

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 13, no. 2, 2012 pp. 167-178

# Classification of separately continuous mappings with values in $\sigma$ -metrizable spaces

Olena Karlova

#### Abstract

We prove that every vertically nearly separately continuous mapping defined on a product of a strong PP-space and a topological space and with values in a strongly  $\sigma$ -metrizable space with a special stratification, is a pointwise limit of continuous mappings.

2010 MSC: 54C08, 54C05, 54E20

KEYWORDS: separately continuous mapping,  $\sigma$ -metrizable space, strong PPspace, Baire classification, Lebesgue classification

#### 1. INTRODUCTION

Let X, Y and Z be topological spaces. By C(X, Y) we denote the collection of all continuous mappings from X to Y.

For a mapping  $f: X \times Y \to Z$  and a point  $(x, y) \in X \times Y$  we write

 $f^x(y) = f_y(x) = f(x, y).$ 

We say that a mapping  $f : X \times Y \to Z$  is separately continuous,  $f \in CC(X \times Y, Z)$ , if  $f^x \in C(Y, Z)$  and  $f_y \in C(X, Z)$  for every point  $(x, y) \in X \times Y$ . A mapping  $f : X \times Y \to Z$  is said to be vertically nearly separately continuous,  $f \in C\overline{C}(X \times Y, Z)$ , if  $f_y \in C(X, Z)$  for every  $y \in Y$  and there exists a dense set  $D \subseteq X$  such that  $f^x \in C(Y, Z)$  for all  $x \in D$ .

Let  $B_0(X,Y) = C(X,Y)$ . Assume that the classes  $B_{\xi}(X,Y)$  are already defined for all  $\xi < \alpha$ , where  $\alpha < \omega_1$ . Then  $f: X \to Y$  is said to be of the  $\alpha$ -th Baire class,  $f \in B_{\alpha}(X,Y)$ , if f is a pointwise limit of a sequence of mappings  $f_n \in B_{\xi_n}(X,Y)$ , where  $\xi_n < \alpha$ . In particular,  $f \in B_1(X,Y)$  if it is a pointwise limit of a sequence of continuous mappings.

In 1898 H. Lebesgue [12] proved that every real-valued separately continuous function of two real variables is of the first Baire class. Lebesgue's theorem was generalized by many mathematicians (see [4, 15, 17, 19, 18, 1, 2, 5, 6, 16] and the references given there). W. Rudin[17] showed that  $C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z)$  if X is a metrizable space, Y a topological space and Z a locally convex topological vector space. Naturally the following question has been arose, which is still unanswered.

**Problem 1.1.** Let X be a metrizable space, Y a topological space and Z a topological vector space. Does every separately continuous mapping  $f: X \times Y \rightarrow Z$  belong to the first Baire class?

V. Maslyuchenko and A. Kalancha [5] showed that the answer is positive, when X is a metrizable space with finite Čech-Lebesgue dimension. T. Banakh [1] gave a positive answer in the case that X is a metrically quarter-stratifiable paracompact strongly countably dimensional space and Z is an equiconnected space. In [8] it was shown that the answer to Problem 1.1 is positive for metrizable spaces X and Y and a metrizable arcwise connected and locally arcwise connected space Z. It was pointed out in [9] that  $CC(X \times Y, Z) \subseteq$  $B_1(X \times Y, Z)$  if X is a metrizable space, Y is a topological space and Z is an equiconnected strongly  $\sigma$ -metrizable space with a stratification  $(Z_n)_{n=1}^{\infty}$  (see the definitions below), where  $Z_n$  is a metrizable arcwise connected and locally arcwise connected space for every  $n \in \mathbb{N}$ .

In this paper we generalize the above-mentioned result from [9] to the case of vertically nearly separately continuous mappings. To do this, we introduce the class of strong PP-spaces which includes the class of all metrizable spaces. In Section 3 we investigate some properties of strong PP-spaces. In Section 4 we establish an auxiliary result which generalizes the famous Kuratowski-Montgomery theorem (see [11] and [14]). Finally, in Section 5 we prove that the inclusion  $C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z)$  holds if X is a strongly PP-space, Y is a topological space and Z is a contractible space with a stratification  $(Z_n)_{n=1}^{\infty}$ , where  $Z_n$  is a metrizable arcwise connected and locally arcwise connected space for every  $n \in \mathbb{N}$ .

## 2. Preliminary observations

A subset A of a topological space X is a zero (co-zero) set if  $A = f^{-1}(0)$ ( $A = f^{-1}((0, 1])$ ) for some continuous function  $f : X \to [0, 1]$ .

Let  $\mathcal{G}_0^*$  and  $\mathcal{F}_0^*$  be collections of all co-zero and zero subsets of X, respectively. Assume that the classes  $\mathcal{G}_{\xi}^*$  and  $\mathcal{F}_{\xi}^*$  are defined for all  $\xi < \alpha$ , where  $0 < \alpha < \omega_1$ . Then, if  $\alpha$  is odd, the class  $\mathcal{G}_{\alpha}^*$  ( $\mathcal{F}_{\alpha}^*$ ) is consists of all countable intersections (unions) of sets of lower classes, and, if  $\alpha$  is even, the class  $\mathcal{G}_{\alpha}^*$  ( $\mathcal{F}_{\alpha}^*$ ) is consists of all countable unions (intersections) of sets of lower classes. The classes  $\mathcal{F}_{\alpha}^*$ for odd  $\alpha$  and  $\mathcal{G}_{\alpha}^*$  for even  $\alpha$  are said to be *functionally additive*, and the classes  $\mathcal{F}_{\alpha}^*$  for even  $\alpha$  and  $\mathcal{G}_{\alpha}^*$  for odd  $\alpha$  are called *functionally multiplicative*. If a set belongs to the  $\alpha$ 'th functionally additive and functionally multiplicative class,

then it is called *functionally ambiguous of the*  $\alpha$ *'th class.* Note that  $A \in \mathcal{F}^*_{\alpha}$  if and only if  $X \setminus A \in \mathcal{G}^*_{\alpha}$ .

