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The efficiency of thymine (Thy) and uracil (Ura) to form cyclobutane pyrimidine dimers (CPDs) in 

solution, upon UV irradiation differs by one order of magnitude. This could to be partially related to 

the steric hindrance induced by the methyl at C5 in thymine. The aim of the present work is to 

establish the influence of a bulky moiety at this position on the photoreactivity of pyrimidines. With 

this purpose, photosensitization with benzophenone and acetone of a 5-tert-butyl uracil derivative 

(1) and the equivalent Thy (2) has been compared. Introduction of the tert-butyl group completely 

blocks CPDs formation. Moreover, the mechanistic insight obtained by laser flash photolysis is in 

accordance with the observed photoreactivity.  

 

Introduction 

Ultraviolet irradiation of DNA leads to formation of lesions 

such as cyclobutane pyrimidine dimers (CPDs). This hinders 

replication and transcription of the biomacromolecule, which 

may give rise to cytotoxicity and mutagenicity.
1
 

Mechanistically, CPDs arise from a [2+2] photocycloaddition 

between two adjacent pyrimidines (Pyr) in the same DNA 

strand.
2, 3

  

In solution, with monomeric derivatives, a fraction of Pyr is 

promoted to the triplet excited state (
3
Pyr*) upon light 

absorption and intersystem crossing (ISC). In turn, 
3
Pyr* reacts 

with another Pyr in the ground state to give the final product 

(Scheme 1, pathway a+b).
4
 In this context, the dimerization 

efficiency (DIM) of thymine (Thy) compared to uracil (Ura) 

differs by one order of magnitude (DIM = 0.0025 and 0.019, 

respectively). This variance has been rationalized in terms of a 

higher intersystem crossing quantum yield (ISC) and self-

quenching rate constant (kSQ) for Ura with respect to Thy (0.40 

vs 0.18 and 2 x 10
9
 M

-1
 s

-1
 vs 6 x 10

8
 M

-1
 s

-1
, respectively). The 

Scheme 1. Dimerization of pyrimidines to form cyclobutane 

pyrimidine dimers 

 

disparity observed in the kSQ in spite of the structural 

similarity between these two Pyr could rely on the steric 

hindrance associated with methyl substitution at C5; however 

this has not systematically been investigated.  

Pyrimidine dimerization has also been studied after 

irradiation with UVA light in the presence of typical triplet 

sensitizers (Scheme 1, pathway a’+b).
2, 5-7

 

Scheme 2. Major photoproducts obtained upon 

photosensitization of thymine derivatives by acetone and 

benzophenone  
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Fig 1. Spectral changes observed upon direct irradiation of 1 to give 1’ 

 

Acetone photosensitization leads mainly to CPDs through 

triplet-triplet energy transfer (TTET, Scheme 2); however, 

benzophenone (BP) gives mainly rise to oxetanes formation as 

a result of a Paternò-Büchi reaction between the carbonyl 

moiety of BP and the C5-C6 double bond of the Pyr (Scheme 

2). 
2, 7-10

 In this context, the aim of the present work is to 

determine the influence of steric hindrance on the 

photosensitized dimerization that leads to CPDs. With this 

purpose, the tert- butyl substituted uracil derivative 1 and its 

thymine analog 2, have been selected to investigate their 

photosensitization with BP (ET = 290 kJ mol
-1

) and acetone (ET = 

332 kJ mol
-1

) looking at the kinetic aspects and also at the 

photoproducts distribution.  

Results and discussion 

Direct Irradiation of 1 

Compound 1 displayed an ultraviolet spectrum in acetonitrile 

similar to that of the parent pyrimidine, with a maximum at 

260 nm. However, its direct irradiation differed from that of 

Thy. Absorption of light by 1 provoked a progressive decrease 

of the 260 nm peak, together with the appearance of a new 

one at 314 nm. The presence of an isosbestic point at 280 nm 

indicated formation of one main photoproduct. This behavior 

was similar to that observed for the related compound 5-tert-

butyl-2’-deoxyuridine that gives rise to the corresponding 1,2-

dihydrocyclobuta[d]pyrimidin-2-one through a Norrish-Yang 

photoreaction.
11

 Isolation and characterization of 1’ (Figure 1) 

confirmed that under direct irradiation, 1 undergoes a Norrish-

Yang process.  

