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Classification of separately continuous mappings

with values in σ-metrizable spaces
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Abstract

We prove that every vertically nearly separately continuous mapping

defined on a product of a strong PP-space and a topological space and

with values in a strongly σ-metrizable space with a special stratification,

is a pointwise limit of continuous mappings.
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1. Introduction

Let X , Y and Z be topological spaces.
By C(X,Y ) we denote the collection of all continuous mappings from X to

Y .
For a mapping f : X × Y → Z and a point (x, y) ∈ X × Y we write

fx(y) = fy(x) = f(x, y).

We say that a mapping f : X × Y → Z is separately continuous, f ∈
CC(X×Y, Z), if fx ∈ C(Y, Z) and fy ∈ C(X,Z) for every point (x, y) ∈ X×Y .
A mapping f : X×Y → Z is said to be vertically nearly separately continuous,
f ∈ CC(X × Y, Z), if fy ∈ C(X,Z) for every y ∈ Y and there exists a dense
set D ⊆ X such that fx ∈ C(Y, Z) for all x ∈ D.

Let B0(X,Y ) = C(X,Y ). Assume that the classes Bξ(X,Y ) are already
defined for all ξ < α, where α < ω1. Then f : X → Y is said to be of the α-th
Baire class, f ∈ Bα(X,Y ), if f is a pointwise limit of a sequence of mappings
fn ∈ Bξn(X,Y ), where ξn < α. In particular, f ∈ B1(X,Y ) if it is a pointwise
limit of a sequence of continuous mappings.
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In 1898 H. Lebesgue [12] proved that every real-valued separately continuous
function of two real variables is of the first Baire class. Lebesgue’s theorem
was generalized by many mathematicians (see [4, 15, 17, 19, 18, 1, 2, 5, 6, 16]
and the references given there). W. Rudin[17] showed that CC(X × Y, Z) ⊆
B1(X × Y, Z) if X is a metrizable space, Y a topological space and Z a locally
convex topological vector space. Naturally the following question has been
arose, which is still unanswered.

Problem 1.1. Let X be a metrizable space, Y a topological space and Z a
topological vector space. Does every separately continuous mapping f : X×Y →
Z belong to the first Baire class?

V. Maslyuchenko and A. Kalancha [5] showed that the answer is positive,
when X is a metrizable space with finite Čech-Lebesgue dimension. T. Banakh
[1] gave a positive answer in the case that X is a metrically quarter-stratifiable
paracompact strongly countably dimensional space and Z is an equiconnected
space. In [8] it was shown that the answer to Problem 1.1 is positive for
metrizable spaces X and Y and a metrizable arcwise connected and locally
arcwise connected space Z. It was pointed out in [9] that CC(X × Y, Z) ⊆
B1(X × Y, Z) if X is a metrizable space, Y is a topological space and Z is an
equiconnected strongly σ-metrizable space with a stratification (Zn)

∞
n=1 (see

the definitions below), where Zn is a metrizable arcwise connected and locally
arcwise connected space for every n ∈ N.

In this paper we generalize the above-mentioned result from [9] to the case
of vertically nearly separately continuous mappings. To do this, we intro-
duce the class of strong PP-spaces which includes the class of all metrizable
spaces. In Section 3 we investigate some properties of strong PP-spaces. In Sec-
tion 4 we establish an auxiliary result which generalizes the famous Kuratowski-
Montgomery theorem (see [11] and [14]). Finally, in Section 5 we prove that the
inclusion CC(X×Y, Z) ⊆ B1(X×Y, Z) holds if X is a strongly PP-space, Y is
a topological space and Z is a contractible space with a stratification (Zn)

∞
n=1,

where Zn is a metrizable arcwise connected and locally arcwise connected space
for every n ∈ N.

2. Preliminary observations

A subset A of a topological space X is a zero (co-zero) set if A = f−1(0)
(A = f−1((0, 1])) for some continuous function f : X → [0, 1].

Let G∗
0 and F∗

0 be collections of all co-zero and zero subsets ofX , respectively.
Assume that the classes G∗

ξ and F∗
ξ are defined for all ξ < α, where 0 < α < ω1.

