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Abstract

In this paper, we introduce a new class of path-confluent mapping,

called strongly path-confluent maps. We discuss and study some char-

acterizations and some basic properties of this class of mappings. Rela-

tions between this class and some other existing classes of mappings are

also obtained. Also we study some operations on this class of mappings,

such as: composition property, composition factor property, component

restriction property and path-component restriction property.
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1. Introduction and preliminaries

Throughout this work a space will always mean a topological space on which
no separation axiom is assumed unless explicitly stated and all mappings are
assumed to be continuous. In this paper, we obtain a new kind of path-confluent
mapping called, strongly path-confluent. A subset K of a space X is said to
be a continuum if K is connected and compact. Using this idea of a con-
tinuum, Charatonik introduced and studied the concept of confluent mapping
between topological spaces [1] as follows: a mapping f : X −→ Y is said to
be confluent provided that for each subcontinuum K of Y and for each com-
ponent C of f−1(K) we have f(C) = K. Motivated by Charatonik’s work, we
have introduced the notions of quasi-confluent and path-confluent mappings in
[9, 10] and studied their basic properties. Recall that space X is said to be
connected between two subsets A and B if there is no closed-open set F such
that A ⊂ F and B ∩ F = φ. The connectedness of a space X between points
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is an equivalence relation on X . The equivalence classes of this relation are
called quasi-components of the space X , that is, a quasi-component of a space
X containing a point p ∈ X is the set of all points x ∈ X such that the space
X is connected between {p} and {x}. In other words, a quasi-component of
a space X containing a point p ∈ X is the intersection of all closed and open
subsets of X containing p (see [7]). Moreover a mapping f : X −→ Y is said
to be quasi-confluent provided that for each continuum K subset of Y and for
each quasi-component QC of f−1(K) we have f(QC) = K. The notion of
path-component of a point p ∈ X is a maximal path-connected subset of X
containing p and it is denoted by PC(X, p) (see [5]). By using this notion we
introduced the appropriate definition for path-confluent mapping as follows:
A mapping f : X −→ Y is said to be path-confluent provided that for each
continuum K subset of Y and for each path-component PC of f−1(K) we have
f(PC) = K.

In this paper we are interested in further generalization of the work of Chara-
tonik in the context of path-components and connectedness. In Section 2 we
introduce the notion of strongly path-confluent mapping and study some char-
acterizations and some basic properties of this class of mappings. Also we
study its relation with other known classes of generalized confluent mappings,
namely the classes of confluent, quasi-confluent, path-confluent, and strongly
confluent mappings. In Section 3 we study the composition property and com-
position factor property for this class. In Section 4 we study the notion of
path-component restriction property for the class of strongly path-confluent
mappings.

We denote by C, QC(or QT ), and PC(or PT ) the components, quasi-
components, and path-components of any topological spaces X at any point
x ∈ X , respectively, and the symbol N is used for the set of natural numbers.

Now we recall some known notions, definitions which will be used in this
work.

Definition 1.1 ([4]). A mapping f : X −→ Y is said to be strongly confluent
provided for each connected non-empty subset K of Y and for each component
C of f−1(K) we have f(C) = K.

Definition 1.2 ([11]). A mapping f : X −→ Y is a local homeomorphism if for
each point x ∈ X there exists an open neighborhood U of x such that f(U) is
an open neighborhood of f(x) and the restriction mapping f | U : U −→ f(U)
is a homeomorphism.

Definition 1.3 ([2]). A classM of mappings between topological spaces is said
to have the component restriction property provided that for each mapping
f : X −→ Y ∈ M and for each B subset of Y , if A ⊂ X is the union of some
components of f−1(B), the restriction mapping f | A : A −→ f(A) ∈ M.
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2. Strongly path-confluent mappings

In this section we introduce the concept of strongly path-confluent mapping
and discuss some of its interesting properties and its relations with other known
mappings.

Definition 2.1. A mapping f : X −→ Y is said to be strongly path-confluent
provided that for each connected K subset of Y and for each path-component
PC of f−1 (K) we have f(PC) = K.

