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Abstract: Within nanotechnology, gold and silver nanostructures have unique physical, chemical,
and electronic properties [1,2], which make them suitable for a number of applications. Moreover,
biosynthetic methods are considered to be a safer alternative to conventional physicochemical
procedures for both the environmental and biomedical applications, due to their eco-friendly nature
and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the
synthesis of functionalized silver nanoparticles (FAgNP) have gained importance recently in this
field. In the present study, we report the rapid synthesis of FAgNP through the extract of pepino
(Solanum muricatum) leaves and employing microwave oven irradiation. The core-shell globular
morphology and characterization of the different shaped and sized FAgNP, with a core of 20–50 nm of
diameter is established using the UV-Visible spectroscopy (UV-vis), field emission scanning electron
microscopy (FESEM), transmission electron microscopy (TEM) and Zeta potential and dynamic light
scanning (DLS) studies. Moreover, cytotoxic studies employing HeLa (human cervix carcinoma)
cells were undertaken to understand FAgNP interactions with cells. HeLa cells showed significant
dose dependent antiproliferative activity in the presence of FAgNP at relatively low concentrations.
The calculated IC50 value was 37.5 µg/mL, similar to others obtained for FAgNPs against HeLa cells.

Keywords: biosynthesis; silver nanoparticles; Solanum muricatum; microwave irradiation;
cytotoxic studies

1. Introduction

Metal nanoparticles (MNP) present unique physical (e.g., plasmonic resonance and fluorescent
enhancement), chemical (e.g., catalytic activity enhancement), electronic, and antibacterial properties
which make them appropriate for their application in fields including biosensing [3], photonics [4],
electronics [5], antimicrobials [6], and in the biomedical field for drug delivery and targeting [7].
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Moreover, functionalization of nanoparticles through the conjugation of certain chemicals is known
to allow specific recognition of certain molecules and biomolecules, which may enhance efficacy
of nanoparticles in specific applications and reduce side health and environment effects. Capping
moieties are usually organic functional groups that coat the metallic core in a shell-like manner, so these
nanoparticles are usually known as functional metal nanoparticles (FMNPs). Developing a reliable
experimental protocol for the synthesis of FMNPs is a challenging issue in current nanotechnology
research, particularly in the context of the recent drive to promote green technologies for their
synthesis [8]. In this field, drawbacks associated with chemico-physical methods for the synthesis of
AgNPs including the use of toxic chemicals, high temperature, pressure, and yielding of hazardous
by-products, make it necessary to search for safer alternative methods. The ever growing need to
develop a clean, nontoxic, and environmentally safe production processes for nanoparticles to reduce
environmental impact, minimize waste, and increase energy efficiency has become essential in
this field [9].

Recognizing the importance of developing eco-friendly methods for the synthesis of biologically
active nanoparticles, scientists have additionally started looking into research relating to the synthesis
of metallic nanoparticles embedded within bio moieties [10], possessing a core-shell morphology.
The core being the metal nanoparticle (MNP), while the shell comprises of biochemical-moieties either
from a plant extract [9,11–17], or from a microorganism [18–20], which can chemically interact with
bio-organic molecules in a cellular environment. In both cases, MNP formation occurs when metal
ions are reduced to its zero valent state. The reduction, employing microorganisms, is achieved
through the reductase enzyme generated by the microorganism either by extracellular or intercellular
route [21], while in case of plant extract the reduction process is through organic reducing agents
present in the extract [9]. The mechanism of reduction employing plant extract is complicated as
there may be 25–30 individual reducing components acting individually or combined in groups
that lead to obtaining MNP. A detailed mechanism to understand the formation of MNPs using
plant extracts is still unknown. However, highly reproducible and chemically homogeneous stable
dispersions of MNPs are achieved [22–25]. The process to coat nanoparticles with bio-moieties acting
as bio-conjugates has a crucial role in certain applications. In most cases, this biological shell presents
the inherent ability to bind to biomolecules, allowing interaction with cells and offering the possibility
of control cell responses [13,26–29]. From the structural point of view, shell consists of predominantly
flavonoids [29,30].