Then, if α is odd, the class G∗
α (F∗

α) is consists of all countable intersections
(unions) of sets of lower classes, and, if α is even, the class G∗

α (F∗
α) is consists

of all countable unions (intersections) of sets of lower classes. The classes F∗
α

for odd α and G∗
α for even α are said to be functionally additive, and the classes

F∗
α for even α and G∗

α for odd α are called functionally multiplicative. If a set
belongs to the α’th functionally additive and functionally multiplicative class,
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then it is called functionally ambiguous of the α’th class. Note that A ∈ F∗
α if

and only if X \A ∈ G∗
α.

If a set A is of the first functionally additive (multiplicative) class, we say
that A is an F ∗

σ (G∗
δ) set.

Let us observe that if X is a perfectly normal space (i.e. a normal space in
which every closed subset is Gδ), then functionally additive and functionally
multiplicative classes coincide with ordinary additive and multiplicative classes
respectively, since every open set in X is functionally open.

Lemma 2.1. Let α ≥ 0, X be a topological space and let A ⊆ X be of the α’th
functionally multiplicative class. Then there exists a function f ∈ Bα(X, [0, 1])
such that A = f−1(0).

Proof. The hypothesis of the lemma is obvious if α = 0.
Suppose the assertion of the lemma is true for all ξ < α and let A be a

set of the α’th functionally multiplicative class. Then A =
∞
⋂

n=1
An, where An

belong to the αn’th functionally additive class with αn < α for all n ∈ N. By
assumption, there exists a sequence of functions fn ∈ Bαn

(X, [0, 1]) such that
An = f−1

n ((0, 1]). Notice that for every n the characteristic function χAn
of An

belongs to the α-th Baire class. Indeed, setting hn,m(x) = m
√

fn(x), we obtain
a sequence of functions hn,m ∈ Bαn

(X, [0, 1]) which is pointwise convergent to
χAn

. Now let

f(x) = 1−
∞
∑

n=1

1

2n
χAn

(x).

for all x ∈ X . Then f ∈ Bα(X, [0, 1]) as a sum of a uniform convergent series
of functions of the α’th class. Moreover, it is easy to see that A = f−1(0). �

A topological space X is called

• equiconnected if there exists a continuous function λ : X ×X× [0, 1] →
X such that

(1) λ(x, y, 0) = x;
(2) λ(x, y, 1) = y;
(3) λ(x, x, t) = x

for all x, y ∈ X and t ∈ [0, 1].
• contractible if there exist x∗ ∈ X and a continuous mapping γ : X ×
[0, 1] → X such that γ(x, 0) = x and γ(x, 1) = x∗. A contractible space
X with such a point x∗ and such a mapping γ is denoted by (X, x∗, γ).

Remark that every convex subset X of a topological vector space is equicon-
nected, where λ : X × X × [0, 1] → X is defined by the formula λ(x, y, t) =
(1− t)x+ ty, x, y ∈ X , t ∈ [0, 1].

It is easily seen that a topological space X is contractible if and only if there
exists a continuous mapping λ : X ×X × [0, 1] → X such that λ(x, y, 0) = x

and λ(x, y, 1) = y for all x, y ∈ X . Indeed, if (X, x∗, γ) is a contractible space,
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then the formula

λ(x, y, t) =

{

γ(x, 2t), 0 ≤ t ≤ 1
2 ,

γ(y,−2t+ 2), 1
2 < t ≤ 1.

defines a continuous mapping λ : X×X× [0, 1] → X with the required proper-
ties. Conversely, if X is equiconnected, then fixing a point x∗ ∈ X and setting
γ(x, t) = λ(x, x∗, t), we obtain that the space (X, x∗, γ) is contractible.

Lemma 2.2. Let 0 ≤ α < ω1, X a topological space, Y a contractible space,
A1, . . . , An be disjoint sets of the α’th functionally multiplicative class in X and
fi ∈ Bα(X,Y ) for each 1 ≤ i ≤ n. Then there exists a mapping f ∈ Bα(X,Y )
such that f |Ai

= fi for each 1 ≤ i ≤ n.

Proof. Let n = 2. In view of Lemma 2.1 there exist functions hi ∈ Bα(X, [0, 1])

such that Ai = h−1
i (0) for i = 1, 2. We set h(x) =

h1(x)

h1(x) + h2(x)
for all x ∈ X .