If a set A is of the first functionally additive (multiplicative) class, we say that A is an  $F_{\sigma}^*$  ( $G_{\delta}^*$ ) set.

Let us observe that if X is a perfectly normal space (i.e. a normal space in which every closed subset is  $G_{\delta}$ ), then functionally additive and functionally multiplicative classes coincide with ordinary additive and multiplicative classes respectively, since every open set in X is functionally open.

**Lemma 2.1.** Let  $\alpha \geq 0$ , X be a topological space and let  $A \subseteq X$  be of the  $\alpha$ 'th functionally multiplicative class. Then there exists a function  $f \in B_{\alpha}(X, [0, 1])$  such that  $A = f^{-1}(0)$ .

*Proof.* The hypothesis of the lemma is obvious if  $\alpha = 0$ .

Suppose the assertion of the lemma is true for all  $\xi < \alpha$  and let A be a set of the  $\alpha$ 'th functionally multiplicative class. Then  $A = \bigcap_{n=1}^{\infty} A_n$ , where  $A_n$  belong to the  $\alpha_n$ 'th functionally additive class with  $\alpha_n < \alpha$  for all  $n \in \mathbb{N}$ . By assumption, there exists a sequence of functions  $f_n \in B_{\alpha_n}(X, [0, 1])$  such that  $A_n = f_n^{-1}((0, 1])$ . Notice that for every n the characteristic function  $\chi_{A_n}$  of  $A_n$  belongs to the  $\alpha$ -th Baire class. Indeed, setting  $h_{n,m}(x) = \sqrt[m]{f_n(x)}$ , we obtain a sequence of functions  $h_{n,m} \in B_{\alpha_n}(X, [0, 1])$  which is pointwise convergent to  $\chi_{A_n}$ . Now let

$$f(x) = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{A_n}(x).$$

for all  $x \in X$ . Then  $f \in B_{\alpha}(X, [0, 1])$  as a sum of a uniform convergent series of functions of the  $\alpha$ 'th class. Moreover, it is easy to see that  $A = f^{-1}(0)$ .  $\Box$ 

A topological space X is called

- equiconnected if there exists a continuous function  $\lambda: X \times X \times [0,1] \to X$  such that
  - (1)  $\lambda(x, y, 0) = x;$
  - (2)  $\lambda(x, y, 1) = y;$
  - (3)  $\lambda(x, x, t) = x$

for all  $x, y \in X$  and  $t \in [0, 1]$ .

• contractible if there exist  $x^* \in X$  and a continuous mapping  $\gamma : X \times [0,1] \to X$  such that  $\gamma(x,0) = x$  and  $\gamma(x,1) = x^*$ . A contractible space X with such a point  $x^*$  and such a mapping  $\gamma$  is denoted by  $(X, x^*, \gamma)$ .

Remark that every convex subset X of a topological vector space is equiconnected, where  $\lambda : X \times X \times [0,1] \to X$  is defined by the formula  $\lambda(x, y, t) = (1-t)x + ty, x, y \in X, t \in [0,1].$ 

It is easily seen that a topological space X is contractible if and only if there exists a continuous mapping  $\lambda : X \times X \times [0,1] \to X$  such that  $\lambda(x, y, 0) = x$  and  $\lambda(x, y, 1) = y$  for all  $x, y \in X$ . Indeed, if  $(X, x^*, \gamma)$  is a contractible space,

then the formula

$$\lambda(x,y,t) = \begin{cases} \gamma(x,2t), & 0 \le t \le \frac{1}{2}, \\ \gamma(y,-2t+2), & \frac{1}{2} < t \le 1. \end{cases}$$

defines a continuous mapping  $\lambda : X \times X \times [0, 1] \to X$  with the required properties. Conversely, if X is equiconnected, then fixing a point  $x^* \in X$  and setting  $\gamma(x,t) = \lambda(x, x^*, t)$ , we obtain that the space  $(X, x^*, \gamma)$  is contractible.

**Lemma 2.2.** Let  $0 \le \alpha < \omega_1$ , X a topological space, Y a contractible space,  $A_1, \ldots, A_n$  be disjoint sets of the  $\alpha$ 'th functionally multiplicative class in X and  $f_i \in B_{\alpha}(X,Y)$  for each  $1 \le i \le n$ . Then there exists a mapping  $f \in B_{\alpha}(X,Y)$ such that  $f|_{A_i} = f_i$  for each  $1 \le i \le n$ .

Proof. Let n = 2. In view of Lemma 2.1 there exist functions  $h_i \in B_{\alpha}(X, [0, 1])$ such that  $A_i = h_i^{-1}(0)$  for i = 1, 2. We set  $h(x) = \frac{h_1(x)}{h_1(x) + h_2(x)}$  for all  $x \in X$ . It is easy to verify that  $h \in B_{\alpha}(X, [0, 1])$  and  $A_i = h^{-1}(i - 1), i = 1, 2$ .

Consider a continuous mapping  $\lambda : Y \times Y \times [0,1] \to Y$  such that  $\lambda(y, z, 0) = y$ and  $\lambda(y, z, 1) = z$  for all  $y, z \in Y$ . Let

$$f(x) = \lambda(f_1(x), f_2(x), h(x))$$

for every  $x \in X$ . Clearly,  $f \in B_{\alpha}(X, Y)$ . If  $x \in A_1$ , then  $f(x) = \lambda(f_1(x), f_2(x), 0) = f_1(x)$ . If  $x \in A_2$ , then  $f(x) = \lambda(f_1(x), f_2(x), 1) = f_2(x)$ .