Proposition 2.2. The following statements are true:

(1) every strongly path-confluent mapping is path-confluent;

(2) every strongly path-confluent mapping is confluent;

(3) every strongly path-confluent mapping is strongly confluent;

(4) every strongly path-confluent mapping is quasi-confluent.

Proof. The proof comes directly from the definitions. �

The following diagram follows immediately from the definitions in which
none of these implications is reversible as shown by the following example.
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Diagram 2.1

Example 2.3. Let X = {(x, y) : x = 0, and y ∈ [−1, 1]} ∪ {(x, y) : y =
sin π

x
: x ∈ (0, 1]} ⊂ R

2 with usual topology and Y = X/R, where R the
equivalence relation in X , given by R = {((0, y), (0−y)) : y ∈ [−1, 1]}∪{(p, p) :
p ∈ X}. Then the natural projection f : X −→ Y is:

(1) confluent;
(2) quasi-confluent;
(3) strongly confluent.

But, it is neither path-confluent nor strongly path-confluent mappings.

Proposition 2.4. Let f : X −→ Y be a mapping. If Y is totally disconnected

space, then the following items are equivalent:

(1) f is strongly path-confluent;

(2) f is path-confluent.

Proof. (1) =⇒ (2): Follows immediately from the Proposition 2.2.
(2) =⇒ (1): The proof comes directly from the fact that in totally disconnected
space the classes of connected and continua are the same. �
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Recall that a space X is called almost discrete if every open subset of X is
closed; equivalently, if every closed subset of X is open (see [6, 7]).

Proposition 2.5. Let f : X −→ Y be a mapping of locally path-connected

space X into totally disconnected space Y . If X is almost discrete and Y is

Hausdorff, then the following items are equivalent:

(1) f is strongly path-confluent;

(2) f is strongly confluent;

(3) f is path-confluent;

(4) f is confluent;

(5) f is quasi-confluent.

Proof. The proof of the implication (1) =⇒ (2) is obvious.
(2) =⇒ (3): Suppose that mapping f : X −→ Y is a strongly confluent. Let
K be any continuum subset of Y and PC be any path-component of f−1(K).
Then, K is connected subset of Y . Since Y is totally disconnected and Haus-
dorff space, then K is closed singleton set. Since, X is locally path-connected
and almost discrete space, then the set f−1(K) is locally path-connected.
Hence, its components and path-component are the same. Thus, f(PC) = K
by assumption. Therefore f is path-confluent mapping.
The proofs of the implications (3) =⇒ (4) and (4) =⇒ (5) are obvious.
(5) =⇒ (1): Assume that mapping f : X −→ Y is a quasi-confluent. Let
K be any connected subset of Y and PC be any path-component of f−1(K).
Since Y is totally disconnected and Hausdorff space, then K is closed single-
ton set. Thus, K is continuum in Y . Since, X is locally path-connected and
almost discrete space, then the set f−1(K) is locally path-connected. Hence,
its quasi-components and path-components are the same. Thus f(PC) = K
by assumption. Therefore f is path-confluent mapping. �

Proposition 2.6. Let f : X −→ Y be a mapping of space X into compact

space Y . If every connected subset of Y is closed, then the following items are

equivalent:

(1) f is strongly path-confluent;

(2) f is path-confluent.

Proof. (1) =⇒ (2) :Obvious.
(2) =⇒ (1): Let K ⊆ Y be an arbitrary connected, and PC be an arbitrary
path-component of f−1(K). Then K ⊆ Y is closed by the assumption. So, K
is compact subset of Y . Thus, K is continuum subset of Y . Then f(K) = PC
by assumption. Therefore, f is strongly path-confluent. �

Proposition 2.7. If f : X −→ Y is a mapping of space X into compact

Hausdorff space Y , then the following statements are equivalent:

(1) f is path-confluent;

(2) for each closed connected K ⊆ Y , the path-components of f−1(K) are

mapped into K under f .
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Proof. (1) =⇒ (2): Let K ⊆ Y be any closed connected, and PC be any path-
component f−1(K). Since, Y is compact space, then K is compact. Thus, K
is continuum in Y . So, f(PC) = K by the path-confluence of f .
(2) =⇒ (1): Let K be any continuum in Y , and PC be any path-component
of f−1(K). Since, Y is Hausdorff space, then K is closed. So, K is closed
connected subset of Y . Thus, f(PC) = K. Hence, f is path-confluent mapping.