Time consumption for synthesis of MNPs is the limitation of this process similar to the one
employing microorganisms. However, some reports on the modified use of plant extracts have
given insight into the possible organic moieties responsible for the metal ion reduction process along
with greatly reducing the time duration for the synthesis [30–33]. The core-shell is nevertheless
maintained. One of the trusted and successfully applied modified approaches consists in the use
of a conventional microwave oven [11,14,18,34,35]. The extract on exposure to microwave radiation
offers a rapid and uniform heating of the reaction medium and thus provides uniform nucleation
and growth conditions for the synthesis of functionalized nanoparticles. Interestingly, capped MNPs
(forming core-shell morphology) are obtained through this microwave assisted route, making the
MNPs decidedly stable. The capping moieties from the extract and the metallic core form the core-shell
morphology obtained. A judicious choice of the extract may confer to the FMNPs some properties of
the functional groups used as shell, for example, to bind certain groups (organic/bio/cell/inorganic)
for a desired application.
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Extracts of other plants have also been studied by us [13,15,20,36] and other researchers [34–38].
Recently, MNPs have gained special attention for their promising potential as anticancer
agent [12,13,31,36,39–42]. Characteristics as their intrinsic cytotoxicity, their larger surface area,
and area:volume ratio, their easily tunable surface that allow conjugation or encapsulation with
biological targeting or therapeutic molecules, and their optical characteristics, make them optimal
materials for cancer theranostics [39,43] which try to combine diagnosis and therapy into a single agent.
In earlier reports, some of us have used guava leaf extract to obtain functionalized gold and silver
nanoparticles [34,35]. Guava leaf is known to possess anti-malignant character [44–46]. In this work,
cell interaction studies showed that irregularly shaped Au nanoparticles were great anti-proliferative
agents when compared with spherically shaped Au ones [34].

In this work, we focus in the formation and use of silver nanoparticles (AgNPs). Silver is
known for its broad-spectrum antimicrobial activity. Moreover, several studies have reported the
potential use of AgNPs as anticancer agents [39,42]. In this context, one of the challenging issues
in current nanotechnology research is the development of a reliable experimental protocol for the
synthesis of AgNPs with well-controlled morphological and physicochemical features for biomedical
applications [8].

Thus, in the present work, we report the microwave assisted methodology for synthesizing
functionalized silver nanoparticles, using the leaf extract of Solanum muricatum (S. muricatum).
This species is usually referred to as “pepino”, and is an evergreen shrub native to the Andean regions,
from southern Colombia to Bolivia and the coast of Peru [47]. It is mainly consumed as fruit around
the world, but in some places it is also used as a vegetable. The fruit is very common in South America,
although it is also cultivated in other countries like Spain, New Zealand, China, or USA [48]. Apart
from nutritional aspects, the pepino plant is known for its anti-tumoral, antioxidative, antidiabetic,
and anti-inflammatory properties [49–51]. Previous work from Ren et al. [50], found that an aqueous
extract from S. muricatum was cytotoxic against tumor cell lines of prostate, liver, breast, and stomach
triggering apoptosis signals. Although the molecular mechanisms of this cytotoxicity remain unclear,
this work implies that pepino is a potent medicinal food.

