

PhD Thesis

gestUI: a model-driven method to include

gesture-based interaction in user

interfaces

Otto Parra González

Supervisors:

Óscar Pastor López

Sergio España Cubillo

Ignacio Panach Navarrete

September 2017

A thesis submitted by Otto Parra González in partial fulfilment of the
requirements for the degree of Doctor of Philosophy in Computer

Science by Universitat Politècnica de València, Spain.

gestUI: a model-driven method to include gesture-

based interaction in user interfaces

This report was prepared by:
Otto Parra González

otpargon@posgrado.upv.es, otto.parra@ucuenca.edu.ec

Supervisors
Óscar Pastor López, Universitat Politècnica de València

Sergio España Cubillo, University of Utrecht

Ignacio Panach Navarrete, Universitat de València

External reviewers of the thesis:
Antoni Granollers Saltiveri, Universidad de Lleida

Lourdes Moreno López, Universidad Carlos III

Victor Manuel Ruiz Penichet, Universidad de Castilla-La Mancha

Members of the Thesis Committee:
Jean Vanderdonckt, Université Catholique de Louvain

Antoni Granollers Saltiveri, Universidad de Lleida

Jose Antonio Macías Iglesias, Universidad Autónoma de Madrid

Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València

Camì de Vera s/n, Edificio 1F

46022, Valencia, España

Tel. (+34) 963 877 007 ext. 83533

Fax: (+34) 963 877 359

Web: http://www.pros.upv.es

Release date: september-2017

Comments: A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy in Computer Science by Universitat Politècnica

de València.

Rights: © Otto Parra González, 2017.

mailto:otpargon@posgrado.upv.es
mailto:otto.parra@ucuenca.edu.ec
http://www.pros.upv.es/

Acknowledgements
First of all, I would like to thank the supervisors Dr. Oscar Pastor López,

Dr. Sergio España Cubillo and Dr. Ignacio Panach Navarrete for their

support, rigor and guidance. I am very grateful for the trust placed in me.

It has been a pleasure to have the opportunity to learn from them.

I want to thank Oscar for the opportunity he gave me to be part of PROS

and because he was always ready to assist me when I needed it, with his

advice and guidance to do my work.

Sergio, for his valuable work since the beginning of the thesis, because

he was always ready to guide me along the long path of development of

the thesis.

Ignacio, thanks for all the work done in the final part of the thesis

corresponding to the evaluation of the process, for the review of the

thesis and for the constant support that has given me since its

incorporation to the "thesis supervisors team". In addition, for his help

in translating the thesis summary to the Valencian.

I want to thank PROS staff, especially Ana Cidad, Paco Valverde and

Verónica Buriel because they were always willing to help me every time

I went to them, they always knew how to help me. To the friends I made

in this time of study in the UPV: José Reyes, Carlos Iñiguez, Julio

Sandobalin, Sonia Cárdenas, Mauricio Loachamin, Nelly Condori-

Fernandez, and Alejandro Catalá. To them, thank you for the support

given me in every moment.

This work has been supported by Universidad de Cuenca and SENESCYT

of Ecuador, and received financial support from the Generalitat

Valenciana under Project IDEO (PROMETEOII/2014/039) and the

Spanish Ministry of Science and Innovation through the DataMe Project

(TIN2016-80811-P).

Finally, thanks to my wife Maria Fernanda and our children Maria Paula,

Luis Felipe and Maria Emilia for their support and for being always close

to me. For having been our faithful companions in this journey and

adventure that has meant for them our permanence in Valencia.

Abstract
The research reported and discussed in this thesis represents a novel

approach to define custom gestures and to include gesture-based

interaction in user interfaces of the software systems with the aim of

help to solve the problems found in the related literature about the

development of gesture-based user interfaces.

The research is conducted according to Design Science methodology

that is based on the design and investigation of artefacts in a context. In

this thesis, the new artefact is the model-driven method to include

gesture-based interaction in user interfaces. This methodology

considers two cycles: the main cycle is an engineering cycle where we

design a model-driven method to include interaction based on gestures.

The second cycle is the research cycle, we define two research cycles:

the first research cycle corresponds to the validation of the proposed

method with an empirical evaluation and the second cycle corresponds

to the technical action research to validate the method in an industrial

context.

Additionally, Design Science provides us the clues on how to conduct the

research, be rigorous, and put in practice scientific rules. Besides Design

Science has been a key issue for organising our research, we

acknowledge the application of this framework since it has helps us to

report clearly our findings.

The thesis presents a theoretical framework introducing concepts

related with the research performed, followed by a state of the art

where we know about the related work in three areas: Human-computer

Interaction, Model-driven paradigm in Human-Computer Interaction

and Empirical Software Engineering.

The design and implementation of gestUI is presented following the

Model-driven Paradigm and the Model-View-Controller design pattern.

Then, we performed two evaluations of gestUI: (i) an empirical

evaluation based on ISO 25062-2006 to evaluate usability considering

effectiveness, efficiency and satisfaction. Satisfaction is measured with

perceived ease of use, perceived usefulness and intention of use, and (ii)

a technical action research to evaluate user experience and usability. We

use Model Evaluation Method, User Experience Questionnaire and

Microsoft Reaction cards as guides to perform the aforementioned

evaluations.

The contributions of our thesis, limitations of the tool support and the

approach are discussed and further work are presented.

Resumen
La investigación reportada y discutida en esta tesis representa un

método nuevo para definir gestos personalizados y para incluir

interacción basada en gestos en interfaces de usuario de sistemas

software con el objetivo de ayudar a resolver los problemas encontrados

en la literatura relacionada respecto al desarrollo de interfaces basadas

en gestos de usuarios.

Este trabajo de investigación ha sido realizado de acuerdo a la

metodología Ciencia del Diseño, que está basada en el diseño e

investigación de artefactos en un contexto. En esta tesis, el nuevo

artefacto es el método dirigido por modelos para incluir interacción

basada en gestos en interfaces de usuario. Esta metodología considera

dos ciclos: el ciclo principal, denominado ciclo de ingeniería, donde se

ha diseñado un método dirigido por modelos para incluir interacción

basada en gestos. El segundo ciclo es el ciclo de investigación, donde se

definen dos ciclos de este tipo. El primero corresponde a la validación

del método propuesto con una evaluación empírica y el segundo ciclo

corresponde a un Technical Action Research para validar el método en

un contexto industrial.

Adicionalmente, Ciencia del Diseño provee las claves sobre como

conducir la investigación, sobre cómo ser riguroso y poner en práctica

reglas científicas. Además, Ciencia del Diseño ha sido un recurso clave

para organizar la investigación realizada en esta tesis. Nosotros

reconocemos la aplicación de este marco de trabajo puesto que nos

ayuda a reportar claramente nuestros hallazgos.

Esta tesis presenta un marco teórico introduciendo conceptos

relacionados con la investigación realizada, seguido por un estado del

arte donde conocemos acerca del trabajo relacionado en tres áreas:

Interacción Humano-Ordenador, paradigma dirigido por modelos en

Interacción Humano-Ordenador e Ingeniería de Software Empírica.

El diseño e implementación de gestUI es presentado siguiendo el

paradigma dirigido por modelos y el patrón de diseño Modelo-Vista-

Controlador. Luego, nosotros hemos realizado dos evaluaciones de

gestUI: (i) una evaluación empírica basada en ISO 25062-2006 para

evaluar la usabilidad considerando efectividad, eficiencia y satisfacción.

Satisfacción es medida por medio de la facilidad de uso percibida,

utilidad percibida e intención de uso; y, (ii) un Technical Action Research

para evaluar la experiencia del usuario y la usabilidad. Nosotros hemos

usado Model Evaluation Method, User Experience Questionnaire y

Microsoft Reaction Cards como guías para realizar las evaluaciones

antes mencionadas.

Las contribuciones de nuestra tesis, limitaciones del método y de la

herramienta de soporte, así como el trabajo futuro son discutidas y

presentadas.

Resum
La investigació reportada i discutida en aquesta tesi representa un

mètode per definir gests personalitzats i per incloure interacció basada

en gests en interfícies d’usuari de sistemes de programari. L’objectiu és

ajudar a resoldre els problemes trobats en la literatura relacionada al

desenvolupament d’interfícies basades en gests d’usuaris.

Aquest treball d’investigació ha sigut realitzat d’acord a la metodologia

Ciència del Diseny, que està basada en el disseny i investigació

d’artefactes en un context. En aquesta tesi, el nou artefacte és el mètode

dirigit per models per incloure interacció basada en gests en interfícies

d’usuari. Aquesta metodologia es considerada en dos cicles: el cicle

principal, denominat cicle d’enginyeria, on es dissenya un mètode dirigit

per models per incloure interacció basada en gestos. El segon cicle és el

cicle de la investigació, on es defineixen dos cicles d’aquest tipus. El

primer es correspon a la validació del mètode proposat amb una

avaluació empírica i el segon cicle es correspon a un Technical Action

Research per validar el mètode en un context industrial.

Addicionalment, Ciència del Disseny proveeix les claus sobre com

conduir la investigació, sobre com ser rigorós i ficar en pràctica regles

científiques. A més a més, Ciència del Disseny ha sigut un recurs clau per

organitzar la investigació realitzada en aquesta tesi. Nosaltres

reconeixem l’aplicació d’aquest marc de treball donat que ens ajuda a

reportar clarament les nostres troballes.

 Aquesta tesi presenta un marc teòric introduint conceptes relacionats

amb la investigació realitzada, seguit per un estat del art on coneixem a

prop el treball realitzat en tres àrees: Interacció Humà-Ordinador,

paradigma dirigit per models en la Interacció Humà-Ordinador i

Enginyeria del Programari Empírica.

El disseny i implementació de gestUI es presenta mitjançant el

paradigma dirigit per models i el patró de disseny Model-Vista-

Controlador. Després, nosaltres hem realitzat dos avaluacions de gestUI:

(i) una avaluació empírica basada en ISO 25062-2006 per avaluar la

usabilitat considerant efectivitat, eficiència i satisfacció. Satisfacció es

mesura mitjançant la facilitat d’ús percebuda, utilitat percebuda i

intenció d’ús; (ii) un Technical Action Research per avaluar l’experiència

del usuari i la usabilitat. Nosaltres hem usat Model Evaluation Method,

User Experience Questionnaire i Microsoft Reaction Cards com guies per

realitzar les avaluacions mencionades.

Les contribucions de la nostra tesi, limitacions del mètode i de la

ferramenta de suport així com el treball futur són discutides i

presentades.

Contents
Chapter 1. Introduction ... 3

1.1 Motivation ... 3

1.1.1 Human-computer interaction ... 3

1.1.2 Software systems and development tools 5

1.2 Problem Statement ... 10

1.3 Research Questions ... 13

1.4 Thesis Objectives ... 14

1.5 Research Methodology ... 16

1.6 Expected Contributions ... 18

1.7 Thesis Context ... 20

1.8 Thesis Outline .. 20

Chapter 2. Theoretical Framework .. 25

 Overview .. 25

 A theoretical framework for Human-Computer Interaction . 26

2.2.1 Gestures related definition.. 26

2.2.2 Classification of gestures ... 27

2.2.3 Gesture recognition algorithms 29

2.2.4 Gesture-based interaction ... 30

 A theoretical framework of Model-Driven paradigm 31

2.3.1 Model related definition ... 31

2.3.2 MDA Conceptual framework ... 33

2.3.3 Model Transformations ... 34

2.3.4 Transformation Language.. 36

 Summary .. 37

Chapter 3. State of Art ... 41

3.1 Motivation ... 41

3.2 Gesture representation ... 42

3.3 Gesture recognition tools ... 50

3.4 The role of gesture-based interfaces in Information Systems

Engineering ... 53

3.5 Model-driven engineering in Human-Computer Interaction 56

3.6 Evaluation between model-driven paradigm and other

methodologies .. 59

3.7 Technical action research to validate software systems 65

3.8 Range of Improvements .. 66

3.9 Summary ... 67

Chapter 4. gestUI: A Model-Driven Method ... 71

4.1 Overview ... 71

4.2 Why a Model-Driven method? ... 73

4.3 Why a Model-View-Controller design pattern? 74

4.4 Determining needed resources .. 76

4.5 gestUI: our proposal .. 78

4.5.1 Features of gestUI ... 79

4.5.2 Metamodel of the gesture catalogue modelling language

 80

4.5.3 Components of gestUI .. 91

4.5.4 Model transformations ... 95

4.6 Personalization of gesture definition 99

4.6.1 Introduction .. 99

4.6.2 Enhancing the metamodel .. 100

4.7 Overview of gestUI to include gesture-based interaction in a

user interface .. 103

4.7.1 Introduction ... 103

4.7.2 Including gesture-based interaction in a user interface

 104

4.7.3 Redefining a gesture during the execution time 111

4.8 Summary .. 116

Chapter 5. gestUI Tool Support ... 119

5.1 Introduction ... 119

5.2 Components of the tool support ... 120

5.2.1 Subsystem “Gesture Catalogue Definition Module” ... 121

5.2.2 Subsystem “Gesture-Action Correspondence Definition

Module” 122

5.2.3 Subsystem “Model Transformation Module” 125

5.3 Development methodology of the tool support 126

5.4 Implementation of the tool support 126

5.4.1 Option 1: “Gesture catalogue definition” 127

5.4.2 Option 2: “Specific catalogue” 130

5.4.3 Option 3: “Gesture-action correspondence definition”

 131

5.4.4 Module to redefine gesture .. 134

5.5 Demonstration of the tool support 135

5.5.1 Applying the method and tool to testing a gesture

catalogue 135

5.5.2 Applying the method and the tool to integrate gestUI

into user interface development ... 137

5.6 Summary and Conclusions .. 140

Chapter 6. Empirical Evaluation .. 145

6.1 Introduction ... 145

6.2 Experimental planning .. 146

6.2.1 Goal ... 146

6.2.2 Research Questions and Hypothesis Formulation 147

6.2.3 Factor and Treatments .. 149

6.2.4 Response variables and metrics 149

6.2.5 Experimental Subjects ... 153

6.2.6 Experiment design .. 154

6.2.7 Experimental objects .. 157

6.2.8 Instrumentation .. 158

6.2.9 Experiment procedure .. 159

6.2.10 Threats of validity.. 168

6.2.11 Data analysis ... 172

6.3 Results ... 174

6.3.1 RQ1: Effectiveness in the inclusion of gesture-based

interaction ... 174

6.3.2 RQ2: Effectiveness in the definition of custom gestures

 177

6.3.3 RQ3: Efficiency in the inclusion of gesture-based

interaction ... 180

6.3.4 RQ4: Efficiency in the definition of custom gestures .. 182

6.3.5 RQ5: Perceived Ease of Use .. 185

6.3.6 RQ6: Perceived Usefulness ... 187

6.3.7 RQ7: Intention to Use ... 190

6.3.8 Effect-size calculation ... 192

6.4 Discussion .. 195

6.4.1 Effectiveness ... 195

6.4.2 Efficiency ... 197

6.4.3 Satisfaction .. 199

6.5 Conclusions .. 200

Chapter 7. Technical Action Research ... 205

7.1 Introduction ... 205

7.2 Background: Capability Design Tool 208

7.3 Validation using Technical Action Research 210

7.3.1 Goal of the TAR .. 211

7.3.2 Experimental subjects ... 211

7.3.3 Research questions .. 212

7.3.4 Factor and Treatment .. 212

7.3.5 Response variables .. 214

7.3.6 Instruments for the TAR .. 214

7.3.7 Experimental Object .. 214

7.4 Action Research Procedure ... 215

7.5 Analysis and Interpretation of results 218

7.6 Threats to validity .. 222

7.7 Conclusions .. 223

Chapter 8. Conclusions, Contributions and Future Work 227

8.1 Summary of the thesis ... 227

8.2 Contribution of this thesis ... 229

8.3 Future work ... 231

8.4 Conclusion ... 232

8.5 Publications ... 233

Appendix A. A code-centric method for develop user interfaces with

gesture-based interaction ... 239

A.1 Introduction .. 239

A.2 The code-centric method ... 239

References .. 243

List of Figures
Figure 1. Design science research iterates over two problem-solving activities

(taken from [30]) __ 17

Figure 2. Overview of the research methodology _______________________ 19

Figure 3. Types of semaphoric gestures ______________________________ 28

Figure 4. MDA Layers ___ 34

Figure 5. MDA Transformations ____________________________________ 35

Figure 6 Model-to-Model Transformation ____________________________ 36

Figure 7. Model-to-text transformation ______________________________ 37

Figure 8. quill’s main interface _____________________________________ 51

Figure 9. $N’s main interface _______________________________________ 51

Figure 10. iGesture main interface __________________________________ 52

Figure 11. Software System with traditional interaction _________________ 75

Figure 12. Modifying the controller to support gesture-based interaction ___ 76

Figure 13. Metamodel of the gesture catalogue modelling language _______ 81

Figure 14. States of a posture ______________________________________ 87

Figure 15. Precedence relation between postures ______________________ 88

Figure 16. Interval of time between postures __________________________ 89

Figure 17. A general excerpt of any method for develop user interfaces ____ 91

Figure 18. gestUI method overview (Taken from [31]) ___________________ 92

Figure 19. Platform-independent gesture definition ____________________ 93

Figure 20. An excerpt of Figure 18 showing the M2M transformation ______ 96

Figure 21. An excerpt for the M2M transformation _____________________ 97

Figure 22. An excerpt of Figure 18 showing the M2T transformation to obtain

the gesture-based user interface ____________________________________ 98

Figure 23. An excerpt of Figure 18 showing the M2T transformation to obtain

the test gesture ___ 98

Figure 24. An excerpt for the M2T transformation ______________________ 99

Figure 25. An excerpt of gestUI showing the redefinition of a gesture _____ 100

Figure 26. Enhanced version of the metamodel _______________________ 101

Figure 27. Users defining their own gestures catalogue to apply it in the same

user interface __ 102

Figure 28. An excerpt of the map representation of gestUI ______________ 103

Figure 29. MAP representation of gestUI ____________________________ 105

Figure 30. User defining a gesture _________________________________ 108

Figure 31. Platform-independent gesture catalogue ___________________ 109

Figure 32. A specific-platform gesture catalogue ______________________ 110

Figure 33. An excerpt of the source code of a user interface containing widget

definition and keywords ___ 110

Figure 34. Map representation of the software system with the redefinition

feature included ___ 114

Figure 35. gestUI tool support ____________________________________ 121

Figure 36. An excerpt of Figure 35 showing the subsystem "Gesture Catalogue

Definition Module" ___ 122

Figure 37. An excerpt of Figure 35 showing the subsystem "Gesture-action

Correspondence Definition Module"________________________________ 123

Figure 38. Excerpt of Figure 35 showing the subsystem "Model

Transformations Module" __ 126

Figure 39. Main interface of the tool support ________________________ 127

Figure 40. Screenshot of the interface of gestUI to sketch gestures _______ 128

Figure 41. User sketching a gesture and storing it in a repository ________ 129

Figure 42. Screenshot of the user interface to obtain the platform-independent

gesture catalogue __ 129

Figure 43. An excerpt of a rule of the M2M transformation _____________ 130

Figure 44. M2M transformation parameters _________________________ 130

Figure 45. Interface for defining gesture-action correspondence and to

generate source code ___ 131

Figure 46. SWT components to define actions ________________________ 132

Figure 47. JFace and SWT components used to define an action in a user

interface __ 133

Figure 48. Interface to execute a model-to-text transformation __________ 134

Figure 49. An example of the module to redefine custom gestures _______ 135

Figure 50. Gesture catalogue defined by gestUI ______________________ 136

Figure 51. Gesture description files: $N (left), quill (centre), iGesture (right) 136

Figure 52. Importing the gesture catalogue to the quill framework _______ 137

Figure 53. Examples of multi-stroke gestures: $N (left) and quill (centre) and

iGesture (right) __ 137

Figure 54. UML class diagram of the demonstration case_______________ 138

Figure 55. Screen mockups (gestures are shown in red, next to action buttons)

 ___ 138

Figure 56. Using gestures to execute actions on the interfaces __________ 139

Figure 57 Software system supporting traditional interaction ___________ 157

Figure 58 Software system supporting gesture-based interaction ________ 161

Figure 59 Gesture-action correspondence definition using tool support ___ 167

Figure 60 Box-and-whisker plot of PTCCI ____________________________ 175

Figure 61 Box-plot-whisker of PTCCG _______________________________ 178

Figure 62 Box-plot for TFTI _______________________________________ 181

Figure 63 Box-plot of TFTG _______________________________________ 183

Figure 64 Box-plot for PEOU ______________________________________ 186

Figure 65 Box-plot of PU ___ 188

Figure 66 Box-plot of ITU __ 191

Figure 67. An excerpt of User Experience Questionnaire (taken of www.ueq-

online.org) __ 207

Figure 68. An excerpt of the 118 positive and negative phrases of Microsoft

Reaction Cards ___ 208

Figure 69. CDT with traditional interaction using keyboard and mouse ____ 210

Figure 70. CDT with gesture-based interaction ________________________ 210

Figure 71. Excerpt of a model defined in Everis _______________________ 215

Figure 72. UEQ results: custom gesture definition interaction ____________ 219

Figure 73. UEQ results: inclusion of gesture-based interaction ___________ 219

Figure 74. Reaction cards positive results ____________________________ 221

Figure 75. Reaction cards negative results ___________________________ 222

Figure 76. A code-centric method for develop user interfaces with gesture-

based interaction ___ 240

List of Tables
Table 1. Examples of application of gesture-based interaction outside the office