It is easy to verify that h ∈ Bα(X, [0, 1]) and Ai = h−1(i − 1), i = 1, 2.
Consider a continuous mapping λ : Y ×Y ×[0, 1] → Y such that λ(y, z, 0) = y

and λ(y, z, 1) = z for all y, z ∈ Y . Let

f(x) = λ(f1(x), f2(x), h(x))

for every x ∈ X . Clearly, f ∈ Bα(X,Y ). If x ∈ A1, then f(x) = λ(f1(x), f2(x), 0)
= f1(x). If x ∈ A2, then f(x) = λ(f1(x), f2(x), 1) = f2(x).

Assume that the lemma is true for all 2 ≤ k < n and let k = n. According
to our assumption, there exists a mapping g ∈ Bα(X,Y ) such that g|Ai

= fi

for all 1 ≤ i < n. Since A =
n−1
⋃

i=1

Ai and An are disjoint sets which belong to

the α’th functionally multiplicative class in X , by the assumption, there is a
mapping f ∈ Bα(X,Y ) with f |A = g and f |Fn

= fn. Then f |Fi
= fi for every

1 ≤ i ≤ n. �

Let 0 ≤ α < ω1. We say that a mapping f : X → Y is of the (functional)
α-th Lebesgue class, f ∈ Hα(X,Y ) (f ∈ H∗

α(X,Y )), if the preimage f−1(V )
belongs to the α’th (functionally) additive class in X for any open set V ⊆ Y .

Clearly, Hα(X,Y ) = H∗
α(X,Y ) for any perfectly normal space X .

The following statement is well-known, but we present a proof here for con-
venience of the reader.

Lemma 2.3. Let X and Y be topological spaces, (fk)
∞
k=1 a sequence of map-

pings fk : X → Y which is pointwise convergent to a mapping f : X → Y ,

F ⊆ Y be a closed set such that F =
∞
⋂

n=1
V n, where (Vn)

∞
n=1 is a sequence of

open sets in Y such that Vn+1 ⊆ Vn for all n ∈ N. Then

(2.1) f−1(F ) =

∞
⋂

n=1

∞
⋃

k=n

f−1
k (Vn).
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Proof. Let x ∈ f−1(F ) and n ∈ N. Taking into account that Vn is an open
neighborhood of f(x) and lim

k→∞
fk(x) = f(x), we obtain that there is k ≥ n

such that fk(x) ∈ Vn.
Now let x belong to the right-hand side of (2.1), i.e. for every n ∈ N there

exists a number k ≥ n such that fk(x) ∈ Vn. Suppose f(x) 6∈ F . Then there
exists n ∈ N such that f(x) 6∈ Vn. Since U = X \Vn is a neighborhood of f(x),
there exists k0 such that fk(x) ∈ U for all k ≥ k0. In particular, fk(x) ∈ U for
k = max{k0, n}. But then fk(x) 6∈ Vn, a contradiction. Hence, x ∈ f−1(F ). �

Lemma 2.4. Let X be a topological space, Y a perfectly normal space and
0 ≤ α < ω1. Then Bα(X,Y ) ⊆ H∗

α(X,Y ) if α is finite, and Bα(X,Y ) ⊆
H∗

α+1(X,Y ) if α is infinite.

Proof. Let f ∈ Bα(X,Y ). Fix an arbitrary closed set F ⊆ Y . Since Y is
perfectly normal, there exists a sequence of open sets Vn ⊆ Y such that Vn+1 ⊆

Vn and F =
∞
⋂

n=1
V n. Moreover, there exists a sequence of mappings fk : X → Y

of Baire classes < α which is pointwise convergent to f on X . By Lemma 2.3,

equality (2.1) holds. Now put An =
∞
⋃

k=n

f−1
k (Vn).

If α = 0, then f is continuous and f−1(F ) is a zero set in X , since F is a
zero set in Y .

