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Abstract

The purpose of this paper is to establish coincidence point and common

fixed point results for four maps satisfying generalized (ψ, φ)-weak con-

tractions in partially ordered cone metric spaces. Also, some illustrative

examples are presented.
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1. Introduction

One of the simplest and useful results in the fixed point theory is the Banach–
Caccioppoli contraction mapping principle. In the last years, this principal has
been generalized in many directions to generalized structures as cone metrics,
partial metric spaces and quasi-metric spaces has received a lot of attention.
Fixed point theory in K-metric and K-normed spaces was developed by Perov
et al. [24], Mukhamadijev and Stetsenko [16], Vandergraft [33]. For more
details on fixed point theory in K-metric and K-normed spaces, we refer the
reader to fine survey paper of Zabrejko [34]. The main idea was to use an
ordered Banach space instead of the set of real numbers, as the codomain for
a metric.
In 2007, Huang and Zhang [13] reintroduced such spaces under the name of cone
metric spaces and reintroduced definition of convergent and Cauchy sequences
in the terms of interior points of the underlying cone. They also proved some
fixed point theorems in such spaces in the same work. After that, fixed point
points in K-metric spaces have been the subject of intensive research (see, e.g.,
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[1, 3, 7, 11, 13, 14, 15, 16, 23, 25, 30]). The main motivation for such research
is a point raised by Agarwal [4], that the domain of existence of a solution to
a system of first-order differential equations may be increased by considering
generalized distances.
Recently, Wei-Shih Du [12] used the scalarization function and investigated
the equivalence of vectorial versions of fixed point theorems in K-metric spaces
and scalar versions of fixed point theorems in metric spaces. He showed that
many of the fixed point theorems for mappings satisfying contractive conditions
of a linear type in K-metric spaces can be considered as the corollaries of
corresponding theorems in metric spaces. Nevertheless, the fixed point theory
in K-metric spaces proceeds to be actual, since the method of scalarization
cannot be applied for a wide class of mappings satisfying contractive conditions
more general than contractive conditions of a linear type.
On the other hand, fixed point theory has developed rapidly in metric spaces
endowed with a partial ordering. One of results in this direction was given
by Ran and Reurings [26] who presented its applications to matrix equations.
Subsequently, Nieto and Rodŕıguez-López [22] extended the result of Ran and
Reurings for nondecreasing mappings and applied it to obtain a unique solution
for a first order ordinary differential equation with periodic boundary condi-
tions. Thereafter, many authors obtained many fixed point theorems in ordered
metric spaces. For more details, see [5, 6, 8, 10, 17, 19, 20, 21, 22, 27, 29, 31]
and the references cited therein.
In this paper, an attempt has been made to derive some common fixed point
theorems for four maps involving generalized (ψ, φ)-weak contractions in or-
dered cone metric spaces. The presented theorems generalize, extend and im-
prove some recent fixed point results in K-metric spaces.

2. Preliminaries

In what follows, we recall some notations and definitions that will be utilized
in our subsequent discussion.

Let E be always a Banach space.

Definition 2.1. A non-empty subset K of E is called a cone if and only if
(i) K = K, K 6= 0E where K is the closure of K,
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ K ⇒ ax+ by ∈ K,

(iii) K ∩ (−K) = {0E}.

A cone K defines a partial ordering ≤E in E by x ≤E y if and only if
y − x ∈ K. We shall write x <E y to indicate that x ≤E y but x 6= y, while
x ≪ y will stand for y − x ∈ int(K), where int(K) denotes the interior of K.
A cone K is said to be normal if there exists a constant M ≥ 1 such that
0E ≤E x ≤E y implies ‖x‖E ≤ M‖y‖E. A cone K is said solid if int(K) is
nonempty. The least positive number M satisfying this inequality is called the
normal constant of cone K. For further details on cone theory, one can refer to
[28].
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Definition 2.2. Let X be a nonempty set. Suppose the mapping d : X×X →
E satisfies

(d1) 0E ≤E d(x, y) for all x, y ∈ X and d(x, y) = 0E if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤E d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.3. Let (X, d) be a cone metric space and {xn} is a sequence
in X . We say that {xn} is Cauchy if for every c ∈ E with 0E ≪ c, there
exists N ∈ N such that d(xn, xm) ≪ c for all n > m > N. We say that {xn}
converges to x ∈ X if for every c ∈ E with 0E ≪ c, there exists N ∈ N such
that d(xn, x) ≪ c for all n > N. In this case, we denote xn → x as n→ ∞.