�

Recall that a connected space X is said to be σ-connected provided that it
can not be decomposed into countably many mutually separated non-empty
subsets, (see[3, 8]). Also a space X is said to be hereditarily σ-connected
provided that it is connected and each connected subset of it is σ-connected
(see[4]).

The following theorem shows the hereditarily σ-connected property is strongly
path-confluent property.

Theorem 2.8. A surjective strongly path-confluent mapping preserves heredi-

tarily σ-connected spaces.

Proof. Assume that mapping f : X −→ Y be a surjective strongly path-
confluent such that X is a hereditarily σ-connected space, and suppose on
the contrary that Y is not hereditarily σ-connected. Let K be any connected
subset of Y such that

K =

∞⋃

i=1

Ai,

where Ai and Aj are non-empty mutually separated sets for i 6= j and i, j ∈ N.
Then f−1(Ai) and f−1(Aj) are non-empty mutually separated for i 6= j and
i, j ∈ N. Let PC be a path-component of f−1(K). Since, f is strongly path-
confluent, then we have f(PC) = K. So, we infer that

PC ∩ f−1(Ai) 6= φ for i ∈ N

Since, PC ⊂ f−1(K) = f−1(
∞⋃
i=1

Ai) =
∞⋃
i=1

f−1(Ai) then,

PC =

∞⋃

i=1

(f−1(Ai) ∩ PC),

where f−1(Ai)∩PC and f−1(Aj)∩PC are non-empty mutually separated sets
for i 6= j and i, j ∈ N. But this contradicts the fact that PC is σ-connected
set. Thus, K is σ-connected. Hence, Y is hereditarily σ-connected space. �

Theorem 2.9. Let f : X −→ Y be a mapping between topological spaces X
and Y such that Y = Y1 ∪ Y2 is a decomposition of Y into connected subsets.

If the following properties hold:

(1) either Y1 ∩ Y2 6= φ or Y1, and Y2 are separated;

(2) the intersection of any two connected subsets of Y is connected;

(3) f |f−1(Yi) is strongly path-confluent mapping for i = 1, 2.

Then f is strongly path-confluent.
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Proof. Let K be an arbitrary connected subset of Y , and PC be any path-
component of f−1(K). Assume that Y = Y1 ∪ Y2, if Y1 ∩ Cl(Y2) = φ =
Cl(Y1) ∩ Y2, then either K ⊆ Y1 or K ⊆ Y2. So that by condition (3) we infer
that f(PC) = K. Therefore, f is strongly path-confluent mapping. Suppose
that Y1 ∩ Y2 6= φ and that K − Y1 6= φ 6= K − Y2. Let x ∈ PC such that
f(x) ∈ Y1. Since, K∩Y1 is a connected subset of Y1, if PC1 is a path-component
of x in f−1(K ∩ Y1), then by the condition (3), we have

(2.1) f(PC1) = K ∩ Y1, and PC1 ⊆ PC.

Also, let x′ ∈ PC1 ∩ f−1(y) such that y ∈ K ∩ Y1 ∩ Y2 6= φ. Since, K ∩ Y2 is a
connected subset of Y2, if PC2 is a path-component of x′ in f−1(K ∩ Y2), then
by the condition (3), we have

(2.2) f(PC2) = K ∩ Y2, and PC2 ⊆ PC.

By (2.1) and (2.2) we obtain

K = K ∩ (Y1 ∪ Y2) = (K ∩ Y1) ∪ (K ∩ Y2) = f(PC1) ∪ f(PC2) ⊆ f(PC).

But, we always have f(PC) ⊆ K. So, f(PC) = K. Hence, f is strongly
path-confluent mapping. �

The following corollary is a generalization of the Theorem 2.9.