Assume that the lemma is true for all  $2 \leq k < n$  and let k = n. According to our assumption, there exists a mapping  $g \in B_{\alpha}(X, Y)$  such that  $g|_{A_i} = f_i$ for all  $1 \leq i < n$ . Since  $A = \bigcup_{i=1}^{n-1} A_i$  and  $A_n$  are disjoint sets which belong to the  $\alpha$ 'th functionally multiplicative class in X, by the assumption, there is a mapping  $f \in B_{\alpha}(X, Y)$  with  $f|_A = g$  and  $f|_{F_n} = f_n$ . Then  $f|_{F_i} = f_i$  for every  $1 \leq i \leq n$ .

Let  $0 \leq \alpha < \omega_1$ . We say that a mapping  $f: X \to Y$  is of the (functional)  $\alpha$ -th Lebesgue class,  $f \in H_{\alpha}(X,Y)$  ( $f \in H^*_{\alpha}(X,Y)$ ), if the preimage  $f^{-1}(V)$ belongs to the  $\alpha$ 'th (functionally) additive class in X for any open set  $V \subseteq Y$ . Clearly,  $H_{\alpha}(X,Y) = H^*_{\alpha}(X,Y)$  for any perfectly normal space X.

The following statement is well-known, but we present a proof here for convenience of the reader.

**Lemma 2.3.** Let X and Y be topological spaces,  $(f_k)_{k=1}^{\infty}$  a sequence of mappings  $f_k : X \to Y$  which is pointwise convergent to a mapping  $f : X \to Y$ ,  $F \subseteq Y$  be a closed set such that  $F = \bigcap_{n=1}^{\infty} \overline{V}_n$ , where  $(V_n)_{n=1}^{\infty}$  is a sequence of open sets in Y such that  $\overline{V_{n+1}} \subseteq V_n$  for all  $n \in \mathbb{N}$ . Then

(2.1) 
$$f^{-1}(F) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} f_k^{-1}(V_n).$$

*Proof.* Let  $x \in f^{-1}(F)$  and  $n \in \mathbb{N}$ . Taking into account that  $V_n$  is an open neighborhood of f(x) and  $\lim_{k\to\infty} f_k(x) = f(x)$ , we obtain that there is  $k \ge n$ such that  $f_k(x) \in V_n$ .

Now let x belong to the right-hand side of (2.1), i.e. for every  $n \in \mathbb{N}$  there exists a number  $k \ge n$  such that  $f_k(x) \in V_n$ . Suppose  $f(x) \notin F$ . Then there exists  $n \in \mathbb{N}$  such that  $f(x) \notin \overline{V_n}$ . Since  $U = X \setminus \overline{V_n}$  is a neighborhood of f(x), there exists  $k_0$  such that  $f_k(x) \in U$  for all  $k \geq k_0$ . In particular,  $f_k(x) \in U$  for  $k = \max\{k_0, n\}$ . But then  $f_k(x) \notin V_n$ , a contradiction. Hence,  $x \in f^{-1}(F)$ .  $\Box$ 

Lemma 2.4. Let X be a topological space, Y a perfectly normal space and  $0 \leq \alpha < \omega_1$ . Then  $B_{\alpha}(X,Y) \subseteq H^*_{\alpha}(X,Y)$  if  $\alpha$  is finite, and  $B_{\alpha}(X,Y) \subseteq$  $H^*_{\alpha+1}(X,Y)$  if  $\alpha$  is infinite.

*Proof.* Let  $f \in B_{\alpha}(X,Y)$ . Fix an arbitrary closed set  $F \subseteq Y$ . Since Y is perfectly normal, there exists a sequence of open sets  $V_n \subseteq Y$  such that  $\overline{V_{n+1}} \subseteq$  $V_n$  and  $F = \bigcap_{n=1}^{\infty} \overline{V}_n$ . Moreover, there exists a sequence of mappings  $f_k : X \to Y$  of Baire classes  $< \alpha$  which is pointwise convergent to f on X. By Lemma 2.3, equality (2.1) holds. Now put  $A_n = \bigcup_{k=n}^{\infty} f_k^{-1}(V_n)$ . If  $\alpha = 0$ , then f is continuous and  $f^{-1}(F)$  is a zero set in X, since F is a

zero set in Y.

Suppose the assertion of the lemma is true for all finite ordinals  $1 \leq \xi < \xi$  $\alpha$ . We show that it is true for  $\alpha$ . Remark that  $f_k \in B_{\alpha-1}(X,Y)$  for every  $k \geq 1$ . By assumption,  $f_k \in H^*_{\alpha-1}(X,Y)$  for every  $k \in \mathbb{N}$ . Then  $A_n$  is of the functionally additive class  $\alpha - 1$ . Therefore,  $f^{-1}(F)$  belongs to the  $\alpha$ 'th functionally multiplicative class.

Assume the assertion of the lemma is true for all ordinals  $\omega_0 \leq \xi < \alpha$ . For all  $k \in \mathbb{N}$  we choose  $\alpha_k < \alpha$  such that  $f_k \in B_{\alpha_k}(X, Y)$  for every  $k \ge 1$ . The preimage  $f_k^{-1}(V_n)$ , being of the  $(\alpha_k + 1)$ 'th functionally additive class, belongs to the  $\alpha$ 'th functionally additive class for all  $k, n \in \mathbb{N}$ , provided  $\alpha_k + 1 \leq \alpha$ . Then  $A_n$  is of the  $\alpha$ 'th functionally additive class, hence,  $f^{-1}(F)$  belongs to the  $(\alpha + 1)$ 'th functionally multiplicative class.  $\square$ 

Recall that a family  $\mathcal{A} = (A_i : i \in I)$  of sets  $A_i$  refines a family  $\mathcal{B} = (B_j : j \in J)$ of sets  $B_j$  if for every  $i \in I$  there exists  $j \in J$  such that  $A_i \subseteq B_j$ . We write in this case  $\mathcal{A} \preceq \mathcal{B}$ .