A cone metric space (X, d) is said to be complete if every Cauchy sequence
in X is convergent in X.

Definition 2.4. Let f : E → E be a given mapping. We say that f is a
monotone non-decreasing mapping with respect to ≤E if for every x, y ∈ E,

x ≤E y implies fx ≤E fy.

Definition 2.5 ([9]). Let ψ : K → K be a given function.
(i) We say that ψ is strongly monotone increasing if for x, y ∈ K, we have

x ≤E y ⇐⇒ ψ(x) ≤E ψ(y).

(ii) ψ is said to be continuous at x0 ∈ K if for any sequence {xn} in K, we
have

‖xn − x0‖E → 0 =⇒ ‖ψ(xn)− ψ(x0)‖E → 0.

Definition 2.6. Let (X, d) be a cone metric space and f, g : X → X . If
w = fx = gx, for some x ∈ X , then x is called a coincidence point of f and g,
and w is called a point of coincidence of f and g. If w = x, then x is a common
fixed point of f and g.
The pair {f, g} is said to be compatible if and only if lim

n→+∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that lim
n→+∞

fxn = lim
n→+∞

gxn = t for

some t ∈ X .

Definition 2.7 ([2]). Let f and g be two self-maps defined on a set X . Then
f and g are said to be weakly compatible if they commute at every coincidence
point.

Definition 2.8. Let X be a nonempty set. Then (X, d,�) is called an ordered
cone metric space if and only if

(i) (X, d) is a metric space,
(ii) (X,�) is a partial order.

Definition 2.9. Let (X,�) be a partial ordered set. Then x, y ∈ X are called
comparable if x � y or y � x holds.

Definition 2.10 ([2]). Let (X,�) be a partially ordered set. A mapping f is
called dominating if x � fx for each x in X.
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Example 2.11 ([2]). Let X = [0, 1] be endowed with usual ordering and

f : X → X be defined by fx = n

√
x. Since x ≤ x

1

3 = fx for all x ∈ X.

Therefore f is a dominating map.

Definition 2.12 ([18]). Let (X,�) be a partially ordered set. A mapping f is
called dominated if fx � x for each x in X.

Example 2.13 ([18]). Let X = [0, 1] be endowed with usual ordering and
f : X → X be defined by fx = xn for all n ≥ 1. Since fx = xn ≤ x for all
x ∈ X. Therefore f is a dominated map.

3. Common fixed point results

First, let Ψ be the set of functions ψ : K → K such that
(i) ψ is continuous;
(ii) ψ(t) = 0E if and only if t = 0E ;
(iii) ψ is strongly monotone increasing.

Also, let Φ be the set of functions φ : int(K)∪{0E} → int(K)∪{0E} such that
(i’) φ is continuous;
(ii’) φ(t) = 0E if and only if t = 0E;
(iii’) φ(t) ≪E t for all t ∈ int(K);
(iv’) either φ(t) ≤E d(x, y) or d(x, y) ≤E φ(t) for t ∈ int(K) ∪ {0E} and
x, y ∈ X .

The following Lemma will be useful later.

Lemma 3.1. [30]. Let E be a Banach space, {an}, {bn} and {cn} are sequences
in E such that bn → b ∈ E, cn → c ∈ E as n → +∞. Suppose also that
an ∈ {bn, cn} for all n ∈ N. Then there exists a subsequence {an(p)} of {an}
such that an(p) → a ∈ {b, c} as p→ +∞.

Our first result is the following.

Theorem 3.2. Let (X, d,�) be an ordered complete cone metric space over a
solid cone K. Let T, S, I, J : X → X be given mappings satisfying for every
pair (x, y) ∈ X ×X such that x and y are comparable,

ψ(d(Sx, T y)) ≤E ψ(Θ(x, y))− φ(Θ(x, y)),(3.1)

where Θ(x, y) ∈ {d(Ix, Jy), 12 [d(Ix, Sx)+d(Jy, T y)], 12 [d(Ix, T y)+d(Jy, Sx)]},
ψ ∈ Ψ and φ ∈ Φ. Suppose that

(i) TX ⊆ IX and SX ⊆ JX;
(ii) I and J are dominating maps and S and T are dominated maps;
(iii) If for a nondecreasing sequence {xn} with yn � xn for all n and yn → u

implies that u � xn.

