (Uk, υk). Clearly F (Uk, υk) = F (U , υ) ⊂∏

α<c
Wα ⊂W . Since xk ∈ S ∩Hk ⊂ H ∩ S and ϕ(xk) = ϕk(xk) ∈ F (Uk, υk),

it follows that ϕ(H ∩ S)∩W 6= ∅. This implies the density of ϕ(H ∩S) in Tc.
By Lemma 5.9, the monomorphism ϕ can be extended to a monomorphism

ψ : G→ Tc. Therefore ψ(G) is a dense separable subgroup of Tc.
�

By Theorems 5.2, 5.5 and 5.10 we conclude:

Theorem 5.11. Let G be an Abelian group with |G| ≤ 2c. Then G admits a

separable, precompact, Hausdorff group topology.
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