### 3. PP-spaces and their properties

**Definition 3.1.** A topological space X is said to be a *(strong) PP-space* if (for every dense set D in X) there exist a sequence  $((\varphi_{i,n} : i \in I_n))_{n=1}^{\infty}$  of locally finite partitions of unity on X and a sequence  $((x_{i,n} : i \in I_n))_{n=1}^{\infty}$  of families of points of X (of D) such that

$$(3.1) \qquad (\forall x \in X)((\forall n \in \mathbb{N} \ x \in \operatorname{supp}\varphi_{i_n,n}) \Longrightarrow (x_{i_n,n} \to x))$$

Remark that Definition 3.1 is equivalent to the following one.

**Definition 3.2.** A topological space X is a *(strong) PP-space* if (for every dense set D in X) there exist a sequence  $((U_{i,n} : i \in I_n))_{n=1}^{\infty}$  of locally finite covers of X by co-zero sets  $U_{i,n}$  and a sequence  $((x_{i,n} : i \in I_n))_{n=1}^{\infty}$  of families of points of X (of D) such that

 $(3.2) \qquad (\forall x \in X)((\forall n \in \mathbb{N} \ x \in U_{i_n,n}) \Longrightarrow (x_{i_n,n} \to x))$ 

Clearly, every strong PP-space is a PP-space.

**Proposition 3.3.** Every metrizable space is a strong PP-space.

Proof. Let X be a metrizable space and d a metric on X which generates its topology. Fix an arbitrary dense set D in X. For every  $n \in \mathbb{N}$  let  $\mathcal{B}_n$  be a cover of X by open balls of diameter  $\frac{1}{n}$ . Since X is paracompact, for every n there exists a locally finite cover  $\mathcal{U}_n = (U_{i,n} : i \in I_n)$  of X by open sets  $U_{i,n}$  such that  $\mathcal{U}_n \preceq \mathcal{B}_n$ . Notice that each  $U_{i,n}$  is a co-zero set. Choose a point  $x_{i,n} \in D \cap U_{i,n}$  for all  $n \in \mathbb{N}$  and  $i \in I_n$ . Let  $x \in X$  and let U be an arbitrary neighborhood of x. Then there is  $n_0 \in \mathbb{N}$  such that  $B(x, \frac{1}{n}) \subseteq U$  for all  $n \geq n_0$ . Fix  $n \geq n_0$  and take  $i \in I_n$  such that  $x \in U_{i,n}$ . Since diam  $U_{i,n} \leq \frac{1}{n}$ ,  $d(x, x_{i,n}) \leq \frac{1}{n}$ , consequently,  $x_{i,n} \in U$ .

**Example 3.4.** The Sorgenfrey line  $\mathbb{L}$  is a strong PP-space which is not metrizable.

*Proof.* Recall that the Sorgenfrey line is the real line  $\mathbb{R}$  endowed with the topology generated by the base consisting of all semi-intervals [a, b), where a < b (see [3, Example 1.2.2]).

Let  $D \subseteq \mathbb{L}$  be a dense set. For any  $n \in \mathbb{N}$  and  $i \in \mathbb{Z}$  by  $\varphi_{i,n}$  we denote the characteristic function of  $\left[\frac{i-1}{n}, \frac{i}{n}\right)$  and choose a point  $x_{i,n} \in \left[\frac{i}{n}, \frac{i+1}{n}\right) \cap D$ . Then the sequences  $\left(\left(\varphi_{i,n}: i \in I_n\right)\right)_{n=1}^{\infty}$  and  $\left(\left(x_{i,n}: i \in I_n\right)\right)_{n=1}^{\infty}$  satisfy (3.1).

**Proposition 3.5.** Every  $\sigma$ -metrizable paracompact space is a PP-space.

Proof. Let  $X = \bigcup_{n=1}^{\infty} X_n$ , where  $(X_n)_{n=1}^{\infty}$  is an increasing sequence of closed metrizable subspaces, and let  $d_1$  be a metric on  $X_1$  which generates its topology. According to Hausdorff's theorem [3, p. 297] we can extend the metric  $d_1$  to a metric  $d_2$  on  $X_2$ . Further, we extend the metric  $d_2$  to a metric  $d_3$  on  $X_3$ . Repeating this process, we obtain a sequence  $(d_n)_{n=1}^{\infty}$  of metrics  $d_n$  on  $X_n$  such that  $d_{n+1}|_{X_n} = d_n$  for every  $n \in \mathbb{N}$ . We define a function  $d : X^2 \to \mathbb{R}$  by setting  $d(x, y) = d_n(x, y)$  for  $(x, y) \in X_n^2$ .

Fix  $n \in \mathbb{N}$  and  $m \geq n$ . Let  $\mathcal{B}_{n,m}$  be a cover of  $X_m$  by *d*-open balls of diameter  $\frac{1}{n}$ . For every  $B \in \mathcal{B}_{n,m}$  there exists an open set  $V_B$  in X such that  $V_B \cap X_m = B$ . Let  $\mathcal{V}_{n,m} = \{V_B : B \in \mathcal{B}_{n,m}\}$  and  $\mathcal{U}_n = \bigcup_{m=1}^{\infty} \mathcal{V}_{n,m}$ . Then  $\mathcal{U}_n$  is an open cover of X for every  $n \in \mathbb{N}$ . Since X is paracompact, for every  $n \in \mathbb{N}$  there exists a locally finite partition of unity  $(h_{i,n} : i \in I_n)$  on X subordinated to  $\mathcal{U}_n$ . For every  $n \in \mathbb{N}$  and  $i \in I_n$  we choose  $x_{i,n} \in X_{k(i,n)} \cap \text{supp } h_{i,n}$ , where  $k(i,n) = \min\{m \in \mathbb{N} : X_m \cap \text{supp } h_{i,n} \neq \emptyset\}$ .