Also, assume either

(a) {S, I} are compatible, S or I is continuous and {T, J} are weakly com-
patible or
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(b) {T, J} are compatible, T or J is continuous and {S, I} are weakly com-
patible.

Then S, T, I and J have a common fixed point.

Proof. Let x0 be an arbitrary point in X . Since TX ⊆ IX and SX ⊆ JX , we
can define the sequences {xn} and {yn} in X by

(3.2) y2n−1 = Sx2n−2 = Jx2n−1, y2n = Tx2n−1 = Ix2n, ∀n ∈ N.

By given assumptions x2n+1 � Jx2n+1 = Sx2n � x2n and x2n � Ix2n =
Tx2n−1 � x2n−1. Thus, for all n ≥ 0, we have

(3.3) xn+1 � xn.

Putting x = x2n+1 and y = x2n, from (3.3) and the considered contraction
(3.1), we have

ψ(d(y2n+1, y2n+2)) = ψ(d(Sx2n, T x2n+1))(3.4)

≤E ψ(Θ(x2n, x2n+1))− φ(Θ(x2n, x2n+1))

≤E ψ(Θ(x2n, x2n+1)).

The function ψ is strongly increasing, so we get that

(3.5) d(y2n+1, y2n+2) ≤E Θ(x2n, x2n+1).

Note that

Θ(x2n, x2n+1) ∈ {d(Ix2n, Jx2n+1),
1

2
[d(Ix2n, Sx2n) + d(Jx2n+1, T x2n+1)],

1

2
[d(Ix2n, T x2n+1) + d(Sx2n, Jx2n+1)]}

= {d(y2n, y2n+1),
1

2
[d(y2n, y2n+1) + d(y2n+1, y2n+2)],

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)]}

= {d(y2n, y2n+1),
1

2
[d(y2n, y2n+1) + d(y2n+1, y2n+2)],

1

2
d(y2n, y2n+2)}.

If Θ(x2n, x2n+1) = d(y2n, y2n+1), (3.5) becomes

d(y2n+1, y2n+2) ≤E d(y2n, y2n+1).

If Θ(x2n, x2n+1) =
1
2 [d(y2n, y2n+1) + d(y2n+1, y2n+2)], then (3.5) becomes

d(y2n+1, y2n+2) ≤E
1

2
[d(y2n, y2n+1) + d(y2n+1, y2n+2)],

so d(y2n+1, y2n+2) ≤E d(y2n, y2n+1).
If Θ(x2n, x2n+1) =

1
2d(y2n, y2n+2), by (3.4) and a triangular inequality, we find

that

d(y2n+1, y2n+2) ≤E
1

2
d(y2n, y2n+2) ≤E

1

2
d(y2n, y2n+1) +

1

2
d(y2n+1, y2n+2),

so d(y2n+1, y2n+2) ≤E d(y2n, y2n+1). In all cases, we obtained that

(3.6) d(y2n+1, y2n+2) ≤E Θ(x2n, x2n+1) ≤E d(y2n, y2n+1).



156 H. K. Nashine and H. Aydi

Similarly, we have

(3.7) d(y2n+1, y2n) ≤E Θ(x2n, x2n−1) ≤E d(y2n, y2n−1).

By (3.6) and (3.7), we get that

(3.8) d(yn+1, yn) ≤E d(yn, yn−1) for all n ≥ 1.

It follows that the sequence {d(yn, yn+1)} is monotone non-increasing. Since
K is a regular cone and 0E ≤E d(yn, yn+1) for all n ≥ 0, there exists r ≥E 0E
such that

d(yn, yn+1) → r as n→ +∞.

By (3.6) and (3.7), we have

lim
n→+∞

Θ(x2n, x2n+1) = lim
n→+∞

Θ(x2n, x2n−1) = r.

Now, letting n → +∞ in (3.4) and using the continuity property of ψ and φ,
we get

ψ(r) ≤ ψ(r) − φ(r),

which yields that φ(r) = 0E. Since φ(t) = 0E ⇐⇒ t = 0E, then r = 0E.
Therefore,

(3.9) lim
n→+∞

d(yn, yn+1) = 0.