Present work shows the synthesis of FAgNP using pepino leaf extract as a reducing medium
and microwave oven irradiation (see Figure 1). This paper also reports on the characterization of the
FAgNPs employing different techniques. Formation of the FAgNPs is confirmed through the surface
plasmon resonance (SPR) peak observed on the optical spectrum. The core-shell morphology of the
FAgNP is established through optical images obtained by employing FESEM and TEM techniques
and by dynamic light scattering measurements. Also, cytotoxic studies have been undertaken on
HeLa (Human cervix carcinoma) cells. Cancer is considered one of the main causes of morbidity and
mortality around the world, and the number of new cases increase every year. Moreover, cancer is not
a single disease, it is a generic term for a large group of diseases that can affect any part of the body.
For these reasons, cancer is one of the major public health concerns around the world [52]. Starting as
localized focus of uncontrolled cell growth, cancer makes progress to a systemic disease which in many
cases, and if the spread is not controlled, ends up with the death of the patient [53]. As we discussed
above, nanotechnology, is an interdisciplinary field with great potential for its application in medicine
and especially in cancer treatment and individualized therapy [54,55]. Nanoparticles with their small
size are able to interact with larger biological molecules both outside and inside cells and they are
internalized inside mammalian cells by uptake mechanisms as endocytosis. In this way, nanoparticles
(NPs) offer a number of possibilities for cancer treatment and diagnosis [55,56].
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Figure 1. Pictorial representation of the microwave-assisted synthesis of AgNPs.

2. Results

2.1. Synthesis and Characterization of Biofunctionalized Silver Nanoparticles (FAgNP)

In this work, the preparation of FAgNPs was achieved by treating with AgNO3 an extract of
S. muricatum leaves obtained after the maceration by the immersion of chopped leaves in water and
subsequent microwave irradiation of the mixture. In a typical synthesis, a reductant leaf extract was
obtained from freshly collected leaves of pepino (S. muricatum) and exposed to microwaves using a
conventional microwave oven at a frequency of 2.45 GHz for 180 s to denaturalize the enzymes and
proteins present in the solution. In a following step, 40 mL of the extract were used to treat 800 mL of a
1 mM silver nitrate aqueous solution and exposed to microwave radiations in the same microwave oven
for 90 s. When the mixture of the plant extract and the AgNO3 were irradiated, the colorless solution of
the extract changed from pale yellow to intense reddish-brown color within 90 s, which evidenced the
formation of FAgNP. This result is in agreement with previous studies indicating extracellular reduction
process [13–15,19,20]. The yield of FAgNPs obtained by this microwave-assisted method using pepino
leaf extract is comparable to chemical and physical methods, getting to complete the reduction process
of the silver ions in 90 s. In the context of eco-friendly methods that use microorganisms and plants
for the synthesis of FAgNPs, Balaji et al. [20] reported the extracellular biosynthesis of FAgNPs using
the fungus Cladosporium cladosporioides in 78 h as Durán et al. [57] did in 72 h using biomass of
Fusarium oxysporum. However, these methods are too slow for an industrial production of FAgNPs.
More recently, other authors as Dubey et al. [58] managed to synthesize FAgNPs in 15 min using the
extract of Sorbus aucuparia and Bhat et al. [15] reported the synthesis in some few hours using sun
light irradiation and an extract of the mushroom Pleurotus florida. Compared with these reported
data, our results indicated that microwave-assisted biosynthesis of FAgNPs is a procedure that allows
reducing time needed for the reduction of silver ions and formation of nanoparticles [11,14,18,34,35].

The change in color was studied by UV-vis (JASCO Inc., Easton, MD, USA) to monitor the
formation and stability of silver nanoparticles. UV-vis spectra were recorded at scheduled times and
the results are shown in Figure 2. Changes in color of the solution take place within few seconds
upon irradiation, and the characteristic surface plasmon resonance (SPR) signature of FAgNP was
observed [19] as a band at 447 nm due to excitation of longitudinal plasmon vibrations [19]. Reports
on the nature of the SPR peak and its characteristics have been discussed by several researchers,
significantly by Taneja on the behavior of the deepening of the dip before the SPR peak and the effect
of the dielectric medium on the shape index of the SPR peak [59]. The SPR peak in the present study is
observed at 447 nm, which is consistent with reports from the literature in the study for the formation
of FAgNPS employing different routes [19]. The SPR peak observed is broad and has no shoulders.
The single broad peak without shoulders indicates polidispersity of the sample and a dipolar nature
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of the SPR. A complete formation of the FAgNPs is observed after 90 s of reaction. The formation of
FAgNPs in a single step process is a significant feature when microwave irradiation is employed on
plant extract in the preparation of MNPs [14].Materials 2016, 9, 325 5 of 15 
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Figure 2. UV–visible spectra of biosynthesized FAgNPs. The surface Plasmon peak observed at
447 nm due to excitation of longitudinal plasmon vibrations confirms the presence of colloidal FAgNPs.
Intensity of the peaks increases with exposure to microwave irradiation time. Peaks are broad and
present no shoulders representative of the polidispersity of the sample and indicates a dipolar nature
of the SPR.