Corollary 2.10. If f : X −→ Y be a mapping, and Y1, Y2, ..., Yk are connected

subsets of Y such that Y = Y1 ∪ ... ∪ Yk. If the following properties hold:

(1) either Yi ∩ Yj 6= φ or Yi, Yj are separated, for each i 6= j and i, j ∈
{1, ..., k};

(2) the intersection of any two connected subsets of Y is connected;

(3) f |f−1(Yi) is strongly path-confluent mapping for i ∈ {1, ..., k}.

Then f is strongly path-confluent.

3. The composition properties

We say that a class M of mappings has the composition property provided
that for any two mappings f : X −→ Y and g : Y −→ Z belonging to M

then their composition gof belongs to M. Also, we say that a class M of map-
pings has the composition factor property provided that for any two mappings
f : X −→ Y and g : Y −→ Z such that gof belongs to M, then g belongs to M.

Before we prove the main results in this section, we need to introduce the
following lemma.

Lemma 3.1. Let f : X −→ Y and g : Y −→ Z be two mappings. If f is a

strongly path-confluent and h = gof , then for each connected K subset of Z,

and each path-component PC of h−1(K), we have f(PC) is a path-component

of g−1(K).
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Proof. Let K be any connected in Z, and PC be any path-component of
h−1(K). Since PC ⊆ h−1(K) = (gof)−1(K) = f−1(g−1(K)), then PC ⊆
f−1(g−1(K)). So, f(PC) ⊆ g−1(K). It is obviously that f(PC) ⊆ PT for some
path-component PT of g−1(K). Then, PC ⊆ f−1(PT ). Since, f(PC) ⊆ PT ⊆
g−1(K), then PC ⊆ f−1(PT ) ⊆ f−1(g−1(K)) = (gof)−1(K) = h−1(K).
Thus, PC is the path-component of f−1(PT ). Now, let Q be any connected
in PT . So, f−1(Q) ⊆ f−1(PT ). Since PC is a path-component of f−1(PT ),
then, PC ∩ f−1(Q) is the path-component of f−1(Q). But, f is strongly path-
confluent mapping. Thus,

f(PC ∩ f−1(Q)) = Q = f(PC) ∩Q.

Which implies that Q ⊆ f(PC) ⊆ g−1(K). Hence, f(PC) = PT . Therefore,
f(PC) is a path-component of g−1(K). �

The following theorem shows that the class of strongly path-confluent map-
pings has the composition property.

Theorem 3.2. Let f : X −→ Y and g : Y −→ Z be two strongly path-confluent

mappings. Then h = gof is strongly path-confluent mapping.

Proof. Let K ⊆ Z be a connected and PC be any path-component of h−1(K).
Since, f is a strongly path-confluent mapping, then f(PC) is a path-component
of g−1(K) by the Lemma 3.1. Then by the strongly path-confluence of g, we
infer that h(PC) = g(f(PC)) = K. Hence, h = gof is strongly path-confluent
mapping. �

Proposition 3.3. Let f : X −→ Y and g : Y −→ Z be two mappings. If f
is a homeomorphism and g is a strongly path-confluent mapping, then gof is a

strongly path-confluent mapping.

Proof. Let K be a connected subset of Z, and PC be the path-component
of the inverse image (gof)−1(K). We want to prove that gof(PC) = K.
Obviously PC ⊆ (gof)−1(K) = f−1g−1(K). So, f(PC) ⊆ g−1(K). Since, f
is a homeomorphism, then f(PC) is the path-component of g−1(K). Since,
g is strongly path-confluent, then g(f(PC)) = K. Therefore, gof is strongly
path-confluent mapping. �

The following theorem shows that the class of strongly path-confluent map-
pings has the composition factor property.

Theorem 3.4. Let f : X −→ Y and g : Y −→ Z be two mappings. If h =
gof is strongly path-confluent mapping, then g is also strongly path-confluent

mapping.