 ___ 6

Table 2. Some software development kit including toolbox to design user

interfaces ___ 8

Table 3. Objectives for the research questions _________________________ 14

Table 4. Related areas in the thesis __________________________________ 25

Table 5. A summary related with gesture representation ________________ 47

Table 6. Summary of works related with role of gesture-based interfaces in

Information Systems Engineering ___________________________________ 55

Table 7. Summary of works related with Model-driven engineering in Human-

Computer Interaction ___ 58

Table 8. Summary of works related with Evaluation between model-driven

paradigm and other methodologies _________________________________ 62

Table 9 Detected problems vs. Benefits of model-driven paradigm to solve

them __ 80

Table 10. Business rules for the "Catalogue" class ______________________ 81

Table 11. Business rules of the "Gesture" class _________________________ 82

Table 12. Business rule of the "Action" class ___________________________ 83

Table 13. Business rule of the "Stroke" class ___________________________ 83

Table 14. Business rules for the "Posture" class ________________________ 84

Table 15. Business rule for the "Precedence" class ______________________ 84

Table 16. Business rule for the "Point" class ___________________________ 84

Table 17. Data structure of a gesture ________________________________ 86

Table 18. Constraints and business rules of gesture definition ____________ 90

Table 19. Business rules for the "User" class __________________________ 101

Table 20. Business rules for the "UserInterface" class __________________ 102

Table 21. Strategies of gestUI _____________________________________ 106

Table 22. Strategies of the software system with gesture-based interaction 115

Table 23. Platform-independent gesture catalogue definition ___________ 139

Table 24 Factor and treatments of the experiment ____________________ 149

Table 25 Response variables to evaluate effectiveness and efficiency of gestUI

 ___ 151

Table 26 Responses variables to measure satisfaction of use gestUI ______ 152

Table 27 Summary of RQ's, hypotheses, response variables and metrics ___ 153

Table 28 Summary of demographic questionnaire ____________________ 155

Table 29 Crossover design _______________________________________ 156

Table 30 Operators and average time on KLM _______________________ 156

Table 31 Estimating time for the experiment ________________________ 157

Table 32 Instruments defined for the experiment _____________________ 159

Table 33 Gesture catalogue defined in the experiment ________________ 160

Table 34 An excerpt of the Task Description Document containing the

sequence of steps for custom gesture definition using the code-centric method

 ___ 163

Table 35 An excerpt of the Task Description Document containing the

sequence of steps for gesture-based interaction inclusion using the code-

centric method __ 165

Table 36 An excerpt of the Task Description Document for custom gesture

definition using gestUI __ 166

Table 37 Gesture-action correspondence step-by-step definition ________ 167

Table 38 Non-parametric Levene's test for the variables in the experiment 174

Table 39 Descriptive statistics for PTCCI ____________________________ 175

Table 40 Spearman's Rho correlation coefficient of PTCCI ______________ 176

Table 41 Wilcoxon Signed-rank test for PTCCI _______________________ 176

Table 42 Wilcoxon Signed-rank test statistics for PTCCI ________________ 177

Table 43 Descriptive statistics for PTCCG ___________________________ 177

Table 44 Spearman's Rho correlation coefficient of PTCCG _____________ 179

Table 45 Wilcoxon Signed-rank test for PTCCG _______________________ 179

Table 46 Wilcoxon Signed-rank test statistics for PTCCG _______________ 179

Table 47 Descriptive statistics for TFTI _____________________________ 180

Table 48 Spearman's Rho correlation coefficient of TFTI _______________ 181

Table 49 Wilcoxon Signed-rank test for TFTI _________________________ 182

Table 50 Wilcoxon Signed-rank test statistics for TFTI _________________ 182

Table 51 Descriptive statistics for TFTG _____________________________ 183

Table 52 Spearman's Rho correlation coefficient of TFTG ______________ 184

Table 53 Wilcoxon Signed-rank test for TFTG ________________________ 184

Table 54 Wilcoxon Signed-rank test statistics for TFTG ________________ 185

Table 55 Descriptive statistics for PEOU ____________________________ 185

Table 56 Spearman's Rho correlation coefficient of PEOU ______________ 185

Table 57 Wilcoxon Signed-rank test for PEOU _______________________ 187

Table 58 Wilcoxon Signed-rank test statistics for PEOU ________________ 187

Table 59 Descriptive statistics for PU ______________________________ 188

Table 60 Spearman's Rho correlation coefficient of PU ________________ 189

Table 61 Wilcoxon Signed-rank test for PU __________________________ 189

Table 62 Wilcoxon Signed-rank test statistics for PU __________________ 190

Table 63 Descriptive statistics for ITU ______________________________ 190

Table 64 Spearman's Rho correlation coefficient of ITU ________________ 191

Table 65 Wilcoxon Signed-rank test for ITU __________________________ 191

Table 66 Wilcoxon Signed-rank test statistics for ITU __________________ 192

Table 67 Summary of the results obtained in the experiment ____________ 193

Table 68 Effect size of the metrics _________________________________ 194

Table 69. Instruments defined for the validation ______________________ 213

Table 70. Gesture catalogue defined by the subjects ___________________ 214

Table 71. A summary of the experiment procedure ____________________ 217

Table 72. Results obtained from the UEQ ____________________________ 218

Table 73. Reaction cards positive results ____________________________ 220

Table 74. Reaction cards negative results ____________________________ 220

1

 CHAPTER

INTRODUCTION

1

 The topics covered in this chapter are:

1.1 Motivation

1.2 Problem Statement

1.3 Research Questions

1.4 Thesis Objectives

1.5 Research Methodology

1.6 Expected Contributions

1.7 Thesis Context

1.8 Thesis Outline

2

3

Chapter 1. Introduction

1.1 Motivation

Computers have evolved, in recent decades, since the advent of the

personal computer towards current mobile devices. Two factors have

contributed to the wide diffusion of computing devices [1]: (a) an

appropriate human-computer interaction which resulting in the ease

of use of services and software systems available for the devices, and

(b) the availability of a wide variety of services, software systems and

development tools. These two factors are analysed in this section.

1.1.1 Human-computer interaction

First of all, we analyse human-computer interaction (HCI). Since the

advent of the personal computer, HCI has changed, we first had a

simple interface using a command line (CLI) through which the user

entered orders that were based on operating system commands. The

interaction between computer and the user was complicated because

the number of commands and the complexity were increased in the

next years.

Then came the development of graphical user interface (GUI) that uses

keyboard and mouse, these two elements have been for many years

the devices employed by the user to entering information to the

computer [2]. The interaction between computer and the people was

improving. New operating systems were developed (e. g. Microsoft

Windows1, Mac OS2, Linux3) which helped to improve the human-

computer interaction. WIMP (Window, Icon, Menu, Pointer) appeared

in the scenario of the computers and the user interface design started

to include elements that helped to the users to interact in a better way

with the computers.

1 https://www.microsoft.com/en-gb/windows
2 http://www.apple.com/uk/osx/
3 http://www.ubuntu.com/

https://www.microsoft.com/en-gb/windows
http://www.apple.com/uk/osx/
http://www.ubuntu.com/

4

With the development of the mobile devices, besides of keyboard and

mouse, other elements appeared in the technology market, for

example a pointer that was used for data entry in Palm4 devices [3],

then with the development of touch screens began to use the fingers

of the user’s hand, which led to the emergence of gesture as a natural

interaction, whose primary goal is better communication between the

user and the computer [4].

The next step was the development of hardware tools that the user

employs to perform actions with gestures using more than a finger.

Devices vary in their type and features, there are some types of

computers (e.g. desktop computer, notebook, netbook) that include

additional technologies to interact with the users. For instance, there

are computers such as desktop and notebooks supporting touch-based

interaction and the devices of reduced size (tablet, smartphone) have

included by default the touch-based interaction. Devices such as

Microsoft Kinect5, Nintendo Wii6 were primarily aimed at allowing the

user to play using the body as an “instrument” for the movement to

be carried out in the games [4] [5]. This fact allowed the development

of tools that capture gestures made by users and process them to

perform actions on other activities in addition to the games. This leads

to the concept of natural user interface (NUI) [3].

NUI refers to interfaces that allow the user to interact with a system

based on the knowledge learnt from using other systems [6]. NUI

promises to reduce barriers to compute even more than GUI, while

simultaneously increases the power of the user and allows the

computing access to more niches of use [3].

The gesture which is an element used for interaction in NUI has caught

the attention of end users and developers. It is a movement made by

a user, either with his/her fingers, hand or with whole body [7], with

4 https://en.wikipedia.org/wiki/Palm_(PDA)
5 https://developer.microsoft.com/es-es/windows/kinect
6 https://www.nintendo.es/Wii/Wii-94559.html

https://en.wikipedia.org/wiki/Palm_(PDA)
https://developer.microsoft.com/es-es/windows/kinect
https://www.nintendo.es/Wii/Wii-94559.html

5

the main objective of establishing a communication with an electronic

device to perform some action [8]. A gesture can be applied on a

touch-sensitive surface, or carried in front of a device that captures

the movements made by the user. The use of gesture has created a

type of interaction called gesture-based interaction.

The methods of gesture-based interaction that have been developed

in recent years are related mainly to two types of technologies: touch-

based and vision-based. Regarding the former, its development is due

to the great popularity of devices that support touch-based interaction

(smartphones, tablets, etc.). Also, researchers have developed a series

of investigations about this type of interaction. The second type of

interaction that is based on vision is considered like a type of more

natural interaction since the user “do not touch any element or

surface” to interact with the device.

The development of computing devices makes possible that two main

interaction styles are available in the field of user interfaces: (i) WIMP

[9] supporting traditional interaction based on keyboard and mouse

and using the graphical user interface (GUI) on desktop computers and

notebooks, and (ii) post-WIMP [3] supporting natural user interaction

with other interaction techniques, mainly gesture-based, gaze-based,

and voice-based. Post-WIMP is associated with non-conventional

interaction employing other interaction styles that are currently

available resulting in NUI.

The interest of this thesis is to consider the touch-based gesture as an

element of communication between the user and devices that

supports gesture-based interaction.

1.1.2 Software systems and development tools

The second aforementioned aspect is related to software systems and

development tools available on the diverse computing platforms.

In the most recent years, the requirements to include new interaction

techniques in user interfaces is increasing dramatically because new

6

devices come together with new types of interfaces (e.g. based on

gaze, gesture, voice, haptic, brain-computer interfaces) [3]. Their aim

is to increase the naturalness of interaction, although this is not

exempt from risks. Due to the popularity of touch-based devices,

gesture-based interaction is slowly gaining ground on mouse and

keyboard in domains such as video games and mobile apps.

The increasing scope of the application areas suggests the importance

of undertaking more work in gesture-based interaction research [10];

furthermore the gesture-based interaction has many applications in a

variety of fields in the society, too. The prevalence of gesture-based

commercial products has increased since five years ago, as the

technology has improved and become commercially viable. For

instance, gestures have been used in projects that attempt to create

novel or improved interactions for appliance control and home

entertainment systems [11]. Table 1 includes some examples about

the trend in supporting tasks performed outside the office by means

of gesture-based interaction.

Table 1. Examples of application of gesture-based interaction outside the office
Authors Description

Yang et al. [12] It describes the inclusion of gestures in the Building Information

Model (BIM) technology in order to make more intuitive its

manipulation. This research focuses on developing an interactive

interface for site workers to retrieve information from BIM models by

means of gestures.

Fujitsu

Laboratories

[13]

It announces that they have developed a wearable device in the form

of a glove supporting gestures for maintenance and other on-site

operations.

 Song et al. [14]

[15]

It presents a unified framework for body and hand tracking in order

to apply in the aircraft field.

Kim et al. [16] The authors describe a method for hand gestures recognition under

varying illumination conditions. The application is oriented to places

with different levels of illumination.

Cardoso et al.

[17]

It describes the development of an application with a 3D sensor

included, in order to implement the interaction based on swipe

gestures to navigate through options, menu and operations of

selection and deselection.

Weiss et al. [18] It describes a proposal to implement a service robot capable of safely

navigation in densely populated environments supporting hand

gestures to execute actions.

7

People need to interact with multiple mobile devices (e.g. notebook,

tablet, and mobile phone) at the same time using non-conventional

interaction, typically gesture-based interaction. This, in turn, implies

that the software engineers must be prepared for a major change in

user interfaces development considering diversity of platforms and

applications available in those devices. This situation involves that

software engineers require (i) tools to specify and to implement

custom gestures that people use in their daily tasks, and (ii) tools to

design and to implement user interfaces supporting custom gesture-

based interaction.

Nowadays there are many software development kits (SDK) that allow

the development of software systems for device platforms available in

the market. Many of these SDKs are specific to some manufacturers of

the device platform which allows developing software system specific

for that platform (proprietary software). There are others that allow

software system development for two or three platforms; but they

require to acquire licenses and the cost is associated with the number

of platforms/number of developers. Some SDK are free but they have

restricted access in relation to available characteristics of the tools and

target platforms. Finally, the free version of some manufacturers is a

trial version with a limited number of days.

The variety of SDK’s and platforms had forced the developers to focus

on a specific device platform with the aim of achieving a suitable

domain of programming languages and integrated development

environment (IDE) for developing software systems. Hence, the wide

range of SDK’s available in the technology market implies a wide range

of tools (programming languages, compilers, IDE’s, etc.) for the

construction of software systems.

Table 2 contains details about SDK’s for the most significant platforms

available in the technology market.

8

Table 2. Some software development kit including toolbox to design user interfaces

9

With the increasing prevalence of computers and other related

technologies in many facets of today’s society, it becomes increasingly

important to create software systems capable of interacting with

humans properly [19]. One important aspect to consider is that,

depending on the device, there is a variety of operating platforms that

imply separate standards, programming languages, development

tools, and in some cases, even distribution markets (i.e. Web portals)

through which users can purchase and download applications [20].

However, some complications are present when software engineers

decide to implement user interfaces [9] with gesture-based interaction

by means of traditional software tools (e.g. Microsoft Visual Studio

Enterprise [21], Eclipse Window Builder [22]), for instance, software

engineers require additional knowledge and experience in: (i) the

specification and implementation of custom gestures, (ii) the design

and implementation of gesture-based user interfaces, (iii) the use of

software tools depending of the platform selected to implement

gesture-based user interfaces.

Therefore, building software systems with gesture-based interaction is

complicated yet due to the diversity of devices, software platforms

and development tools to design and to implement user interfaces

that supports custom gestures [9]. Typically, the software engineer

requires skills to implement custom gestures and to write the methods

required to support them in a user interface.

This thesis proposes a solution that helps to resolve this situation: the

inclusion of gesture-based interaction independently of the platform

in user interfaces of software systems. For this aim, we propose a

method to define custom gestures and to include gesture-based

interaction, which is independent of the technology of the devices.

The remainder of this chapter is organized as follows: Section 1.2

details the problem statement. Section 1.3 includes the research

questions proposed for this thesis. Section 1.4 introduces the

objectives of the thesis. Section 1.5 introduces the research

10

methodology that has been followed in the thesis. Section 1.6

describes the expected contributions of the thesis. Section 1.7 explains

the context in which the thesis has been performed. Finally, Section

1.8 gives an overview of the structure of this thesis.

1.2 Problem Statement

The development of user interfaces, ranging from early requirements

to software obsolescence, has become a time-consuming and costly

process in the software development life cycle (SDLC) [23]. In this

process, it would be more effective to include the interaction

specifications so that the software fulfils the requirements of users

and also provides an interaction according to the type of task to be

performed with the software.

During the SDLC, specifically in the code stage, the software engineers

have some software tools and software development paradigms to

implement user interfaces, typically, some of them use event-driven

programming to build the user interface (e.g. Microsoft Visual Studio7,

Eclipse Window Builder8). In this context, the process to obtain a user

interface is based on the selection, insertion and customization of each

component of the user interface from a toolbox included in the

software tool.

This situation forces developers to build software systems for specific

platforms, furthermore, developing an independent software product

for each platform requires conducting significant parts of the software

life cycle several times for each released software system, which may

become redundant and expensive [20]. This situation complicates the

work of software developers, as they are required to have a wide

domain of development tools, programming languages, and the

processes that comprise the software systems development life cycle

to be able to develop and maintain software systems to any platform.

7 https://www.visualstudio.com/
8 https://eclipse.org/windowbuilder/

https://www.visualstudio.com/
https://eclipse.org/windowbuilder/

11

Now, if the user requires using custom gestures to do tasks then the

process is more complicated. In this case, in order to obtain software

systems supporting gesture-based interaction, the software engineer

must have experience in two fields: (i) in the custom gesture definition

and (ii) in the inclusion of source code to manage custom gestures in

the user interface in different platforms. Complexity could be

increased if the users require custom gestures in user interfaces to

different devices and different platforms. Therefore, implementation

process of gesture-based user interfaces is complicated and costly.

Several concerns may delay the wide adoption of gesture-based

interaction in complex software systems. Gesture-based interfaces

have been reported to be more difficult to implement and test than

traditional mouse and pointer interfaces [24]. Gesture-based

interaction is supported at the source code level (typically third-

generation languages) [25]. This involves a great coding and

maintenance effort when multiple platforms are targeted, it has a

negative impact on reusability and portability, and it complicates the

definition of new gestures.

Some of the aforementioned challenges (e.g. complexity, cost,

expertise required, reusability, portability, and multiple platforms) can

be tackled by following a model-driven development (MDD) approach

[26] provided that gestures and gesture-based interaction can be

modelled and that it is possible to automatically generate the software

components that support them. If a model-driven development is

intended, it is essential that the models include complete

requirements to create the software product using model-

transformation and code-generation tools.

MDD has been fairly popular in the academic community [27] in recent

years, and a number of different proposals have been introduced to

develop software systems. MDD is a software development paradigm

which is based on models and model transformations in order to

obtain a final product by means of automatic code generation

considering some transformation rules.

12

In a field where technology changes rapidly, a model-driven

methodology is a valid option for some reasons:

 The domain of the knowledge is represented in models, which

are independent of technology [28],

 The solution for the development of a software system is not

affected by the evolution of the hardware platform.

 When a new technology is considered as a target platform to

develop software, it is not necessary to describe the whole

system again but only to generate a new platform-specific

model (PSM) including the changes in the target platform.

 Tasks related with the development life cycle (maintenance,

new versions, documenting process) are less complicated to

make them [29].

This thesis introduces an MDD method for development of gesture-

based user interfaces and a tools that supports it. The method aims to

allow software engineers focusing on the key aspects of gesture-based

user interfaces; namely, defining custom gestures and specifying

gesture-based interaction. Coding and portability efforts are alleviated

by means of model-to-text (M2T) transformations

In summary, the problem statement in this thesis is:

In the context of devices supporting gesture-based interaction, there is

a fast technological development of devices and there are SDK’s,

specific for each platform, to build software systems. This situation

makes difficult a better development of the software systems with

gesture-based interaction in aspects related with availability,

portability and their distribution.

The growing need for development methodologies for software

systems that are adaptable to new demands of service users, permits

that Model-Driven Development is presented as an alternative to meet

the need to develop software systems with gesture-based interaction,

in minimal time and for any hardware and software platforms.

13

Our work aims to define a method for improving the process of

defining custom gestures and the inclusion of gesture-based

interaction in user interfaces of software systems in an MDD

environment.

1.3 Research Questions

In this thesis, we aim at gathering new knowledge and producing

useful artefacts; thus, we opt for a design science approach [30].

The main goal of this thesis is to provide a methodological approach

to define custom gestures and to include gesture-based interaction

in software systems user interfaces.

In order to accomplish this goal, we must answer research questions

defined in this section. We classify these research questions as either

knowledge problems (KP) or design problems (DP), based on the

definitions by Wieringa [31]:

RQ1 (KP): What elements should be considered for the definition of a

method to include gesture-based interaction in user interfaces?

RQ2 (KP): What model-driven methods exist to include gesture-based

interaction in user interfaces with human--computer interaction based

on gestures?

RQ3 (DP): Is it possible to define a model-driven method for the

inclusion of gesture-based interaction in software systems user

interfaces?

RQ4 (KP): What advantages and disadvantages has the model-driven

method for the inclusion of gesture-based interaction in software

systems user interfaces?

Section 1.4 describes how the tackle the answer for each research

question through the thesis.

14

1.4 Thesis Objectives
The main goal of the thesis is to define a method to help improving the

process of definition of custom gestures and the inclusion of gesture-

based interaction in user interfaces by means of a MDD environment.

Since MDD has proved to be effective in managing the complexity of

the software systems development process [32], we will apply it to the

particular domain of interest for this thesis.

The general objective and the specific objectives established for this

thesis are shown in Table 3.

Table 3. Objectives for the research questions
Research

Questions

Objectives

Overall RQs Define a method to help improving the process of define custom gestures

and the inclusion of gesture-based interaction in user interfaces of software

systems in an MDD environment.

RQ1 Determine the elements that should be considered to define a method for

the inclusion of gesture-based interaction in user interfaces.

RQ2
Determine the existing methods to include gesture-based interaction in user

interfaces with included gesture-based interaction.

RQ3

Define a model-driven method for the inclusion of gesture-based interaction

in software systems user interfaces.

In this case, we consider three sub goals:

i. Determine which gesture characteristics are representative to be

used as descriptors of human-computer interaction.

ii. Define a tool to represent a gesture in the specification of the

interaction in user interface.

iii. Establish techniques and tools to facilitate the use of the

proposed method.

RQ4
Evaluate advantages and disadvantages of the method for the inclusion of

gesture-based interaction in user interfaces.