 

Scheme 3. Photoproducts isolated upon irradiation of 1 or 2 with 

benzophenone 

 

 

 

Steady State Photolysis in the Presence of Benzophenone  

An acetonitrile:water (11:3 v/v) solution of BP and 1 (or 2) at a 

2:1 molar ratio was irradiated with lamps emitting mainly in 

the 310-390 nm range, the solvent removed under reduced 

pressure and the resulting mixture analyzed by NMR.  

The 
1
H-NMR spectra of the reaction crudes clearly 

indicated that, under these conditions, the tert-butyl uracil 1 is 

by far less reactive than the reference thymine 2 (reaction 

rates of 0.5 vs 2.1 x 10
-6

 M s
-1

, respectively. In both cases, the 

presence of two singlets located in the 5 to 6 ppm range 

pointed to the formation of two oxetanes during the 

photoreaction. The proportion of each oxetane, determined 

from the integrals of the two singlets, was 50:50 for 1, and 

35:65 for 2. Purification over silica column led to isolation of 

the regioisomeric oxetanes 1b-1 and 1b-2 or 2b-1 and 2b-2 

(Scheme 3).  

The oxetane regiochemistry was determined on the basis of 

the chemical shift of protons and carbons at C5 and C6. Thus,  

 (C5-C6) was 35 and 11 ppm for 2b-1 and 2b-2, respectively, 

indicating that 2b-1 corresponds to the oxetane in which 

oxygen is bonded to C6. The same trend, although less 

pronounced due to the contribution of the tert-butyl moiety, 

was observed for 1b-1 and 1b-2. The chemical shift observed 

for H6 was consistent with this assignment; this proton was 

less shielded in 1b-1 and 2b-1 ( = 6.05 and 5.37 ppm, 

respectively), than in 1b-2 and 2b-2, ( = 5.18 and 4.87 ppm, 

respectively). According to the product distribution, the bulky 

substituent at C5 does not have a strong influence on the 

regiochemistry of the reaction as it might be expected. 

Moreover, it is worth noting that no CPDs were found among 

the photoproducts, which means that the Paternò-Büchi 

reaction between BP and the Pyr predominates over [2+2] 

photocycloaddition. To get further insight into this behavior, 

similar experiments were run increasing the proportion of Pyr 

in the medium to favor TTET.
8
 Thus, solutions containing BP:1 

(or 2) at 1:3 molar ratio were irradiated and the crude 

mixtures submitted to NMR. In the case of 1, the spectrum of 

the reaction crude, showed a similar photoproducts 

distribution and again evidenced the absence of CPDs even 

under these conditions. On the contrary, the irradiation 

performed with the reference compound 2 gave rise to 

additional photoproducts. Their isolation and characterization 

allowed identifying the cis-syn and trans-syn CPDs 2c-1 and 2c-

2 (Figure 2). The 2c-2 stereochemistry was established on the 

basis of the NOE effect observed between the methyl ( = 1.65 

ppm) and the methylene protons ( = 4.99 and 3.66 ppm). The 

CPD 2c-1 did not show such interaction (see NMR spectra of 

2c-1 in ESI).  
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Fig. 2. CPDs isolated after photosensitization of 2 by acetone 

 

Scheme 4. Photoproducts obtained after photosensitization of 1 with 

acetone  

Steady State Photolysis in the Presence of Acetone 

Photolysis of 1 at 310-390 nm in an acetone: water solution 

(37:63 v/v) was performed during 18 h (72 % conversion). 

Then, the solvent was removed under vacuum yielding a 

yellow oil. According to the analysis of the reaction crude 

made by 
1
H-NMR, the progress of the reaction was very 

limited, but new photoproducts were formed. The main one 

was identified as the acetonyl derivative 1c-3 (Scheme 4), 

equivalent to the product previously found in thymidine 

photosensitization by acetone.
2
 In addition, two uracil/5-tert- 

butyl uracil heterodimers 1c-1 and 1c-2, together with 

photoproduct 1c-4, were isolated (Scheme 4). Clearly, 1c-1 and 

1c-2 must arise from the Norrish type II photofragmentation 

reported for similar 5-tert-butyl uracils, followed by [2+2] 

photocycloaddition of the resulting (less hindered) dealkylated 

product with 1. 

