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EVALUATION OF A MULTIPLE LINEAR REGRESSION MODEL AND SARIMA MODEL IN 1 

FORECASTING 7BE AIR CONCENTRATIONS 2 

1. Introduction 3 

7Be is widely used as an atmospheric radiotracer due to its relatively short life (𝑇1
2⁄ = 53.3 days) and ease 4 

of measurement by γ-spectrometry, which provides important information on atmospheric air mass 5 

motions. A better understanding of its distribution would facilitate refinement and validation of global 6 

atmospheric circulation models (Dueñas et al. 2015). 7Be forecasting can thus be adopted as a target value 7 

in analyzing fluctuations or deviations that could imply important atmospheric changes. 8 

It is generally accepted that the 7Be production rate depends on a number of atmospheric factors. Several 9 

studies have pointed out that the intensity of galactic cosmic rays in the Earth’s orbit is affected by solar 10 

activity and the geomagnetic field, which is under constant cosmic ray bombardment from space (O’Brien, 11 

1979; Vogt et al., 1990; Hötzl et al., 1991; Ioannidou&Papastefanou, 1994). In particular, an increase in 12 

solar activity and the geomagnetic field reduce the galactic cosmic ray flux, which is followed by reduced 13 

7Be production. 14 

In addition to the above-mentioned sources of variability, 7Be concentrations in the lower layers of the 15 

atmosphere present temporal variations caused by solar radiation and meteorological parameters that can 16 

affect regional weather patterns (temperature, relative humidity, precipitations, wind speed and wind 17 

direction) (Feely et al., 1989; Baeza et al., 1996).  18 

Many research studies have analyzed the relation between 7Be air concentrations and the meteorological 19 

and atmospheric variables using a simple correlation analysis (e.g. Dueñas et al., 1999; Ioannidou et al., 20 

2006; Piñero-García & Ferro-García, 2013; Ceballos et al., 2016; Neroda et al.; 2016). Furthermore, some 21 

of these studies have applied Multiple Linear Regression (MLR) analysis to develop an explanatory and 22 

predictive model for 7Be air concentrations using the atmospheric and meteorological variables as 23 

predictors (Table 1).  24 

 25 

 26 
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Location  Period Significant variables used in MLR 𝑹𝟐 Source 

Málaga, Spain 
 

1992-1995 - Maximum Temperature  

- Rainfall 

- Relative Humidity 

- Hours of sunshine 

27% Dueñas et al. (1999) 

Thessaloniki, 

Greece 

1987-2001 - Temperature 

- Relative Humidity 

- Sunspot Number 

38.5% Ioannidou et al. (2006) 

Granada, Spain 
 

1993-2001 - Temperature 

- Rainfall 

- Sunspot Number 

71% Azahra et al. (2004) 

Málaga, Spain 

 

1997-2007 - Solar energetic proton 

- Aerosol optical depth 

34% Dueñas et al. (2015) 

Granada, Spain 
 

1996-2010 - Temperature 

- Relative Humidity 

- Sunspot Number 

52% Piñero-García & Ferro-

García (2013) 

Granada, Spain 
 

2005-2009 - Temperature 

- Relative Humidity 

- Rainfall 

72.16% Piñero-García et al. 

(2012) 

Plymouth, UK 2009-2010 - Rainfall 94% Taylor et al. (2016) 

Granada, Spain 
 

2011-2014 - Solar Irradiance 

- Total suspended particles 

66.9% Essaid et al. (2015) 

Vladivostok, Russia 2013-2014 - Altitude 

- Precipitation 

- Temperature 

- Aerosol concentration 

- Trajectories in the pacific (North-

East) 

55% Neroda et al. (2016) 

Table 1. 7Be predictive models for different time periods at different locations. 27 