First of all, with regard to research question 1 (What elements should

be considered for the definition of a method to include gesture-

based interaction in user interfaces?), one of the goals of this thesis is

determine which elements should be considered in the definition of

the aforementioned method. With the aim of determining these

elements, we perform a review of the related literature available on

Internet. Also, we do a bibliographic review of related topics in order

to know how to structure this type of method.

15

Regarding research question 2 (What model-driven methods exist to

include gesture-based interaction in user interfaces with human--

computer interaction based on gestures?), we need to do a review of

the related literature in order to know which methods have been

developed to include gesture-based interaction in user interfaces. We

are interested in methods that include concepts related with Human-

computer Interaction and Model-driven Development because there

is a variety of platforms of hardware and software involved in this

context. Since MDD claims to be independent of any technology

platform, it has been considered for the definition of a method that

helps in developing gesture-based software systems

With regard to research question 3 (Is it possible to define a model-

driven method for the inclusion of gesture-based interaction in

software systems user interfaces?), we consider the three sub goals

included in Table 1.3 to answer this question. The first sub-goal

(Determine which gesture characteristics are representative to be

used as descriptors of human-computer interaction) is related with

the study of the gesture representation because nowadays the gesture

is considered an important element of interaction between human

and computer. To achieve the mentioned goal, we propose performing

an analysis of the related literature to determine the features that we

need to be captured to use them as descriptors of the gesture.

Additionally, we use gestures in a software development environment

with the aim of capturing the data related with each gesture by means

of a debug process. Using this information, we establish the gesture

representation in a conceptual model and include it in the design

process of software systems with gesture-based interaction.

Regarding second sub-goal (Define a tool to represent a gesture in the

specification of the interaction in user interface), another goal of this

thesis is to define a tool that permits to represent a gesture based on

the conceptual model specified with the previously obtained

information. We consider MDD in this thesis as a solution to minimize

the problems of diversity of platforms that imply separated standards,

16

programming languages and development tools to develop gesture-

based interaction.

With regard to third sub-goal (Establish techniques and tools to

facilitate the use of the proposed method), it is necessary to define

techniques and a tool support in order to implement the proposed

method. In this case, we use Java programming language and Eclipse

Modelling Framework to define components of the proposed method.

Regarding research question 4 (What advantages and disadvantages

has the model-driven method for the inclusion of gesture-based

interaction in software system user interfaces?), we need to verify if

the proposed framework facilitates the inclusion of gesture-based

interaction in user interfaces of software systems. Empirical evaluation

helps us to validate the proposed method in the gesture-based

interaction field. Some mechanisms must be provided in order to

obtain valuable feedback regarding the user experience in the

developed process.

1.5 Research Methodology

The type of research of this thesis corresponds to the design science

framework since it aims to design a new artefact, by means of acting

and deciding on the basis of a systematic body of evidence [33]. Design

science is a methodology based on the design and investigation of

artefacts in a context. The artefacts we study are designed to interact

with a problem context in order to improve something in that context

[31]. In this thesis, the new artefact is the model-driven method to

include gesture-based interaction in user interfaces.

The two parts of design science, design and investigation, correspond

to two kinds of research problems in design science, namely, design

problems and knowledge questions (Figure 1) [30].

17

Figure 1. Design science research iterates over two problem-solving activities
(taken from [30])

This methodology proposes: (1) to perform an initial problem

investigation that characterizes the problem to solve; (2) to provide a

solution design suitable to solve those problems; and (3) to validate if

the proposed solution satisfies the problematic phenomena previously

analysed.

The research methodology is explained by means of regulative cycles

[30] that were conceived in order to answer the research questions

indicated above. Figure 2 presents the research methodology

described, where the regulatory cycle can be observed.

- The main cycle of the research methodology is an engineering

cycle (EC1: Design a model-driven method to include interaction

based on gestures) since this proposal focuses on the

development of a new artefact (method). Some tasks are related

with this cycle:

i. Problem investigation, described in chapter 2

(“Theoretical Framework”), permits to obtain an answer

to RQ1 and RQ2 research questions,

ii. Solution design, described in chapter 3 (“State of art”),

chapter 4 (“gestUI, a model-driven method”) and chapter

5 (“A tool support”), this task permits to obtain an answer

to RQ3 research question.

Two research cycles have been defined:

- The first research cycle (RC1: Validation of the proposed method

with an empirical evaluation) describes the process that will be

developed to validate the proposed method by means of an

empirical evaluation, described in chapter 6 (“An empirical

evaluation of gestUI”). It permits to obtain an answer to RQ4

research question.

18

- The second research cycle (RC2: Technical action research to

validate the method in an industrial context) corresponds to the

process where the proposed method is applied to a case study

provided in the project “Capability as a Service” (CaaS), described

in chapter 7 (“Technical Action Research”). It permits to obtain an

answer to RQ4 research question.

1.6 Expected Contributions

Model-driven engineering (MDE) is a software development approach

that provides an environment that ensures the use of models

throughout the development process of software systems [34]. The

essential idea of MDE is to shift the centre of attention from code to

models [35] [36]. The software systems, or part of them, can be

automatically generated using an abstract description and

transformation rules. Using MDE is possible to abstract the

technological diversity that there is in the application level of devices

with gesture-based interaction.

In this thesis, a process to define custom gestures and to include

gesture-based interaction based on the foundations of MDE is

proposed. Specifically, this thesis provides as contributions:

Contribution 1: a model-driven method to define custom gestures and

to include gesture-based interaction in user interfaces of software

system. The process is carried out from the initial specification of

custom gestures, based on metamodels, and using model

transformations to obtain a gesture-based user interface by means of

automatic generation of source code.

19

Figure 2. Overview of the research methodology

20

Contribution 2: a tool to support the model-driven method described

in Contribution 1.

Contribution 3: the validation of the method proposed by means of an

empirical comparative evaluation

Contribution 4: the validation in an industrial-context by applying a

technical action research (TAR).

A more wide description about the contributions is included in Chapter

8.

1.7 Thesis Context

This research work has been developed in the context of the PROS

Research Centre (Centro de Investigación en Métodos de Producción

de Software), and DSIC (Departamento de Sistemas de Información y

Computación) of the Universitat Politècnica de València, Spain.

This work has been supported by the Universidad de Cuenca and

Secretaría Nacional de Educación Superior, Ciencia y Tecnología -

SENESCYT of Ecuador, and received financial support from the

Generalitat Valenciana under Project IDEO (PROMETEOII/2014/039)

and the Spanish Ministry of Science and Innovation through the

DataMe Project (TIN2016-80811-P).

1.8 Thesis Outline

The thesis comprises three parts, according to Design Science

Methodology: Part I (Problem Investigation), Part II (Solution Design)

and Part III (Validation of the Solution). Therefore, this thesis has been

structured as follows.

Part I: Problem Investigation

Chapter 1 (Introduction). This chapter describes the problem

statement, objectives of the thesis, research questions, and research

goals. Additionally, we describe the research methodology applied to

the thesis, and the thesis context.

21

Chapter 2 (Theoretical Framework). In this chapter we include a

theoretical framework in order to establish a commitment about the

terminology defined in this thesis. This chapter includes a description

of the technologies and concepts in which is based the development

of this thesis.

Chapter 3 (State of Art). This chapter includes a review of the literature

to highlight relevant advances in respect of development of user

interfaces with gesture-based interaction considering the model-

driven paradigm. Additionally, this chapter facilitates a common

understanding around the topics of the thesis.

Part II: Solution Design

Chapter 4 (gestUI: A model-driven method). In this chapter we

describe the model-driven method proposed to include gesture-based

interaction in user interfaces of system software. We specify the

model-driven method architecture considering details and formalisms

like metamodel, business rules applied in the model and the

constraints included in the method.

Chapter 5 (gestUI Tool Support). In this chapter we outline the tool

support that has been developed for gestUI. It includes a description

about the components of the tool support and a user guide explaining

their functionalities.

Part III: Validation of the proposal

Chapter 6 (Empirical evaluation). This chapter describes the validation

performed for the gestUI method. We detail the validation process

highlighting the use of empirical software engineering to formally

validate the proposed method. The empirical evaluation is performed

as a comparative process between a code-centric method and the

model-driven method.

22

Chapter 7 (Technical Action Research). This chapter presents the

process to follow in the validation of gestUI method performed using

Technical Action Research.

Part IV: Final Part

Chapter 8 (Conclusions, Contributions and Future Work). This chapter

summarizes the contributions of this work and presents the

conclusions of the thesis. Additionally, in this chapter we describe the

future work.

23

 CHAPTER

THEORETICAL

FRAMEWORK
2

 The topics covered in this chapter are:

2.1 Overview

2.2 A theoretical framework for Human-computer

interaction

2.3 A theoretical framework of Model-driven

paradigm

2.4 Summary

24

25

Chapter 2. Theoretical Framework

 Overview

With the aim of maintaining a better comprehension with the people

that read this thesis, we need to obtain a same conceptual

commitment. Hence, a theoretical framework becomes vital.

Theoretical frameworks have been widely used and proposed aiming

at defining the concepts that relies on a certain theory in order to

facilitate conceptual commitment.

Since this thesis deals with the definition of a model-driven method to

define custom gestures and to include gesture-based interaction in

software systems user interfaces, we establish a theoretical

framework for model-driven development and we also provide a

theoretical framework for human-computer interaction. Therefore,

this work is placed in the intersection of three research areas that have

some aspects in common (Table 4):

Table 4. Related areas in the thesis

Included definitions Research Area

Model-driven method Model-driven Development

Gesture-based Interaction Human-Computer Interaction

Software system Software Engineering

This thesis is based on different concepts and technologies from these

areas. With the aim of clarifying the foundations in which this thesis

relies and to provide an adequate theoretical framework for

understanding the overall work, different concepts and techniques are

introduced in this chapter.

It is important to clarify that in this thesis the word software refers to

software systems and gesture refers to custom gestures.

The remainder of this chapter is organized as follows: Section 2.2

describes a theoretical framework about Human-Computer

26

Interaction, including a brief description about gesture and gesture-

based interaction. Section 2.3 includes a theoretical framework about

concepts related with Model-driven paradigm. Finally, the summary

of this chapter is included in Section 2.4.

 A theoretical framework for Human-Computer

Interaction

In this section we define a set of terms that describes how Human-

Computer Interaction is applied to obtain gesture-based interfaces.

This section includes definitions related with gestures, algorithms and

tools available to recognise gestures, which permit to have a better

comprehension about this topic.

Human-computer Interaction (HCI) is the study of the interaction

between users and computers [37]. The interaction is mainly done in

the user interface. According to Karray et al. [38], an interface mainly

relies on number and diversity of its inputs and outputs which are

communication channels that enable users to interact with computers

via this interface. There are three categories of modalities: visual-

based, audio-based and sensor-based. Considering types of interaction

that have been developed in the last years, we take into account two

of them: (i) traditional, using keyboard and mouse (sensor-based), and

(ii) gesture-based, using gestures sketched by the users with their

fingers or a pen/stylus on a touch-based surface.

2.2.1 Gestures related definition

A gesture is considered as a primary element in the architecture of

devices with support of gesture-based interaction. We consider two

definitions about gestures:

- Oxford English Dictionary [39] defines gesture as “a movement of

part of the body, especially a hand or the head, to express an idea

or meaning”.

- Gesture is referred as a motion of the body (o some part of the

body) that somebody does with the aim of communicating with

other person.

27

A gesture catalogue is a list of gestures including descriptive

information of each gesture.

Gesture description languages are significant for the correct execution

of interactions by end-users, the preservation of techniques by

designers, the accumulation of knowledge for the community, and the

engineering of interactive systems [40].

Gesture recognition: According to Gillian et al. [41], gesture

recognition is a powerful tool for human-computer interaction.

Gesture recognition in most systems has been done by writing code to

recognize the particular set of gestures used by the system [7].

2.2.2 Classification of gestures

Some classifications of gestures are reported in the related literature.

We consider those that help us to define a gesture representation to

use it in our work.

According to Kaushik et al. [42], a gesture can be classified as static or

dynamic. A dynamic gesture changes over a period of time while static

gesture is observed at the short interval of time.

Additionally, a gesture can be classified as discrete or continuous. A

gesture is considered as discrete if the start and stop of the gesture is

defined, usually with the press and hold of a widget while the gesture

is carried out [43], for example, a double tap. A gesture is considered

as continuous if it takes place over a period of time, for example, a

scroll or a custom gesture [44].

According to Nacenta et al. [45], there are three types of gestures that

can be included in a user interface: predesigned, stock and user-

defined (custom). They demonstrate that users prefer user-defined

gestures rather than stock and pre-defined gestures. Although user-

defined gestures offer better memorability, efficiency and accessibility

than pre-defined gestures, they have received little attention in the

literature [46].

28

According to the taxonomy of gestures proposed by Karam et al. [11],

semaphoric gestures refer to strokes or marks made with a mouse, pen

or finger. This type of gesture is further classified as single-stroke and

multi-stroke, according to the number of strokes required to sketch

them (Figure 3).

Figure 3. Types of semaphoric gestures

According to Zhai et al. [47], a stroke gesture is commonly encoded as

a time-ordered sequence of two-dimensional points with coordinates

(x, y). Optionally, stroke gestures can also have time stamps as the

third dimension so the sampling points are encoded as (x, y, t) if the

temporal aspect of a gesture is to be preserved and used.

Karam et al. [11] propose a style-based gesture classification that

includes the next types: deictic, manipulations, semaphores,

gesticulation, and language gestures.

(a) Deictic gestures involve pointing to establish the identity or

spatial location of an object within the context of the

application domain. The application domain can include

desktop computer, virtual reality applications or mobile

devices for example.

(b) A manipulative gesture is one whose intended purpose is to

control some entity by applying a tight relationship between

the actual movements of the gesturing hand/arm with the

entity being manipulated. Manipulations are mainly dynamic

and can occur either in a 2-D interaction using a device direct

manipulation, or in a 3-D interaction.

(c) A semaphoric gesture is any gesturing system that employs a

stylized dictionary of static or dynamic hand or arm gestures.

Semaphoric gestures can involve static poses or dynamic

29

movements. These types of gestures can be performed using

a hand, fingers, arms, the head, feet.

(d) The act of gesticulating is regarded as one of the most natural

forms of gesturing and is commonly used in combination with

conversational speech interfaces.

(e) Gestures used for sign languages are often considered

independent of other gesture styles since they are

linguistically based and are performed using a series of

individual signs or gestures that combine to form grammatical

structures for conversational style interfaces.

Many of the existing systems do not focus on a single style of gesture

interaction but rather employ a variety of gestures that are result of

combining two or more gestures.

In this thesis, we consider gestures defined as: dynamic, continuous,

user-defined and semaphoric (multi-stroke). We consider custom

gestures that can be performed on a touch-based surface using one

finger of the user or a pen/stylus. These gestures are used to issue

commands, which are the names of the executable computing

functions issued by the user.

2.2.3 Gesture recognition algorithms

The ways of recognizing the gesture can be considered as a significant

progress of the technology. Progress of image processing technology

has played an important role here. Gestures have been captured by

using infrared beams, data glove, still camera, wired and many inter-

connected technologies like gloves, pendant, infrared signal, network

server, etc., in the past [10]. Computer application operating was the

main target in the early stage. But now it is widely accepted for

ambient device and ubiquitous computing.

In our work, we consider algorithms for touch-based gesture

recognition because we use custom touch-based gestures to include

gesture-based interaction in user interfaces of software systems. This

section describes in a brief way, some of the well-known algorithms.

30

 Rubine algorithm: This algorithm was created in 1991 by D.

Rubine. It is one of the first algorithms developed to recognise

mouse and pen-based gestures [7]. An important feature of this

algorithm is that gestures are not described programmatically but

they are learned by examples. It employs a statistical method of

gesture recognition based on a set of 13 geometric features [48].

It has been used for recognising single-stroke gestures like the

unistroke or Grafitti alphabets [49]. It also allows the user to define

a gesture through demonstration.

 $N algorithm: The $N Multistroke Recognizer [50] is a 2-D stroke

recognizer designed for rapid prototyping of gesture-based user

interfaces. Simple geometry and trigonometry are used to

perform template matching between stored templates and

entered candidates, giving $N a deterministic quality whereby

candidates that look most like their templates are usually

recognised as such [50]. Other algorithms with a similar

philosophy are: $1 [51], $N-Protractor [52], $P [53].

 SiGeR: The SiGeR (Simple Gesture Recogniser) algorithm was

developed by W. Swigart for the Microsoft Developer Network

[54]. This algorithm classifies gestures based on regular

expressions and describes them according to the eight cardinal

points and statistical information. These regular expressions are

then applied to input gestures and, in the case that a class

description matches the input string, the corresponding gesture

class is returned as a result [48].

In this thesis we adopt $N as gesture recognition algorithm because it

is a simple algorithm that is a good solution to prototyping of user

interfaces. $N does not require many computer resources which is a

very important feature when the target device is a mobile one.

2.2.4 Gesture-based interaction

Natural User Interface is an emerging computer interaction

methodology which focuses on human abilities such as touch, vision,

voice, motion and higher cognitive functions such as expression,

31

perception and recall [55]. Facial expressions, posture, and gestures in

particular have been recognized as an important modality for non-

verbal communication [19].

Broadly speaking, there are two extremes of interaction: one in which

the user interacts consciously and explicitly with the system; and at

the other extreme, the user interacts unconsciously or implicitly. In

explicit interaction, a user interacts with a software application

directly by manipulating a GUI, running a command in a command

window or issuing a voice command. In short, the user intentionally

performs some action [56].

In this thesis, we consider the gesture as an element of communication

between the user and devices that support an explicit interaction by

means of gestures, because the interaction between user and

computer is done by the user in a manner explicit by means of actions

on the screen.

 A theoretical framework of Model-Driven paradigm

In this section we define a set of terms that describes how Model-

driven paradigm is applied to the work described in this thesis. This

section includes definitions related with models and model

transformations, which permit to have a better comprehension about

this topic.

As the MDD paradigm promotes to specify software systems by means

of models, we start this theoretical framework defining what a model

is. Then, we describe other basic concepts related with the model-

driven paradigm used in this thesis. The definitions are based on the

Object Management Group definitions [57].

2.3.1 Model related definition

A system is a collection of parts and relationships among these parts

that may be organized to accomplish some purpose [58].

32

A model is a description of a system or part of a system written in a

well-defined language [59]. A metamodel: A model of models [58].

A well-defined language: it is a language with well-defined form

(syntax), and meaning (semantics), which is suitable for automated

interpretation by a computer [59]. A model, both source and target, is

expressed in a language, for example, XML.

Model-driven: it describes an approach to software development

whereby models are used as the primary source for documenting,

analysing, designing, constructing, deploying and maintaining a system

[57]. In late 2000, the MDA (Model-Driven Architecture) initiative was

launched by OMG (Object Management Group) to promote using

models as the essential artefacts of software development. A new

paradigm in software development where models are the primary

software artefacts and transformations are the primary operation on

models [60] is available.

MDA is based on four principles [61]:

- The models expressed in well-defined notation are a key to

understanding software systems.

- The implementation of software systems can be organized around

a set of models making it necessary to carry out a series of

transformations between models, organized in an architectural

framework of layers and transformations.

- A formal basis for describing models in a set of metamodels

facilitates meaningful integration and transformation among

models, and is the basis for automation through tools.

- Acceptance and broad adoption of this method, based on models,

requires industry standards to provide openness to consumers

and fostering competition among providers.

There are two main flavours based on this paradigm: MDD (Model-

Driven Development) and MDE (Model-Driven Engineering).

33

- Model-Driven Engineering (MDE) describes software development

approaches in which abstract models of software are created and

systematically transformed into concrete implementations [62].

- Model-driven Development (MDD) focuses on the construction of

models, specification of transformation rules, tool support and

automatic generation of code and documentation [63]. In this

case, the software development process can be viewed as a

sequence of model transformations. Recent studies indicate that

the adoption of Model-Driven Development (MDD) is widespread

[64].

2.3.2 MDA Conceptual framework

OMG provides a conceptual framework and a vocabulary for MDA and

it defines a specific set of layers and transformations. In this schema,

it identifies four layers (see Figure 4) that raise the level of abstraction

of traditional platform dependent design [65]: Computation

Independent Model (CIM), Platform Independent Model (PIM),

Platform Specific Model (PSM) and Implementation Specific Model

(ISM).

In this work, we use the following three layers:

- Platform Independent Model (PIM) is a model with a high level of

abstraction that is independent of any implementation technology

[59]. System developers use this language for precisely describing

the system using a technology independent view [66].

- Platform Specific Model (PSM) is a model that adds to the PIM the

technological aspects of the target platforms [67].

- Implementation Specific Model (ISM): that describe the last detail

of programming [67].

34

Figure 4. MDA Layers

The definition of PIM and PSM is motivated by the constant change in

implementation technologies and the recurring need to port software

from one technology to another [68].

In summary, MDA is organized around a PIM which is a specification of

a system in terms of domain concepts. These domain concepts exhibit

a specified degree of independence of different platforms of similar

type. The system can then be translated towards any of those

platforms by transforming the PIM to a PSM. The PSM specifies how

the system uses a particular type of platform [69].

2.3.3 Model Transformations

Model transformation: It is a process consisting in to convert one or

more source models (input) to one target model (output) [59].

Transformation rule: It is a description of how one or more constructs

in the source language can be transformed into one or more constructs

in the target language [59].

A transformation is the automatic generation of a target model from a

source model, according to a transformation definition. A

transformation definition is a set of transformation rules that together

describe how a model in the source language can be transformed into

a model in the target language. A transformation rule is a description

35

of how one or more constructs in the source language can be

transformed into one or more constructs in the target language [59].