Remarkably, no homodimers were obtained with this 

photosensitization strategy in spite of the higher triplet energy 

of acetone. Conversely, irradiation of 2 under similar 

experimental conditions gave rise to homodimers 2c-1 and 2c-

2 already obtained upon BP photosensitization. The results 

observed with 2 are consistent with those previously described 

for Thy and thymidine.
2, 5, 7

 

Laser Flash Photolysis 

To gain mechanistic insight into the process, laser flash 

photolysis experiments were performed. No transient signal 

was observed upon direct excitation of 1, more likely due to its 

very low triplet quantum yield and molar absorption 

coefficient. To circumvent this problem, 
3
1* was 

photosensitized by acetone upon excitation at 308 nm. The  

Fig. 3. A) Transient absorption spectrum at 1.3 μs obtained upon 308 
nm laser pulsing in acetone (0.6 M)/1 (1.6 mM) in ACN at 295 K. Inset; 
time profile at 350 nm. B) Rise rates for 31* plotted as a function of the 
concentration of 1 

Fig. 4. Decay profiles of the signal at 530 nm obtained after laser 
excitation of BP in the presence of increasing amounts of A) 1 (from 0 to 
2.6 mM) and B) 2 (from 0 to 2.3 mM) 

 

transient absorption spectrum displayed a maximum at 350 

profile at 350 nm. The rise rate varied with the concentration 

of 1. From the slope of the linear plot kobsd vs [1] (Figure 3B), 

the quenching rate constant of triplet acetone by 1 was 

determined to be kq = 5.5× 10
8
 M

-1
 s

-1
. This value indicates that 

nm, very similar to that previously found for thymidine,
12

 

where the absorbance change, ΔA350 was as small as 0.03 

(Figure 3A). Inset of Figure 3A depicts the triplet formation the 

 triplet energy of 1 is very close to that of acetone (332 kJ mol
-

1
), presumably within 4 - 8 kJ mol

-1
, according with Sandros’ 

equation (1), which relates the energy transfer rate constant 

(kET) to the triplet energy gap between donor and acceptor: 
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𝑘𝐸𝑇 =  𝑘𝐷 
1

𝑒−∆𝐸/𝑅𝑇+1
       (1) 

 

Where kD is the diffusion rate constant in liquid solutions.
13

 

Interaction of 1 with BP was also investigated by determining 

the quenching rate constant of 
3
BP*. With this purpose, BP 

solutions were prepared and increasing amounts of 1, and 2 

for comparison, were added. As shown in Figure 4A, 1 barely 

quenches 
3
BP*, which is consistent with the low chemical 

reactivity exhibited by this compound upon photosensitization 

with BP. On the contrary, 2 displayed a significant quenching 

of 
3
BP* in accordance with its reactivity. A rate constant of 1.5 

x 10
8
 M

-1
 s

-1
 was obtained for the 

3
BP*/2 interaction, which is 

in the same range as the one observed for thymidine.
8, 9

 

Conclusions 

Replacement of the C5 thymine methyl group with a bulky 

tert-butyl substituent is associated with a marked decrease in 

the photoreactivity under triplet photosensitization conditions 

and completely blocks formation of CPDs. 

Experimental 

Synthesis of 1 and 2  

Firstly, to a suspension of 13 mL of H2O containing 5-tert-butyl 

uracil
14

 (1.0 g, 6.0 mmol) an aqueous 2N KOH (13 mL) solution 

was added. The mixture was stirred at room temperature until 

a clear solution was obtained. Ethyl bromoacetate (2 eq) was 

added and then heated to reflux overnight. The cold reaction 

mixture was acidified with conc. HCl until pH 1 and the 

crystallized product filtered, washed with cold 1N HCl and 

water and dried in vacuo to give tert-butyl uracil-1-acetic acid: 

(0.8 g, 59%). 
1
H NMR (300 MHz, DMSO-d6), δH: 11.18 (s, 1H), 

7.36 (s, 1H), 4.39 (s, 2H), 1.19 (s, 9H). 
13

C NMR (75 MHz, 

DMSO-d6): 169.8, 163.1, 150.8, 140.6, 119.8, 49.0, 32.5, 28.6. 

HRMS (ESI): m/z calcd for C10H15N2O4 [M+H
+
] 227.1032, found 

[M+H
+
] 227.1039.  