Now fix  $x \in X$ . Let  $(i_n)_{n=1}$  be a sequence of indexes  $i_n \in I_n$  such that  $x \in \text{supp } h_{i_n,n}$ . We choose  $m \in \mathbb{N}$  such that  $x \in X_m$ . It is easy to see that  $k(i_n, n) \leq m$  for every  $n \in \mathbb{N}$ . Then  $x_{i_n,n} \in X_m$ . Since  $d_m(x_{i_n,n}, x) \leq \text{diam supp } h_{i_n,n} \leq \frac{1}{n}$ ,  $x_{i_n,n} \to x$  in  $X_m$ . Therefore,  $x_{i_n,n} \to x$  in X.  $\Box$ 

Denote by  $\mathbb{R}^{\infty}$  the collection of all sequences with a finite support, i.e. sequences of the form  $(\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots)$ , where  $\xi_1, \xi_2, \ldots, \xi_n \in \mathbb{R}$ . Clearly,  $\mathbb{R}^{\infty}$  is a linear subspace of the space  $\mathbb{R}^{\mathbb{N}}$  of all sequences. Denote by E the set of all sequences  $e = (\varepsilon_n)_{n=1}^{\infty}$  of positive reals  $\varepsilon_n$  and let

$$U_e = \{ x = (\xi_n)_{n=1}^{\infty} \in \mathbb{R}^{\infty} : (\forall n \in \mathbb{N}) (|\xi_n| \le \varepsilon_n) \}.$$

We consider on  $\mathbb{R}^{\infty}$  the topology in which the system  $\mathcal{U}_0 = \{U_e : e \in E\}$  forms the base of neighborhoods of zero. Then  $\mathbb{R}^{\infty}$  equipped with this topology is a locally convex  $\sigma$ -metrizable paracompact space which is not a first countable space, consequently, non-metrizable.

**Example 3.6.** The space  $\mathbb{R}^{\infty}$  is a PP-space which is not a strong PP-space.

*Proof.* Remark that  $\mathbb{R}^{\infty}$  is a PP-space by Proposition 3.5. We show that  $\mathbb{R}^{\infty}$  is not a strong PP-space. Indeed, let

$$A_n = \{ (\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots) : |\xi_k| \le \frac{1}{n} \ (\forall 1 \le k \le n) \},$$
$$D = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{m} (\mathbb{R}^{\infty} \setminus A_n).$$

Then D is dense in  $\mathbb{R}^{\infty}$ , but there is no sequence in D which converges to  $x = (0, 0, 0, \dots) \in \mathbb{R}^{\infty}$ . Hence,  $\mathbb{R}^{\infty}$  is not a strong PP-space.

## 4. The Lebesgue classification

The following result is an analog of theorems of K. Kuratowski [11] and D. Montgomery [14] who proved that every separately continuous function, defined on a product of a metrizable space and a topological space and with values in a metrizable space, belongs to the first Baire class.

**Theorem 4.1.** Let X be a strong PP-space, Y a topological space, Z a perfectly normal space and  $0 \le \alpha < \omega_1$ . Then

$$C\overline{H^*_{\alpha}}(X \times Y, Z) \subseteq H^*_{\alpha+1}(X \times Y, Z).$$

Proof. Let  $f \in C\overline{H^*_{\alpha}}(X \times Y, Z)$ . Then for the set  $X_{H^*_{\alpha}}(f)$  there exist a sequence  $(\mathcal{U}_n)_{n=1}^{\infty}$  of locally finite covers  $\mathcal{U}_n = (U_{i,n} : i \in I_n)$  of X by co-zero sets  $U_{i,n}$  and a sequence  $((x_{i,n} : i \in I_n))_{n=1}^{\infty}$  of families of points of the set  $X_{H^*_{\alpha}}(f)$  satisfying condition (3.2).

We choose an arbitrary closed set  $F \subseteq Z$ . Since Z is perfectly normal,  $F = \bigcap_{m=1}^{\infty} G_m$ , where  $G_m$  are open sets in Z such that  $\overline{G}_{m+1} \subseteq G_m$  for every

 $m \in \mathbb{N}$ . Let us verify that the equality

(4.1) 
$$f^{-1}(F) = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} \bigcup_{i \in I_n}^{\infty} U_{i,n} \times (f^{x_{i,n}})^{-1}(G_m).$$

holds. Indeed, let  $(x_0, y_0) \in f^{-1}(F)$ . Then  $f(x_0, y_0) \in G_m$  for every  $m \in \mathbb{N}$ . Fix any  $m \in \mathbb{N}$ . Since  $V_m = f_{y_0}^{-1}(G_m)$  is an open neighborhood of  $x_0$ , there exists a number  $n_0 \geq m$  such that for all  $n \geq n_0$  and  $i \in I_n$  the inclusion  $x_{i,n} \in V_m$  holds whenever  $x_0 \in U_{i,n}$ . We choose  $i_0 \in I_{n_0}$  such that  $x_0 \in U_{i_0,n_0}$ . Then  $f(x_{i_0,n_0}, y_0) \in G_m$ . Hence,  $(x_0, y_0)$  belongs to the right-hand side of (4.1).

Conversely, let  $(x_0, y_0)$  belong to the right-hand side of (4.1). Fix  $m \in \mathbb{N}$ . We choose sequences  $(n_k)_{k=1}^{\infty}$ ,  $(m_k)_{k=1}^{\infty}$  of numbers  $n_k, m_k \in \mathbb{N}$  and a sequence  $(i_k)_{k=1}^{\infty}$  of indexes  $i_k \in I_{n_k}$  such that

$$m = m_1 \le n_1 < m_2 \le n_2 < \dots < m_k \le n_k < \dots,$$

$$x_0 \in U_{i_k, n_k}$$
 and  $f(x_{i_k, n_k}, y_0) \in G_{m_k} \subseteq G_m$  for every  $k \in \mathbb{N}$ .

Since  $\lim_{k\to\infty} x_{i_k,n_k} = x_0$  and the mapping f is continuous with respect to the first variable,  $\lim_{k\to\infty} f(x_{i_k,n_k},y_0) = f(x_0,y_0)$ . Therefore,  $f(x_0,y_0) \in \overline{G}_m$  for every  $m \in \mathbb{N}$ . Hence,  $(x_0,y_0)$  belongs to the left-hand side of (4.1).