Now, we will show that {yn} is a Cauchy sequence in the cone metric space
(X, d). We proceed by negation and suppose that {y2n} is not a Cauchy se-
quence. Then, there exists ε > 0 for which we can find two sequences of positive
integers {m(i)} and {n(i)} such that for all positive integer i,

(3.10) n(i) > m(i) > i, d(y2m(i), y2n(i)) ≥E ε, d(y2m(i), y2n(i)−2) <E ε.

From (3.10) and using a triangular inequality, we get

ε ≤ d(y2m(i), y2n(i))

≤ d(y2m(i), y2n(i)−2) + d(y2n(i)−2, y2n(i)−1) + d(y2n(i)−1, y2n(i))

< ε+ d(y2n(i)−2, y2n(i)−1) + d(y2n(i)−1, y2n(i)).

Letting i→ +∞ in the above inequality and using (3.9), we obtain

(3.11) lim
i→+∞

d(y2m(i), y2n(i)) = ε.

Again, a triangular inequality gives us

d(y2n(i), y2m(i)−1) ≤E d(y2n(i), y2m(i)) + d(y2m(i), y2m(i)−1),

and

d(y2n(i), y2m(i)) ≤E d(y2n(i), y2m(i)−1) + d(y2m(i)−1, y2m(i)).

Letting i → +∞ in the above inequalities and using (3.9) and (3.11), we get
that

(3.12) lim
i→+∞

d(y2n(i), y2m(i)−1) = ε.



Common fixed points in ordered cone metric spaces 157

Similarly, we have

(3.13) lim
i→+∞

d(y2n(i)+1, y2m(i)−1) = ε.

On the other hand, we have

d(y2n(i), y2m(i)) ≤E d(y2n(i), y2n(i)+1 + d(y2n(i)+1, y2m(i),

so since ψ is monotone non-decreasing and continuous, we obtain that

(3.14) ψ(ε) ≤E lim
i→+∞

ψ(d(y2n(i)+1, y2m(i)).

Now, using (3.1) for x = x2n(i) and y = x2m(i)−1, we have

ψ(d(y2n(i)+1, y2m(i)) = ψ(Sx2n(i), T x2m(i)−1)

≤ ψ(Θ(x2n(i), x2m(i)−1))− φ(Θ(x2n(i), x2m(i)−1)),(3.15)

where

Θ(x2n(i), x2m(i)−1) ∈ {d(Ix2n(i), Jx2m(i)−1),
1

2
[d(Ix2n(i), Sx2n(i))+

d(Jx2m(i)−1, T x2m(i)−1)],
1

2
[d(Ix2n(i), T x2m(i)−1) + d(Jx2m(i)−1, Sx2n(i))]}

= {d(y2n(i), y2m(i)−1),
1

2
[d(y2n(i), y2n(i)+1) + d(y2m(i)−1, y2m(i))],

1

2
[d(y2n(i), y2m(i)) + d(y2m(i)−1, y2n(i)+1)]}.

By (3.9), (3.12), (3.13) and having in mind Lemma 3.1, there exists a subse-
quence of {Θ(x2n(i), x2m(i)−1)} still denoted Θ(x2n(i), x2m(i)−1) such that

(3.16) lim
i→+∞

Θ(x2n(i), x2m(i)−1) ∈ {0E, ε}.

If lim
i→+∞

Θ(x2n(i), x2m(i)−1) = 0E , then letting i → +∞ in (3.15) and using

(3.14) and the continuities of ψ and φ, we obtain that ψ(ε) ≤E ψ(0E)−φ(0E),
so ψ(ε) = 0E, which is a contradiction with ε > 0.

If lim
i→+∞

Θ(x2n(i), x2m(i)−1) = ε, then using similar arguments, we obtain that

ψ(ε) ≤E ψ(ε)− φ(ε), so φ(ε) = 0E , which is a contradiction.
Thus {y2n} is a Cauchy sequence in X , so {yn} is also a Cauchy sequence in X .

Finally, we shall prove existence of a common fixed point of the four map-
pings I, J, S and T .
Since X is complete, there exists a point z in X, such that {y2n} converges to
z. Therefore,

(3.17) y2n+1 = Jx2n+1 = Sx2n → z as n→ ∞
and

(3.18) y2n+2 = Ix2n+2 = Tx2n+1 → z as n→ ∞.
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Assume that (a) holds. Suppose that I is continuous. Since the pair {S, I} is
compatible, we have

(3.19) lim
n→∞

SIx2n+2 = lim
n→∞

ISx2n+2 = Iz.