Then, to a stirred solution of this compound (0.2 g, 1.1 mmol) 

or thymine-1-acetic acid (0.2 g, 0.9 mmol) in MeOH (5 mL) 

H2SO4 was added (0.5 mL). The reaction mixtures were heated 

to reflux overnight. The solvent was evaporated under 

pressure. The solids were dissolved in AcOEt, washed in brine 

(3x) and dried over MgSO4. The compounds were obtained as 

white solids 1 (0.2 g, 90%) or 2
15

 (0.2 g, 92%). 

Compound 1. 
1
H NMR (300 MHz, DMSO-d6), δH: 11.26 (s, 1H), 

7.40 (s, 1H), 4.54 (s, 2H), 3.69 (s, 3H), 1.21 (s, 9H). 
13

C NMR (75 

MHz, DMSO-d6): 168.8, 163.0, 150.6, 140.4, 120.2, 52.2, 48.6, 

32.5, 28.6. HRMS (ESI): m/z calcd for C11H17N2O4 [M+H
+
] 

241.1181, found [M+H
+
] 241.1188. 

Compound 2. 
1
H NMR (300 MHz, DMSO-d6), δH: 11.42 (s, 1H), 

7.51 (s, 1H), 4.49 (s, 2H), 3.70 (s, 3H), 1.77 (s, 3H). HRMS (ESI): 

m/z calcd for C8H11N2O4 [M+H
+
] 199.0717, found [M+H

+
] 

199.0719. 

 

 

 

Irradiation Procedures  

Irradiations were performed using a multilamp photoreactor 

using lamps emitting at 254 nm through quartz or in the 310-

390 nm range (with a maximum at 350 nm) through pyrex. All 

the solutions were bubbled with N2 prior to light exposure.  

Isolation and Identification of 1’. Compound 1 (0.2 g, 0.9 

mmol) was dissolved in acetonitrile and irradiated at 254 nm 

through quartz. The progress of the reaction was monitored by 

UV-Vis. When the UV band with max 314 nm, associated with 

1’ reached its maximum, (4 h irradiation) the solvent was 

evaporated under vacuum. 

 
1
H NMR (300 MHz, DMSO-d6), δH: 7.70 (s, 1H), 4.58 (s, 2H), 

3.70 (s, 3H), 3.12 (s, 2H), 1.40 (s, 6H). 
13

C NMR (75 MHz, 

DMSO-d6): 181.7, 168.5, 157.2, 139.7, 128.4, 54.5, 52.2, 51.9, 

50.0, 26.7. HRMS (ESI): m/z calcd for C11H15N2O3 [M+H
+
] 

223.1075, found [M+H
+
] 223.1083. 

Isolation and Identification of Photoproducts Obtained upon 

Irradiation of 1 and 2 with BP An acetonitrile:water (11:3 v/v) 

solution of BP (28 mM) and 1 (or 2) at a 2:1 molar ratio  was 

irradiated. Purification of photoproducts from 1 and 2 was 

achieved over silica gel column using hexane:ethyl acetate 

60:40 as eluent. Two fractions containing the two regioisomers 

of oxetanes were collected and the solvent evaporated. 

Oxetane 1b-1: 
1
H NMR (300 MHz, CD3OD), δH: 7.82 (d, J = 9 Hz, 

2H), 7.62 (d, J = 9 Hz, 2H), 7.43-7.13 (m, 6H), 6.05 (s, 1H), 4.64 

(d, J = 18 Hz, 1H), 4.29 (d, J = 18 Hz, 1H), 3.77 (s, 3H), 1.03 (s, 

9H). 
13

C NMR (75 MHz, CD3OD): 171.5, 171.0, 153.5, 144.3, 

143.0, 129.3, 128.9, 128.7, 128.4, 128.2, 127.5, 90.6, 86.1, 

67.7, 52.8, 47.4, 36.6, 27.8. HRMS (ESI): m/z calcd for 

C24H26N2O5Na [M+Na
+
] 445.1763, found [M+Na

+
] 445.1735.  

Oxetane 1b-2: 
1
H NMR (300 MHz, CD3OD) δH: 7.43-7.20 (m, 

10H), 5.18 (s, 1H), 4.64 (d, J = 18 Hz, 1H), 4.06 (d, J = 18 Hz, 

1H), 3.81 (s, 3H), 1.13 (s, 9H). 
13

C NMR (75 MHz, CD3OD): 

172.2, 170.7, 153.5, 145.4, 141.2, 129.7, 129.5, 128.9, 128.8, 

126.7, 125.8, 92.4, 85.1, 62.1, 53.0, 49.9, 36.9, 24.9. HRMS 

(ESI): m/z calcd for C24H26N2O5Na [M+Na
+
] 445.1739, found 

[M+Na
+
] 445.1709.  