Since  $f^{x_{i,n}} \in H^*_{\alpha}(Y, Z)$ , the sets  $(f^{x_{i,n}})^{-1}(G_m)$  are of the functionally additive class  $\alpha$  in Y. Moreover, all  $U_{i,n}$  are co-zero sets in X, consequently, by [6, Theorem 1.5] the set  $E_n = \bigcup_{i \in I_n} U_{i,n} \times (f^{x_{i,n}})^{-1}(G_m)$  belongs to the  $\alpha$ 'th functionally additive class for every n. Therefore,  $\bigcup_{n \ge m} E_n$  is of the  $\alpha$ 'th functionally additive class. Hence,  $f^{-1}(F)$  is of the  $(\alpha + 1)$ 'th functionally multiplicative class in  $X \times Y$ .

**Definition 4.2.** We say that a topological space X has the (strong) L-property or is a (strong) L-space, if for every topological space Y every (nearly vertically) separately continuous function  $f: X \times Y \to \mathbb{R}$  is of the first Lebesgue class.

According to Theorem 4.1 every strong PP-space has the strong L-property.

**Proposition 4.3.** Let X be a completely regular strong L-space. Then for any dense set  $A \subseteq X$  and a point  $x_0 \in X$  there exists a countable dense set  $A_0 \subseteq A$  such that  $x_0 \in \overline{A_0}$ .

Proof. Fix an arbitrary everywhere dense set  $A \subseteq X$  and a point  $x_0 \in A$ . Let Y be the space of all real-valued continuous functions on X, endowed with the topology of pointwise convergence on A. Since the evaluation function  $e: X \times Y \to \mathbb{R}$ , e(x, y) = y(x), is nearly vertically separately continuous,  $e \in H_1(X \times Y, \mathbb{R})$ . Then  $B = e^{-1}(0)$  is  $G_{\delta}$ -set in  $X \times Y$ . Hence,  $B_0 = \{y \in Y : y(x_0) = 0\}$  is a  $G_{\delta}$ -set in Y. We set  $y_0 \equiv 0$  and choose a sequence  $(V_n)_{n=1}^{\infty}$  of basic neighborhoods of  $y_0$  in Y such that  $\bigcap_{n=1}^{\infty} V_n \subseteq B_0$ . For every n there

exist a finite set  $\{x_{i,n} : i \in I_n\}$  of X and  $\varepsilon_n > 0$  such that  $V_n = \{y \in Y : \max_{i \in I_n} |y(x_{i,n})| < \varepsilon_n\}$ . Let

$$A_0 = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in I_n} \{x_{i,n}\}.$$

Take an open neighborhood U of  $x_0$  in X and suppose that  $U \cap A_0 = \emptyset$ . Since X is completely regular and  $x_0 \notin X \setminus U$ , there exists a continuous function  $y: X \to \mathbb{R}$  such that  $y(x_0) = 1$  and  $y(X \setminus U) \subseteq \{0\}$ . Then  $y \in \bigcap_{n=1}^{\infty} V_n$ , but  $y \notin B_0$ , a contradiction. Therefore,  $U \cap A_0 \neq \emptyset$ , and  $x_0 \in \overline{A_0}$ .

#### 5. Baire classification and $\sigma$ -metrizable spaces

We recall that a topological space Y is *B*-favorable for a space X, if  $H_1(X, Y) \subseteq B_1(X, Y)$  (see [10]).

**Definition 5.1.** Let  $0 \leq \alpha < \omega_1$ . A topological space Y is called *weakly*  $B_{\alpha}$ -favorable for a space X, if  $H^*_{\alpha}(X,Y) \subseteq B_{\alpha}(X,Y)$ .

Clearly, every B-favorable space is weakly  $B_1$ -favorable.

**Proposition 5.2.** Let  $0 \leq \alpha < \omega_1$ , X a topological space,  $Y = \bigcup_{n=1}^{\infty} Y_n$  a contractible space,  $f: X \to Y$  a mapping,  $(X_n)_{n=1}^{\infty}$  a sequence of sets of the  $\alpha$ 'th functionally additive class such that  $X = \bigcup_{n=1}^{\infty} X_n$  and  $f(X_n) \subseteq Y_n$  for every  $n \in \mathbb{N}$ . If one of the following conditions holds

- (i)  $Y_n$  is a nonempty weakly  $B_{\alpha}$ -favorable space for X for all n and  $f \in H^*_{\alpha}(X,Y)$ , or
- (ii)  $\alpha > 0$  and for every n there exists a mapping  $f_n \in B_{\alpha}(X, Y_n)$  such that  $f_n|_{X_n} = f|_{X_n}$ ,

then  $f \in B_{\alpha}(X, Y)$ .

*Proof.* If  $\alpha = 0$  then the statement is obvious in case (i).

Let  $\alpha > 0$ . By [6, Lemma 2.1] there exists a sequence  $(E_n)_{n=1}^{\infty}$  of disjoint functionally ambiguous sets of the  $\alpha$ 'th class such that  $E_n \subseteq X_n$  and  $X = \bigcup_{n=1}^{\infty} E_n$ .

In case (i) for every n we choose a point  $y_n \in Y_n$  and let

$$f_n(x) = \begin{cases} f(x), & \text{if } x \in E_n, \\ y_n, & \text{if } x \in X \setminus E_n \end{cases}$$

Since  $f \in H^*_{\alpha}(X, Y)$  and  $E_n$  is functionally ambiguous set of the  $\alpha$ 'th class,  $f_n \in H^*_{\alpha}(X, Y_n)$ . Then  $f_n \in B_{\alpha}(X, Y_n)$  provided  $Y_n$  is weakly  $B_{\alpha}$ -favorable for X.