Suppose the assertion of the lemma is true for all finite ordinals 1 ≤ ξ <

α. We show that it is true for α. Remark that fk ∈ Bα−1(X,Y ) for every
k ≥ 1. By assumption, fk ∈ H∗

α−1(X,Y ) for every k ∈ N. Then An is of
the functionally additive class α − 1. Therefore, f−1(F ) belongs to the α’th
functionally multiplicative class.

Assume the assertion of the lemma is true for all ordinals ω0 ≤ ξ < α. For
all k ∈ N we choose αk < α such that fk ∈ Bαk

(X,Y ) for every k ≥ 1. The
preimage f−1

k (Vn), being of the (αk +1)’th functionally additive class, belongs
to the α’th functionally additive class for all k, n ∈ N, provided αk + 1 ≤ α.
Then An is of the α’th functionally additive class, hence, f−1(F ) belongs to
the (α+ 1)’th functionally multiplicative class. �

Recall that a familyA = (Ai : i ∈ I) of setsAi refines a family B = (Bj : j ∈ J)
of sets Bj if for every i ∈ I there exists j ∈ J such that Ai ⊆ Bj . We write in
this case A � B.

3. PP-spaces and their properties

Definition 3.1. A topological space X is said to be a (strong) PP-space if (for
every dense set D in X) there exist a sequence ((ϕi,n : i ∈ In))

∞
n=1 of locally

finite partitions of unity on X and a sequence ((xi,n : i ∈ In))
∞
n=1 of families of

points of X (of D) such that

(3.1) (∀x ∈ X)((∀n ∈ N x ∈ suppϕin,n) =⇒ (xin,n → x))

Remark that Definition 3.1 is equivalent to the following one.
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Definition 3.2. A topological space X is a (strong) PP-space if (for every
dense set D in X) there exist a sequence ((Ui,n : i ∈ In))

∞
n=1 of locally finite

covers of X by co-zero sets Ui,n and a sequence ((xi,n : i ∈ In))
∞
n=1 of families

of points of X (of D) such that

(3.2) (∀x ∈ X)((∀n ∈ N x ∈ Uin,n) =⇒ (xin,n → x))

Clearly, every strong PP-space is a PP-space.

Proposition 3.3. Every metrizable space is a strong PP-space.

Proof. Let X be a metrizable space and d a metric on X which generates its
topology. Fix an arbitrary dense set D in X . For every n ∈ N let Bn be a cover
of X by open balls of diameter 1

n
. Since X is paracompact, for every n there

exists a locally finite cover Un = (Ui,n : i ∈ In) of X by open sets Ui,n such that
Un � Bn. Notice that each Ui,n is a co-zero set. Choose a point xi,n ∈ D∩Ui,n

for all n ∈ N and i ∈ In. Let x ∈ X and let U be an arbitrary neighborhood
of x. Then there is n0 ∈ N such that B(x, 1

n
) ⊆ U for all n ≥ n0. Fix n ≥ n0

and take i ∈ In such that x ∈ Ui,n. Since diamUi,n ≤ 1
n
, d(x, xi,n) ≤ 1

n
,

consequently, xi,n ∈ U . �

Example 3.4. The Sorgenfrey line L is a strong PP-space which is not metri-
zable.

Proof. Recall that the Sorgenfrey line is the real line R endowed with the
topology generated by the base consisting of all semi-intervals [a, b), where
a < b (see [3, Example 1.2.2]).

Let D ⊆ L be a dense set. For any n ∈ N and i ∈ Z by ϕi,n we denote the

characteristic function of [ i−1
n

, i
n
) and choose a point xi,n ∈ [ i

n
, i+1

n
)∩D. Then

the sequences
(

(ϕi,n : i ∈ In)
)∞

n=1
and

(

(xi,n : i ∈ In)
)∞

n=1
satisfy (3.1). �

Proposition 3.5. Every σ-metrizable paracompact space is a PP-space.

Proof. Let X =
∞
⋃

n=1
Xn, where (Xn)

∞
n=1 is an increasing sequence of closed

metrizable subspaces, and let d1 be a metric onX1 which generates its topology.
According to Hausdorff’s theorem [3, p. 297] we can extend the metric d1 to
a metric d2 on X2. Further, we extend the metric d2 to a metric d3 on X3.
Repeating this process, we obtain a sequence (dn)

∞
n=1 of metrics dn on Xn such

that dn+1|Xn
= dn for every n ∈ N. We define a function d : X2 → R by

setting d(x, y) = dn(x, y) for (x, y) ∈ X2
n.