OMG has defined two transformations (see Figure 5):

- PIM to PSM transformation (it defines how a PIM can be converted

to a PSM)

- PSM to ISM transformation (it is the code generation from the

PSM). Due to the fact that PSM is expressed using technological

terms, transformation to ISM is immediate.

Figure 5. MDA Transformations

The mentioned transformations can be identified as:

- Model-to-Model transformation (M2M): A model transformation

is a mapping of a set of models onto another set of models or onto

themselves, where a mapping defines correspondences between

elements in the source and target models [36]. The important role

of model transformations motivates the effort that OMG took to

define the standard language for model transformations called

QVT MOF 2.0 Language [68].

- Model-to-text transformation (M2T) which generates source code

from models, thus lowering the abstraction level of modelling

artefacts and making them executable [70]. The standard MOF

M2T Language (OMG) [71] specifies the M2T transformation,

which is an important type of model transformation [72]. M2T is

used to implement code and documentation generation in

development of software systems [73]. In the transformation

process, the source is a PSM (platform specific model) and the

target is a source code, such as Java, C#, etc.

36

2.3.4 Transformation Language

In this thesis, we consider two types of transformation language: (i)

model-to-model transformation (MMT) language, and (ii) model-to-

text transformation (MTT) language.

MMT Language: ATL

ATL (ATLAS Transformation Language) is a MMT language specified as

both a metamodel and a textual concrete syntax. In the field of MDE,

ATL provides developers with a means to specify the way to produce a

number of target models from a set of source models (see Figure 6).

Figure 6 Model-to-Model Transformation

The ATL language is a hybrid of declarative and imperative

programming. Declarative style is the preferred of transformation

writing. In this thesis, we use ATL to write the model-to-model

transformation.

MTT Language: Acceleo

Acceleo is a MTT template-based language for defining code-

generation templates. The language supports OCL as well as additional

operations helpful for working with text-based documents in general.

37

Figure 7. Model-to-text transformation

A model-to-text transformation in Acceleo basically consists in a

mapping between each object in the input model and a string of

characters that represents the output (Figure 7).

In this thesis, we use Acceleo to write the model-to-text

transformation and to obtain the new version of the user interface

source code containing gesture-based interaction.

 Summary

In this chapter, we have presented two theoretical frameworks to use

in this thesis: in first place, we introduce a theoretical framework for

Human-Computer Interaction including concepts related with human-

computer interaction including: concepts related with gestures, and

concepts related with gesture-based interaction (Section 2.2). In

second place, we introduce a theoretical framework for Model-driven

paradigm including concepts by describing standards related with

model-driven paradigm, proposed by the OMG (Section 2.3).

The terms defined in this section are used in Chapter 4 and Chapter 5,

where the model-driven method design is presented and the tool

support is described. Also Chapter 6 uses the terms for describing the

validations performed in this thesis.

38

These terms are included because these domains are related with the

objectives of this thesis and also with the aim of giving a better

comprehension about this work.

39

 CHAPTER

STATE OF

ART
3

 The topics covered in this chapter are:

3.1 Motivation

3.2 Gesture representation

3.3 Gesture recognition tools

3.4 The role of gesture-based interfaces in Information

Systems Engineering

3.5 Model-driven Engineering in Human Computer

Interaction

3.6 Evaluation between model-driven paradigm and

other methodologies

3.7 Technical action research to validate software

systems

3.8 Range of Improvements

3.9 Summary

40

41

Chapter 3. State of Art

3.1 Motivation

This chapter describes the most important approaches that support

the design and development of software systems with gesture-based

interaction. Once we have analysed in Chapter 2 the general

application domains in which this work is based, we analyse the

specific proposals in the domains that are closely related to our thesis.

This analysis allows us to determine the way in which each proposal

addresses the aspects that are central in our approach.

The work related to this thesis can be analysed regarding three

research areas mentioned in Chapter 2: (i) gesture representation

(research area: Human-Computer Interaction); (ii) the definition of a

model-driven method to generate user interfaces with gesture-based

interaction (research area: Model-driven paradigm in Human-

Computer Interaction) and, (iii) the type of method employed to

perform the verification (research area: Empirical Software

Engineering).

In this chapter we review the previous work regarding three

aforementioned dimensions.

The remainder of this chapter is organized as follows:

i. Regarding first dimension, Section 3.2 presents related works

about gesture representation and gesture recognition tools.

ii. Regarding second dimension, Section 3.3 describes the role of

the gesture-based interfaces in Information Systems

Engineering and, Section 3.4 details the related work about

Model-driven Engineering in Human-Computer Interaction.

iii. Regarding third dimension, Section 3.5 describes related work

about the evaluations between model-driven paradigm and

other methodologies and, Section 3.6 presents related work

about the use of technical action research to validate software

systems in an industrial context.

42

Section 3.7 describes the range of improvements to solve the

problems found in the related work. Finally, Section 3.8 presents the

summary of this chapter.

3.2 Gesture representation

Firstly, we decide consider in our work touch-based gestures to

perform actions on a touch surface of any device supporting this type

of interaction.

Techniques available in the literature for gesture representation are

important in our thesis because we are interested in to know the

different ways employed by other authors to describe touch-based

gestures in order to adopt the more adequate to our work. This

adoption depends of the simplicity and accuracy considered to define

a gesture.

Our work is not related with the definition of a gesture representation

nor with a method to recognize gestures. We are interested in find a

solution to the problems mentioned in Chapter 1 when the software

engineers decide to include gesture-based interaction in user

interfaces of software systems.

Hence, in this section, we take in account methods reported in the

related literature to represent this type of gestures. Three categories

are considered about this topic (Table 5):

(i) Based on regular expressions. A regular expression is an

expression formed by elements such as ground terms

(basic buildings blocks), operators, symbols, etc.

(ii) Based on a language specification. A gesture is

represented using a language specification, typically XML.

(iii) Based on a demonstration. A gesture is represented by

means of information obtained when it is sketched on a

touch-based surface. Then, the gestures are tested and

refined, and, once the users are satisfied with them,

include their definition in the applications.

43

In the next paragraphs, we describe works reported about gesture

representation using each aforementioned method.

Based on regular expressions.

There are several works reported in the related literature that

represent gestures by means of regular expressions:

Spano et al. [74] propose a compositional, declarative meta-model for

gesture definition based on Petri Nets. This proposal allows

constructing complex gestures from a well-defined set of building

blocks and composition operators. The definition starts with ground

terms representing the set of basic features observable through a

specific device. The user interface behaviour can be associated to the

recognition of the whole gesture or to any other subcomponent,

addressing the problem of granularity for the notification events.

Sample applications have been developed for supporting multitouch

gestures on iOS and full body gestures with Microsoft Kinect.

Lascarides and Stone [75] present a formal semantic analysis of iconic

gestures employing a multidimensional matrix whose rows contain

values that describe aspects of a gesture’s form. The contribution of

their work is to meet the challenge, implicit in descriptive work on

nonverbal communication, of handling gesture within a theoretical

framework that’s continuous with and complementary to purely

linguistic theories.

Giorgolo [76] has a complementary proposal of Lascarides [75] to

represent iconic spatial gestures based on formal semantic. Giorgolo

provides a more precise description of the mechanism of gesture

meaning determination.

Kin et al. [77] propose Proton, a framework which allows a declarative

and customised definition of multi-touch gestures using regular

expressions composed of touch event symbols. A gesture can be

represented as a regular expression describing a sequence of touch

events.

44

Kin et al. [78] describe Proton++, a declarative multi-touch framework

that allows developers to describe multi-touch gestures as regular

expressions such event symbols. Their work includes a custom

declarative gesture definition; it is based on the Proton framework.

Spano et al. [79] describe GestIT, a framework to represent a gesture

as a declarative and compositional definition for different platforms.

This framework shares with Proton++ the compositional and

declarative approach. A gesture is defined through an expression that

can be composed with a set of operators and a set of ground terms.

Swigart [54] developed SiGeR (Simple Gesture Recogniser) for the

Microsoft Developer Network to describe gestures with the eight

cardinal points (N, NE, E, SE, S, SW, W and NW) and some statistical

information. A regular expression is created out of this description

representing a gesture.

Based on a language specification

There are several works reported in the related literature that

represent gestures by means of some language specification:

Signer et al. [48] describe iGesture, a Java framework for the

development and deployment of stroke-based gesture recognition

algorithms. iGesture has two schemas to store the gesture definition:

(i) an open source object database as a primary storage container and,

(ii) XML which simply serialise the data object into a document based

on the x-stream Java library. Additionally, this framework has included

a functionality to import or export gestures definition written in XML.

Puype [80] extended the iGesture framework in order to include

support to multi-modal composite gestures. In this context, gestures

can be defined using XML and XML Schema.

Gesture ML [81] or Gesture Markup Language (GML) developed by

Ideum is an extensible language, based on XML, used to define multi-

45

touch gestures that describes interactive object behaviour and the

relationships between objects in an application.

Görg et al. [82] in their work adapt Labeled Deductive System (LDS) to

represent a gesture. LDS provides a framework for expressing logics by

using a pair (label: formula). This schema permits define multi-touch

gestures by means of a parametrised formula.

Hachaj et al. [83] introduce a new approach for human body poses and

movement sequences recognition using Gesture Description Language

(GDL). This language consists of rules set, where each rule has the

logical expression and conclusion enabling the description of any

body’s poses and gestures with assumption that gesture can be

partitioned into sequences of poses. The description is contained in a

script using a proprietary language.

GDML (Gesture Definition Markup Language) allows a declarative

description of the sequence of events that the device senses for

recognising a custom touch gesture. GDML is a proposed XML dialect

that describes how events on the input surface are built up to create

distinct gestures [84].

Kammer et al. [85] describe GeForMT (Gesture Formalization for

MultiTouch) which is defined using semiotic with three components

and their scope: syntactic (symbols), semantics (meaning) and

pragmatics (interpretation). This language permits the representation

of multi-touch gestures.

Based on demonstration

There are several works reported in the related literature about

gesture representation by means of demonstration:

Lü et al. [86] describe Gesture Coder which is a tool for programming

multi-touch gestures by demonstration. Instead of writing code or

specifying the logic for handling multi-touch gestures, a developer can

demonstrate these gestures on a multi-touch device, such as a tablet.

46

Gesture Coder automatically generates user-modifiable code that

detects intended multi-touch gestures and provides callbacks for

invoking application actions. Gesture Coder allows to the developers

define a gesture by demonstration, test the generated code, refine it,

and, once they are satisfied with this definition, integrate the code in

their applications. Multi-touch gestures are defined using this

specification by means of information supplied by multi-touch

interaction on a two-dimensional Surface.

Lü et al. [87] describe Gesturemote, a technique for interacting with

remote displays through touch gestures on a handheld touch surface.

Gesturemote supports a wide range of interaction behaviours, from

low pixel-level interaction such as pointing and clicking, to medium-

level interaction such as structured navigation of a user interface, to

high-level interaction such as invoking a function directly (e.g.

shortcuts).

Wobbrock et al. [51] describe $1 that is easy, cheap, and usable almost

anywhere in about 100 lines of code. The $1 recognizer is a geometric

template matcher, which means that candidate strokes are compared

to previously stored templates, and the result produced is the closest

match in 2-D Euclidean space.

Anthony et al. describe $N-Protractor [52] and $N [50] to add support

for multi-stroke gestures. Specifically, $N gesture recogniser algorithm

is a lightweight, concise multistroke recogniser that uses only simple

geometry and trigonometry to perform template matching between

stored templates and entered candidates. $N is a significant extension

of the $1 unistroke recogniser by Wobbrock et al. [51].

47

Table 5. A summary related with gesture representation

48

49

50

Vatavu et al. [53] describe $P as a gesture recognizer for user interface

prototypes. $P performs similarly to $1 on unistrokes and is superior

to $N on multistrokes. In this case, a gesture is defined as a points

cloud.

If we analyse the different representations of the gestures of each

category, we can see the diversity of proposals reported by the related

literature depending their application. Therefore, a solution to this

problem is to use a single representation to the different possible

scenarios where the gestures can be used.

Hence, in this thesis, we propose a model-driven approach in order to

represent gestures with a high-level of abstraction, enabling platform-

independence and reusability. By providing the proper

transformations, it is possible to target several gesture recognition

technologies. We focus on user-defined, multi-stroke, semaphoric

gestures according to the taxonomy proposed by Karam in [11]. Also,

we adopt $N [50] as the gesture recognizer algorithm to include in the

model-driven method proposed. Then, in this thesis we use XML to

represent gestures because it is a standard language and it permits get

multi-platform feature in the definition of gesture catalogue.

3.3 Gesture recognition tools
According Ruffieux et al. [88], gesture recognition precisely refers to

a subset of the human activity and action recognition field and can be

defined as the process by which specific gestures, intentionally

performed by a user, are recognized and interpreted by a machine.

Three of the most known gesture recognition tools are the following:

 quill [89]: It is a gesture design toolkit that supports Rubine gesture

recognition algorithm. quill allows to the user define a gesture by

demonstration. Figure 8 shows a screenshot of this tool which is

divided in three areas: (1) training set, containing the gesture

catalogue, (2) training example, containing the gesture sketched

51

by the user and, (3) the area showing the result of the gesture

recognition.

Figure 8. quill’s main interface

 $N [50]. The goal of $N is to provide a useful, concise, easy-to-

incorporate multi-stroke recogniser deployable on almost any

platform to support rapid prototyping. $N is based on

demonstration to represent gestures.

Figure 9. $N’s main interface

In this case, $N main interface is divided in three zones (Figure 9):

has an area where the user sketches gestures: (1) area in the upper

52

side of the interface containing messages about the process (e.g.

messages for the user related with the sketched and recognised

gesture), (2) area in the middle side of the interface containing a

panel to draw gestures, and (3) area in the down side containing a

text field and a button to save the gesture.

 iGesture [48]: It is a framework which supports the SiGeR

algorithm and it is based on a set of modular components and

some common data structures. Figure 10 shows a screenshot of

this framework containing its components: (1) the input area

where the user sketches the gesture, (2) the algorithm

specification zone, where the user can specify the algorithm to use

in the process of gesture recognition and, (3) the area showing the

result of the gesture recognition.

Figure 10. iGesture main interface

In this thesis, we use these gesture recognition tools in order to test

the gesture definition obtained through model transformation and

code generation. Additionally, we use $N as gesture recognition tool

adapting it in the user interface modified to support gesture-based

interaction.

53

3.4 The role of gesture-based interfaces in Information

Systems Engineering

Gesture-based interfaces can play two major roles in information

systems engineering, depending on whether we intend to incorporate

this natural interaction into (i) CASE tools or (ii) into the information

systems themselves. In the former case, the interest is to increase the

information systems developers’ efficiency, whereas in the latter the

aim is to increase information system usability, especially in operations

in the field, where the lack of a comfortable office space reduces the

ergonomics of mouse and keyboard. In both cases, gesture-based

interface development methods and tools are needed.

Some studies reporting on the definition of methods to generate a

user interface are described in the following paragraphs (Table 6):

UsiGesture, proposed by Beuvens et al. [90], allows a designer to

integrate gesture-based interaction in an interface considering 2D

pen-based gestures, but it lacks techniques to model, analyse or

recognise gestures. The authors applied the method to developing a

restaurant management tool.

Guimaraes et al. [91] proposes a process model for development of

gesture-based applications. The proposed development process is

defined in four steps inter-related and executed interactivity. The

steps are: requirements definition, design definition, implementation

and evaluation. The authors apply it to creating a puzzle game using a

3D coordinates system to move and fit the pieces of the puzzle using

the hand of the user.

Nielsen et al. [92] describe in their work a method with two variants

(technology-based and human-based) and provides guidelines for the

definition and selection of gestures, based on ergonomic principles.

The authors perform a study to decide which types of gestures are

required for arbitrary applications. Therefore, they define a gesture

vocabulary containing gestures performed by the hand of the user. The

process consists in the following steps: (i) find the functions to each

54

gesture, (ii) find logical gestures, (iii) process the data, (iv) benchmark

of the gestures.

Bragdon et al. [93] describes GestureBar embeds gesture disclosure

information in a familiar toolbar-based user interface. GestureBar’s

simple design is also general enough for use with any recognition

technique and for integration with standard, non-gestural user

interface component. The authors began the design process with a

simple mockup, using Windows Presentation Foundation (WPF). The

process consists of three steps: (i) prototype and iterative design, (ii)

final design, (iii) content development.

Bhuiyan et al. [10] report the development of a Gesture Controlled

User Interface (GCUI) prototype application called Open Gesture to

facilitate inclusive interface designs that are usable by the elderly and

disabled. Open Gesture uses simple hand gestures to perform diverse

range of tasks via a television interface. Therefore, authors apply it to

an interactive television project.

If we analysed the related works included in this Section (summarised

in Table 6), we can see the diversity of proposals reported by the

related literature depending of some factors such as: development life

cycle, methodology, type of gesture supported, application, tool

support and platform. Therefore, this scenario complicates the

process to define custom gestures and to include gesture-based

interaction in user interfaces in software systems.

Hence, in this work, we propose a similar flow to that described in [91],

but we define custom gestures by using models and we automate the

implementation of gesture-based interfaces by means of model

transformations.

55

Table 6. Summary of works related with role of gesture-based interfaces in
Information Systems Engineering

56

3.5 Model-driven engineering in Human-Computer

Interaction

This section reviews the role of model-driven engineering (MDE) in

Human-Computer Interaction in which models are used to create a

user interface that includes user interaction. Several studies have

reported on the use of model-driven engineering in HCI to design user

interfaces with this type of interaction (Table 7).

Aquino et al. [26] emphasize the importance of interaction modelling

on the same level of expressiveness as any other model involved in the

development life cycle of an interactive application. They define the

presentation model of the OO-Method [94] as an abstract model from

which the model compiler can automatically generate a user interface

for different interaction modalities and platforms, although they do

not include an explicit reference to a type of interaction modality (e.

g., graphical, vocal, tactile, haptic, and multimodal).

Deshayes et al. [95] propose the use of MDE and model execution in

the context of human-computer interaction (HCI) by means of

heterogeneous models obtained with the ModHel’X modelling

environment for developing a simple HCI application for gesture-based

interaction. Their application makes it possible to browse a virtual

book using gestures (e.g., swiping, moving) in Microsoft Kinect.

Coutaz et al. [96] include a report regarding user interface plasticity

and MDE, in which three information spaces are defined: the user

model, environment model, and platform model. The platform model

considers the possible interactions that can be included in a user

interface. This report also includes a description of models that have

been defined with the aim of creating user interfaces. It also mentions

the variety of interaction modalities currently available thanks to the

diversity of technological spaces that can be included in the definition

of concrete user interfaces.

Calvary et al. in [97] describe the relation between MDE and HCI in

implementing user interfaces. In this context, they introduce the

57

models contained in a number of frameworks (e g., UsiXML [98], CTTe

[99]), one being the interaction model considered in the process of

defining user interfaces. However, the interaction modality is not

considered.

Valverde et al. [100], propose the Abstract Interaction Model that is

added to the Presentation Model in the OO-Method. Two sub-models

are considered to define the Interaction Model: the user model and

abstract interface model. A set of interaction components is defined in

the abstract interface model that define its interface with the software

system. These components are conceptual modelling elements that

describe the interaction behaviour expected by the user but not how

it is implemented, so that this system does not include the interaction

modality in the process of user interface generation.

Vanderdonckt [101] describes a MDA-compliant environment which

considers a set of variables related to the development of user

interfaces, one of which is related with interaction devices and styles.

Interaction styles include the gesture recognition. However, he points

out that an abstract user interface is independent of any interaction

modality [102] so that an explicit reference to a specific type of

interaction style is not considered.

All the works cited above mention the importance of using MDE and

HCI to obtain user interfaces in a short time at a low cost. Although

they also point out the need for a specification of an interaction

modality, they do not include gestures in their proposals. We

considered gesture-based interaction in this proposal in order to

obtain a complete definition of user interfaces using MDE and HCI.

58

Table 7. Summary of works related with Model-driven engineering in Human-
Computer Interaction

59

3.6 Evaluation between model-driven paradigm and other

methodologies

The main goal of this section is to know how were performed other

comparative evaluation processes between two or more methods of

software development regarding the parameters defined for each

process (e.g. variables, metrics, instruments).

In this sense, we analyse the related work about comparative

evaluation between methodologies based on model-driven paradigm

and others existing methodologies (e.g. traditional software

development methodology) to develop software.

There are several works which report experiments to do this

comparison, some of them are described in the following paragraphs

(Table 8):

Kapteijns et al. [104], describe a case study of the development of a

small middleware application in order to do a comparison between

Model-Driven Development (MDD) implementation with regular third-

generation programming. The MDD framework used, which is called

XuWare, permits to generate “create-remove-update-delete” – CRUD

functionality for Web applications from UML models. Results obtained

show that MDD is well applicable to small-scale development projects

under easily satisfactory conditions.

Bunse et al. [105], in their work describe a case study in order to

compare MARMOT (based on MDD and CBD ̶̶ component-based

development) with RUP and Agile Development. In this evaluation, the

subjects developed a small control system for an exterior car mirror.

The metrics employed in the evaluation are: model-size, amount of

reused elements, defect density, development effort. Their evaluation

reveals that model-driven, component-oriented development

performs well and leads to maintainable systems and a higher-than-

normal reuse rate.

60

Ricca et al. [106], describe in their work a controlled experiment with

the aim of investigating the effectiveness of Model-driven

development during software maintenance and evolution activities.

Participants (bachelor students) used two software systems (Svetofor

and Telepay) and by means of UniMod obtained two new versions of

these software systems. In this experiment, the results showed a

marked reduction in time to complete the maintenance tasks, with no

important impact on correctness, when UniMod is used instead of

conventional programming.