For every *n* there exists a sequence of mappings  $g_{n,m}: X \to Y_n$  of classes  $< \alpha$  such that  $g_{n,m}(x) \xrightarrow[m \to \infty]{} f_n(x)$  for every  $x \in X$ . In particular,  $\lim_{m \to \infty} g_{n,m}(x) =$ 

f(x) on  $E_n$ . Since  $E_n$  is of the  $\alpha$ -th functionally additive class,  $E_n = \bigcup_{m=1}^{\infty} B_{n,m}$ , where  $(B_{n,m})_{m=1}^{\infty}$  is an increasing sequence of sets of functionally additive classes  $< \alpha$ . Let  $F_{n,m} = \emptyset$  if n > m, and let  $F_{n,m} = B_{n,m}$  if  $n \le m$ . According to Lemma 2.2, for every  $m \in \mathbb{N}$  there exists a mapping  $g_m : X \to Y$ of a class  $< \alpha$  such that  $g_m|_{F_{n,m}} = g_{n,m}$ , since the system  $\{F_{n,m} : n \in \mathbb{N}\}$  is finite for every  $m \in \mathbb{N}$ .

It remains to prove that  $g_m(x) \to f(x)$  on X. Let  $x \in X$ . We choose a number  $n \in \mathbb{N}$  such that  $x \in E_n$ . Since the sequence  $(F_{n,m})_{m=1}^{\infty}$  is increasing, there exists a number  $m_0$  such that  $x \in F_{n,m}$  for all  $m \ge m_0$ . Then  $g_m(x) = g_{n,m}(x)$  for all  $m \ge m_0$ . Hence,  $\lim_{m \to \infty} g_m(x) = \lim_{m \to \infty} g_{n,m}(x) = f(x)$ . Therefore,  $f \in B_\alpha(X, Y)$ .

**Definition 5.3.** Let  $\{X_n : n \in \mathbb{N}\}$  be a cover of a topological space X. We say that  $(X, (X_n)_{n=1}^{\infty})$  has the property (\*) if for every convergent sequence  $(x_k)_{k=1}^{\infty}$  in X there exists a number n such that  $\{x_k : k \in \mathbb{N}\} \subseteq X_n$ .

**Proposition 5.4.** Let  $0 \leq \alpha < \omega_1$ , X a strong PP-space, Y a topological space,  $(Z, (Z_n)_{n=1}^{\infty})$  have the property (\*), let  $Z_n$  be closed in Z (and let  $Z_n$  be a zero-set in Z if  $\alpha = 0$ ) for every  $n \in \mathbb{N}$ , and  $f \in C\overline{B}_{\alpha}(X \times Y, Z)$ . Then there exists a sequence  $(B_n)_{n=1}^{\infty}$  of sets of the  $\alpha$ 'th  $/(\alpha + 1)$ 'th/ functionally multiplicative class in  $X \times Y$ , if  $\alpha$  is finite /infinite/, such that

$$\bigcup_{n=1}^{\infty} B_n = X \times Y \quad and \quad f(B_n) \subseteq Z_n$$

for every  $n \in \mathbb{N}$ .

*Proof.* Since  $X_{B_{\alpha}}(f)$  is dense in X, there exists a sequence  $(\mathcal{U}_m = (U_{i,m} : i \in I_m))_{m=1}^{\infty}$  of locally finite co-zero covers of X and a sequence  $((x_{i,m} : i \in I_m))_{m=1}^{\infty}$  of families of points of  $X_{B_{\alpha}}(f)$  such that condition (3.2) holds.

In accordance with [16, Proposition 3.2] there exists a pseudo-metric on X such that all the set  $U_{i,m}$  are co-zero with respect to this pseudo-metric. Denote by  $\mathcal{T}$  the topology on X generated by the pseudo-metric. Obviously, the topology  $\mathcal{T}$  is weaker than the initial one. Using the paracompactness of  $(X, \mathcal{T})$ , for every m we choose a locally finite open cover  $\mathcal{V}_m = (V_{s,m} : s \in S_m)$  which refines  $\mathcal{U}_m$ . By [3, Lemma 1.5.6], for every m there exists a locally finite closed cover  $(F_{s,m} : s \in S_m)$  of  $(X, \mathcal{T})$  such that  $F_{s,m} \subseteq V_{s,m}$  for every  $s \in S_m$ . Now for every  $s \in S_m$  we choose  $i(s) \in I_m$  such that  $F_{s,m} \subseteq U_{i(s),m}$ .

For all  $m, n \in \mathbb{N}$  and  $s \in S_m$  let

$$A_{s,m,n} = (f^{x_{i(s),m}})^{-1}(Z_n), \quad B_{m,n} = \bigcup_{s \in S_m} (F_{s,m} \times A_{s,m,n}), \quad B_n = \bigcap_{m=1}^{\infty} B_{m,n}.$$

Since f is of the  $\alpha$ 'th Baire class with respect to the second variable, for every n the set  $A_{s,m,n}$  belongs to the  $\alpha$ 'th functionally multiplicative class  $/\alpha + 1/$  in Y for all  $m \in \mathbb{N}$  and  $s \in S_m$ , if  $\alpha$  is finite /infinite/ by Lemma 2.4. According to [6, Proposition 1.4] the set  $B_{m,n}$  is of the  $\alpha$ 'th  $/(\alpha + 1)$ 'th/ functionally

multiplicative class in  $(X, \mathcal{T}) \times Y$ . Then the set  $B_n$  is of the  $\alpha$ 'th  $/(\alpha + 1)$ 'th/functionally multiplicative class in  $(X, \mathcal{T}) \times Y$ , and, consequently, in  $X \times Y$  for every n.

We prove that  $f(B_n) \subseteq Z_n$  for every n. To do this, fix  $n \in \mathbb{N}$  and  $(x, y) \in B_n$ . We choose a sequence  $(s_m)_{m=1}^{\infty}$  such that  $x \in F_{m,s_m} \subseteq U_{m,i(s_m)}$  and  $f(x_{m,i(s_m)}, y) \in Z_n$ . Then  $x_{m,i(s_m)} \xrightarrow[m \to \infty]{} x$ . Since f is continuous with respect to the first variable,  $f(x_{m,i(s_m)}, y) \xrightarrow[m \to \infty]{} f(x, y)$ . The set  $Z_n$  is closed, then  $f(x, y) \in Z_n$ .