Oxetane 2b-1: 
1
H NMR (300 MHz, CD3CN), δH: 8.39 (s, 1H), 

7.61 - 7.54 (m, 4H), 7.42 - 7.37 (m, 2H), 7.35 - 7.18 (m, 4H), 

5.37 (s, 1H), 4.32 (d, J = 18 Hz, 1H), 4.13 (d, J = 18 Hz, 1H), 3.71 

(s, 3H), 1.39 (s, 3H). 
13

C NMR (75 MHz, CD3CN): 171.0, 170.3, 

152.2, 143.5, 142.6, 129.6, 129.1, 128.9, 128.8, 126.7, 90.3, 

89.7, 54.7, 53.4, 47.3, 20.3. HRMS (ESI): m/z calcd for 

C21H21N2O5 [M+H
+
] 381.1450, found [M+H

+
] 381.1441. 

Oxetane 2b-2: 
1
H NMR (400 MHz, CD3CN), δH: 8.14 (s, 1H), 

7.39-7.28 (m, 10H), 4.87 (s, 1H), 4.49 (d, J = 16 Hz, 1H), 3.77 (d, 

J = 16 Hz, 1H), 3.72 (s, 3H), 1.67 (s, 3H). 
13

C NMR (75 MHz, 

CD3CN): 170.5, 169.6, 151.6, 144.8, 140.1, 129.1, 128.9, 128.5, 

128.5, 126.3, 91.8, 77.3, 66.2, 52.7, 48.3, 23.3. HRMS (ESI): m/z 

calcd for C21H20N2O5Na [M+Na
+
] 403.1270, found [M+Na

+
] 

403.1255.  

 

Isolation and Identification of the Products Obtained Upon 

Photosensitization of 1b and 2b in the Presence of Acetone  

Photoproducts obtained from 1. A solution of 1 or 2 (4.5 mM) 

in an acetone:water (37:63 v/v) solution was irradiated 
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through pyrex with lamps emitting in the 310-390 nm range 

(with a maximum at 350 nm). The crude reaction was 

submitted to reverse phase HPLC, and the photoproducts were 

isolated using a 60:40 mixture of a 25 mM ammonium 

formiate aqueous solution and methanol as eluent. The 

proportion of methanol was linearly increased from 40 to 70% 

within 35 min. Elution of the products was monitored at 220 

nm. According to the obtained mass 70% of 1 was consumed 

during the irradiation. 

Photoproduct 1c-1. 
1
H NMR (400 MHz, CDCl3), δH: 4.97 (d, J = 

0.8 Hz, 1H), 4.93 (d, J = 0.8 Hz, 1H), 4.34 (d, J = 8 Hz, 1H), 4.09 

(d, J = 8, 1H), 3.82-3.65 (s+m, 6+3 H), 1.16 (s, 9H). 
13

C NMR (75 

MHz, CDCl3): 169.6, 169.5, 168.3, 166.3, 151.3, 150.9, 62.7, 

52.5, 50.7, 50.4, 46.9, 46.3, 41.1, 35.2, 29.7. HRMS (ESI): m/z 

calcd for C18H25N4O8[M+H
+
] 425.1659, found [M+H

+
] 425.1672.  

Photoproduct 1c-2. 
1
H NMR (400 MHz, CD3CN), δH: 4.45 (d, J = 

16 Hz, 1H), 4.11 (m, 3H), 3.84 (d, J = 20 Hz, 1H), 3.72 (s, 3H), 

3.67 (s, 3H), 3.57 (d, J = 16 Hz, 1H), 3.29 (d, J = 8, 1H), 1.11 (s, 

9H). 
13

C NMR (75 MHz, CD3CN): 170.2, 169.5, 166.9, 153.5, 

152.3, 61.7, 55.6, 55.4, 52.4, 48.0, 47.6, 37.3, 35.4, 25.9. HRMS 

(ESI): m/z calcd for C18H25N4O8 [M+H
+
] 425.1658, found [M+H

+
] 

425.1672.  