Papotti et al. [27] describe a quantitative study in order to evaluate the

impact of using model-driven code generation vs. traditional

development of software systems to implement a web application.

Results show that the development time to code generation is shorter

than time required using traditional development.

Condori-Fernandez et al. [107] describe an empirical approach for

evaluating the usability of model-driven tools. They propose a

framework to evaluate the usability applying it to INTEGRANOVA, an

industrial tool that implements a MDD software development method

called the OO-Method. The authors report results about the usability

evaluation in terms of efficiency, effectiveness and satisfaction within

an experimental context.

Martinez et al. [108] describe a quasi-experiment in order to compare

three methods (Model-driven, Model-based and Code-centric)

developing the business layer of a Web 2.0 application. Results show

that MDD approaches are the most difficult to use but, at the same

time, are considered as the most suitable in long term. Additionally,

these authors in [109] report a quasi-experiment in order to evaluate

productivity and satisfaction when a group of Master students develop

a Web application using three methods: code-centric, model-based

(UML) and model-driven (OOH4RIA). Results show that the use of

Model-driven Engineering practices significantly increase both

productivity and satisfaction of junior Web developers, regardless of

the particular application. Other work reported by these authors [110]

61

is about an empirical study on the maintainability of the Web

applications. In this work, they compare Model-driven Engineering

with Code-centric method by using OOH4RIA and Visual Studio .NET

respectively. The results show that maintaining Web applications with

OOH4RIA clearly improves the performance of the subjects.

Cervera et al. [111], in their work describe an empirical evaluation

using TAM and Think Aloud methods with the aim of assessing

usefulness and ease of use of MOSKitt4ME. In this evaluation the

results were favourable, that is, MOSKitt4ME was highly rated in

perceived usefulness and ease of use; the authors also obtained

positive results with respect to the users׳ actual performance and the

difficulty experienced.

Panach et al. [112] describe in their work an experiment in order to

compare quality, effort, productivity and satisfaction of MDD and

traditional development. Participants (last-year master students) built

two web applications from scratch. Results obtained show that for

small systems and less programming-experienced subjects, MDD does

not always yield better results than a traditional method, even

considering effort and productivity.

All these works describe comparative evaluations in order to check

whether or not model-driven produces better results than other

methods (e.g. code-centric method, method based on RUP and Agile

methodology). The types of study used in these evaluations are mainly

case studies, empirical evaluations and quantitative studies. As far as

we know, there are no previous experiments that dealt with the

comparison of a model-driven versus a code-centric method in the

context of generating gesture-based interaction. So, this work is a step

forward in the process of covering this gap.

62

Table 8. Summary of works related with Evaluation between model-driven
paradigm and other methodologies

63

64

65

We will use an empirical evaluation to compare a model-driven

method and code-centric method in order to evaluate performance

and acceptance of our proposal. In this experiment, the participants

will define custom gestures and they will include gesture-based

interaction in an existing user interface with source code written in

Java.

3.7 Technical action research to validate software systems

In a similar way than the previous section, we include this section in

order to know how was applied the technical action research in the

industrial context to validate software products.

In this sense, some works related with the applicability of technical

action research in the field of software engineering are included in this

section. However, we found few reports about the application of TAR

to validate software systems:

Morales-Trujillo et al. [113] describe the validation of a software

engineering framework employing Technical-Action Research and case

study methods. They report that the combination of TAR and case

studies was a successful experience and that it is a feasible resource

for bridging the gap between academy and industry.

Morali et al. [114] report the use of TAR to validate a method to specify

confidentially requirements in an outsourcing relation. They used

CRAC++ to specify confidentially requirements that could be included

in an outsourcing SLA.

Abelein [115] describes in his work the application of technical action

research to validate iPeople Case Study applying the User-Developer

Communication-Large-Scale IT Projects (UDC-LSI) method. His

evaluation showed a positive effect of the UDC-LSI method on

effectiveness and efficiency.

Antinyan et al. [116] report a complementary empirical method for

validating software measures. The method is based on action research

principles and it can be combined with theoretical validation methods.

66

The industrial experiences reported in their work show than in many

practical cases the method is effective.

In this work, we will employ technical action research in order to

validate our proposal in an industrial context to determine its benefits

in the field of human-computer interaction related with gesture-based

interaction.

3.8 Range of Improvements

At the end of the revision of the related literature, we can describe

some problems found in the context of this thesis related with the

research areas identified in the beginning of this chapter:

Research area 1: Gesture representation

Our search on the related literature about gesture representation has

demonstrated that there are a variety of techniques to define gestures

that are platform-specific. This fact can represent a problem when the

software engineers have planned to develop software to several

platforms of devices because the engineers require have a good level

of skills and experience to develop software with quality and

efficiency.

Research area 2: Definition of a model-driven method to generate user

interfaces with gesture-based interaction

Currently, computing devices and their software systems are in great

demand. This creates a problem that needs attention: it is necessary

updated versions of software systems for the most number of

platforms as well as development methodologies of software systems

to allow the implementation of these systems in the shortest possible

time, at the least cost and with quality.

Another aspect that should be considered is the widespread use of

gestures to perform actions on the device, the application fields of

software systems with gesture-based interaction is growing and

67

software developers build software systems that do not allow easy

addition of new gestures or user-defined (custom) gestures.

The development of software systems for devices with gesture-based

interaction is largely based on the source code, forcing developers to

achieve mastery of a platform and its tools and learn to deal with all

the pros and cons that brings this trend, according to mentioned in

Chapter 2 of this research work.

Research area 3: the type of method employed to perform the

verification of the proposal

In this case, we analyse the works related with comparative evaluation

of two methods to develop user interfaces. Some works had used

empirical evaluation with the aim of validating the usability of a

solution to obtain software systems, but we do not find any work

related with the definition of custom gestures and the inclusion of

gesture-based interaction in user interfaces.

3.9 Summary

This chapter presents the state of the art of the disciplines that are

related to this thesis.

In the field of software systems development methodologies in this

thesis have described the model-driven development which has been

considerate to use in this thesis because it satisfies the requirements

specified in this document.

In the field of gesture-based interaction there is a series of works with

proposed techniques for gestural representation, a work that is closest

to the proposal of this thesis is presented in [74], which is based on

Petri networks, however work focuses on gesture recognition rather

than the representation of a gesture based on MDA, such as the

proposal for this thesis.

We will try to solve these problems with our work that is described in

this document.

68

69

 CHAPTER

gestUI: A

MODEL-DRIVEN

METHOD

4

 The topics covered in this chapter are:

4.1 Overview

4.2 Why a Model-driven method?

4.3 Why a Model-View-Controller design pattern?

4.4 Determining needed resources

4.5 gestUI: our proposal

4.6 Personalization of gesture definition

4.7 Overview of gestUI to include gesture-based

interaction in a user interface

4.8 Summary

70

71

Chapter 4. gestUI: A Model-Driven Method

4.1 Overview

Currently, there are two topics to consider regarding the development

of user interfaces supporting gesture-based interaction:

(i) The current tendency to adopt new human-computer

interaction techniques considering the development of the

technology, specifically the gesture-based interaction. In the

current technology market, there is a wide range of devices

platforms supporting gesture-based interaction.

(ii) The high demand of gesture-based interaction in the software

systems. There is a variety of SDK’s to develop software

systems for these devices with gesture-based interaction.

However, when a software engineer employs a code-centric method

to include gesture-based interaction in user interfaces of software

systems, some of the following problems are involved [117] [118]

[119]: (i) the software engineer has two options to obtain the source

code: writing the methods required to implement the software from

scratch or adapting existing source code; (ii) the gesture specification

is not multi-platform; (iii) it is hard to reuse the source code to support

gesture-based interaction in other platforms; (iv) software engineers

require skills in the programming language of each platform employed

in the implementation of software systems user interfaces; (v) in some

cases, the integrated development environment (IDE) is not available

in all platforms required by users.

These facts allow the introduction of new challenges and opportunities

in the design and development of software systems with gesture-

based interaction for any platform as well as the ability to define

custom gestures in the design stage of a software system.

Considering this situation, we motivated to define a methodology that

allows improving processes to include gesture-based interaction in

user interfaces of software systems for any available platform in the

72

market, and a mechanism to simplify the definition of custom gestures

according to the needs of end users without requiring extensive skills

or knowledge of a programming language.

This chapter introduces a new model-driven method, called gestUI

that aims to overcome the limitations identified and described in this

thesis to implement user interfaces with gesture-based interaction.

Thus, to meet this challenge, our proposal advocates the use of Model-

Driven Engineering (MDE) techniques. We believe that the use of MDE

reduces the complexity of the implementation of gesture-based user

interfaces because it allows software engineers to work at a high level

of abstraction and it also increases automation and reuse.

In our work, the level of abstraction is raised by allowing software

engineers to design gestures as models. On the other hand,

automation is increased by means of model transformations.

The objectives of this approach are:

(a) To provide a methodology to include gesture-based interaction in

software systems user interfaces, which is platform-independent

of computing devices.

(b) To provide a mechanism that helps the developer to specify a

catalogue of gestures that can be included in a software system

user interfaces for devices with gesture-based interaction.

We apply gestUI in user interfaces of existing software system with the

aim of modifying the component related with the interaction to add

the possibility of using gestures to perform actions. Under this

situation, we consider the Model-View-Controller (MVC) design

pattern because it describes the logical components of a user interface

in an independent way of any technology.

In summary, the method proposed is based on Model-driven paradigm

and on the Model-View-Controller design pattern with the aim of

generating gesture-based user interfaces. Therefore, the reasons

about their use is given in the following sections: Section 4.2 gives an

73

answer about the use of Model-Driven paradigm in this thesis. Section

4.3 explains the use of Model-View-Controller design pattern in this

thesis. Additionally, Section 4.4 presents an explanation about the

needed resources to implement the method.

The subsequent sections of this chapter are organized as follows:

Section 4.5 introduces the method proposed called gestUI. Section 4.6

describes the personalization of the gestures. Section 4.7 includes the

summary of this chapter.

4.2 Why a Model-Driven method?

The major challenges that Software Engineering has to deal with are

represented by two questions: how sustainability can increase

productivity? And how you can shorten the period of time to have new

software or new versions of existing software? [34].

Unfortunately these questions do not have answers based on the

traditional methodologies of software development, they employ a

paradigm focused on the code and third generation languages, and its

role is defined to be in the field of the solution instead of in the field

of problem [34] [36]. This implies that software systems developers

require more effort in the process of implementing software systems

[94], consequently affecting their work performance, and time to have

new versions of software systems.

MDD is a software development approach that has the potential to

deal with the identified challenges of Software Engineering mentioned

above. MDD proposes the use of models to specify the desired details

of a system (requirements) and using transformations rules to

generate the source code automatically to the hardware platform

specified in the process [120]. MDD offers an environment that

ensures the use of models throughout the development process of

software systems [34]. Another feature of MDD is abstraction, a

fundamental feature for describing components of software system

development without considering the target technology platform

[121]. In our thesis, abstraction is an important feature since the

74

proposed framework is platform independent of hardware and/or

software of the devices.

In summary, in this thesis, techniques related with MDD are applied.

This help to raise the level of abstraction of the process, which

enhance the development process of software systems with gesture-

based interaction, and facilitate the definition of gesture-based

interaction in software systems. By applying these techniques, we get

improved productivity by managing the similarities and differences of

the devices with gesture-based interaction, promoting reuse and

automation in the software development process.

4.3 Why a Model-View-Controller design pattern?
The software systems must work on various types of devices, including

devices installed in different environments and devices that users

carry with them [122]. The aim is to improve the usability of a software

system [123] because they must provide convenient access to the

services offered, and allow users to learn the functionalities of the

application and to produce results in a short time. Software systems

must be adapted to interact with the user in an appropriate way based

on the context where the user is located.

In the specification of the architecture of these software systems, the

functional core should remain independent of the user interface. This

core, based on the functional requirements of the system, usually

remains stable. The user interface may need some change or

adaptation. For instance, (i) the software systems may have to support

different user interface standards, or be configured to suit the client’s

business process. This leads to the need of using architectures that

support the adaptation of user interface components without causing

significant impact on software system-specific functionality or data

model used [124]; (ii) the software systems that are based on

traditional interaction (using keyboard and mouse) could be migrated

to use a gesture-based interaction but maintaining the same

75

functionalities, that is, now the user employs a gesture to do an action

that before required using a keyboard or mouse.

The mentioned possibilities can be realized using a MVC design pattern

in two instances of the software system lifecycle:

a) When the software system is in the design stage. In this case, the

software engineers include features to specify the type of

interaction to use in the user interface.

b) When the software system is implemented. In this case, software

engineer can modify existing features in the user interface in order

to include other type of interaction in the user interface. We

consider this situation in this thesis.

Figure 11 shows the software system based on the MVC design pattern

where the controller of the software system receives signals done with

traditional interaction using keyboard and mouse to perform actions.

Figure 11. Software System with traditional interaction

Figure 12 is shown the same software system based on the MVC design

pattern but with other controller that supports gesture-based

interaction where the user can employ gestures to perform actions on

the system (gesture-based interaction). In this latter case, the “new”

controller is prepared to receive actions by means of gestures instead

of actions by means of keyboard and mouse.

76

Figure 12. Modifying the controller to support gesture-based interaction

In this thesis, the MVC design pattern is used because it allows to treat

the logical components in an independent way of the technology

components in a device [123]; furthermore, from the logical point of

view, knowing the hardware platform which will operate the software

system resulting in the code generation process is not considered

essential. The independence in the components defined by this design

pattern is also complemented with platform independence achieved

using MDE in the process of definition of the methodological

framework.

4.4 Determining needed resources

In order to develop the method for including gesture-based interaction

in software systems for any device, it is necessary to consider some

questions that help us in the construction of the solution:

 What kind of gesture can be specified?

 What kind of gesture-based interaction will be supported?

 What kind of actions might be performed through gesture-

based interaction?

We consider that the following resources are required to obtain an

answer of each of these questions:

 An artefact to define the type of gestures that the user can

perform independently of target devices;

77

 The specification of the supported interaction type

independently of target devices;

 A mechanism to specify the actions that can be performed

through gesture-based interaction.

A brief explanation about these resources is included in the following

paragraphs:

 Regarding the type of gestures to use in the process, we consider

touch gestures because currently in the market there are devices

that support these types of gestures. The touch gestures are used

in devices with touch screen such as smart phones, tablets,

computers, and so on. It is needed to define the features that

characterize a gesture to include them in the artefact that allows

the gesture definition. Using the model-driven paradigm is

possible to specify some tasks to perform in the software

development life cycle: (i) to specify types of gestures, and even to

establish patterns of gestures so that information regarding

gestures is available for inclusion in software development

processes considering gesture-based interaction; (ii) to define the

relation between gesture and the command (or action) included

in the user interface.

 The task related with the specification of supported interaction

type involves two aspects: (i) the definition of the device because

the type of interaction is directly related to the type of device and

(ii) the context of use because this feature defines how will be

specified the actions in a device. For instance, if the user has a

device with touch screen, he/she uses a touch gesture implying

touch gesture-based interaction. If the user has the hands and

eyes occupied with other tasks such as driving, then the speech

interaction is appropriate.

 Finally, regarding the action that can be performed with touch

gesture-based interaction, it is related with the definition of the

gesture-action correspondence. The actions are specified by

means of commands assigned to the widgets (image, text field,

78

button, etc.) included in a user interface. The type of actions

depends of the type of software system, if we consider a form-

based software system, the actions are related with typical

operations of a database (e.g. CRUD9 operations), but if we

consider a CASE tool to draw diagrams, the actions are related with

sketching primitives of a diagram (e.g., using a finger to sketch a

rectangle and to obtain a class in a UML diagram). Therefore, the

gesture-action correspondence consists in the specification of a

gesture to perform any action when a user touches some widget

in the user interface. For example, if the item is an image then the

actions can be: reducing the size (zoom in), increasing the size

(zoom out), rotating right, rotating left, sending by e-mail, etc. If

the element is a button, it will only be possible to press the button

to execute some action specified in this widget (e.g. to save a

record in a database). Additionally, users can sketch custom

gestures on a touch surface to execute some action, e.g., a user

can sketch a gesture to print a document instead of select the

corresponding option in a menu.

In this thesis, the specification of these resources is performed using

metamodels and models that are employed as part of the proposed

methodology using MDE. A detailed description of the mentioned

resources (metamodels and transformations) in the scope of

aforementioned methodologies can be found in the following pages.

4.5 gestUI: our proposal

This chapter introduces a new model-driven method, called gestUI

that aims to overcome the limitations that are identified in Chapter 1,

in the implementation of user interfaces with gesture-based

interaction.

In order to obtain a better understanding about our proposal, this

section describes the following topics related with gestUI: (i) features

of gestUI, (ii) metamodel to represent a gesture catalogue modelling

9 CRUD operations are referred to Create, Read, Update and Delete.

79

language including the description of each class of the metamodel with

its business rules10, (iii) components of gestUI and, (iv) model

transformations defined to obtain gesture-based user interface.

4.5.1 Features of gestUI

gestUI [125] is defined with the aim of helping in the definition of

custom gestures and in the inclusion of gesture-based interaction in

user interfaces.

gestUI is model-driven since its main artefacts are conceptual models

which are compliant with the Model-Driven Architecture, a generic

framework of modelling layers that ranges from abstract specifications

to the software code. gestUI is composed of three layers according to

the model-driven method: a platform-independent layer, a platform-

specific layer and source code.

gestUI is user-driven because the users are the main actors in the

definition of custom gestures and in the inclusion of gesture-based

interaction in information systems user interfaces.

gestUI is iterative because if the users are not satisfied with the

definition of the gestures or maybe they have problems sketching

some gesture, then they can repeat the process of gesture definition

to redefine such a gesture.

Through MDD, gestUI aims to tackle the problems indicated in Section

4.1, as Table 9 shows.

The scenario where gestUI can be included to implement gesture-

based user interfaces consists of the following steps:

Step 1: Stakeholders (e.g. software engineers, end-users, software

analysts) obtain the requirements specification of the software system

10 According to Kardasis et al. [163], business rules have been defined as
‘declarations of policy or conditions that must be satisfied’ in a software
system or in an organization.

80

containing human-computer interaction (gesture-based interaction)

to include in the user interface.

Step 2: The software system, including the user interfaces, is designed.

Step 3: The developers implement the software system, including user

interfaces.

Step 4: By using gestUI, the stakeholders include the gesture-based

interaction in the user interface and finally, by applying model

transformations they obtain the gesture-based user interface source

code. gestUI modifies the source code of the user interfaces in order

to include custom gesture definitions and gesture-based interaction

according to the requirements specified by the end-users. As a result

of this, a new version of the existing user interface is automatically

generated by using model transformations.

Step 5: By executing the software system, the user can perform actions

using this recently implemented user interface with gesture-based

interaction.

Table 9 Detected problems vs. Benefits of model-driven paradigm to solve them

Problems described in

Section 4.1

Benefit of model-driven paradigm [29]

Problem (iv) Productivity

Problems (ii) Portability

Problem (v) Interoperability

Problem (iii) Reusability

Problem (i) Source code automatic generation

Then, considering this sequence of steps, gestUI permits also the

inclusion of gesture-based interaction in legacy systems with user

interfaces supporting traditional interaction using keyboard and

mouse. After the application of gestUI, such user interfaces will

support the gesture-based interaction.

4.5.2 Metamodel of the gesture catalogue modelling language

We consider that a user interface of a software system supporting

gesture-based interaction requires a gesture catalogue containing

81

custom gestures to execute actions (commands) specified in the user

interface. This type of user interface is called gesture-based user

interface.

In this thesis, we define a metamodel (Figure 13) to specify the gesture

catalogue modelling language. The description of the proposed

metamodel consists of the classes that define the gesture catalogue,

the business rules and constraints defining custom gestures. These

business rules will be applied in the definition of the gesture catalogue

using validation rules by means of OCL (Object Constraint Language)

sentences, which will be included in the stage of metamodel definition.

Figure 13. Metamodel of the gesture catalogue modelling language

A description of each class is included in the following paragraphs:

Catalogue: It represents a gesture catalogue which contains all the

gestures defined by the user, and that are available in a system or a

device. It has an attribute that describes the name of the gesture

catalogue.
Table 10. Business rules for the "Catalogue" class

Class Business rule OCL constraint

Catalogue

The name of the catalogue

must be unique

context Catalogue

inv: self.contains -> isUnique(Name)

A gesture catalogue has at

least one gesture

context Catalogue

inv: self.stores -> size >0;

The business rules associated to this class are “The catalogue name

must be unique” and “A catalogue contains at least one gesture”.

These business rules are validated using OCL sentences as is shown in

Table 10.

82

Gesture: It represents the gestures that conforms a gesture catalogue.

It has some attributes to describe a gesture: (i) the name of a gesture,

(ii) if the gesture is discrete or continuous, (iii) the pressure applied on

a touch surface when a gesture is sketched and, (iv) the duration time

by sketching a gesture. The business rules associated to this class are:

“The gesture name must be unique”, “A gesture can be discrete or

continuous”, "A multi-stroke gesture is formed by a sequence of

postures”, “A touch-based gesture applies a pressure on the screen”

and, “A gesture has duration time > 0”. These business rules are

validated using OCL sentences as is shown in Table 11.
Table 11. Business rules of the "Gesture" class

Class Business rule OCL constraint

Catalogue

The names of the

gestures defined in the

catalogue must be unique

context Catalogue

inv: self.stores ->

forAll(g|g.isUnique(Name));

A gesture can be discrete

or continuous

context Catalogue

inv: self.stores ->

select(g|g.typeGesture=#discrete or

g.typeGesture=#continuous)

Gesture A multi-stroke gesture is

formed by a sequence of

postures

context Gesture

inv: self.strokes>1 implies

self.strokes.doing -> size>1

Gesture A touch-based gesture

applies a pressure on the

screen

Context Gesture

Inv: self. Pressure>0

Gesture A gesture has duration

time > 0

Context Gesture

Inv: self. duration Time>0

In this case, we define the enumeration “GestureType” containing the

values “Discrete” and “Continuous”. It permits to specify the type of

gesture according to the definition included in Chapter 2.