It is interesting to note that, only the microwave irradiated extract of the Solanum muricatum leaves
showed the formation of FAgNPs upon addition of AgNO3 solution, while the pre-irradiated extract
did not show this behavior. It may thus be understood that the microwave irradiation of the aqueous
extract contained useful organic moieties responsible for the chemical reduction of ionic Ag+ to Ag.
In this context, the concept of electron transfer mechanisms for reduction of metal ions to form FAgNPs
has been reported by several authors [30,37,38]. As the microwave irradiation inactivates enzymes and
proteins, the reducing behavior of the extract is most likely due to the presence of flavonoids which
are known to have the potential to act as reducing agents [32]. Flavonoids are phenolic compounds
of the secondary metabolism of the plants. Sudha et al. [51] found high amounts of phenols and
flavonoids on aqueous extracts of S. muricatum. The phytochemicals in S. muricatum displayed several
bioactivities as antioxidative, antidiabetic, and antiinflammatory properties. Moreover the extracts
also showed cytotoxic activity against cell lines of breast, stomach, ovarian, liver, lung, and prostate
cancers [32,49–51] by triggering apoptosis.

In a further step, the size and shape of the synthesized FAgNPs were studied by FESEM and TEM.
FESEM samples were prepared by deposition of FAgNPs in powder form on a sticky conducting copper
tape that was mounted on an aluminum disc. FESEM micrographs (Figure 3) show typical images of
aggregated FAgNP possessing core-shell morphology of silver nanoparticles embedded in an organic
shell with sizes below 100 nm. The particles are conjoined with their neighbors forming predominantly
rounded core-shell morphology. The core size is around 30–50 nm and closer observation indicates
irregular but mostly rounded shaped morphology. TEM studies provided further insight into the
morphology and size of these nanoparticles. TEM samples were prepared by deposition of one drop of
the reddish brown suspension on a carbon-coated copper TEM grid. Figure 4 shows representative
TEM images of the obtained FAgNPs. Silver nanoparticles are irregularly shaped, well separated,
and no agglomeration was observed. The size of the nanoparticles is in the 20–80 nm range with
an average size of 59.34 ˘ 16.63 nm. A careful examination of the TEM images showed that the
surface of silver nanoparticles was covered with an organic thin layer from the plant extract. However,
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if compared with FESEM images the shell seems to be partially ruptured or flared out, that may be due
to the experimental conditions employed for TEM. In particular, TEM measurement uses ultra-high
vacuum along with high voltage on a dried FAgNPs powder, which seems to be responsible for the
partial decapping of the shell.Materials 2016, 9, 325 6 of 15 
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Figure 4. Transmission electron microscopy (TEM) images of representative FAgNPs. The obtained
FAgNP are irregular in shape and its size is in the 20–80 nm range.

Dynamic light scattering measurements were performed to determine the hydrodynamic diameter
of the prepared FAgNPs. The obtained size distribution is depicted in Figure 5a. A one-band size
distribution in the 20–70 nm range was observed with a mean diameter of 40 nm. This unique peak
also confirmed the absence of larger aggregates when FAgNPs were dispersed in aqueous media.
Moreover, Zeta potential measurements were also carried out. A value of ´28.75 ˘ 5.61 mV was
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obtained. Zeta potential is a crucial factor for the determination of the stability of suspensions of
nanoparticles. This parameter is related with the surface charge of the nanoparticles. When particles
in a colloidal system have large negative or positive Zeta potential, repulsion forces between them
prevent aggregation. In contrast, when nanoparticles present low surface charges, the absence of
repulsion forces favors aggregation. In this context, nanoparticle suspensions with Zeta potential
values greater than +25 mV or lower than ´25 mV usually form high stable suspensions. [60] The value
of Zeta potential for our prepared FAgNPs indicates that the nanoparticles are highly stable. These
results suggest that pepino leaf extract is not only a good bioreductant for the preparation of FAgNPs
but also that the final organic shell prevents aggregation of nanoparticles.
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2.2. Cytotoxicity Studies