Also, Ix2n+2 = Tx2n+1 � x2n+1. Now, by (3.1)
(3.20)
ψ(d(SIx2n+2, T x2n+1)) ≤E ψ(Θ(Ix2n+2, x2n+1))− φ(Θ(Ix2n+2, x2n+1)),

where

Θ(Ix2n+2, x2n+1)) ∈ {d(IIx2n+2, Jx2n+1),
1

2
[d(IIx2n+2, SIx2n+2)+

d(Jx2n+1, T x2n+1)],
1

2
[d(IIx2n+2, T x2n+1) + d(SIx2n+2, Jx2n+1)]}.

By (3.9), (3.17), (3.18) and (3.19), we get that

lim
n→∞

d(IIx2n+2, Jx2n+1) = lim
n→∞

1

2
[d(IIx2n+2, T x2n+1)+d(SIx2n+2, Jx2n+1)] = d(Iz, z),

lim
n→∞

1

2
[d(IIx2n+2, SIx2n+2) + d(Jx2n+1, T x2n+1)] = 0E.

By Lemma 3.1, there exists a subsequence of {Θ(Ix2n+2, x2n+1)} still denoted
Θ(Ix2n+2, x2n+1) such that from the above limits

(3.21) lim
n→+∞

Θ(Ix2n+2, x2n+1) ∈ {0E, d(Iz, z)}.

If lim
n→+∞

Θ(Ix2n+2, x2n+1) = 0E, then then letting n→ +∞ in (3.20) and using

the fact that

lim
n→∞

d(SIx2n+2, T x2n+1) = d(Iz, z),

and the continuities of ψ and φ, we obtain

ψ(d(Iz, z)) ≤E ψ(0E)− φ(0E),

so ψ(d(Iz, z)) = 0E , which yields that d(Iz, z) = 0E , so Iz = z.
If lim
n→+∞

Θ(Ix2n+2, x2n+1) = d(Iz, z), using the similar arguments we get that

ψ(d(Iz, z))− ψ(d(Iz, z))− φ(d(Iz, z)),

so similarly, Iz = z. In each case, we obtained

(3.22) Iz = z.

Now, Tx2n+1 � x2n+1 and Tx2n+1 → z as n→ ∞, so by assumption [(iii)] we
have z � x2n+1. From (3.1),

(3.23) ψ(d(Sz, Tx2n+1)) ≤E ψ(d(Θ(z, x2n+1)))− φ(d(Θ(z, x2n+1))),
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where

Θ(z, x2n+1) ∈ {d(Iz, Jx2n+1),
1

2
[d(Iz, Sz) + d(Jx2n+1, T x2n+1)],

1

2
[d(Iz, Tx2n+1) + d(Sz, Jx2n+1)]}

= {d(z, Jx2n+1),
1

2
[d(z, Sz) + d(Jx2n+1, T x2n+1)],

1

2
[d(z, Tx2n+1) + d(Sz, Jx2n+1)]}.

By (3.9), (3.17), (3.18) and (3.19), we get that

lim
n→∞

1

2
[d(z, Sz)+d(Jx2n+1, T x2n+1)] =

1

2
d(z, Sz) = lim

n→∞

1

2
[d(IIx2n+2, T x2n+1)

+d(SIx2n+2, Jx2n+1)]},
lim
n→∞

d(z, Jx2n+1) = 0E .

By Lemma 3.1, there exists a subsequence of {Θ(z, x2n+1)} still denoted Θ(Ix2n+2, x2n+1)
such that from the above limits

(3.24) lim
n→+∞

Θ(Ix2n+2, x2n+1) ∈ {0E,
1

2
d(Sz, z)}.

If lim
n→+∞

Θ(Ix2n+2, x2n+1) = 0E, then then letting n→ +∞ in (3.24) and using

the fact that

lim
n→∞

d(Sz, Tx2n+1) = d(Sz, z),

and the continuities of ψ and φ, we obtain

ψ(d(Sz, z)) ≤E ψ(0E)− φ(0E),

so ψ(d(Iz, z)) = 0E , which yields that Sz = z.

If lim
n→+∞

Θ(Ix2n+2, x2n+1) =
1

2
d(Sz, z) and using the similar arguments, we

get that

ψ(d(Sz, z)) ≤E ψ(
1

2
d(Sz, z))− φ(

1

2
d(Sz, z)) ≤E ψ(

1

2
d(Sz, z)),

so d(Sz, z) ≤E 1
2d(Sz, z), which holds unless d(Sz, z) = 0E, so

(3.25) Sz = z.