Proof. Let K be a connected subset of Z and PC be any path-component of
g−1(K). Then

(3.1) g(PC) ⊆ K.
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On the other hand, since, h is a strongly path-confluent we have that for each
x ∈ f−1(PC)

h(PC(h−1(K), x)) = K.

Then f(PC(h−1(K), x)) ⊆ PC. So, we get

(3.2) K = gf(PC(h−1(K), x)) ⊆ g(PC).

Then from (3.1) and (3.2), we get g(PC) = K. Hence, g is strongly path-
confluent. �

Remark 3.5. If h = gof is strongly path-confluent mapping, then f is not
necessarily strongly path-confluent mapping as shown by the following example.

Example 3.6. Let X = {a, b, c, d, e}, Y = {ℓ,m, n, o} and Z = {p, q, r} with
topologies τ = {φ,X, {a}, {c, d}, {a, c, d}, {c, d, e}, {c, d, a, e}}, σ = {φ, Y, {n}, {n, o}},
and γ = {φ, Z}} defined on X, Y and Z, respectively. Let f : X −→ Y be a
mapping defined by:

f(a) = ℓ, f(b) = m, f(c) = f(d) = n, and f(e) = o.

Also let g : Y −→ Z be a mapping defined by:

g(ℓ) = g(m) = p, g(n) = r, and g(o) = q.

Assume that h = g ◦ f : X −→ Z which is defined by:

h(a) = h(b) = p, h(c) = h(d) = r, and h(e) = q.

Then the mappings h and g are strongly path-confluent, but f is not strongly
path-confluent. Note that, if we take the subcontinuum K = {ℓ, n} of Y . Then
the path-components of f−1(K) = {a, c, d} are PC = {a} and PT = {c, d} and
f(PC) = ℓ 6= K and f(PT ) = n 6= K. Hence, f is not strongly path-confluent
mapping.

Now, the following theorem clarifies under certain conditions, the mapping
f will be strongly path-confluent. Let a mapping f : X −→ Y be given.
Recall that a subset A ⊂ X is said to be an inverse set under f provided that
A = f−1(f(A)), (see [1]).

Theorem 3.7. Let f : X −→ Y and g : Y −→ Z be two mappings. If h = g ◦f
is strongly path-confluent mapping, and if every set in Y is an inverse set, then

f is strongly path-confluent mapping.

Proof. Let K be any connected set in Y , and let PC be any path-component
of f−1(K). Then, g(K) will be connected in Z. Since g−1(g(K)) ⊂ Y ,
and since, every set in Y is an inverse set, then K is an inverse set and,
thus g−1(g(K)) = K. Then f−1g−1(g(K)) = f−1(K), which implies that
h−1(g(K)) = (gof)−1(g(K)) = f−1(K). That is, PC is a path-component of
h−1(g(K)). Since h is a strongly path-confluent mapping. So, h(PC) = g(K).
Therefore, f(PC) = K. Hence, f is a strongly path-confluent mapping. �
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Corollary 3.8. Let f : X −→ Y and g : Y −→ Z be two mappings. If

h = g ◦ f is strongly path-confluent mapping, and g is a homeomorphism then

f is strongly path-confluent mapping.

Proof. Since, g is a homeomorphism, then every set in Y is an inverse set.
Then, by Theorem 3.7, the mapping f is strongly path-confluent. �

4. The path-component restriction property

In this section we study the path-component restriction property for the
class of strongly path-confluent mappings.

Definition 4.1 ([10]). A class M of mappings between topological spaces is
said to have the path-component restriction property provided that for each
mapping f : X −→ Y ∈ M and for each B subset of Y , if A ⊂ X is the union
of some path-components of f−1(B), the restriction mapping f | A : A −→
f(A) ∈ M.

The following theorem shows that the class of strongly path-confluent map-
pings has the path-component restriction property.

Theorem 4.2. Let f : X −→ Y be a strongly path-confluent mapping and let

B ⊆ Y and A ⊂ X is the union of some path-components of f−1(B). Then the

restriction mapping f | A : A −→ f(A) is a strongly path-confluent.