Once prepared and fully characterized, we focused our attention to study the potential use of
FAgNPs as an antiproliferative agent. With the increasing number of published articles about the
use of different nanomaterials for the treatment of several diseases due to their cytotoxic properties,
it has raised concerns about safety in medical use and in vivo effectiveness of these nanomaterials.
The first report on the cytotoxic effect of FAgNPs synthesized from plant extracts was tested in
MCF-7 breast cancer cells in 2013 [12]. Since then, several studies have evidenced that therapy with
biosynthesized FAgNPs is a promising alternative for traditional anticancer treatments [39]. However,
further investigations are needed, mainly related with safety issues associated to their use in humans
and their effects on the environment [61].

In the present study, the inhibitory activity of pepino leaves extract and bio-synthesized
FAgNPs was assessed for in vitro antiproliferative activity against HeLa human cervix cancer cells
using the WST-1 method [62]. This colorimetric assay is based on the reactivity of mitochondria
succinate-tetrazolium reductase system which is only active in metabolically intact cells. The enzymatic
system cleaves the slightly red tetrazolium salt WST-1 to a soluble dark red formazan chromophore.
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Therefore, the amount of formazan dye formed directly correlates with the number of metabolically
active cells in the culture. The change of color produced by the increased amount of formazan can
be measured at 450 nm spectrophotometrically. Then, the obtained absorbance for each FAgNPs
concentration, normalized using the absorbance of the untreated control wells, is represented. Data is
adjusted to a sigmoidal curve and the inhibitory effect (IC50 value) is calculated as the concentration
required of FAgNPs required inhibiting the growth of tumor cells in culture by 50% compared
to untreated cells. The reduction of WST-1 can only occur in metabolically active cells; therefore,
the change in color of the culture media is a measure of viability of cells. Absorbance values lower
than control cells indicate a reduction in the viability of the cultures. In opposition, an increase in
the absorbance value of the media is correlated with an increase in cells viability. The percentage of
cell proliferation inhibition for each treatment is then calculated in relation to controls which were
considered as 100% of cell proliferation.

As it was expected (vide infra), when the effectiveness of synthesized FAgNPs against HeLa
cells was tested, a dramatic decrease in cell viability was registered as the concentration of FAgNPs
increased at dilutions ranging from 20 to 100 µg/mL (10, 20, 30, 40, 50, 80, 100 µg/mL, Figure 6).
Clearly, a significant dose-dependent reduction in cell viability was observed. From the represented
data, the half maximal inhibitory concentration (IC50) was calculated and an IC50 value of 37.5 µg/mL
was obtained. No inhibitory effect in cell viability was observed in samples at dilutions lower than
20 µg/mL of FAgNPs. When cultures are treated with the aqueous plant extract of S. muricatum, leaves
(LE) or with only vehicle (Vh), which in this case is a treatment with the same amount of only solvent
of the FAgNPs (distilled water), cells remained alive.Materials 2016, 9, 325 8 of 15 
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Figure 6. Cytotoxic effect of the biofunctionalized synthesized FAgNP against human cancer HeLa cells.
Data are expressed as means ˘ standard error of the mean (SEM) for five independent experiments with
six replicates each. Statistical significance of results was studied performing Student t-test with a p value
(p). p > 0.05 as a minimal level of significance. Asterisk indicates statistically significant differences
between untreated control and synthesized FAgNPs treated cells (a) p < 0.05 v/s corresponding controls
(b) p < 0.01 v/s corresponding controls. Vh (Vehicle; distilled water); LE (leaves extract).