Since S(X) ⊆ J(X), there exists a point w ∈ X such that Sz = Jw. Suppose
that Tw 6= Jw. Since w � Jw = Sz � z implies w � z. From (3.1), we obtain

(3.26) ψ(d(Jw, Tw)) = ψ(d(Sz, Tw)) ≤E ψ(Θ(z, w))− φ(Θ(z, w)),

where

Θ(z, w) ∈ {d(Iz, Jw), 1
2
[d(Iz, Sz) + d(Jw, Tw)],

1

2
[d(Iz, Tw) + d(Sz, Jw)]}

= {0E,
1

2
d(Jw, Tw)}.
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If Θ(z, w) = 0E , we easily deduce from (3.26) that d(Jw, Tw) = 0E .
If Θ(z, w) = d(Jw, Tw), similarly we get that d(Jw, Tw) = 0E . Thus, we
obtained

(3.27) Jw = Tw.

Since T and J are weakly compatible, Tz = TSz = TJw = JTw = JSz = Jz.

Thus, z is a coincidence point of T and J.
Now, since Sx2n � x2n and Sx2n → z as n → ∞, so by assumption [(iii)],

z � x2n. Then, from (3.1)

(3.28) ψ(d(Sx2n, T z)) ≤E ψ(Θ(x2n, z))− φ(Θ(x2n, z)),

where

Θ(x2n, z) ∈ {d(Ix2n, Jz),
1

2
[d(Ix2n, Sx2n) + d(Jz, T z)],

1

2
[d(Ix2n+1, T z) + d(Sx2n, Jz)]}

= {d(Ix2n, T z),
1

2
d(Ix2n, Sx2n),

1

2
[d(Ix2n+1, T z) + d(Sx2n, T z)]}

We have

lim
n→∞

d(Ix2n, T z) = lim
n→∞

1

2
[d(Ix2n+1, T z) + d(Sx2n, T z)] = d(z, T z),

and

lim
n→∞

d(Ix2n, Sx2n) = 0, lim
n→∞

d(Sx2n, T z) = d(z, T z).

By Lemma 3.1, there exists a subsequence of {Θ(x2n, z))} still denoted Θ(x2n, z)
such that from the above limits

(3.29) lim
n→+∞

Θ(x2n, z) ∈ {0E, d(z, T z)}.

Similarly, letting n→ ∞ in (3.28) and having in mind (3.29), we get that

(3.30) z = Tz.

Therefore Sz = Tz = Iz = Jz = z, so z is a common fixed point of I, J , S
and T . The proof is similar when S is continuous.
Similarly, the result follows when (b) holds.

�

Now, it is easy to state a corollary of Theorem 3.2 involving a contraction
of integral type.

Corollary 3.3. Let T, S, I and J satisfy the conditions of Theorem 3.2, except
that condition (3.1) is replaced by the following: there exists a positive Lebesgue
integrable function u on R+ such that

∫ ε

0
u(t)dt > 0 for each ε > 0 and that

(3.31)

∫ ψ(d(Sx,Ty))

0

u(t)dt ≤
∫ ψ(Θ(x,y))

0

u(t)dt−
∫ φ(Θ(x,y))

0

u(t)dt.

Then, S, T, I and J have a common fixed point.
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Corollary 3.4. Let (X, d,�) be an ordered complete cone metric space over a
solid cone K. Let T, S, I : X → X be given mappings satisfying for every pair
(x, y) ∈ X ×X such that x and y are comparable,

ψ(d(Sx, T y)) ≤E ψ(Θ1(x, y))− φ(Θ1(x, y)),(3.32)

where Θ1(x, y) ∈ {d(Ix, Iy), 12 [d(Ix, Sx)+d(Iy, T y)], 12 [d(Ix, T y)+d(Iy, Sx)]},
ψ ∈ Ψ and φ ∈ Φ. Suppose that

(i) TX ⊆ IX and SX ⊆ IX;
(ii) I is a dominating map and S and T are dominated maps;
(iii) If for a nondecreasing sequence {xn} with yn � xn for all n and yn → u

implies that u � xn.

Also, assume either

(a) {S, I} are compatible, S or I is continuous and {T, I} are weakly com-
patible or

(b) {T, I} are compatible, T or I is continuous and {S, I} are weakly com-
patible,

then S, T and I have a common fixed point.