Fix n ∈ N and m ≥ n. Let Bn,m be a cover of Xm by d-open balls of
diameter 1

n
. For every B ∈ Bn,m there exists an open set VB in X such that

VB ∩Xm = B. Let Vn,m = {VB : B ∈ Bn,m} and Un =
∞
⋃

m=1
Vn,m. Then Un is

an open cover of X for every n ∈ N. Since X is paracompact, for every n ∈ N

there exists a locally finite partition of unity (hi,n : i ∈ In) on X subordinated
to Un. For every n ∈ N and i ∈ In we choose xi,n ∈ Xk(i,n) ∩ supphi,n, where
k(i, n) = min{m ∈ N : Xm ∩ supphi,n 6= Ø}.



Classification of separately continuous mappings 173

Now fix x ∈ X . Let (in)n=1 be a sequence of indexes in ∈ In such that
x ∈ supphin,n. We choose m ∈ N such that x ∈ Xm. It is easy to see
that k(in, n) ≤ m for every n ∈ N. Then xin,n ∈ Xm. Since dm(xin,n, x) ≤
diamsupphin,n ≤ 1

n
, xin,n → x in Xm. Therefore, xin,n → x in X . �

Denote by R
∞ the collection of all sequences with a finite support, i.e. se-

quences of the form (ξ1, ξ2, . . . , ξn, 0, 0, . . . ), where ξ1, ξ2, . . . , ξn ∈ R. Clearly,
R

∞ is a linear subspace of the space R
N of all sequences. Denote by E the set

of all sequences e = (εn)
∞
n=1 of positive reals εn and let

Ue = {x = (ξn)
∞
n=1 ∈ R

∞ : (∀n ∈ N)(|ξn| ≤ εn)}.

We consider on R
∞ the topology in which the system U0 = {Ue : e ∈ E} forms

the base of neighborhoods of zero. Then R
∞ equipped with this topology is a

locally convex σ-metrizable paracompact space which is not a first countable
space, consequently, non-metrizable.

Example 3.6. The space R
∞ is a PP-space which is not a strong PP-space.

Proof. Remark that R∞ is a PP-space by Proposition 3.5.
We show that R∞ is not a strong PP-space. Indeed, let

An = {(ξ1, ξ2, . . . , ξn, 0, 0, . . . ) : |ξk| ≤
1

n
(∀1 ≤ k ≤ n)},

D =

∞
⋃

m=1

m
⋂

n=1

(R∞ \An).

Then D is dense in R
∞, but there is no sequence in D which converges to

x = (0, 0, 0, . . . ) ∈ R
∞. Hence, R∞ is not a strong PP-space. �

4. The Lebesgue classification

The following result is an analog of theorems of K. Kuratowski [11] and
D. Montgomery [14] who proved that every separately continuous function,
defined on a product of a metrizable space and a topological space and with
values in a metrizable space, belongs to the first Baire class.

Theorem 4.1. Let X be a strong PP-space, Y a topological space, Z a perfectly
normal space and 0 ≤ α < ω1. Then

CH∗
α(X × Y, Z) ⊆ H∗

α+1(X × Y, Z).

Proof. Let f ∈ CH∗
α(X×Y, Z). Then for the set XH∗

α
(f) there exist a sequence

(Un)
∞
n=1 of locally finite covers Un = (Ui,n : i ∈ In) of X by co-zero sets Ui,n

and a sequence ((xi,n : i ∈ In))
∞
n=1 of families of points of the set XH∗

α
(f)

satisfying condition (3.2).
We choose an arbitrary closed set F ⊆ Z. Since Z is perfectly normal,

F =
∞
⋂

m=1
Gm, where Gm are open sets in Z such that Gm+1 ⊆ Gm for every
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m ∈ N. Let us verify that the equality

(4.1) f−1(F ) =

∞
⋂

m=1

∞
⋃

n≥m

⋃

i∈In

Ui,n × (fxi,n)−1(Gm).

holds. Indeed, let (x0, y0) ∈ f−1(F ). Then f(x0, y0) ∈ Gm for every m ∈ N.
Fix any m ∈ N. Since Vm = f−1

y0
(Gm) is an open neighborhood of x0, there

exists a number n0 ≥ m such that for all n ≥ n0 and i ∈ In the inclusion
xi,n ∈ Vm holds whenever x0 ∈ Ui,n. We choose i0 ∈ In0 such that x0 ∈ Ui0,n0 .
Then f(xi0,n0 , y0) ∈ Gm. Hence, (x0, y0) belongs to the right-hand side of
(4.1).