Action: It defines the action (command) to execute when the gesture

is sketched by the user and recognised by means of a gesture

recogniser algorithm. The business rule associated to this class is “A

gesture performs one or more actions”. This business rule is validated

using an OCL sentence as is shown in Table 12:

83

Table 12. Business rule of the "Action" class

Class Business rule OCL constraint

Gesture
A gesture performs one or

more actions

context Gesture

inv: self.realizes -> size>0

Stroke: It corresponds to the marks made with a mouse, pen or finger

to define a gesture or a part of it. According to the number of strokes,

a gesture can be single-stroke or multi-stroke. The business rule

associated to this class is “A gesture contains at least one stroke”. This

business rule is validated using an OCL sentence as is shown in Table

13:
Table 13. Business rule of the "Stroke" class

Class Business rule OCL constraint

Gesture
A gesture contains at least

one stroke

context Gesture

inv: self.strokes -> size>=1

Posture: It corresponds to the description of each posture that

conforms a gesture. The attributes are: name of the posture which is

used to identify it; the state of execution of the posture (initial,

executing, final). The business rules associated to this class are “A

stroke contains at least one posture” and “The state of execution of the

posture can be initial, executing or final”. This business rules are

validated using OCL sentences as is shown in Table 14.

In this case, we define the enumeration “State“ that contains the

values “Initial”, “Executing”, and “Final”. It is used to specify the cycle

of execution of the postures of a gesture.

Precedence: It specifies the precedence relation between postures. It

has an attribute (name) to identify the precedence defined between

postures.

The business rule associated to this class is “If a stroke has two or more

postures then it is required to define a precedence relation”. This

business rule is validated using an OCL sentence as is shown in Table

15.

84

Table 14. Business rules for the "Posture" class

Class Business rule OCL constraint

Stroke
A stroke contains at least

one posture

context Stroke

inv: self.doing -> size>=1

Posture

The state of execution of the

posture can be initial,

executing or final

context Posture

inv: self.state ->

select(g|g.state=#initial or

g.typeGesture=#executing or

g.typeGesture=#final)

Table 15. Business rule for the "Precedence" class

Class Business rule OCL constraint

Stroke

If a stroke has two or more

postures then it is required

to define a precedence

relation

context Gesture

inv: self.strokes -> size>=2 implies

self.stroke.having -> size > 0

Figure: It defines the type of figure that can be drawn using the points

of a posture which is part of a gesture. In this case, we define two

additional enumerations which contains definition of values of some

attributes that complete the specification of a gesture: (i) Enumeration

called “Orientation” containing the orientation (up, down, left, and

right) in which a figure is drawn using the points defined in a posture;

(ii) Enumeration “FigureType” that defines the type of figure (e.g. line,

circle) that can be drawn between two points in order to obtain the

drawing of a posture, and finally, the drawing of a gesture.

Point: It is related with the postures that conform a gesture. It contains

the definition of coordinates (X, Y) to trace a posture and locate a

gesture in a touch screen. The coordinates must take valid values in a

touch screen depending on its size and its resolution. The business rule

associated to this class is “In a touch-based gesture, the values of

coordinates (X, Y) must be greater than zero”. This business rule is

validated using an OCL sentence as is shown in Table 16:

Table 16. Business rule for the "Point" class

Class Business rule OCL constraint

Posture

In a touch-based gesture,

the values of coordinates (X,

Y) must be greater than zero

context Posture

inv: self. Initial.X >0; self. Initial.Y

>0;self.final.X>0; self.final.Y>0

85

The data structure that defines a gesture is described in Table 17.

Therefore, according to the proposed metamodel (its classes, the

business rules and the constraints specified with OCL sentences), we

consider that:

A gesture catalogue (Catalogue class) contains one or more gestures

(Gesture class) to execute actions (commands) (Action class) of a

software system. Each gesture is formed by one or more strokes

(Stroke class) defining single or multi-stroke gestures.

Each stroke is formed by postures (Posture class). A posture can be

sequentially divided into three states (Figure 14): initial, executing, and

final (State enumeration):

 The first state (Initial) occurs when the user begins sketching

the gesture, for example, in a touch-based system the user

puts a finger on the screen and the system detects it.

 The second state (Executing) can be formed by a set of

postures depending of the type of gesture that is being

sketched.

86

Table 17. Data structure of a gesture

87

 The third state (Final) occurs when the user finishes the sketch

of the gesture, for example, in a touch-based system occurs

when the finger of the user doesn’t touch the screen.

Figure 14. States of a posture

If a gesture consists of two or more postures is necessary to specify

the order of execution of them. In this case, there are two possibilities

to consider:

 Using a sequential number to specify the order of the postures

that conform a gesture, or

 Using the concept of precedence relation to specify the order and

relation of the postures that conform a gesture.

In this thesis, we consider the concept of precedence relation

(Precedence class) because is more adequate to specify successor and

predecessor in a set of postures rather than assigning a number of

sequence to the postures. The precedence relation defines the order

of execution of a set of postures that conforms a gesture, therefore,

considering the concept of precedence relation between two postures

PA and PB, posture PA must necessarily occur before posture PB occurs

(see Figure 15).

Consequently, the sequence of strokes in the gesture is specified by

means of precedence order.

88

Additionally, the concept of precedence relation considers the

definition of source and target postures to specify the order and

relation of the postures that conforms a gesture. Also, in this concept

the definition of two states (ingoing and outgoing) is considered in

order to specify the input and output precedence in the execution of

a posture (see Figure 15).

Figure 15. Precedence relation between postures

Each posture is composed of two points, initial and final, and each

point (Point class) is described by coordinates (X, Y). Each posture

draws a figure (e.g. line, circle) (Figure class) with an orientation (up,

down, left, right) (Orientation enumeration). The set of postures

(points) conforms the gesture.

If a gesture has two or more postures, it is necessary to define the

precedence relations between postures in order to specify their order

and relation. In this definition, source and target postures must be

specified and, ingoing and outgoing precedence must be specified too.

During the trace of a multi-stroke gesture, it is necessary to consider

the time interval between strokes that are being executed. For

instance, if a gesture is formed by two strokes, then the time interval

between strokes must be specified in order to recognize that both

strokes belong to the same gesture.

89

In the process of definition of a gesture the elapsed time between

postures must be similar11 because the duration of one of them can

define a gesture different to the gesture that the user wants to define.

In Figure 16, a set of postures (A-B-C-D-E) that outline a gesture is

shown, each posture has a duration time t1, but the next posture (E)

has a duration time t2 (t1 ≠ t2). In this example, we have two gestures

instead of one gesture: first gesture (postures: A-B-C-D), and the

second gesture (sequence E). If t1 = t2, would have only a defined

gesture (postures: A-B-C-D-E). For instance, the action of pressing the

touch screen during a short time defines the tap gesture, but if the

time is greater the gesture can be traduced as “tap and hold”.

Figure 16. Interval of time between postures

Some of the constraints defined using OCL in the metamodel are

included in Table 18.

11 When the user sketches a multi-stroke gesture, which is represented by a

sequence of strokes, in the specification of the gesture, the user needs to

specify a value of time between strokes so that it can determine that the trace

of the gesture is complete, i.e., the execution of the gesture is finished.

90

Table 18. Constraints and business rules of gesture definition

91

4.5.3 Components of gestUI

Figure 17 shows an excerpt of the typical structure of an existing

method based on model-driven paradigm to develop user interfaces.

As is shown in Figure 17, a method defined by means of model-driven

paradigm has three layers: platform-independent layer, platform-

specific layer and source code layer. From the platform independent

model (PIM) using successive transformations we obtain the platform-

specific model (PSM) and then the source code is obtained. This source

code of the user interface includes traditional interaction.

Figure 17. A general excerpt of any method for develop user interfaces

In general, the activities and products included in the layers of any

existing MDD method are:

 In the platform-independent layer, the interaction requirements

are detailed (Activity “Specify Interaction Requirements”)

obtaining as a result the requirements specification to develop a

user interface (Product “Interaction Requirements”).

 In the platform-specific layer, the interaction requirements are the

input to perform the interface design (Activity “Interface Design”).

As a result, in this layer the interface model is obtained (Product

“Interface Model”).

 In the code layer, the interface model is the input to implement

the interface (Activity “Implement Interface”) and to obtain the

information system interface. As a result, in this layer the source

code of the user interface is obtained (Product “Information

System Interface”).

In order to obtain gesture-based interfaces, we propose including

gestUI in the layers of any MDD method. Figure 18 shows the resultant

92

method consisting of three layers that contain existing activities and

products, represented in grey colour and, activities and products

contained in gestUI, represented in white colour.

Figure 18. gestUI method overview (Taken from [31])

Each one of the modules contained in gestUI are described in the

following paragraphs according to Figure 18:

Platform-independent layer

1. Activity A1 (“Define gestures”) in which the developer

specifies the gestures in collaboration with representative

information system users. In our proposal, the gestures are

defined by sketching on a canvas, then they are stored in the

‘Gesture catalogue model’ which conforms to the metamodel

described in Section 4.5.2. Each gesture is formed by one or

more strokes defined by postures, which in turn are described

by means of coordinates (X, Y). The sequence of strokes of the

gesture is specified by means of precedence. Each posture in

a gesture is related to a figure (line, rectangle, circle, etc.) with

an orientation (up, down, left, and right) and a state (initial,

executing, final) qualifying the order of the strokes. The

gesture catalogue definition could be part of a larger

‘Interaction requirements’ specification. The product

obtained in this activity is the gesture-catalogue model. Figure

19 shows an example of platform-independent gesture

definition using the gesture model.

93

Figure 19. Platform-independent gesture definition

In this figure, it is possible to check the classes and their

attributes included in the metamodel described in this

chapter.

94

Platform-specific layer

In this layer, the activities A2 and A3 permit that the gesture catalogue

can be defined from a previously defined gesture repository. That is,

the gestures can be reused in other user interfaces in the same

software system or in other software system. The description of each

of these activities is as follows:

2. Activity A2, “Generate gesture-based interaction”, since the

user interface is designed in this layer, the gesture-based

interaction is also defined in this layer in collaboration with the

user by means of a code-centric method. The filename of the

user interface source code is inserted as attribute in the

“Gesture” class in the gesture catalogue model with the aim

of processing the source code to obtain the actions defined in

the user interface. In a model-based software system user

interface development, the actions are specified in the

interface model. In a code-centric interface development they

are implemented on the source code of the interface itself.

The procedure mainly consists of applying a parsing process

on the source code to obtain the components included in the

user interface, after which the correspondence between the

gesture and action/command included in the user interface is

allocated. This correspondence allows a set of sentences

(action/command) to be defined in the same programming

language as the source code of the user interface and enable

it to be executed by each gesture previously defined. The

product obtained in this activity is stored in the “gesture-

based interaction model”.

3. Activity A3, “Generate gesture specification”, consists in an

M2M transformation using ATL as model transformation

language. The gesture catalogue model is required as input

data and the result is the platform-specific gesture

specification. In this case, we consider the structure of the

95

gesture definition according to $N gesture recognition tool as

the target platform in the model transformation.

Source code layer

This layer contains two activities:

4. Activity A4, “Generate gesture-based interface” where the

gesture-based interaction model and the gesture catalogue

model are transformed into an executable and deployable

code of the user interface written in the selected

programming language. The tool generates components (e.g.,

Java code) that are embedded in the existing information

system interface. ‘Gesture based interface’ is automatically

generated by the platform-specific layer artefacts.

5. Activity A5, “Test gestures”, in this activity the gesture

catalogue model is transformed into language supported by

the gesture recognition tool (i.e. XML) so that both the

developer and the user can test the gestures using the gesture

recognition tool (we currently support three gesture testing

platforms: quill [89], $N [50] and iGesture [48]). We apply M2T

transformation with transformation rules written in Acceleo to

generate the platform-specific gesture catalogue for each

gesture recognition tool.

4.5.4 Model transformations

gestUI is a model-driven method to define custom gestures and to

include gesture-based interaction in user interfaces. Following a

model-oriented paradigm is possible to obtain user interfaces with

gestural interaction for any platform and other benefits related with

this paradigm.

A model-driven method includes metamodels, models and model

transformations [29]. The metamodel of the gesture catalogue is

described in Section 4.5.2. In this section, with the aim of completing

96

the description of gestUI we describe the model transformations

included in our work to obtain the gesture-based user interfaces.

In this thesis, we apply M2M and M2T model transformations in order

to obtain a user interface including gesture-based interaction. With

the aim of describing the model transformations we consider Figure

18 where the model transformations are represented by means of a

symbol (a gear) in the upper left corner of the A3 and A4 activities of

gestUI.

Firstly, a M2M transformation is performed during the activity A3

(Figure 18) to obtain the platform-specific gesture catalogue

specification. This specification contains the gesture catalogue model

according to the specification of the gestures to be used in the

definition of the gesture-action correspondence to include gesture-

based interaction in user interfaces. This specification is based on the

definition of gestures included in the gesture recogniser algorithm

considered in this thesis: $N gesture recogniser. The model obtained

in this model transformation conforms to the gesture catalogue

metamodel described in Section 4.5.2.

Figure 20 shows this aforementioned M2M transformation that is

executed by means of a transformation definition which contains the

transformation rules written in ATL. Gesture catalogue model which is

conforms to gesture catalogue metamodel is the input to the M2M

transformation. Platform-specific gesture specification (model) is the

output in this transformation.

Figure 20. An excerpt of Figure 18 showing the M2M transformation

An excerpt of the transformation rules written in ATL is included in

Figure 21 that contains the transformation rule to create the “Gesture”

97

class in the target model. In this transformation definition, the input is

the gesture catalogue model and the output is platform-specific

gesture specification.

Figure 21. An excerpt for the M2M transformation

Secondly, a M2T transformation is performed to obtain the source

code of the gesture-based user interface (Figure 22). With the aim of

supporting gesture-based interaction, this user interface source code

contains the relation between gestures and actions where the

gestures belong to the previously defined gesture catalogue and the

actions are obtained from the same source code. This M2T

transformation is included in the activity A4 of gestUI, described in

Section 4.5.3. The filename containing the source code of the user

interface and the name of the gesture catalogue are input data for this

model transformation. In this case, the target platform is also specified

by the user to generate the source code of the user interface.

Additionally, using a second M2T transformation we obtain the

gesture catalogue to be included in each of the three frameworks

(gesture recognition tools) used in this thesis to test gestures (Figure

23): (i) quill [89] using GDT 2.0 to describe the gesture catalogue, (ii)

iGesture [48] using XML to describe the gesture catalogue and (iii) $N

using XML to describe the gesture catalogue. In each transformation,

98

the specification of the target platform is required; in this case, each

aforementioned framework.

Figure 22. An excerpt of Figure 18 showing the M2T transformation to obtain the

gesture-based user interface

These M2T transformations are executed via a script containing the

transformation rules written in Acceleo, applying a script that specifies

information such as the classes and components participating in the

generation, output folders, etc. The combination of the components

that support the code generation process is depicted in Figure 24. The

template definition, which drives code generation, constitutes the

most important part of the transformation process. Appropriate

templates have been defined for the platforms considered in our work:

XML ($N and iGesture), GDT (quill) and Java.

Figure 23. An excerpt of Figure 18 showing the M2T transformation to obtain the

test gesture

Figure 24 includes an excerpt from the template written in Acceleo, for

applying M2T transformation to obtain the gesture catalogue for the

$N gesture recognition tool. It also includes a header containing the

general information of the gesture (gesture name, date and time when

the gesture was sketched, number of strokes, number of points, etc.),

the strokes contained in the gesture, and the set of points which

conform the gesture.

99

In this thesis, the $N gesture recognition algorithm [126] is adopted in

order to apply it in the gesture recognize process. In this algorithm, the

description of each gesture is stored in a file using XML, therefore, the

transformation rules applied in the M2T model transformation

consider the structure of the file containing each gesture in order to

use it with the corresponding gesture recognize process.

Figure 24. An excerpt for the M2T transformation

4.6 Personalization of gesture definition

4.6.1 Introduction

One of the main factors that could determine the success of gesture

sets in user interfaces is whether the gestures can be effectively

learned and remembered [45]. Personalization attempts to help the

users to remember the gestures available in a user interface because

the gesture is defined by the users themselves.

Personalization of gesture definition is related with a flexible gesture

definition with no or minimal decrease of accuracy [127]. It is often

desirable and necessary for users to create their own gestures, or

personalized gestures [128].

gestUI is designed to support personalization of gestures by means of

the definition of custom gestures, as described in Section 4.5.

Additionally, if we consider this feature with the aim of redefining an

100

already defined gesture using gestUI then the user has two possibilities

as is showed in Figure 25:

(i) When the gesture-based interaction model containing the

custom gesture definition is obtained.

(ii) When the gestures are tested using the gesture recognition

tools.

Figure 25. An excerpt of gestUI showing the redefinition of a gesture

We describe how gestUI supports this feature of custom gesture

redefinition by enhancing the metamodel described in Section 4.5.2.

In addition, the user has a third option to redefine custom gestures:

when the system software containing user interfaces with gesture-

based interaction is running. We have implemented a module that

must be included in the software system with the aim of redefining

custom gestures. This option is described in Section 4.7.

It is important to comment that by adding this feature in gestUI we

give support to the user-centered design in the process of

development of user interfaces including gesture-based interaction.

4.6.2 Enhancing the metamodel

With the aim of implementing the personalization feature so that each

user of gestUI can define/redefine custom gestures, we enhance the

metamodel including two classes in the metamodel described in

Section 4.5.2: User and UserInterface (Figure 26). These classes permit

to complete the description of a user interface with gesture-based

interaction.

101

Figure 26. Enhanced version of the metamodel

The description of each class and its business rules are described in the

following paragraphs:

User: It represents a user of the user interface containing actions to

execute by using gestures. It has an attribute that describes the user

identification (UID) of the user. The business rules associated to this

class are “The user identification (UID) of the user must be unique” and

“The user can define at least one gesture in a gesture catalogue”. This

business rules are validated using OCL sentences as is shown in Table

19.
Table 19. Business rules for the "User" class

Class Business rule OCL constraint

User

The user identification

(UID) of the user must be

unique

context UserInterface

inv: self.contains -> isUnique(UID)

A user can define at least

one gesture in a gesture

catalogue

context UserInterface

inv: self.defines -> size >0;

UserInterface: It represents a user interface which contains widgets

(e.g. button, text field, canvas) containing actions to execute by the

user, and that are available in a system or a device. It has an attribute

that describes the name of the user interface.

The business rules associated to this class are “The name of the user

interface must be unique”, “A user interface is used at least by a user”

and “The user interface contains at least one action to execute”. This

business rules are validated using OCL sentences as is shown in Table

20.

102

Table 20. Business rules for the "UserInterface" class

Class Business rule OCL constraint

UserInterface

The name of the user

interface must be unique

context UserInterface

inv: self.contains -> isUnique(Name)

A user interface is used at

least by a user

context User

inv: self.works -> size>0

A user interface has at

least one action

context UserInterface

inv: self.contains -> size >0;

The personalization feature is related with the enhanced version of the

gestUI metamodel in order to include the user’s definition, which

permits individual users to define their own gestures catalogue to

include gesture-based interaction in the user interface (Figure 27).

Figure 27. Users defining their own gestures catalogue to apply it in the same user

interface

In this metamodel, the class UserInterface denotes the link to an

existing user interface metamodel containing an element related with

the action to execute using gesture-based interaction. Then, a user

interface can be used by one or more users. Each user defines his own

catalogue containing one or more gestures; each gesture permits to

execute an action contained in the user interface. Each gesture is

formed by one or more strokes defined by postures, and in turn

described by means of coordinates (X, Y). The sequence of these

strokes has an order of precedence. Each posture is related to a figure

(e.g. line, circle) with an orientation (up, down, left, right), and is

qualified by a state (initial, executing, final).

103

4.7 Overview of gestUI to include gesture-based interaction

in a user interface

4.7.1 Introduction

In order to illustrate how to apply gestUI to include gesture-based

interaction in a user interface we use MAP, a representation system

which provides a non-deterministic ordering of intentions and

strategies to model the multi-faceted purpose of a system [129].

An intention is a goal that can be achieved by performing a process

[130]. For example, in the excerpt of the gestUI map shown in Figure

28 there are two intentions: “Define a gesture” and “Include the

gesture in a repository”. Additionally, in a map there are two special

intentions called ‘Start’ and ‘End’ to respectively start and end the

process.

A strategy is an approach, a manner to achieve an intention [130]. In

the same Figure 28 there is one strategy called “By storing the

gesture”, defining a transition from “Define a gesture” to “Include the

gesture in a repository”, is a manner to “Include a gesture in the

repository” in a context of gesture-based interaction definition.

Figure 28. An excerpt of the map representation of gestUI

A map is graphically represented as a directed graph from Start to

Stop. Intentions are represented as nodes and strategies as edges

between nodes (see the map representation of the gestUI method in

Figure 29). Dashed arrows represent strategies that have

104

methodological support but are not completely supported by the

current version of the gestUI tool, described in the next chapter.