Proof. It follows by taking I = J in Theorem 3.2. �

Corollary 3.5. Let (X, d,�) be an ordered complete cone metric space over
a solid cone K. Let S, I : X → X be given mappings satisfying for every pair
(x, y) ∈ X ×X such that x and y are comparable,

ψ(d(Sx, Sy)) ≤E ψ(Θ2(x, y)) − φ(Θ2(x, y)),(3.33)

where Θ2(x, y) ∈ {d(Ix, Iy), 12 [d(Ix, Sx)+d(Iy, Sy)], 12 [d(Ix, Sy)+d(Iy, Sx)]},
ψ ∈ Ψ and φ ∈ Φ. Suppose that

(i) SX ⊆ IX;
(ii) I is a dominating map and S is dominated maps;
(iii) If for a nondecreasing sequence {xn} with yn � xn for all n and yn → u

implies that u � xn.

Also, assume {S, I} are compatible and S or I is continuous, then S and I

have a common fixed point.

Proof. It follows by taking S = T in Corollary 3.4. �

Corollary 3.6. Let (X, d,�) be an ordered complete cone metric space over a
solid cone K. Let T, S : X → X be given mappings satisfying for every pair
(x, y) ∈ X ×X such that x and y are comparable,

ψ(d(Sx, T y)) ≤E ψ(Θ3(x, y))− φ(Θ3(x, y)),(3.34)

where Θ3(x, y) ∈ {d(x, y), 12 [d(x, Sx)+d(y, T y)], 12 [d(x, T y)+d(y, Sx)]}, ψ ∈ Ψ
and φ ∈ Φ. Suppose that

(i) S and T are dominated maps;
(ii) If for a nondecreasing sequence {xn} with yn � xn for all n and yn → u

implies that u � xn.
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Also, assume either S or T is continuous, then S and T have a common fixed
point.

Proof. It follows by taking I = IdX , the identity on X , in Corollary 3.4. �

Corollary 3.7. Let (X, d,�) be an ordered complete cone metric space over
a solid cone K. Let T, S, I, J : X → X be given mappings satisfying for every
pair (x, y) ∈ X ×X such that x and y are comparable,

d(Sx, T y) ≤E Θ(x, y)− φ(Θ(x, y)),

where Θ(x, y) ∈ {d(Ix, Jy), 12 [d(Ix, Sx) + d(Jy, T y)], 12 [d(Ix, T y)+ d(Jy, Sx)]}
and φ ∈ Φ. Suppose that

(i) TX ⊆ IX and SX ⊆ JX;
(ii) I and J are dominating maps and S and T are dominated maps;
(iii) If for a nondecreasing sequence {xn} with yn � xn for all n and yn → u

implies that u � xn.

Also, assume either

(a) {S, I} are compatible, S or I is continuous and {T, J} are weakly com-
patible or

(b) {T, J} are compatible, T or J is continuous and {S, I} are weakly com-
patible,

then S, T, I and J have a common fixed point.

Proof. It suffices to take ψ(t) = t in Theorem 3.2. �

Remark 3.8. Theorem 3.2 extends Theorem 2.1 of Shatanawi and Samet [32]
to cone metric spaces.

Now, we state the following illustrative examples.

Example 3.9 (The case of a non-normal cone). Let X = [0, 14 ] be equipped

with the usual order. Take E = C1
R
([0, 1]) and K = {ϕ ∈ E, ϕ(t) ≥ 0, t ∈

[0, 1]}. Define d : X ×X → E by d(x, y)(t) = |x− y|ϕ where ϕ ∈ K is a fixed
function, for example ϕ(t) = et. Then, (X, d) is a complete cone metric space
with a nonnormal solid cone.

Also, define S, T, I, J : X → X by Sx = Tx = x2 and Ix = Jx = x. For all
comparable x, y ∈ X , we have

d(Sx, T y)(t) = d(Sx, Sy)(t) = |x2−y2|et = |x−y||x+y|et ≤ 1

2
|x−y|et = 1

2
d(Ix, Jy)(t),

that is, (3.1) holds for ψ(t) = t and φ(t) = 1
2 t.

On the other hand, x ≤ Ix = Jx and Sx = Tx ≤ x for all x ∈ X . Also,
SX = TX ⊆ IX = JX and the pairs {S, I} = {T, J} are compatible. All
hypotheses of Theorem 3.2 are verified and x = 0 is a common fixed point of
S, T, I and J .