Each study uses several predictors to explain 7Be air concentration in different time periods at different 28 

locations. The explicative power of the model, measured by the R square coefficient, is, in general, less 29 

than 50%. The studies that get the highest 𝑅2, use a historical data range of less than five years, which may 30 

not be enough information to forecast the 7Be air concentration for the following year. In addition to 31 

explanatory power, it is very important to compute accuracy measurements with data that have not been 32 

used to develop the model. This procedure is not applied in the above MLR models and is important in 33 

measuring the validity and forecasting power of the model, which is one of the aims of the present study. 34 

Several authors recommend the use of time series modelling techniques instead of multiple linear regression 35 

when monitoring correlated process data (Alwan & Roberts 1988; Harris & Ross 1991; Wardell et al. 1994). 36 

Classical regression is often insufficient for explaining all the interesting dynamics of a time series. For 37 

instance, the estimated autocorrelation function (ACF) of the residuals of the regression model could reveal 38 

additional structure in the data that the regression did not capture. Instead, the introduction of Box-Jenkins 39 

models could deal with the limitations of classical regression in time series (Shumway & Stoffer, 2006).  40 
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A recent study applied a decomposition of the 7Be time series into a trend-cycle, a seasonal and an irregular 41 

component in order to separate the inter- and intra-annual patterns of 7Be variability (Bas et al, 2016). The 42 

results of this study showed the suitability of applying time series analysis to correlated data in order to 43 

separate the different sources of variability of 7Be concentrations and to develop a forecasting model.  44 

The aim of this study is to propose two models to explain and forecast 7Be air concentrations: i) a Seasonal 45 

Autoregressive Integrated Moving Average (SARIMA) model and ii) a Multiple Linear Regression (MLR) 46 

model using meteorological and atmospheric variables. Both the time series and multiple linear regression 47 

models are evaluated by comparison with real 7Be air concentrations for the city of Valencia in 2007-2014 48 

and with out-of-sample tests for the 12 months of the year 2015, using the Root Mean Square Error (RMSE) 49 

and the Adapted Mean Absolute Percentage Error (AMAPE) as forecasting accuracy measures. Finally, the 50 

results of the accuracy measurements of both models are compared. 51 

 52 

2. Material and methods 53 

2.1. Study area and sampling 54 

Airborne particulate samples were collected weekly on the campus of the Universitat Politècnica de 55 

Valencia from January 2007 to December 2015. Valencia is situated on the east coast of Spain (15m above 56 

sea level) in the western Mediterranean Basin (39°28′50″ N, 0°21′59″ W) and has a relatively dry 57 

subtropical Mediterranean climate with very mild winters and long hot summers. The sampling point was 58 

located approximately 2 km away from the coastline. 59 

Aerosol samples were collected using Eberlyne G21DX and Saic AVS28A air samplers placed 60 

approximately 1 m above ground level. The aerosol particles were retained on a cellulose filter of 4.2 x10-61 

2 m effective diameter and 0.8 µm pore size. The filters were changed weekly and the average volume 62 

ranged from 300 to 400 m3 per week. Each filter was put inside a plastic box and kept in a desiccator until 63 

it was measured.   64 

 65 



4 
 

2.2. 7Be activity measurements  66 

A monthly composite sample containing 4-5 filters was measured by γ-spectrometry to determine specific 67 

7Be activities using an HPGe detector (ORTEC Industries, USA) n-type with relative efficiency of 18% for 68 

60Co gamma-ray. A certificated standard containing radionuclides with energies ranging from 59 to 1836.1 69 

keV was used for preparing the calibrated filters, which were placed inside their plastic boxes on the top of 70 

the detector. The counting time was 60000s and the γ-line 477.7 KeV was used to calculate the activity. 71 

ORTEC Gamma-Vision software was used for acquisition and analysis. Concentration activities were 72 

corrected for the radioactive decay to the mid-collection period. The mean measured uncertainties (K=2) 73 

were around 10 %. 74 

 75 

2.3. Statistical analysis 76 

SARIMA MODEL 77 

The SARIMA model building process is designed to take advantage of the association in the sequentially 78 

lagged relationships that usually exists in data collected periodically. A time series {𝑧𝑡 , 𝑡 = 1, … , 𝑁} is 79 

generated by a SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 model if: 80 