A clear antiproliferative effect of FAgNP was observed for HeLa cells. A similar inhibitory cell
proliferation capability was found in other recently published works using biosynthesized FAgNPs
from other organic extracts and tested against a HeLa cervix cancer cell line. Palaniappan et al. [63] have
reported the cytotoxic effect of FAgNP from an aqueous extract of Cymodocea serrulata on HeLa cells
with an IC50 value of 34.5 µg/mL; Balakumaran et al. [64], noticed an IC50 value of 27.5 µg/mL for HeLa
cells when using FAgNPs obtained from an extract of the endophytic fungus Guignardia mangiferae.
In another study by Chanthini et al. [65] the medicinal sea grass Cymodocea serrulata was used to
obtain FAgNPs, and the nanoparticles gave an IC50 value of 34.5 µg/mL also against HeLa cells.
Also, Sreekanth et al. [66] obtained a dose dependent cytotoxicity of FAgNPs biosynthesized using
Nelumbo nucifera with a minimum 56% and maximum of 83% of growth.

It is well documented that FAgNPs induce cell death through genotoxicity, loss of the cell
membrane integrity, oxidative stress, and apoptosis [67]. Although the mechanisms of cytotoxicity
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induced by FAgNPs are poorly studied, several works evidence that it is mainly produced by oxidative
stress [67–69]. Recent research has also shown that silver ions released by the silver nanoparticles play
an important role in cellular death [70] and together show a synergistic effect [71]. Briefly, after the
cellular uptake, particles are preferentially accumulated inside endosomes and lysosomes where acidic
environment and high intracellular dissolved oxygen concentration produce reactive oxygen species
(ROS). In this moment, the dissolution of silver nanoparticles to silver ions (Ag+) takes place through
an oxidation reaction [42,72–74] and the partial inhibition of the cell ROS defense mechanisms [75].
In a further step, both FAgNPs and silver ions are released from lysosomes and are able to disrupt
mitochondrial activity and further increase the production of intracellular ROS, which, simultaneously,
would increase oxidation of FAgNPs and liberation of silver ions from them [73,74]. The sustained
ROS production and silver ions release are responsible for cell structure damage. Moreover, FAgNPs
and released Ag+ can interact with thiol groups in molecules present in the cytoplasm, cell membrane,
and inner membrane of mitochondria, which might release lipid peroxide and increases permeation
of the cell membrane and mitochondrial systems. Additionally, FAgNPs and Ag+ are also able to
translocate and diffuse directly to the nucleus and trigger DNA abnormalities [68]. All of these referred
mechanisms can trigger different cell death mechanisms as apoptosis and necrosis [76].

Several factors influence toxicity of FAgNPs such as dose, time, and size of the particles [12] but
other factors such as shape, surface coatings, and charge and cell type might also be crucial in the
FAgNPs toxicity. In particular, the toxicity of nanomaterials is related with their capability to react
with organic moieties of biomolecules, which depends on the reactive surface area of the nanoparticles
and therefore closely depends on the nanoparticle size [77]. Then, dose-dependent decrease in cell
viability observed in our work can be explained by taking into account the increasing number of
FAgNPs accumulated inside cells. In this situation, an increase in the amount of reactive surface area
of nanoparticles is clear, which results in enhanced stress ultimately leading to cell death.

FAgNPs are toxic to the mammalian cells [78]. However, there is evidence that cytotoxic effects
of FAgNPs are greater on cancer cells than on normal cell lines [65,79]. For instance, Ren et al. [50]
showed that S. muricatum aqueous extracts are able to produce a selective cytotoxicity against cancer
cell lines, three- to six-fold higher than that observed in normal cell lines. Here we have tested the
cytotoxic capabilities of S. muricatum biosynthesized FAgNPs against HeLa cells. Although further
experiments are needed to fully confirm the anticancer potential of these nanoparticles, it seems that
both characteristics (i.e., toxicity of AgNPs and S.muricatum extracts) can be acting in a synergistic
manner and this could be a promising potential nanotherapeutic agent for cancer treatment.