Example 3.10. (The case of a normal cone). Let X = [0,∞] be equipped
with the usual order. Take E = R

2 and K = {(x, y), x ≥ 0, y ≥ 0}. Define



Common fixed points in ordered cone metric spaces 163

d : X ×X → E by d(x, y) = (|x− y|, α|x− y|) where α ≥ 0 a constant. Then,
(X, d) is a complete cone metric space with a normal solid cone.

Also, define S, T, I, J : X → X by Sx = Tx = ax and Ix = Jx = bx where
0 < a < 1 and b > 1. For all comparable x, y ∈ X , we have

d(Sx, T y) = d(Sx, Sy) = (a|x−y|, aα|x−y|) = (
a

b
b|x−y|, a

b
bα|x−y|) = a

b
d(Ix, Jy),

that is, (3.1) holds for ψ(t) = t and φ(t) = (1− a
b
)t.

Also, it is clear that all other hypotheses of Theorem 3.2 are verified and
x = 0 is a common fixed point of S, T, I and J .

The following example (which is inspired by [18]) demonstrates the validity
of Theorem 3.2.

Example 3.11 (The case of a non-normal cone). Let X = [0, 1] be equipped
with the usual order. Take E = C1

R
([0, 1]) and K = {ϕ ∈ E, ϕ(t) ≥ 0, t ∈

[0, 1]}. Define d : X ×X → E by d(x, y)(t) = |x− y|ϕ where ϕ ∈ K is a fixed
function, for example ϕ(t) = et. Then, (X, d) is a complete cone metric space
with a nonnormal solid cone.

Define the self maps I, J , S and T on X by

S(x) =

{

0, if x ≤ 1
3

1
2 (x − 1

3 ), if x ∈ (13 , 1]
, T x =

{

0, if x ≤ 1
3

1
3 , if x ∈ (13 , 1]

,

J(x) =







0, if x = 0
x, if x ∈ (0, 13 ]
1, if x ∈ (13 , 1]

, Ix =







0, if x = 0
1
3 , if x ∈ (0, 13 ]
1, if x ∈ (13 , 1]

.

Then I and J are dominating maps and S and T are dominated maps with
S(X) ⊆ J(X) and T (X) ⊆ I(X),i.e.

S is dominated map T is dominated map I is dominating map J is dominating map

for each x in X Sx ≤ x Tx ≤ x x ≤ Ix x ≤ Jx

x = 0 S (0) = 0 T (0) = 0 0 = I(0) 0 = J(0)

x ∈ (0, 1

3
] Sx = 0 < x Tx = 0 < x x ≤

1

3
= I(x) x = J(x)

x ∈ ( 1
3
, 1] Sx = 1

2
(x−

1

3
) < x Tx = 1

3
< x x ≤ 1 = I(x) x ≤ 1 = J(x)

Also, {S, I} are compatible, S is continuous and {T, J} are weakly compat-
ible.

Define ψ : K → K and φ : int(K) ∪ {0E} → int(K) ∪ {0E} by

ψ(t) = t and φ(t) =
1

2
t.

The inequality (3.1) holds for all comparable x, y ∈ X . Without loss of gener-
ality, take x ≤ y. We consider the following cases:

(i) If x = y = 0, then d(S0, T 0)(t) = 0 and (3.1) is satisfied.
(ii) For x = 0 and y ∈ (0, 13 ], then again d(Sx, T y)(t) = 0 and (3.1) is

satisfied.
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(iii) For x = 0 and y ∈ (13 , 1],

d(Sx, T y)(t) =
1

3
et <

1

2
et =

1

2
d(Ix, Jy)(t).

(iv) For x, y ∈ (0, 13 ], then d(Sx, T y) = 0 and hence (3.1) is satisfied.

(v) For x = (0, 13 ] and y ∈ (13 , 1],

d(Sx, T y)(t) =
1

3
et <

1

2
et =

1

2
d(Ix, Jy)(t).

(vi) For x, y ∈ (13 , 1],

d(Sx, T y)(t) =
1

2
(1− x)et ≤ 1

3
et ≤ 1

2
d(Jy, T y)(t).

All hypotheses of Theorem 3.2 are verified and x = 0 is a common fixed point
of S, T, I and J .
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