Conversely, let (x0, y0) belong to the right-hand side of (4.1). Fix m ∈ N.
We choose sequences (nk)

∞
k=1, (mk)

∞
k=1 of numbers nk,mk ∈ N and a sequence

(ik)
∞
k=1 of indexes ik ∈ Ink

such that

m = m1 ≤ n1 < m2 ≤ n2 < · · · < mk ≤ nk < . . . ,

x0 ∈ Uik,nk
and f(xik,nk

, y0) ∈ Gmk
⊆ Gm for every k ∈ N.

Since lim
k→∞

xik,nk
= x0 and the mapping f is continuous with respect to the

first variable, lim
k→∞

f(xik,nk
, y0) = f(x0, y0). Therefore, f(x0, y0) ∈ Gm for

every m ∈ N. Hence, (x0, y0) belongs to the left-hand side of (4.1).
Since fxi,n ∈ H∗

α(Y, Z), the sets (fxi,n)−1(Gm) are of the functionally addi-
tive class α in Y . Moreover, all Ui,n are co-zero sets in X , consequently, by [6,
Theorem 1.5] the set En =

⋃

i∈In

Ui,n × (fxi,n)−1(Gm) belongs to the α’th func-

tionally additive class for every n. Therefore,
⋃

n≥m

En is of the α’th functionally

additive class. Hence, f−1(F ) is of the (α + 1)’th functionally multiplicative
class in X × Y . �

Definition 4.2. We say that a topological space X has the (strong) L-property
or is a (strong) L-space, if for every topological space Y every (nearly vertically)
separately continuous function f : X × Y → R is of the first Lebesgue class.

According to Theorem 4.1 every strong PP-space has the strong L-property.

Proposition 4.3. Let X be a completely regular strong L-space. Then for any
dense set A ⊆ X and a point x0 ∈ X there exists a countable dense set A0 ⊆ A

such that x0 ∈ A0.

Proof. Fix an arbitrary everywhere dense set A ⊆ X and a point x0 ∈ A. Let
Y be the space of all real-valued continuous functions on X , endowed with
the topology of pointwise convergence on A. Since the evaluation function
e : X × Y → R, e(x, y) = y(x), is nearly vertically separately continuous, e ∈
H1(X × Y,R). Then B = e−1(0) is Gδ-set in X × Y . Hence, B0 = {y ∈ Y :
y(x0) = 0} is a Gδ-set in Y . We set y0 ≡ 0 and choose a sequence (Vn)

∞
n=1

of basic neighborhoods of y0 in Y such that
∞
⋂

n=1
Vn ⊆ B0. For every n there
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exist a finite set {xi,n : i ∈ In} of X and εn > 0 such that Vn = {y ∈ Y :
max
i∈In

|y(xi,n)| < εn}. Let

A0 =
⋃

n∈N

⋃

i∈In

{xi,n}.

Take an open neighborhood U of x0 in X and suppose that U ∩A0 = Ø. Since
X is completely regular and x0 6∈ X \ U , there exists a continuous function

y : X → R such that y(x0) = 1 and y(X \ U) ⊆ {0}. Then y ∈
∞
⋂

n=1
Vn, but

y 6∈ B0, a contradiction. Therefore, U ∩ A0 6= Ø, and x0 ∈ A0. �

5. Baire classification and σ-metrizable spaces

We recall that a topological space Y isB-favorable for a space X , ifH1(X,Y ) ⊆
B1(X,Y ) (see [10]).

Definition 5.1. Let 0 ≤ α < ω1. A topological space Y is called weakly
Bα-favorable for a space X , if H∗

α(X,Y ) ⊆ Bα(X,Y ).