In Section 4.7.2 we explain the process to include custom gestures in

a user interface (Step 3) and in Section 4.7.3 we explain how to

redefine the existing custom gestures (Step 4).

4.7.2 Including gesture-based interaction in a user interface

In this section, we describe the process to include gesture-based

interaction in a user interface using gestUI. We use the metamodel

(Figure 26) and the map representation (Figure 29) to describe how is

the process to include gesture-based interaction in a user interface.

Hence, in the following paragraphs, we describe the set of steps by

means of intentions and strategies to include gesture-based

interaction in a user interface with gestUI:

i. A user opens a session in gestUI. gestUI has two ways to allow

users (e.g. developer, end-user, collaborative user) to establish a

connection in a device (e.g. computer, notebook, smartphone) in

order to define gestures:

 Intention: “Open a local session”. Users open a local

session directly on the device.

 Intention: “Open a remote session”. Users open a remote

session by means of an Internet connection.

The information of the user is stored in the “User” class.

ii. The user defines gestures. This definition can be performed by

three ways:

 Intention: “Directly sketching” a gesture on the device in a

local session and including it in the gesture catalogue (Figure

30).

 Intention: “By sharing an existing definition” of a gesture, that

is, by importing a gesture definition in the gesture catalogue.

 Intention: “By sketching a gesture” on the device in a

remote session, that is, by using an Internet connection users

sketch gestures and they are include in the gesture catalogue.

105

Figure 29. MAP representation of gestUI

106

Table 21. Strategies of gestUI

107

108

The information obtained is stored in the “Gesture” class.

Depending of the type of gesture (single-stroke or multi-stroke)

the “Stroke” class contains one or more instances. The additional

classes of the metamodel (Posture, Precedence, Figure, Point) are

filled with information when the gesture is multi-stroke.

Figure 30. User defining a gesture

iii. The user includes a gesture in the repository. A repository of

gestures contains the gestures defined by the users.

 Intention: “Include a gesture in the repository” by storing

each gesture defined by the users in a repository.

iv. The user defines a platform-independent gesture catalogue.

 Intention: “Define gesture catalogue (PIM)” by selecting

gestures from the repository according to the

requirements specified by each user. The

“GestureCatalogue” class is filled with information of each

gesture included in the catalogue (Figure 31).

v. The user defines a target platform.

 Intention. “The user defines a target platform” to apply a

model transformation.

vi. A platform-specific gesture catalogue (PSM) is obtained.

 Intention. “Obtain a specific gesture catalogue” as a result

of apply a model-to-model transformation. In Figure 32 is

described the user interface “DrawingDiagrams” with two

users “User1” and “User2”. Each user has defined a

gesture catalogue “GestureCatalogueUser1” and

“GestureCatalogueUser2”. Each catalogue contains

gestures defined for each user.

109

Figure 31. Platform-independent gesture catalogue

vii. User selects the source code of a user interface.

 Intention. “Select user interface source code” to include

gesture-based interaction. This source code contains

actions to perform the tasks involved with the user

interface of the software system.

The “UserInterface” class is used in this intention to

include the gesture-based interaction using gestUI.

viii. We obtain the actions (commands) included in the user interface

source code.

 Intention. Obtain actions (commands) included in a user

interface by applying a parsing process with the aim of

searching keywords related with actions (Figure 33). The

keywords depend on the programming language used to

write the source code. For example, in Java, elements such

as panel, button, label, etc. can be used to define actions

in a user interface:

110

Figure 32. A specific-platform gesture catalogue

Figure 33. An excerpt of the source code of a user interface containing widget

definition and keywords

The “Action” class is filled with information about the actions

(commands) included in the user interface specified in the process.

ix. We define the gesture-action correspondence to apply in the user

interface.

 Intention. “Define a gesture-action correspondence” as a

one-to-one relation between a gesture of the gesture

catalogue and an action included in the user interface

source code.

x. The user defines a target platform.

111

 Intention. The user “defines a target platform” to apply a

model transformation.

xi. We obtain gesture-based interface source code as a result of the

model-to-text transformation.

 Intention. “Obtain the gesture-based interface source

code” corresponding to a user interface including gesture-

based interaction.

The strategies are a way of achieving an intention. In this case, we

specify the strategies that permit to achieve each intention described

in this section. Table 21 has four columns: “ID” column identifies the

number of strategy. “Strategy” column contains the name of the

strategy, the “Description” column includes a short explanation of

each strategy contained in the map representation of gestUI, and the

“Intention” column describes the intention related with the strategy.

4.7.3 Redefining a gesture during the execution time

If the user wants to change the initial specification of the gestures

(redefine them) because he/she has problems to remind them or

he/she has problems to sketch them, then it is needed to include some

tools to permit the modification of the initial gesture catalogue

specification in the user interface with the aim of improving the

human-computer interaction.

In this section, we explain how a user can redefine an existing gesture

directly in the software system during the execution stage (runtime).

As is mentioned before, the process to redefine an existing gesture

must be included in the software system containing the user interface

with gesture-based interaction.

In this case, we use a map representation (Figure 34) to demonstrate

how is the process to redefine custom gestures in the software system

containing the gesture-based user interface. Then, this map shows the

intentions and strategies to use custom gestures in the user interface

and to redefine existing custom gestures in the software system.

112

The redefinition process consists in that the user again sketches the

custom gesture according his/her preferences and then this gesture is

included again in the gesture catalogue to be used in the software

system to perform the same action defined in the beginning of the

process when this gesture was defined with gestUI (as is explained in

Section 4.7.2).

In the following paragraphs, we describe the set of steps by means of

intentions involved in the map representation (see Figure 34) and the

classes included in the metamodel (Figure 26) to redefine gestures

included in a user interface supporting gesture-based interaction:

i. The user log in to the software system. The software system

has one way to allow that users (e.g. developer, end-user,

collaborative user) establish a connection in a device (e.g.

computer, notebook, smartphone) to use a user interface with

gesture-based interaction included:

 Intention: “Log in to software”. Users (developer, end-

user) open a session directly on the software system.

 Intention: “Log in to software”. User (collaborative user)

opens a remote session on the software system.

 When the user is logged in to the software system he/she

obtains a user identification (UID). This UID is related with the

previously defined gesture catalogue included in a user

interface to support gesture-based interaction.

 The “User” class of the metamodel contains the information

required to log in to the software system.

ii. The user chooses a user interface according to the task to

perform in the software system:

 Intention. “Use gesture-based user interface” to perform

some task by means of gestures

The “UserInterface” class is referred to the user interface with

gesture-based interaction included.

113

iii. The user performs some actions by drawing gestures in the user

interface of the software system.

 Intention. “Use gestures in the user interface” to perform

some actions in the software system by means of gesture-

based interaction.

The “Gesture” and the “Action” classes define the gesture-action

correspondence to perform actions in the user interface by

means of gestures.

iv. If the user has problems with the gestures included in the user

interface, then he/she can redefine them.

 Intention. “Redefine custom gestures”. This redefinition

can be done by two ways: (a) by sketching gestures on a

canvas in the software system, or (b) by sharing gesture

definition trough an Internet connection. In this case, the

“Gesture” class is modified with the new information of

the redefined gesture. The other classes (“Stroke”,

“Posture”, “Precedence”, “Figure”, and “Point”) are also

modified with the new information of the custom gesture.

 Intention. “By including gestures”. When the redefinition

of the gesture is ready, it is needed to include again this

gesture in the gesture catalogue defined in the software

system. The “GestureCatalogue” class is modified with the

information of the recently redefined gestures.

The strategies included in the software system containing user

interface supporting gesture-based interaction are described in Table

22 that has four columns: “ID” column identifies the number of

strategy. “Strategy” column contains the name of the strategy, the

“Description” column includes a short explanation of each strategy

contained in the map representation of the software system, and

“Intention” column describes the intention related with the strategy.

114

Figure 34. Map representation of the software system with the redefinition feature

included

115

Table 22. Strategies of the software system with gesture-based interaction

116

4.8 Summary
This chapter presents an integral proposal for the development of user

interfaces of software systems with gesture-based interaction for any

device platform. This proposal is based on the application of concepts

(metamodel, model and model transformations) of model-driven

paradigm.

The application of a model-based approach is justified by two aspects:

the need to raise the level of abstraction of the process, and the

possibility of applying a methodological approach. This model-based

approach involves M2M and M2T transformations to convert PIM to

PSM, and models to source code.

This chapter has described the features of the method to develop, the

components and model transformations that comprise it and the

relationship between them. Finally, it has presented an overview of

the proposed method.

Additionally, we describe the gesture redefinition feature that permits

to redefine gestures according to the needed and preferences of the

users.

117

 CHAPTER

gestUI

TOOL

SUPPORT

5

 The topics covered in this chapter are:

5.1 Introduction

5.2 Components of the tool support

5.3 Development methodology of the tool

support

5.4 Implementation of the tool support

5.5 Demonstration of the tool support

5.6 Summary and Conclusions

118

119

Chapter 5. gestUI Tool Support

5.1 Introduction

Software development process is always a challenging activity,

especially because software systems are becoming more and more

complex with the introduction of the called natural user interaction in

the user interfaces. This situation permits that software development

process is shifting its attention towards MDD because it has

demonstrated positive influences for reliability and productivity of the

software development process.

The previous chapter first outlined a conceptual model for define

custom gesture catalogue and then defined the model-driven method

called gestUI to define custom gestures and to include the gesture-

based interaction in user interfaces. This method has been defined

following the MDD principles, as models drive its application, and the

gestUI tool support has been built to support its models and activities.

This method has been defined to guide the custom gesture definition

and the inclusion of gesture-based interaction in the user interfaces of

software systems.

In this context, the support of the tool is a valuable asset allowing the

definition of the gesture catalogue model and supporting the

necessary transformations to obtain the source code of the user

interfaces supporting gesture-based interaction.

The remainder of this chapter is structured as follows. After this

introduction, a description of each one of the components of the tool

support is presented in Section 5.2. Section 5.3 describes the

methodology adopted for the implementation of the tool support.

Section 5.4 contains the description of the implementation of the tool

support. Section 5.5 includes a demonstration of the applicability of

the tool support in a form-based software system and in a Case Tool.

Finally, Section 5.6 ends this chapter by presenting the conclusions.

120

5.2 Components of the tool support
The main idea behind the tool support is to facilitate a graphical

environment for the definition of custom gestures and the inclusion of

gesture-based interaction in user interfaces. Then, in order to

demonstrate the applicability of the proposed method we

implemented with Java programming language and Eclipse Modelling

Framework a prototype of the tool support structured into three

systems (Figure 35):

(i) The information system with interfaces where we aim to

include gesture-based interaction.

(ii) The gestUI tool to include the gesture-based interaction in

user interfaces.

(iii) A framework to test the gestures defined using gestUI (i.e.

quill, iGesture, $N).

Regarding the second system (gestUI tool), by using the Java

programming language and the Eclipse Modelling Framework we

implement it.

The main features of gestUI tool support are:

(i) The definition of custom gestures catalogue to execute

actions in the user interfaces.

(ii) The inclusion of gesture-based interaction in the user

interfaces of a software system by specifying the gesture-

action correspondence.

(iii) The definition and the execution of model transformations

to obtain PIM, PSM and source code of user interfaces of the

software system.

The user interface of the tool support is composed by three options.

Each option corresponds to one of the above main feature and it is

related with one of the three subsystems, as shown in Figure 35:

Gesture Catalogue Definition Module, Gesture-Action

Correspondence Definition Module and Model Transformation

Module. Next we describe these subsystems.

121

Each component of the tool support is implemented according to the

corresponding component of gestUI described in Chapter 4. The

implementation of each component is described in Section 5.4.

Figure 35. gestUI tool support

In the following sections are described each one of the subsystems

included in gestUI:

5.2.1 Subsystem “Gesture Catalogue Definition Module”

The “Gesture Catalogue Definition Module” subsystem (Figure 36)

provides functionalities for defining custom gestures and it is

responsible for the execution of the model-to-model transformation

to obtain the gesture catalogue model.

Therefore, this subsystem requires as input the custom gestures

sketched by the users on a touch-based surface. As output, the

subsystem produces the gesture catalogue model.

The subsystem contains the M1 activity described in the following

paragraphs.

122

Figure 36. An excerpt of Figure 35 showing the subsystem "Gesture Catalogue

Definition Module"

i. M1 Activity: Firstly, the subject draws custom gestures using a

finger (or a pen/stylus) on a touch-based screen (Table 21,

Intention “Define a gesture” and Strategy “By sketching a

gesture”). Each gesture is stored in a repository (Table 21,

Intention “Include a gesture in a repository” and Strategy “By

storing the gesture”). Then, in order to define the platform-

independent gesture catalogue (Table 21, Intention “Define

gesture catalogue (PIM)”), the subject chooses one or more

gestures from the repository (Table 21, Strategy “By selecting

gestures”) and then they are inserted in the gesture catalogue

model. This gesture catalogue model (conforms to the

metamodel described in Chapter 4) is the input for the “Model

Transformation Module” and the “Gesture-Action

Correspondence Definition Module” subsystems.

This subsystem gives as result the gesture catalogue model. This model

is used in the other subsystem as input.

5.2.2 Subsystem “Gesture-Action Correspondence Definition

Module”

The “Gesture-Action Correspondence Definition Module” subsystem

provides functionalities for defining the gesture-action

correspondence that consists in the relation between a custom

gesture of the gesture catalogue and an action contained in a user

interface.

123

We apply a parsing process (Table 21, Intention “Obtain actions

(commands)”) to obtain the actions included in the source code of a

user interface. The parsing process (Table 21, Strategy “By parsing

source code”) has as input the source code of a user interface. This

process is based on the search of keywords according to the syntax of

the programming language in which is written the source code and the

primitives (e.g. button, panel) that are included in the user interface.

This subsystem contains two components (Figure 37): Gesture-based

interaction designer (M2) and gesture-based interface generator (M4).

Each one of these components are described here:

Figure 37. An excerpt of Figure 35 showing the subsystem "Gesture-action

Correspondence Definition Module"

Component: “Gesture-based Interaction Designer”. This component

provides the functionalities for defining the gesture-action

correspondence in order to include gesture-based interaction in a user

interface. The inputs for this component are: the gesture catalogue

model (from M1) and the user interface to include gesture-based

interaction. This subsystem contains the M2 activity (Figure 37):

ii. M2 Activity: This defines the gesture-action correspondence

through the following process: it begins selecting a user interface

source code (Table 21, Intention “Select user interface source

code” and Strategy “By selecting source code”) with the aim of

analysing it and finding the actions included in it by applying a

parsing process. The parsing process permits the discovery of a

set of actions by means of checking the source code to search

strings (or substrings) containing keywords (e.g. in the Java

programming language: JButton, JPanel) [131].

124

The process of defining gesture-action correspondence (Table

21, Intention “Define gesture-action correspondence”) takes as

input two arguments: (i) the previously defined gesture

catalogue model (Table 21, Intention “Obtain specific gesture

catalogue (PSM)”) with the aim of assigning each gesture with an

action; (ii) the source code of a user interface (Table 21, Intention

“Select user interface source code”) to search keywords related

with actions (Table 21, Intention “Obtain actions (commands)”)

contained in the structure of source code that is based on a

programming language such as Java (e.g. JButton to define a

button, JPanel to define a panel).

As a result of this process we obtain a set of actions included in

the user interface. Therefore, if any action is found, a one-to-one

relationship is defined between this action and a gesture.

Component: “Gesture-Based Interface Generator”. This component

has the functionalities to apply a model-to-text transformation with

the aim of generating the source code of the user interface with

gesture-based interaction included. The inputs for this component are:

gesture-action correspondence and the user interface source code.

The output of this component is the new version of the user interface

source code. It contains the M4 activity (Figure 37):

iii. M4 Activity: This executes a model-to-text transformation in

order to apply a code generation process (Table 21, Intention

“Obtain gesture-based interface source code”) to obtain the new

version of the user interface source code containing gesture-

based interaction.

Considering the source code of the user interface, and by using

an automatic process, we insert each gesture-action

correspondence in the corresponding component of the user

interface. This process is iterative while any action is found in the

source code of the user interface. Finally, we apply a code

generation process obtaining the user interface with gesture-

125

based interaction included (Table 21, Strategy “By automatic

generation”).

5.2.3 Subsystem “Model Transformation Module”

The “Model Transformation Module” subsystem provides the

functionalities required to apply the model-to-model transformation

and the model-to-text transformations included in the process for

obtaining gesture-based interaction. The inputs for this subsystem are:

gesture catalogue model and the target platform to perform each one

of the model transformations.

This subsystem contains the M3 activity (Figure 38):

iv. M3 Activity: This includes the transformation rules and the

scripts written in ATL and Acceleo to apply M2M and M2T

transformations, respectively. This activity requires two inputs:

the gesture catalogue definition model and the target

technology.

Firstly, a M2M transformation (Table 21, Strategy “By

transforming”) is performed to obtain the gesture catalogue

model (Table 21, Intention “Obtain specific gesture catalogue”)

according to the specification of the gestures to be used in the

gesture recogniser algorithm. In this case, we consider as target

platform (Table 21, Intention “Define target platform” and

Strategy “By specifying platform”) the $N gesture recogniser and

we obtain the platform-specific gesture catalogue specification.

In a second place, an M2T transformation is performed to obtain

a gesture catalogue to be included in two frameworks to test

gestures (Table 21, Strategy “By selecting platform”): (i) quill [89]

using GDT 2.0 to describe the gesture catalogue and (ii) iGesture

[48] using XML to describe the gesture catalogue. Finally,

another M2T transformation (Table 21, Strategy “By automatic

generation”) is performed to obtain the user interface source

code including gesture-based interaction (Table 21, Intention

“Obtain gesture-based interface source code”).

126

Figure 38. Excerpt of Figure 35 showing the subsystem "Model Transformations

Module"

5.3 Development methodology of the tool support

We followed a standard software development process and applied

various techniques encompassing the specification and validation of

software requirements, the modelling of the system architecture, the

design of the software and user interface, the use of standard

programming practices, and the validation of the resulting software

application [132].

In this thesis, we use Design Science methodology which supports a

pragmatic research paradigm promoting the creation of artifacts to

solve real-life problems [33]. As suggested by the design science

approach, we conducted an ongoing evaluation of the tool based on

its application to a concrete case to ensure its usefulness in a concrete

setting.

In order to give the reader a more concrete understanding of the

various artefacts used by our tool, we will illustrate their concrete

application to two cases: (i) in a framework to test gestures and (ii) in

a software system to manage information. Yet, this example is not only

intended to facilitate the understanding of the tool by showing its

application to a concrete case, but also to evaluate its applicability in

a real context to define (and to test) custom gestures and to include

gesture-based interaction in user interfaces of a based-form software

system.

5.4 Implementation of the tool support

According to our proposal described in Chapter 4, regarding the

components included in gestUI, the implemented tool support

requires three options (Figure 39):

127

(i) “New Catalogue” to define gesture catalogue model (Table 21,

Intention “Define gesture catalogue (PIM)”).

(ii) “Specific Catalogue” associated with platform-specific gesture

specification (Table 21, Intention “Obtain specific-gesture

catalogue (PSM)”).

(iii) “Gesture-Action” to define gesture-action correspondence

and source code generation (Table 21, Intention “Obtain

gesture-based interface source code”).

Figure 39 shows a screenshot of the main interface of gestUI tool

support.

Figure 39. Main interface of the tool support

The options (i) and (ii) correspond to the implementation of the

“Gesture Catalogue Definition Module” subsystem described in

Section 5.2.1 and “Model Transformation Module” subsystem

described in Section 5.2.3.

The option (iii) corresponds to the implementation of the “Gesture-

Action Correspondence Definition Module” subsystem described in

Section 5.2.2.

5.4.1 Option 1: “Gesture catalogue definition”

This module supports the definition of new multi-stroke gestures by

means of an interface implemented in Java containing a canvas on

which the user sketches the gestures. Figure 40 shows a screenshot of

the interface implemented to sketch of multi-stroke gestures.

128

Figure 40. Screenshot of the interface of gestUI to sketch gestures

We adopt $N as the gesture recognizer in this tool support. Then,

when the gesture is sketched on a canvas, the following data are

required: number of strokes specified during the sketching of the

gesture, the information of each stroke, number of points contained

in each stroke and the value of each point (X, Y) together with the

timestamp (t) of each point (Figure 41).

Therefore, each gesture sketched by the user (Table 21, Intention

“Define a gesture”) consists of one or more strokes, each stroke is

defined by a set of points described by coordinates (X, Y) and a

timestamp (t).

129

Figure 41. User sketching a gesture and storing it in a repository

 After capturing the data required by $N to analyse each gesture,

the data of each gesture are stored in a repository (Table 21, Intention

“Include a gesture in a repository”) containing the gestures of the users

registered in the software system (Figure 42, left), as is described in

Section 5.2.1.

Figure 42. Screenshot of the user interface to obtain the platform-independent

gesture catalogue
Then, by selecting gestures of the repository (Figure 42, left), the user

defines the gestures to be inserted in the gesture catalogue model. In

Figure 42, right, is shown the gestures selected for the

130

“Catalogue_for_Testing” gesture catalogue model. Finally, with the

“Generate Catalogue” button, the platform-independent gesture

catalogue is generated (Table 21, Intention “Define gesture catalogue

PIM”).

5.4.2 Option 2: “Specific catalogue”

This second option makes it possible to obtain the platform-specific

gesture catalogue by means of an M2M transformation. The

transformation rules are written in ATL. Figure 43 shows an excerpt of

the rule in the model-to-model transformation.