𝜙𝑝(𝐵)𝛷𝑃(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑧𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝑎𝑡 81 

where 𝑁 is the number of observations; 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 are integers; 𝐵 is the lag operator (e.g. 𝑤𝑡 = 𝑧𝑡 −82 

𝑧𝑡−𝑠 = (1 − 𝐵𝑠)𝑧𝑡);  𝑠 is the seasonal period length; 𝑑 is the number of regular differences (𝑑 ≤ 2); 𝐷 is 83 

the number of seasonal differences, and 𝑎𝑡 is the estimated residual at time t, which is a usual Gaussian 84 

white noise process (WN). 85 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝, is the regular autoregressive operator (AR) of order 𝑝, 86 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞, is the regular moving average operator (MA) of order 𝑞,  87 

𝛷𝑃(𝐵𝑠) = 1 − 𝛷1𝐵𝑠 − 𝛷2𝐵𝑠2 − ⋯ − 𝛷𝑃𝐵𝑠𝑃, is the seasonal autoregressive operator (SAR) of order 𝑃, 88 

𝛩𝑄(𝐵𝑠) = 1 − 𝛩1𝐵𝑠 − 𝛩2𝐵𝑠2 − ⋯ − 𝛩𝑄𝐵𝑠𝑄, is the seasonal moving average operator (SMA) of order 𝑄. 89 

 90 

As reported by Box & Jenkins (1976) and Shumway &Stoffer (2006), the SARIMA model consists of three 91 

main steps: 92 
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Identification and estimation step 93 

First, the periodogram technique was applied to identify the periodic cycle in the time series (Schuster, 94 

1898). The periodogram plot should have clear peaks at points corresponding to the ‘hidden periods’ of the 95 

cyclic model. 96 

The time series should then be differenced in order to be stationary in mean and variance (identifying 𝑑 and 97 

𝐷 parameters). The differencing technique can also be used to remove trends, which are usually detected 98 

by inspecting the plot of the 7Be data over the period considered. However, they are also characterized by 99 

the autocorrelation function.  100 

After differencing the time series, a tentative autoregressive moving average (ARMA) process is carried 101 

out based on the estimated autocorrelation function (ACF) and the estimated partial autocorrelation function 102 

(PACF). The shape of the ACF and PACF of the real time series is compared with the shape of the 103 

theoretical model to identify possible different 𝑝, 𝑞, 𝑃 and 𝑄 parameters of the SARIMA model (Peña, 104 

2010; Shumway & Stoffer, 2006). Having specified tentative models in the identification step, the 105 

parameters of the candidate models are estimated by a maximum likelihood function (Shine & Lee, 2000). 106 

After trying several combinations for parameters 𝑝, 𝑞, 𝑃 and 𝑄, the best model was selected, considering 107 

the minimum MAPE, AMAPE and RMSE (defined in the section on the Forecasting Step) for the 108 

forecasting data of the sample and out-of-sample as accuracy measures of predictive power.  109 

The selection of the most parsimonious model is also based on Akaike’s Information Criterion (AIC), which 110 

rewards models for good fit and penalize them for complexity. The model with the minimum AIC is chosen 111 

as the parsimonious model. The AIC coefficient is defined as follows: 112 

𝐴𝐼𝐶 = 2 ln(𝑅𝑀𝑆𝐸) +
2(𝑝 + 𝑞)

𝑛
 113 

where 𝑝 and 𝑞 are the number of parameters of AR and MA estimates, RMSE is the Root Mean Square 114 