Proof. Assume that the mapping f : X −→ Y is a strongly path-confluent.
Take B ⊆ Y , and A is the union of some path-components of f−1(B). Suppose
that K be any connected subset of f(A), and let PC and PT be the path-
components of (f |A)

−1(K) and f−1(K), respectively. Since,

(f |A)
−1(K) = A ∩ f−1(K), then

(4.1) PC ⊂ PT.

Since, PC ⊂ A, then φ 6= PC = A
⋂
PC ⊂ A

⋂
PT . But, K ⊂ f(A) ⊂ B.

So, f−1(K) ⊂ f−1(f(A)) ⊂ f−1(B). According to the assumption on A, we
get PT ⊂ f−1(K) ⊂ A, whence PT ⊂ (f |A)

−1(K) ⊂ f−1(K). Which implies
that

(4.2) PT ⊂ PC.

Then from (4.1) and (4.2), we get PC = PT , and f | A(PC) = f(PC) =
f(PT ) = K. Therefore the restriction mapping f | A is a strongly path-
confluent. �

The following corollary is a particular case of the Theorem 4.2.

Corollary 4.3. Let f : X −→ Y be a strongly path-confluent mapping. Let

A ⊂ X be an inverse set under f , then the restriction mapping f | A : A −→
f(A) is also strongly path-confluent.
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Proposition 4.4. Let f : X −→ Y be a strongly path-confluent mapping. If

f is local homeomorphism, then restriction mapping f | U : U −→ f(U) is also

strongly path-confluent for every open subset U of X.

Proof. Since, f is local homeomorphism, then the restriction mapping f | U :
U −→ f(U) is a homeomorphism. Which means that U = f−1(f(U)). Hence,
U ⊆ X is an inverse set. By the Corollary 4.3, we infer that f | U is strongly
path-confluent mapping. �

The following proposition shows that if the mapping f : X −→ Y has the
component restriction property, then it also has the path-component restriction
property, which means that the path-component restriction property is weaker
notion than the notion of component restriction property.

Proposition 4.5. Let M denote the class of mappings. If M has the compo-

nent restriction property, then it has also the path-component restriction prop-

erty.

Proof. Assume that class M of mappings has the component restriction prop-
erty and let f : X −→ Y ∈ M. Take B be a subset of Y , and A ⊂ X
is the union of some components of f−1(B). Then the restriction mapping
f | A : A −→ f(A) ∈ M. We need to show that A ⊂ X is the union of some
path-components of the set f−1(B). Now, let A = ∪

α∈∆
Cα, for some compo-

nents Cα of the inverse set f−1(B), where ∆ be the index set. Since, each com-
ponent is a disjoint union of path-components, then we can put Cα = ∪

β∈I
PCβ

with ∩
β∈I

PCβ = φ, for some path-components PCβ of the inverse set f−1(B),

where I be the index set. Hence, we get A = ∪
α∈∆

Cα = ∪
α∈∆

( ∪
β∈I

PCβ). Then by

the Definition 4.1, the class M of mappings has the path-component restriction
property. �

Proposition 4.6. The classes of strongly path-confluent mappings has the

component restriction property.

Proof. Let M be the class of strongly path-confluent mappings, and let f :
X −→ Y ∈ M. Take B ⊆ Y , and A is the union of some components of
f−1(B). Let K ⊂ f(A) be a subcontinuum, and C and PC be the component
and path-component of (f | A)

−1(K) = A ∩ f−1(K). Thus, C is contained
in a component T of f−1(K). Let PT be the path-component of f−1(K).
Obviously, PC ⊂ C and PT ⊂ T . So, PC ⊂ C ⊂ T . Since C ⊂ A, it
follows that φ 6= C = A ∩ C ⊂ A ∩ T . Further K ⊂ f(A) ⊂ B, implies that
T ⊂ f−1(B). According to the assumptions on A, we infer that T ⊂ A, whence
PT ⊂ T ⊆ (f | A)

−1(K). Which implies that T = C. Thus PC = PT and
consequently (f | A)(PC) = f(PC) = f(PT ) = K by Theorem 4.2. Therefore,
f | A is strongly path-confluent mapping. �
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