3. Materials and Methods

3.1. General Remarks

Fresh leaves of pepino “El Camino” (Solanum muricatum) were picked directly from S. muricatum
plants cultivated in the Institute for Conservation and Improvement of Valencian Agrodiversity
(COMAV). Silver Nitrate (AgNO3) A.R grade was purchased from Sigma-Aldrich Química S.A.
(Madrid, Spain). Solutions were prepared with double-distilled water. Microwave furnace, BLUEsky
(Blue Sky Communications, Cheyenne, WY, USA) 2.45 GHz was used for heating of leaves extract to
inactivate the enzymes present in the leaves and for the synthesis of FAgNP.

3.2. Green Synthesis of the Silver Nanoparticles

The process for extracellular maceration of S. muricatum has been followed as per our earlier
work [35], along with some modification as discussed below:

In a typical synthesis, to obtain a reductant leaf extract, 5 g of freshly collected leaves of Pepino
‘El camino’ (Solanum muricatum) are washed with distilled water to remove any organic residue that
may remain on the surface and perfectly dried. After that, the leaves are finely chopped in small pieces
(approximately 1 cm ˆ 1 cm) with a sterile scalpel and submerged in 100 mL of double distilled water in



Materials 2016, 9, 325 10 of 15

a 250 mL glass beaker. The humid leaf pieces of S. muricatum “El camino” were exposed to microwaves
for 180 s to denaturalize the enzymes and proteins present in the solution in a conventional microwave
oven at a frequency of 2.45 GHz. The raw extract obtained was collected by passing through Whatman
filter paper 42 and the resultant filtrate is used for the reduction process of Ag+ to Ag. Then 40 mL of
the extract were used to treat 800 mL of a 1 mM silver nitrate aqueous solution in a 1 L glass beaker
and exposed to microwave radiation in the same microwave oven for 90 s. The changes in color of the
solution take place within a few seconds, changing from pale green to reddish brown color evidences
the formation of FAgNP.

FAgNPs are finally collected through ultracentrifugation at 9500 rpm for 20 min. The whole pellet
obtained corresponds to the FAgNPs fraction, which was washed twice with double-distilled water
and dried at 37 ˝C to obtain 52 mg of the final FAgNPs.

3.3. Characterization

The formation of FAgNP was verified by using JASCO V-650 spectrophotometer (JASCO Inc.,
Easton, MD, USA) operated at 1 nm resolution with optical length of 10 mm. Measurements of
size and Zeta potential were studied by Dynamic Light Scattering (DLS) using a Zetasizer Nano ZS
Analyzer (Malvern Instruments Ltd., Worcestershire, UK) in the range of 0.1–1000 µm. The structural
morphology of FAgNP was also examined by JEOL TEM-1010 Electron microscope (JEOL USA, Inc.,
Peabody, MA, USA) working at 100 kV and by Field Emission Scanning Electron Microscopy FESEM
using ZEISS Ultra 55 instrument (ZEISS, Oberkochen, Germany).

3.4. Cell Lines and Culture Conditions

HeLa human cervix adenocarcinoma cells were purchased from the German Resource Centre for
Biological Materials (DSMZ). HeLa cells were grown under standard culture conditions (37 ˝C, 5% CO2)
in DMEM medium (Sigma-Aldrich®, St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS), and underwent passage twice a week in order to keep cells under appropriate growing
conditions. For this, when cultures reach 90%–100% confluence, cells are detached from the bottom of
the flask by trypsinization and diluted properly for each cell line.

3.5. Effects on Cell Growth/Viability

Both leaf extract (S. muricatum) and FAgNP solutions were evaluated for in vitro cytotoxicity on
HeLa (Human cervix carcinoma) cells at different concentrations (10, 20, 30, 40, 50 80, 100 µg/mL)
performing WST-1 (Cell proliferation reagent WST-1, Roche, Basel, Switzerland) assays.