Error (defined in the section on the Forecasting Step) and 𝑛 is the sample size of the data used to fit the 115 

model.  116 

Validation step 117 
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In this step, several statistics were used to check the suitability of the identified models. An essential part 118 

of the procedure is to examine the residuals of the SARIMA model, which, if the model is satisfactory, 119 

should be considered as White Noise (WN). We examine some simple tools for checking the hypothesis 120 

that the residuals are WN and the model is valid. If the fit model passes the following tests, it can be used 121 

to make a forecast. 122 

- t-ratio test to evaluate the significance of the parameters estimated in each model. The parameters are 123 

considered significant with a 95% of confidence level if p-values<0.05.  124 

- Kolmogorov-Smirnov test applying Lilliefors correction of the residual series to check that the noise 125 

process is Gaussian. The residual series is Gaussian if p-values>0.05.  126 

- Q* Ljung-Box statistic to check the condition that the residuals can be considered as a WN. The statistic 127 

proposed is: 128 

𝑄∗ = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1 𝑟𝑘(𝑎)

𝑚

𝐾=1

 129 

where 𝑟𝑘(𝑎) is the sample autocorrelation 𝑓 order 𝑘 of the residual, 𝑛 is the length of residual series and 𝑚 130 

is the number of lags considered, 𝑄∗ ≈ 𝒳𝑚−𝑛
2 , 𝑛 = 𝑝 + 𝑞 + 𝑃 + 𝑄. The model is considered valid if 131 

𝑃(𝒳2(𝑚 − 𝑛) > 𝑄∗) > 0.05. In this study, the Q* Ljung-Box statistic is calculated for a large 𝑚 in each 132 

model, as suggested by Peña (2010). 133 

 134 

Forecasting step 135 

To assess the forecasting performance of different models the data set is divided into two samples for 136 

training and testing. This procedure is known as an out-of-sample technique, which means that the training 137 

data used in model fitting are different to the test sample (out-of-sample) used to evaluate the established 138 

model. 139 

Several measurement statistics can be used to examine the forecast accuracy of different models. Root 140 

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are the criteria most frequently 141 

used to evaluate the performance of the forecasting models. One of the disadvantages of the MAPE criteria 142 

is the adverse effect of small actual values, in which case MAPE criteria will contribute large terms to the 143 
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MAPE coefficient, even if the difference between the actual and forecast values is small. It is therefore 144 

better to use an adapted MAPE (AMAPE), as defined in various studies (Tsay, 2005; Wu & Shahidehpour, 145 

2010): 146 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑡 − 𝑧𝑡)2𝑛

𝑡=1

𝑛
 147 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑ (

|�̂�𝑡 − 𝑧𝑡|

𝑧𝑡
)

𝑛

𝑡=1

) 100% 148 

𝐴𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|�̂�𝑡 − 𝑧𝑡|
1

𝑛
∑ 𝑧𝑡

𝑛
𝑡=1

)

𝑛

𝑡=1

∗ 100% 149 

where 𝑡 represents the time and 𝑛 is the sample size for forecasts; �̂�𝑡 is the forecast at 𝑡 from any mentioned 150 

model and 𝑧𝑡 is the actual value at 𝑡. The RMSE statistic depends on the scale of the variables and measures 151 

the absolute errors. The MAPE and AMAPE statistics measure the relative errors. The smaller the RMSE, 152 

MAPE and AMAPE the better the accuracy of the model.  153 

 154 

MULTIPLE LINEAR REGRESSION 155 

Multiple linear regression analysis is a multivariate statistical technique used to examine the relationship 156 

between a single dependent variable and a set of independent variables. The main objectives of MLR are 157 

explanation and prediction. Explanation examines the regression coefficients, their magnitude, sign and 158 

statistical inference, for each independent variable. Prediction involves the extent to which the independent 159 

variables can predict the dependent variable (Hair et al., 2010). MLR forecasting models are expressed in 160 

the following format: 161 

𝑌𝑡 = 𝑋𝑡𝛽 + 𝜀𝑡 162 

where 𝑌𝑡 is the predicted value at time 𝑡, 𝑋𝑡 = (1, 𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑘𝑡) is a vector of 𝑘 explanatory variables at 163 

time 𝑡, 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑘)𝑇 is the vector of coefficients, and 𝜀𝑡 is a random error term at time 𝑡, 𝑡 = 1, … , 𝑁. 164 