Clearly, every B-favorable space is weakly B1-favorable.

Proposition 5.2. Let 0 ≤ α < ω1, X a topological space, Y =
∞
⋃

n=1
Yn a

contractible space, f : X → Y a mapping, (Xn)
∞
n=1 a sequence of sets of the

α’th functionally additive class such that X =
∞
⋃

n=1
Xn and f(Xn) ⊆ Yn for

every n ∈ N. If one of the following conditions holds

(i) Yn is a nonempty weakly Bα-favorable space for X for all n and f ∈
H∗

α(X,Y ), or
(ii) α > 0 and for every n there exists a mapping fn ∈ Bα(X,Yn) such that

fn|Xn
= f |Xn

,

then f ∈ Bα(X,Y ).

Proof. If α = 0 then the statement is obvious in case (i).
Let α > 0. By [6, Lemma 2.1] there exists a sequence (En)

∞
n=1 of disjoint

functionally ambiguous sets of the α’th class such that En ⊆ Xn and X =
∞
⋃

n=1
En.

In case (i) for every n we choose a point yn ∈ Yn and let

fn(x) =

{

f(x), if x ∈ En,

yn, if x ∈ X \ En.

Since f ∈ H∗
α(X,Y ) and En is functionally ambiguous set of the α’th class,

fn ∈ H∗
α(X,Yn). Then fn ∈ Bα(X,Yn) provided Yn is weakly Bα-favorable

for X .
For every n there exists a sequence of mappings gn,m : X → Yn of classes< α

such that gn,m(x) →
m→∞

fn(x) for every x ∈ X . In particular, lim
m→∞

gn,m(x) =
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f(x) on En. Since En is of the α-th functionally additive class, En =
∞
⋃

m=1
Bn,m,

where (Bn,m)∞m=1 is an increasing sequence of sets of functionally additive
classes < α. Let Fn,m = Ø if n > m, and let Fn,m = Bn,m if n ≤ m.
According to Lemma 2.2, for every m ∈ N there exists a mapping gm : X → Y

of a class < α such that gm|Fn,m
= gn,m, since the system {Fn,m : n ∈ N} is

finite for every m ∈ N.
It remains to prove that gm(x) → f(x) on X . Let x ∈ X . We choose a

number n ∈ N such that x ∈ En. Since the sequence (Fn,m)∞m=1 is increas-
ing, there exists a number m0 such that x ∈ Fn,m for all m ≥ m0. Then
gm(x) = gn,m(x) for all m ≥ m0. Hence, lim

m→∞
gm(x) = lim

m→∞
gn,m(x) = f(x).

Therefore, f ∈ Bα(X,Y ). �

Definition 5.3. Let {Xn : n ∈ N} be a cover of a topological space X . We say
that (X, (Xn)

∞
n=1) has the property (∗) if for every convergent sequence (xk)

∞
k=1

in X there exists a number n such that {xk : k ∈ N} ⊆ Xn.

Proposition 5.4. Let 0 ≤ α < ω1, X a strong PP-space, Y a topological
space, (Z, (Zn)

∞
n=1) have the property (∗), let Zn be closed in Z (and let Zn

be a zero-set in Z if α = 0) for every n ∈ N, and f ∈ CBα(X × Y, Z). Then
there exists a sequence (Bn)

∞
n=1 of sets of the α’th /(α + 1)’th/ functionally

multiplicative class in X × Y , if α is finite /infinite/, such that
∞
⋃

n=1

Bn = X × Y and f(Bn) ⊆ Zn

for every n ∈ N.

Proof. Since XBα
(f) is dense in X , there exists a sequence (Um = (Ui,m :

i ∈ Im))∞m=1 of locally finite co-zero covers of X and a sequence ((xi,m : i ∈
Im))∞m=1 of families of points of XBα

(f) such that condition (3.2) holds.
In accordance with [16, Proposition 3.2] there exists a pseudo-metric on

X such that all the set Ui,m are co-zero with respect to this pseudo-metric.
Denote by T the topology on X generated by the pseudo-metric. Obviously,
the topology T is weaker than the initial one. Using the paracompactness of
(X, T ), for every m we choose a locally finite open cover Vm = (Vs,m : s ∈ Sm)
which refines Um. By [3, Lemma 1.5.6], for every m there exists a locally finite
closed cover (Fs,m : s ∈ Sm) of (X, T ) such that Fs,m ⊆ Vs,m for every s ∈ Sm.
Now for every s ∈ Sm we choose i(s) ∈ Im such that Fs,m ⊆ Ui(s),m.