The monolayer cell culture was washed with PBS and treated with 1.5 mL of trypsin-EDTA
(Gibco®, Thermo Fisher Scientific Inc., Waltham, MA, USA), which breaks down proteins, until cells
were detached from the bottom of the growing flask and well dispersed to obtain a homogeneous
suspension of cultured cells. Then, cells were counted and 2.5 ˆ 103 cells per well were seeded in a
96-well microplate, adding 0.1 mL of diluted cell suspension in each well. After 24 h, the supernatant
was removed and 100 µL of leaf extract or FAgNP water solution were added to the cells, depending on
the treatment, and kept in incubation at 37 ˝C in 5% CO2 incubator for 72 h. Increasing concentrations
used were 10, 20, 30, 40, 50, 80, 100 µg/mL in distilled water. Then, 7 µL of WST-1 were added to each
well and further incubated 1 h until obtain the change of color in control cultures. Finally, absorbance of
the cultures was measured at 450 nm using a microplate reader Thermo ScientificTM MultiskanTM FC
Microplate Photometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Reference measurements
were taken at 620 nm. Inhibitory effect (IC50) was calculated for the FAgNP concentration that is
required to reduce absorbance of 50% of the control culture, based on the dose-response curve for
different FAgNP concentrations as shown in Figure 6. Absorbance values that are lower than the
control cell lines reveal a decline in the rate of cell proliferation. Conversely, a higher absorbance
indicates an increase in the cell proliferation. Untreated culture wells of HeLa cells were considered as
proliferative control. The percent inhibition of cell proliferation was calculated based on difference in
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inhibitory effect between treated cell lines and their respective controls, where 100% cell proliferation
was taken from corresponding controls.

3.6. Statistics

All the results are expressed as mean ˘ standard error of the mean (SEM) of five independent
experiments with six replicates of each condition. The difference in inhibitory effect at different doses
between treated and corresponding controls was analyzed for statistical significance by performing
Student t-test with p > 0.05 as a minimal level of significance. The IC50 value was calculated fitting
toxicity data with a Sigmoidal Dynamic Curve 4 Parameter Fit using SigmaPlot version 13.0, from Systat
Software, Inc., San Jose, CA, USA, www.sigmaplot.com, with a total number of fit iterations of 200.

4. Conclusions

To conclude, in the present investigation we successfully developed an environmental friendly
synthesis method for the production of biosynthesized FAgNP by exploiting S. muricatum leaf extract
as a potential bioreductant. In particular, FAgNPs were obtained by treating a solution AgNO3 with
the extract of S. muricatum leaves and subsequent microwave irradiation of the mixture. The prepared
nanoparticles have been characterized by different techniques such as UV-vis, FESEM, TEM, and DLS.
The rapid biosynthetic method developed in this study for producing silver nanoparticles has distinct
advantages over chemical methods such as a high biosafety, ecofriendliness, and nontoxicity to the
environment. Finally, potential cytotoxicity studies of the nanoparticles against HeLa cells were
conducted. From those experiments, an IC50 value of 37.5 µg/mL was estimated, which is in the range
of other reported works where FAgNPs cytotoxicity against HeLa cells were tested.
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S. muricatum Solanum muricatum
SPR Surface plasmon resonance
TEM Transmission electron microscopy
Vh Vehicle



Materials 2016, 9, 325 12 of 15

References

1. Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal
properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008,
41, 1578–1586. [CrossRef] [PubMed]

2. Brauman, J.I. Room at the Bottom. Science 1991, 254, 1277. [CrossRef] [PubMed]
3. Habouti, S.; Solterbeck, C.H.; Es-Souni, M. Synthesis of silver nano-fir-twigs and application to single

molecules detection. J. Mater. Chem. 2010, 20, 5215–5219. [CrossRef]
4. Hu, X.; Chan, C.T. Photonic crystals with silver nanowires as a near-infrared superlens. Appl. Phys. Lett.

2004, 85, 1520–1522. [CrossRef]
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