Photoproduct 1c-3. 
1
H NMR (300 MHz, CD3OD), δH: 4.26 (d, J = 

15 Hz, 1H), 4.02 (d, J = 18 Hz, 1H), 3.74 (s, 3H), 3.71 (d, J = 6 Hz, 

1H), 3.40 (d, J = 12.0 Hz, 1H), 3.26 (s, 1H), 2.61 (d, J = 18 Hz, 

1H), 2.12 (s, 3H), 1.05 (s, 9H). 
13

C NMR (75 MHz, CD3OD): 

208.8, 175.0, 170.8, 155.1, 52.6, 50.4, 49.1, 46.1, 37.4, 30.3, 

26.9. HRMS (ESI): m/z calcd for C14H23N2O5 [M+H
+
] 299.1607, 

found [M+H
+
] 299.1601.  

Photoproduct 1c-4. 
1
H NMR (400 MHz, CDCl3), δH: 4.28 (d, J = 

16 Hz, 1H), 4.05 (d, J = 20 Hz, 1H), 3.77 (s, 3H), 3.56 (dd, J = 16 

Hz, 2H), 2.47 (t, J =8 Hz, 1H), 1.12 (s, 9H). 
13

C NMR (75 MHz, 

CDCl3): 169.6, 168.1, 151.7, 51.4, 48.7, 47.5, 44.7, 31.9, 27.2. 

HRMS (ESI): m/z calcd for C11H18N2O2 [M+H
+
] 243.1345, found 

[M+H
+
] 243.1361.  

 

Photoproducts obtained from 2. Photoproducts 2c-1 and 2c-2 

were isolated by reverse phase HPLC using an 80:20 mixture of 

a 25 mM ammonium formiate aqueous solution and methanol. 

The proportion of methanol was linearly increased from 20 to 

40% within 35 min. Elution of the products was monitored at 

220 nm.  

Photoproduct 2c-1. 
1
H NMR (300 MHz, CD3CN) δH: 4.30 (d, J = 

15 Hz, 2H), 3.92 (s, 2H), 3.70-3.64 (d+s, 2+6H), 1.43 (s, 6H). 
13

C 

NMR (75 MHz, CDCl3): 171.3, 170.0, 153.1, 61.1, 52.9, 48.4, 

48.0, 19.0. HRMS (ESI): m/z calcd for C16H21N4O8 [M+H
+
] 

397.1359, found [M+H
+
] 397.1342.  

Photoproduct 2c-2. 
1
H NMR (300 MHz, CDCl3), δH: 4.99 (d, J = 

18 Hz, 2H), 3.77 (s, 6H), 3.63 (d, J = 18 Hz, 2H), 3.52 (s, 2H), 

1.65 (s, 6H). 
13

C NMR (75 MHz, CDCl3): 170.2, 169.5, 151.1, 

63.4, 52.6, 48.8, 47.1, 24.7. HRMS (ESI): m/z calcd for 

C16H21N4O8 [M+H
+
] 397.1359, found [M+H

+
] 397.1345.  

 

UPLC-MS MS Analysis. Liquid Chromatography was performed 

on an ACQUITY UPLC system (Waters Corp.) with a conditioned 

autosampler at 4 °C. The separation was carried out on an 

ACQUITY UPLC BEH C18 column (50 mm × 2.1 mm i.d., 1.7 μm). 

The Waters ACQUITY™ XevoQToF Spectrometer (Waters Corp.) 

was connected to the UPLC system via an electrospray 

ionization (ESI) interface. The ESI source was operated in 

positive ioniza-tion mode with the capillary voltage at 1.5 kV.  

Laser Flash photolysis. A pulsed Nd:YAG laser system 

instrument, using 355 nm as excitation wavelength or a Xe/HCl 

Excimer laser (exc = 308 nm) both with a duration of each 

pulse of 10 ns were used. The apparatus consisted of the 

pulsed laser, the Xe lamp, a monochromator and a 

photomultiplier. The output signal from the oscilloscope was 

transferred to a personal computer. Quartz cells of 1 cm 

optical path length were employed for the measurements.  

The triplet excited state absorption spectrum of 1 (1.6 mM) in 

acetonitrile was registered using acetone (0.6 M) as 

photosensitizer upon excitation at 308 nm. The absorbance of 

the sample at this wavelength was 1.6. 

For quenching experiments 1 (from 0 to 2.6 mM) or 2 (from 0 

to 2.3 mM) were added to a BP solution in acetonitrile with an 

absorption of 0.3 at 308 nm, and monitored at 530 nm. 
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