For all m,n ∈ N and s ∈ Sm let

As,m,n = (fxi(s),m)−1(Zn), Bm,n =
⋃

s∈Sm

(Fs,m ×As,m,n), Bn =
∞
⋂

m=1

Bm,n.

Since f is of the α’th Baire class with respect to the second variable, for every
n the set As,m,n belongs to the α’th functionally multiplicative class /α+1/ in
Y for all m ∈ N and s ∈ Sm, if α is finite /infinite/ by Lemma 2.4. According
to [6, Proposition 1.4] the set Bm,n is of the α’th /(α + 1)’th/ functionally



Classification of separately continuous mappings 177

multiplicative class in (X, T )× Y . Then the set Bn is of the α’th /(α+1)’th/
functionally multiplicative class in (X, T )×Y , and, consequently, in X×Y for
every n.

We prove that f(Bn) ⊆ Zn for every n. To do this, fix n ∈ N and (x, y) ∈
Bn. We choose a sequence (sm)∞m=1 such that x ∈ Fm,sm ⊆ Um,i(sm) and
f(xm,i(sm), y) ∈ Zn. Then xm,i(sm) →

m→∞
x. Since f is continuous with respect

to the first variable, f(xm,i(sm), y) →
m→∞

f(x, y). The set Zn is closed, then

f(x, y) ∈ Zn.

Now we show that
∞
⋃

n=1
Bn = X×Y . Let (x, y) ∈ X×Y . Then there exists a

sequence (sm)∞m=1 such that x ∈ Fm,sm ⊆ Um,i(sm) and f(xm,i(sm), y) →
m→∞

f(x, y).

Since (Z, (Zn)
∞
n=1) satisfies (∗), there is a number n such that {f(xm,im , y) :

m ∈ N} is contained in Zn, i.e. y ∈ Am,n,i for every m ∈ N. Hence,
(x, y) ∈ Bn. �

Theorem 5.5. Let X be a strong PP-space, Y a topological space, {Zn : n ∈
N} a closed cover of a contractible perfectly normal space Z, let (Z, (Zn)

∞
n=1)

satisfy (∗) and Zn be weakly B1-favorable for X × Y for every n ∈ N. Then

CC(X × Y, Z) ⊆ B1(X × Y, Z).

Proof. Let f ∈ CC(X × Y, Z). In accordance with Theorem 4.1, f ∈ H∗
1 (X ×

Y, Z). Moreover, Proposition 5.4 implies that there exists a sequence of zero-

sets Bn ⊆ X × Y such that
∞
⋃

n=1
Bn = X × Y and f(Bn) ⊆ Zn for every n ∈ N.

Since for every n the set Bn is an F ∗
σ -set and H∗

1 (X ×Y, Zn) ⊆ B1(X×Y, Zn),
f ∈ B1(X × Y, Z) by Proposition 5.2. �

Definition 5.6. A topological spaceX is called strongly σ-metrizable, if it is σ-
metrizable with a stratification (Xn)

∞
n=1 and (X, (Xn)

∞
n=1) has the property (∗).

Taking into account that every regular strongly σ-metrizable space with
metrizable separable stratification is perfectly normal (see [13, Corollary 4.1.6])
and every metrizable separable arcwise connected and locally arcwise connected
space is weakly Bα-favorable for any topological space X for all 0 ≤ α < ω1 [7,
Theorem 3.3.5], we immediately obtain the following corollary of Theorem 5.5.

Corollary 5.7. Let X be a strong PP-space, Y a topological space and Z a
contractible regular strongly σ-metrizable space with a stratification (Zn)

∞
n=1,

where Zn is a metrizable separable arcwise connected and locally arcwise con-
nected space for every n ∈ N. Then

CC(X × Y, Z) ⊆ B1(X × Y, Z).
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