The errors terms should be independent and have a Gaussian distribution.  165 

 166 
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The assumptions of the MLR model (independent errors and Gaussian error term distribution) could be 167 

analyzed by obtaining the Kolmogorov-Smirnov test and the Q* Ljung-Box statistic, as in the time series.  168 

The explanatory power of the MLR is commonly measured by the R square coefficient defined as follows: 169 

𝑅2 = (
𝜎�̂�𝑡,𝑌𝑡

2

𝜎�̂�𝑡

2 𝜎𝑌𝑡

2
) 100% 170 

where 𝜎�̂�𝑡,𝑌𝑡

2  is the covariance of the forecast and actual values; 𝜎�̂�𝑡

2  and 𝜎𝑌𝑡

2  the variance of the forecast and 171 

actual values respective. 172 

The forecasting power could be measured using the same accuracy measurements as in the time series.  173 

 174 

3. Results in forecasting 7Be air concentrations  175 

The first step in developing any forecasting model is to plot the data. In view of the results obtained in a 176 

recent study (Bas et al., 2017), the best 7Be concentration forecasting results are based on a time window 177 

of at least eight years of data. This result supports the training sample of eight years of historical data (2007-178 

2014) and the out-of-sample test for one year (2015) selected in this study. Figure 1 shows the evolution of 179 

7Be air concentrations during the entire period 2007-2015. 7Be activity concentrations ranged from 2.28 to 180 

8.11 mBq/m3 with an arithmetic mean of 4.62 ± 1.19 mBq/m3 during the period studied.  181 

 182 

 183 

 184 

 185 
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 186 

 187 

 188 

 189 

 190 

 191 

 192 

Fig 1. Temporal evolution of 7Be air concentration over the period 2007-2015. 193 

3.1. SARIMA model 194 

The evolution of 7Be air concentrations suggests that there exists a seasonal pattern with a sinusoidal trend. 195 

The result of the periodogram technique identified a relevant peak corresponding to a period of 12 months 196 

(annual periodicity, 𝑠 = 12). 197 

For the identification step, a simple ACF (Figure2) that is positive and very slowly decaying in lag 1 and 198 

in the seasonal lag 12 suggests a regular and seasonal difference (𝑑 = 𝐷 = 1). The 199 

SARIMA(𝑝, 1, 𝑞)(𝑃, 1, 𝑄)12 model is therefore useful for representing 7Be air concentrations with a trend. 200 

The differenced 7Be time series is stationary.  201 

 202 

Fig.2. The sample ACF of the 7Be time series 203 
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After differencing the time series, a tentative autoregressive moving average process is carried out based 204 

on the estimated autocorrelation function (ACF) and the estimated partial autocorrelation function (PACF). 205 

Figure 3 shows that the autocorrelations at lag 1, 12 and 24 are significant in the PACF of the residuals. 206 

 207 

Fig. 3. The sample ACF and PACF of the residuals after applying a regular and seasonal difference. 208 

Table 2 reports the results of tentative SARIMA models considering the ACF and PACF of the residuals 209 

(Figure 3) after applying a regular and a seasonal difference (𝑑 = 𝐷 = 1). The following accuracy 210 

measurements were used to select the best and most parsimonious model: RMSE, MAPE, AMAPE and 211 

AIC. 212 

 213 

 Training sample (2007-2014) Out-of-sample (2015) 