Now we show that  $\bigcup_{n=1}^{\infty} B_n = X \times Y$ . Let  $(x, y) \in X \times Y$ . Then there exists a sequence  $(s_m)_{m=1}^{\infty}$  such that  $x \in F_{m,s_m} \subseteq U_{m,i(s_m)}$  and  $f(x_{m,i(s_m)}, y) \xrightarrow[m \to \infty]{} f(x, y)$ . Since  $(Z, (Z_n)_{n=1}^{\infty})$  satisfies (\*), there is a number n such that  $\{f(x_{m,i_m}, y) : m \in \mathbb{N}\}$  is contained in  $Z_n$ , i.e.  $y \in A_{m,n,i}$  for every  $m \in \mathbb{N}$ . Hence,  $(x, y) \in B_n$ .

**Theorem 5.5.** Let X be a strong PP-space, Y a topological space,  $\{Z_n : n \in \mathbb{N}\}$  a closed cover of a contractible perfectly normal space Z, let  $(Z, (Z_n)_{n=1}^{\infty})$  satisfy (\*) and  $Z_n$  be weakly  $B_1$ -favorable for  $X \times Y$  for every  $n \in \mathbb{N}$ . Then

$$C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

Proof. Let  $f \in C\overline{C}(X \times Y, Z)$ . In accordance with Theorem 4.1,  $f \in H_1^*(X \times Y, Z)$ . Moreover, Proposition 5.4 implies that there exists a sequence of zerosets  $B_n \subseteq X \times Y$  such that  $\bigcup_{n=1}^{\infty} B_n = X \times Y$  and  $f(B_n) \subseteq Z_n$  for every  $n \in \mathbb{N}$ . Since for every n the set  $B_n$  is an  $F_{\sigma}^*$ -set and  $H_1^*(X \times Y, Z_n) \subseteq B_1(X \times Y, Z_n)$ ,  $f \in B_1(X \times Y, Z)$  by Proposition 5.2.

**Definition 5.6.** A topological space X is called *strongly*  $\sigma$ -*metrizable*, if it is  $\sigma$ metrizable with a stratification  $(X_n)_{n=1}^{\infty}$  and  $(X, (X_n)_{n=1}^{\infty})$  has the property (\*).

Taking into account that every regular strongly  $\sigma$ -metrizable space with metrizable separable stratification is perfectly normal (see [13, Corollary 4.1.6]) and every metrizable separable arcwise connected and locally arcwise connected space is weakly  $B_{\alpha}$ -favorable for any topological space X for all  $0 \leq \alpha < \omega_1$  [7, Theorem 3.3.5], we immediately obtain the following corollary of Theorem 5.5.

**Corollary 5.7.** Let X be a strong PP-space, Y a topological space and Z a contractible regular strongly  $\sigma$ -metrizable space with a stratification  $(Z_n)_{n=1}^{\infty}$ , where  $Z_n$  is a metrizable separable arcwise connected and locally arcwise connected space for every  $n \in \mathbb{N}$ . Then

$$C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

#### References

- T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math. Stud. 18, no. 1 (2002), 10–28.
- [2] M. Burke, Borel measurability of separately continuous functions, Topology Appl. 129, no. 1 (2003), 29–65.
- [3] R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).
- [4] H. Hahn, Reelle Funktionen. 1. Teil. Punktfunktionen., Leipzig: Academische Verlagsgesellscheft M.B.H. (1932).
- [5] A. Kalancha and V. Maslyuchenko, Čech-Lebesgue dimension and Baire classification of vector-valued separately continuous mappings, Ukr. Math. J. 55, no. 11 (2003), 1596– 1599 (in Ukrainian).
- [6] O. Karlova, Baire classification of mappings which are continuous in the first variable and of the functional class  $\alpha$  in the second one, Math. Bull. NTSH. 2 (2005), 98–114 (in Ukrainian).
- [7] O. Karlova, Baire and Lebesgue classification of vector-values and multi-valued mappings, PhD thesis (2006) (in Ukrainian).
- [8] O. Karlova, Separately continuous σ-discrete mappings, Bull. of Chernivtsi Nat. Univ., Mathematics 314-315 (2006), 77-79 (in Ukrainian).
- [9] O. Karlova and V. Maslyuchenko, Separately continuous mappings with values in non locally convex spaces, Ukr. Math. J. 59, no. 12 (2007), 1639–1646 (in Ukrainian).
- [10] O. Karlova and V. Mykhaylyuk, Weak local homeomorphisms and B-favorable spaces, Ukr. Math. J. 60, no. 9 (2008), 1189–1195 (in Ukrainian).
- K. Kuratowski, Quelques probémes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 534–545.
- [12] H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
- [13] V. Maslyuchenko, Separately continuous mappings and Köthe spaces, Doctoral thesis (1999) (in Ukrainian).
- [14] D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527–533.
- [15] W. Moran, Separate continuity and supports of measures, J. London Math. Soc. 44 (1969), 320–324.
- [16] V. Mykhaylyuk, Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5, no. 2 (2008), 203–218 (in Ukrainian).
- [17] W. Rudin, Lebesgue first theorem, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies 78. Academic Press (1981), 741–747.
- [18] O. Sobchuk, PP-spaces and Baire classification, International Conference on Functional Analysis and its Applications, dedicated to the 110th anniversary of Stefan Banach. Book of abstracts, (2002), P. 189.
- [19] G. Vera, Baire mesurability of separately continuous functions, Quart. J. Math. Oxford 39, no. 2 (1988), 109–116.

(Received December 2011 – Accepted May 2012)

O. KARLOVA (Maslenizza.Ua@gmail.com)

Chernivtsi National University, Department of Mathematical Analysis, Kotsjubyns'koho 2, Chernivtsi 58012, Ukraine