 RMSE MAPE AMAPE AIC RMSE MAPE AMAPE 

SARIMA(𝟎, 𝟏, 𝟏)(𝟐, 𝟏, 𝟐)𝟏𝟐 0.000722 13.00% 11.89% -14.36 0.00147 29.19% 27.18% 

SARIMA(𝟎, 𝟏, 𝟐)(𝟐, 𝟏, 𝟐)𝟏𝟐 0.000723 13.08% 11.98% -14.37 0.00147 29.59% 27.13% 

SARIMA(𝟎, 𝟏, 𝟏)(𝟏, 𝟏, 𝟑)𝟏𝟐 0.000678 11.93% 10.74% -14.49 0.00078 17.75% 17.20% 

SARIMA(𝟎, 𝟏, 𝟐)(𝟏, 𝟏, 𝟑)𝟏𝟐 0.000672 11.76% 10.70% -14.49 0.00078 18.05% 17.40% 

Table 2. Models selection criterion 214 

Table 2 show that the AIC criterion is similar in the different models proposed. However, considering that 215 

the RMSE, MAPE and AMAPE coefficients should be minimum, the SARIMA(0,1,1)(1,1,3) and 216 

SARIMA(0,1,2)(1,1,3) models are the best options, considering the analysis in both samples (training and 217 

out-of-samples). Of the two, we propose the SARIMA(0,1,1)(1,1,3) model as it is simpler than the other 218 

and the RMSE, MAPE and AMAPE coefficients in the training sample and in out-of-sample are similar in 219 

both models. 220 
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Having specified the best model in the identification step, the parameters are estimated by a maximum 221 

likelihood function and the estimated model can be written as follows: 222 

(1 + 0.814𝐵12)(1 − 𝐵)(1 − 𝐵12)𝑧𝑡 = (1 − 0.665𝐵)(1 − 0.555𝐵12 − 0.932𝐵24 + 0.687𝐵36)𝑎𝑡 223 

where 𝑎𝑡 ≈ 𝑊𝑁(0, 𝜎 = 8.07E − 04). WN=White Noise.  224 

The parameters estimated in the model are significant (p-values<0.05) (Table 3). The residuals obtained 225 

from fitting a SARIMA(0,1,1)𝑥(1,1,3)12 model to 7Be concentration data for a time window of eight years 226 

(2007-2014) are normally distributed (K-S test,𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05) with mean zero and standard deviation 227 

𝜎 = 8.07E − 04. Moreover, significant autocorrelation is not found in the residuals (Q* test, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 >228 

0.05), therefore the residuals can be considered as WN and the SARIMA(0,1,1)𝑥(1,1,3)12 can be 229 

considered a suitable forecasting model.  230 

 t-ratio test (p-value) K-S Lilliefors (p-value) 𝑸∗ Ljung-Box (p-value) 

𝜽𝟏 8.0431 (<0.000001) D = 0.079983 𝒳2 = 47.809 

𝜱𝟏 -9.4919 (<0.000001) ( p-v: 0.2119) ( p-v: 0.2837) 

𝜣𝟏 8.08721 (<0.000001)  m=48 

𝜣𝟐 19.5035 (<0.000001)   
𝜣𝟑 -13.7005 (<0.000001)   

Table 3. Validation of the proposed SARIMA model. 231 

The predictive model obtained, after developing the above expression, is: 232 

𝑧�̂� = 𝑧𝑡−1 + 0.186𝑧𝑡−12 − 0.186𝑧𝑡−13 + 0.814𝑧𝑡−14 − 0.814𝑧𝑡−25 − 0.665𝑎𝑡−1 − 0.555𝑎𝑡−12233 

+ 0.369𝑎𝑡−13 − 0.932𝑎𝑡−24 + 0.619𝑎𝑡−25 + 0.687𝑎𝑡−36 − 0.456𝑎𝑡−37 + 𝑎𝑡 234 

Figure 4 shows the comparison between measured and forecast values using a 235 

SARIMA(0,1,1)𝑥(1,1,3)12in the 2007-2014 training sample and in the out-of-sample data in 2015. The 236 

time series proposed explains 70.88% of the variability of the actual data.  237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 
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 245 

Fig. 4. Comparison between measured and forecast (SARIMA) power 246 

 247 

3.2. MULTIPLE LINEAR REGRESSION analysis model 248 

A multiple linear regression model is developed to explain and forecast 7Be air concentrations. The 249 

atmospheric parameters studied in the present work are: sunspot number (SSN), temperature (T) (in tenths 250 

of °C), precipitation (PP) (in tenths of a millimetre), relative humidity (RH) (in %) and wind speed (WS) 251 

(in km/h). The meteorological factors were collected by the Universitat Politècnica de Valencia’s weather 252 

station, which was also the sampling point for 7Be activity. The sunspot number parameter (SSN) was 253 

collected daily during the period 2007-2015 by the World Data Center SILSO, Royal Observatory of 254 

Belgium, in Brussels (SILSO, 2015). 255 

We selected these variables after taking into account the atmospheric parameters that mainly affect Valencia 256 

weather, with a relatively dry subtropical Mediterranean climate, very mild winters and long hot summers, 257 

and considering the variables adopted in a previous study (Bas et al, 2016) and the variables most frequently 258 

considered to study 7Be activity in the literature. 259 

A logarithmic transformation of the 7Be variable is applied to better identify a Gaussian distribution in the 260 

data. In this study we considered the mean monthly values of temperature, relative humidity, wind speed, 261 

and sunspot number. The precipitation factor was considered as the number of rainy days per month due to 262 
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the particular rainfall regime in Valencia, with few days of torrential rainfall and many dry days. Solar 263 

activity was considered as measured by the sunspot number parameter. 264 

The 𝑅2 obtained for the regression given below is significant at the 95% confidence level, however this 265 

model explains only 48.76% of the 7Be variability. The predictive model obtained is: 266 

𝐿𝑁( 𝐵𝑒7 ) = −5.3631 + 0.0025 ∗ T − 0.0602 ∗ WS − 0.0112 ∗ PP − 0.0018 ∗ SSN 267 

Parameter Estimation St. Error t-statistic p-value 

𝛽0 -5.3631 0.1449 -37.0094 <0.00001 

T 0.0025 0.0004 6.3614 <0.00001 

WS -0.0602 0.0176 -3.4199 0.0009 

PP -0.0112 0.0049 -2.2957 0.0240 

SSN -0.0018 0.0004 -4.1275 0.0001 

Table 4. Estimated parameters and its significance in the MLR model. 268 

The significant variables that affect 7Be air concentration are: temperature, wind speed, precipitation and 269 

sunspot number (Table 4). However, the relative humidity variable is positively correlated with temperature 270 

(𝑟 = 0.67, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.00001), so that both variables explain the same behaviour of 7Be activity and 271 

the multiple regression technique selected the variable most highly correlated with 7Be. Note that all the 272 

variables have an inverse influence on 7Be activity, except temperature, which has a positive effect.  273 

The Kolmogorov-Smirnov test was applied to check the normality of the residuals, obtaining D = 0.056379 274 

with a p-value of 0.604. The residuals can therefore be considered Gaussian. Finally, the Ljung-Box test 275 

was also applied to check the randomness of the residuals. In this case, the p-value obtained for any lag (m) 276 

considered is less than 0.05, which means that the residuals are not random and this result reveals additional 277 

structure in the data that the regression could not capture. 278 

Figure 5 shows the comparison between measured and forecast values using an MLR in the training sample 279 

2007-2014 and in the forecasting data in 2015.  280 

 281 

 282 

 283 
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Fig. 5. Comparison between measured and forecast (MLR) power 284 

 285 

3.3. Comparison of the forecasting performance of the SARIMA and MLR models 286 

Table 5 shows the explanatory and forecasting power of the SARIMA and MLR models. For the former 287 

power we used the 𝑅2 coefficient.The accuracy measures used to analyze the validity of the model are the 288 

RMSE and AMAPE coefficients, considering the following sample sizes for the out-of-sample forecasts: 289 

𝑛 = 1, 𝑛 = 3, 𝑛 = 6, 𝑛 = 9, and 𝑛 = 12 months. As can be seen in Table 5, the RMSE value for 𝑛 = 1 is 290 

very different to that of 𝑛 > 1, suggesting that predictions for 1-month periods are uncertain. The selection 291 

model criterions are therefore based on forecasts for at least three months.  292 

Model 
Explanator

y power 

Forecasting power 

Out-of-sample Year=2015 

 

RMSE and AMAPE 

 𝑹𝟐 𝒏 = 𝟏 𝒏 = 𝟑 𝒏 = 𝟔 𝒏 = 𝟗 𝒏 = 𝟏𝟐 

MLR 48.76% 0.00088 0,00093 0,00083 0.00073 0,00074 

   29,68% 19,81% 15.59% 16,27% 

𝐒𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟏)(𝟏, 𝟏, 𝟑)𝟏𝟐 70.88% 1E-07 0.00067 0.00068 0.00073 0.00078 

   18.70% 16.61% 16.66% 17.20% 

Table 5. Comparison of explicative and forecasting power between SARIMA and MLR 293 

In the MLR model the atmospheric variables explain 48.76% of the variability of the 7Be air concentration, 294 

whereas the SARIMA model explains 70.88%. The predictive model cannot explain more variability in 7Be 295 

activity due to the joint effect of the parameters considered, which masks the intra and inter annual 296 
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components of the time series. This result agrees with observations made in previous studies (Piñero-García 297 

& Ferro-García, 2013, Dueñas et al., 2015, Bas et al., 2016). 298 

Considering the forecasting power in the out-of-sample year, the RMSE and AMAPE accuracy measures 299 

are very similar for 𝑛 = 9 and 𝑛 = 12 in both models, although slightly lower in the MLR model. However, 300 

these coefficients are much lower for 𝑛 = 3 and 𝑛 = 6 in the SARIMA than in the MLR model. 301 

Furthermore, the RMSE and AMAPE coefficients are more constant in the SARIMA than in the MLR 302 

model. This is an important property that a predictive model should have in order to control the errors 303 

associated with different predictions.  304 

 305 

4. Conclusions 306 

7Be forecasting models can be adopted as a target value in analyzing fluctuations or deviations that could 307 

imply important atmospheric changes. In this study an explicative and forecasting model of 7Be air 308 

concentrations is proposed, using two different statistical techniques: the SARIMA time series and the MLR 309 

model. In both models, the historical data used to develop the model was for the period 2007-2014. The 310 

data for the 12 months of the year 2015 was used to measure the validity of the models. 311 

Considering the forecasting power measured by the RMSE, MAPE and AMAPE accuracy coefficients, and 312 

the simplicity of the model measured by the AIC coefficient, a SARIMA(0,1,1)𝑥(1,1,3)
12

time series is 313 

proposed. The analysis of the residuals in the validation step reveals that the model is suitable for 314 

forecasting. 315 

The MLR model was developed considering the meteorological variables that mainly affect the climatology 316 

of Valencia. The significant variables obtained to predict 7Be activity are: sunspot number, temperature, 317 

precipitation and wind speed, which explain only 48.76% of 7Be variability. The predictive model cannot 318 

explain a higher degree of variability of 7Be activity due to the joint effect of the variables considered, 319 

which may mask the intra and inter annual components of the time series. In addition, the analysis of the 320 

residuals in the validation step reveals additional structure in the data that the regression did not capture. 321 

MLR also has the disadvantage of requiring forecast meteorological parameters to predict 7Be air 322 

concentrations.  323 
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The comparison between SARIMA and MLR reveals the greater explanatory power of the SARIMA model 324 

(70.88%), while its accuracy measurements are consistently lower for both short terms (3-6 months) and 325 

long terms (9-12 months) in the out-of-sample period. The MLR model performs well in the long term, but 326 

its errors are less consistent in short terms. The proposed SARIMA model can therefore be considered a 327 

good forecaster of 7Be air concentrations. However, the MLR model provides information on significant 328 

meteorological variables that affect these concentrations, which could be useful in identifying 329 

meteorological or atmospheric changes that could cause deviations in 7Be concentrations. 330 

 331 
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