Figure 43. An excerpt of a rule of the M2M transformation

With the aim of applying a model-to-model transformation required in

the process, we develop a module using Java programming language

to implement the user interface. Figure 44 shows a screenshot of this

interface.

 Figure 44. M2M transformation parameters

The user must specify the following parameters in this interface:

gesture catalogue model, gesture catalogue metamodel and the

platform-specific gesture specification. As a result we obtain the

131

platform-specific gesture catalogue (Table 21, Intention “Obtain

specific gesture catalogue (PSM)”).

5.4.3 Option 3: “Gesture-action correspondence definition”

This module allows the developer to specify the action to be executed

when the gesture recogniser tool validates a gesture sketched by the

user on the user interface. We currently provide automated support

to code-centric developments made in Java, i.e. this module parses the

source code of the user interface to obtain a list of actions.

This module requires two inputs (Figure 45): the previously created

‘Gesture catalogue model’ that is specified in the “Gesture Source

Folder” text field in the interface and the user interface (e.g. a Java

source code).

Figure 45. Interface for defining gesture-action correspondence and to generate

source code

The output of this module is the source code of the previously

specified user interface, but now it includes source code to support

the gesture-based interaction.

In order to apply the parsing process in the user interface source code

(Table 21, Intention “Select user interface source code”) we included

some methods in the implementation of the tool support to analyse

132

two types of Java applications: (i) a Java desktop application using

SWT, and (ii) Java desktop RCP application using JFace and SWT.

In the former type, SWT provides widgets (controls and composites) to

be included in the user interface with the aim of assigning actions [22]

(Table 21, Intention “Obtain actions (commands)”). The user interface

source code also includes other sections containing event listeners and

action-perform structures in order to specify the actions to be

executed when the user clicks on a widget (canvas, button, text field,

etc.) on the user interface (Figure 46). The parsing process then

searches for these actions in order to complete the gesture-action

correspondence definition (Table 21, Intention “Define gesture-action

correspondence”).

Figure 46. SWT components to define actions

 In the second type, in conjunction with SWT, JFace provides

actions to allow users to define their own behaviours and to assign

them to specific components, such as menu items, toolbar items,

buttons, etc. [22]. In this case, the user interface source code includes

structures to specify the actions to be executed when the user clicks

on a widget in the user interface. These actions are taken during the

parsing process in order to determine the gesture-action

correspondence (Figure 47).

133

Figure 47. JFace and SWT components used to define an action in a user interface

The parsing process analyses the user interface source code searching

for keywords corresponding to widgets available in Java language to

include elements of a user interface (text, buttons, image, etc.). Each

widget found in the process is stored in the table containing the

gestures selected to define the gesture-action correspondence.

 When generating the user interface Java source code, many

references are included (e.g., to gestures management libraries, to

gesture-recognition technology libraries (e.g. $N)), and some methods

are added (e.g. to execute the gesture-action correspondence and to

capture gestures). Also, the classes’ definition is changed to include

some event listeners. Finally, the source code obtained from the

complete process should be inserted in the complete source code of

the user interface and, of course, be compiled again (Table 21,

Intention “Obtain gesture-based interface source code”).

Additionally, we implemented a second model-to-text transformation

to generate the gesture catalogue with the aim of testing the gestures

using a gesture recognition tool, as is explained in Section 4.5.3. In this

case, the following information is required: (i) the gesture catalogue

name, (ii) the target platform, (iii) a folder name to store the source

code generated.

Figure 48 shows a screenshot with the interface to apply the model-

to-text transformation described in this section.

134

Figure 48. Interface to execute a model-to-text transformation

5.4.4 Module to redefine gesture

This module is not a component of gestUI tool support, however we

implement it with the aim of demonstrating the gesture redefinition

feature included in our proposal. This module is required in the

software system containing user interface supporting gesture-based

interaction.

We implement this module to be included in the software system with

the aim of redefining custom gesture in the runtime stage (execution

stage).

The interface contains two canvas to manage custom gestures (Figure

49): (i) it permits to show the current definition and (ii) it permits to

sketch the new definition of the custom gesture.

135

Figure 49. An example of the module to redefine custom gestures

5.5 Demonstration of the tool support

We applied gestUI and the tool support in two scenarios: (i) we use

gestUI and the tool support to obtain a gesture catalogue to be used

in the $N, quill and iGesture frameworks; (ii) we used gestUI and the

tool support to integrate gestUI into a code-centric user interface

development method.

5.5.1 Applying the method and tool to testing a gesture

catalogue

Using the tool support, we define a gesture catalogue containing three

gestures to test them in the above frameworks: a triangle, a line and

the letter “S” (Figure 50).

136

Figure 50. Gesture catalogue defined by gestUI

The gesture representation in each framework is contained in two

sections: (i) a header specifying general information on the gesture,

and (ii) the points specified by coordinates (X, Y) and a timestamp (t).

$N and iGesture employ XML for gesture definition and quill employs

GDT 2.0 for this purpose (Figure 51).

 To test the gestures we use the second M2T transformation

described in Section 5.3.3, considering successively $N, quill and

iGesture as the target platform (Table 21, Intention “Define target

platform”), with the aim of obtaining the gesture catalogue in the

structure specified for each framework (Figure 51). In this case we

specified the transformation rules with Acceleo and then we ran the

M2T transformation for each framework.

Figure 51. Gesture description files: $N (left), quill (centre), iGesture (right)

 In the next step, we use each framework to test the gestures. For

instance, we include some quill interfaces. The quill interface used to

import the gesture catalogue obtained in the model transformation is

shown on left side of Figure 52. On the right, the gesture catalogue

already included in the framework can be seen.

137

Figure 52. Importing the gesture catalogue to the quill framework

In the last step the user sketches the gestures contained in the gesture

catalogue using the sketch area defined in the interface of each

framework. All the frameworks include the algorithm (not described

here) used to recognize the gestures sketched by the users. Figure 53

shows how the gesture catalogues are effectively recognised when

imported to SN, quill and iGesture frameworks.

Figure 53. Examples of multi-stroke gestures: $N (left) and quill (centre) and

iGesture (right)

5.5.2 Applying the method and the tool to integrate gestUI

into user interface development

For illustration purposes, we use a form-based information system, in

this case a simple fictional university management case and we narrate

the project as if it actually happened. Figure 54 shows the classroom

management diagram of a university. In this section, we consider an IS

with WIMP interfaces and for the sake of brevity, we only consider two

interfaces for the demonstration: the main interface and department

management interface. The form-based information system is

developed in Java on Microsoft Windows.

138

Figure 54. UML class diagram of the demonstration case

In the first iteration, the university tells the developers that it would

like the gestures to resemble parts of the university logo. They thus

use the Gesture catalogue definition module to create the first version

of the ‘Gesture catalogue model’ containing these three gestures:

for departments, || for teachers and for classrooms. However,

when the first user interface design is available (see Figure 55), they

soon realise that other gestures are needed.

Figure 55. Screen mockups (gestures are shown in red, next to action buttons)

After defining and testing new gestures, they decide that navigation

will be by means of the above-mentioned gestures, but that similar

actions that appear on different screens will have the same gestures

(e.g. the gesture will be used to create both new departments and

teachers).

The developer assigns the gesture-action correspondence in

collaboration with the user, supported by the Gesture-action

correspondence definition module. The correspondences are

informally shown in Figure 55, next to each action button and are

described in Table 23.

The user can employ the model transformation option to apply an M2T

transformation and to obtain a platform-specific gesture catalogue.

We consider that if the Java source code of the user interface using

traditional keyboard and mouse interactions is available, then the

components that support the gesture-based interaction can be

generated. In this case, the underlying gesture-recognition technology

chosen is $N.

139

Table 23. Platform-independent gesture catalogue definition

Action Gesture Observations

Manage

departments

This gesture opens a department management

interface.

Manage

teachers

This gesture opens a teacher management

interface. The same gesture permits teacher

information to be viewed.

Manage

classrooms

This gesture opens a classrooms management

user interface.

Create a new

department

This gesture creates a new department, a new

teacher or a new classroom.

Delete a

department
 This gesture deletes a department, teacher, or

classroom.

Save the

information
This gesture saves the information on a new

department, teacher or classroom.

Cancel the

action
This gesture cancels the process of creating a

department, teacher or classroom.

As the users felt more comfortable with multi-stroke gestures

(especially when tracing certain letters and symbols) quill was

discarded. The final information system interface consists of several

screens for managing university information. The users can still

interact with the information system in the traditional way (i.e. by the

keyboard and mouse) but now they can also draw the gestures with

one finger on the touch-based screen to execute the actions.

Figure 56. Using gestures to execute actions on the interfaces

Figure 56 represents three interfaces from the information system:

140

(i) Left: The task starts with the main interface where the users

can select one of the options of the menu. For simplicity, the

menu is showed as an array of buttons.

(ii) Centre: According to the aforementioned requirements, if a

user sketches the gesture “” in the main interface of the

information system then he/she obtains a second user

interface containing the information on the existing

departments.

(iii) Right: In order to create a new department, he/she draws a

“” on this second user interface obtaining a third user

interface with the fields for entering information on a new

department. When the user finishes entering the

information, sketching “S” on this third interface saves the

information to a database.

5.6 Summary and Conclusions
In MDD is very important to provide tool support in order to promote

the application of methods and tools.

This chapter describes the tool support implementation for the gestUI

method. We applied Eclipse technologies since they have been applied

successfully for supporting MDD methods and techniques. As

programming language to implement the components of the tool

support we used Java.

After the implementation, we assessed the method and tool support

by applying them to a gesture testing case, generating the platform-

specific gesture specification for three existing gesture-recognition

technologies (quill, iGesture and $N) in order to verify the tool’s

multiplatform capability. All the gestures were successfully recognised

by the corresponding tools. When the proposed method was applied

to a form-based IS, the final gesture-based interface components were

automatically generated and successfully integrated into the IS

interface. This process was applied in both Microsoft Windows and

Ubuntu (Linux) systems to demonstrate its multiplatform capability.

141

 The advantages of the proposed method are: platform

independence enabled by the MDD paradigm, the convenience of

including user-defined symbols and its iterative and user-driven

approach.

Further developments should be performed around this prototype to

make it more stable and usable.

142

143

 CHAPTER

EMPIRICAL

EVALUATION
6

 The topics covered in this chapter are:

6.1 Introduction

6.2 Experimental planning

6.3 Results

6.4 Discussion

6.5 Conclusions

144

145

Chapter 6. Empirical Evaluation

6.1 Introduction

The next step in our engineering cycle to develop gestUI method is the

design of the validation. The main objective is to validate gestUI in

certain context to analyze the effects on its application.

Moody [133] considers that the objective of the validation should not

be to demonstrate that the method is “correct” but that the method

could be adopted based on its pragmatic success which is defined as

“the efficiency and effectiveness with which a method achieves its

objectives”. According to ISO 9241-210 [134] and ISO 25062-2006

[135], usability is defined as “the extent to which a product can be used

by specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use”.

Additionally, ISO 25062-2006 establishes that usability evaluation

involves using (1) subjects who are representative of the target

population of users of the software, (2) representative tasks, and (3)

measures of efficiency, effectiveness and subjective satisfaction. The

ISO also defines that at least one indicator in each of these aspects

should be measured to determine the level of usability achieved [136].

In order to evaluate satisfaction, we consider the Method Evaluation

Model (MEM) [137] [133] which contemplates three primary

constructs: perceived ease of use – PEOU (“the degree to which a

person believes that using a particular system would be free of

effort”), perceived usefulness – PU (“the degree to which a person

believes that using a particular system would enhance his or her job

performance”) and intention of use – ITU (“the extent to which a

person intends to use a particular system”).

With the aim of validating gestUI, we have designed a comparative

empirical evaluation in which we consider two methods to define

custom gestures and to include the gesture-based interaction. We

evaluate efficiency, effectiveness and satisfaction (by means of PEOU,

146

PU and ITU) when the subjects apply gestUI (first method) in

comparison with a code-centric method (second method) to include

gesture-based interaction in existing user interfaces.

gestUI is described in Chapter 4. In Appendix A, we describe a generic

code-centric method to include gesture-based interaction in existing

user interfaces.

Results of this evaluation help to know to which extent the use of

Model-driven development (MDD) helps in the process to define

custom gestures and to include gesture-based interaction in user

interfaces.

The remainder of this chapter is organized as follows: Section 6.2

describes the experimental planning. Section 6.3 includes the results

obtained in the experiment. Section 6.4 includes the discussion about

the results obtained in the experiment considering effectiveness,

efficiency and satisfaction. Finally, the conclusions of the experiment

are included in Section 6.5.

6.2 Experimental planning

This section describes the design of the experiment according to the

guidelines of Wohlin et.al. [138].

6.2.1 Goal

According to the Goal/Question/Metric template suggested by

Moody [133], the research goal is:

Analyse the outcome of a code-centric and a model-driven

method for including gesture-based interaction into user

interfaces,

For the purpose of carrying out a comparative evaluation

With respect to their usability

From the viewpoint of researchers

In the context of researchers and practitioners interested in

gesture-based interaction

147

6.2.2 Research Questions and Hypothesis Formulation

The goal of our study is to compare the usability of a method to

deal with gesture-based interfaces through code-centric versus

model-driven. Since usability is an abstract concept, we need to

operationalize it through more measurable concepts. According to

ISO 25062-2006 [135], usability can be measured through

effectiveness, efficiency and satisfaction. Following the works of

Moody [133], satisfaction can be measured using perceived

usefulness, perceived ease of use and intention to use.

We consider two scenarios in the experiment, the first one is

related to the inclusion of gesture-based interaction (the subject

follows a set of tasks specified in the experiment to include gesture-

based interaction in a user interface) and the second scenario is

related to the definition of custom touch gesture (the subject

employs a finger or a pen/stylus to sketch a gesture on a touch-

based surface).

Therefore, in the evaluation of efficiency and effectiveness we

consider research questions (RQ1, RQ2, RQ3 and RQ4) to measure

usability within each scenario, since we are interested in evaluating

the subjects when they are including gesture-based interaction in

the user interface and when they are defining gestures. However,

for the evaluation of satisfaction (PEOU, PU and ITU) we consider

research questions (RQ5, RQ6 and RQ7) without differentiating

between scenarios, since we are interested in the global value of

the method (code-centric and gestUI) for usability.

Considering this perspective, the research questions and the

hypothesis proposed for the experiment are:

RQ1: Regarding the inclusion of gesture-based interaction in

user interfaces, is there any difference between the

effectiveness of the code-centric method and gestUI? The null

hypothesis tested to address this research questions is: H01:

There is no difference between the effectiveness of gestUI and

148

the code-centric method in the inclusion of gesture-based

interaction in user interfaces.

RQ2: Concerning the definition of custom touch gestures, is

there any difference between the effectiveness of the code-

centric method and gestUI? The null hypothesis tested to

address this research questions is: H02: There is no difference

between the effectiveness of gestUI and the code-centric

method to specify custom gestures.

RQ3: Regarding the inclusion of gesture-based interaction in

user interfaces, is there any significant difference between the

efficiency of the code-centric method and gestUI? The null

hypothesis tested to address this research question is: H03:

There is no difference between the efficiency of gestUI and the

code-centric method in the inclusion of gesture-based

interaction in user interfaces.

RQ4: Concerning the definition of custom touch gestures, is

there any difference between the efficiency of the code-centric

method and gestUI? The null hypothesis tested to address this

research question is: H04: When the subjects define gestures,

efficiency is the same independently of the method used.

RQ5: How do subjects perceive the usefulness of gestUI in

relation to the code-centric method? The null hypothesis

tested to address this research question is: H05: gestUI is

perceived as easier to use than the code-centric method.

RQ6: How do subjects perceive the ease of use of gestUI in

relation to the code-centric method? The null hypothesis

tested to address this research question is: H06: gestUI is

perceived as more useful than the code-centric method.

RQ7: What is the intention to use of gestUI related to the code-

centric method? The null hypothesis tested to address this

research question is: H07: gestUI has the same intention to use

as the code-centric method.

149

6.2.3 Factor and Treatments

Each software development characteristic to be studied that affects

the response variable is called a factor [139] (a.k.a. “independent

variable”). In this case, the factor detected in the experiment is the

method to use and it has two treatments: the code-centric method

and the model-driven method. Table 24 includes the description of the

factor and its two treatments.

Eclipse Framework is used as a tool to operationalize the code-centric

method. This tool is used to implement the source code in Java that

represents a user interface. gestUI operationalizes the model-driven

method. gestUI is used to include gesture-based interaction in a user

interface through conceptual models (without writing any lines of

code) [125].

Table 24 Factor and treatments of the experiment

Factor
Treatment

Description
ID Name

Method to use

I
Code-
centric

method

Subjects manually write the source code
to define custom gestures and to include
gesture-based interaction in a user
interface.

II gestUI

Subjects employ gestUI with the aim of
defining custom gestures and including
gesture-based interaction in a user
interface.

6.2.4 Response variables and metrics

Response variables are the effects studied in the experiment caused

by the manipulation of factors. In this experiment, we evaluate gestUI

with regard to: effectiveness, efficiency and satisfaction.

6.2.4.1 Response variables for effectiveness and efficiency

In this experiment, we are interested in the evaluation of the subjects

when they define custom gestures using a finger (or a pen/stylus) on a

touch-based surface, and we also are interested in the evaluation of

the subjects using gestUI to include gesture-based interaction.

Therefore, we need metrics to evaluate efficiency and effectiveness

for each scenario.

150

In this experiment, in order to answer the research questions (RQ1,

RQ2, RQ3 and RQ4), we define a metric per research question with the

aim of evaluating the effectiveness and efficiency of gestUI when the

subjects work in two scenarios: (i) they include gesture-based

interaction in a user interface and (ii) they define custom gestures

during the experiment. Table 25 shows the response variables

classified per scenario and research question. The columns of Table 25

describe the response variables, their metrics, definition and the

research question that they aim to answer.

6.2.4.2 Response variables for satisfaction

In this experiment, in order to answer research questions RQ5, RQ6

and RQ7, we define a metric for each one with the aim of measuring

satisfaction through PEOU, PU and ITU. We use a 5-point Likert scale

in order to measure ITU, PEOU and PU. In this case we are not

distinguishing between defining custom gestures and including

gesture-based interaction in a user interface during the experiment,

rather we are measuring satisfaction of the whole process. Table 26

describes response variables, their metrics, definition and the research

questions that we aim to answer.

151

Table 25 Response variables to evaluate effectiveness and efficiency of gestUI

152

Table 26 Responses variables to measure satisfaction of use gestUI12

12 We are aware that Likert scales are qualitative data but some studies
propose converting them to quantitative to work with statistical tests [164].

153

Table 27 shows a summary of the research questions, hypotheses,

response variables and metrics used to test these hypotheses.

Table 27 Summary of RQ's, hypotheses, response variables and metrics

Response Variables Metric RQ Hypotheses

Effectiveness in the inclusion

of gesture-based interaction
PTCCI RQ1 H01

Effectiveness in the custom

gesture definition
PTCCG RQ2 H02

Efficiency in the inclusion of

gesture-based interaction
TFTI RQ3 H03

Efficiency in the custom

gesture definition
TFTG RQ4 H04

Perceived ease of use PEOU RQ5 H05

Perceived usefulness PU RQ6 H06

Intention to use ITU RQ7 H07

6.2.5 Experimental Subjects

The experiment was conducted in the context of the Universitat

Politècnica de València (Spain). We had 21 subjects (15 males and 6

females) who are master (M. Sc.) and doctoral (Ph.D.) students in

Computer Science. The experiment is not part of a course and the

students are encouraged to participate on a voluntary basis.

The background and experience of the subjects are found through a

demographic questionnaire handed out at the first session of the

experiment. This instrument consists of 15 questions on a 5-point

Likert scale. According to the questions included in the demographic

questionnaire, the results are:

 Most of the subjects are between 25-29 (33%) and 30-34 years

(24%).

 Regarding the computing platform, two of the most used are:

Microsoft Windows (52% of the subjects) and MacOS (33%).

 All subjects indicated that they had taken a Java programming

course. 62% of the participants had taken a model-driven

154

development (MDD) course and 52% of the subjects had taken

a human-computer interaction (HCI) course.

 Regarding the software development experience using Eclipse

IDE and Java, 43% of the subjects reported that they have

“Average” self-rated programming expertise on a 5-point

Likert scale, where 3 was “Intermediate” and 5 was “Expert”.

 Furthermore, the subjects reported their experience in model-

driven development. The “Average” self-rated model-driven

development expertise was 33% on a 5-point Likert scale

where 3 was “Intermediate” and 5 was “Expert”. Also, in this

field, 29% have a “Poor” level and 14% have a “Very Poor”

level.

 Regarding experience using gestures on a device/computer,

71% of the subjects occasionally use gestures in their daily

activities. Additionally, 43% of the subjects would like to

define custom gestures to use them in their daily activities.

Table 28 summarizes the information about the subjects extracted

from the demographic questionnaire. We conclude that subjects have

some experience in the context of software development related with

this experiment, but they do not have experience in the definition of

custom gestures and the inclusion of gesture-based interaction in user

interfaces.

6.2.6 Experiment design

In this experiment, we use a crossover design [138] (a.k.a. a paired

comparison design). This is a type of design where each subject applies

both methods, that is, the subjects use one method (the code-centric

method) and then they use a second method (gestUI, a model-driven

method) or vice versa. The order of use of each method depends on

which group the subject was assigned to at the beginning of the

experiment in such a way that each treatment is balanced among all

the subjects. This design has the advantages that we are using the

largest sample size to analyse the data, hence we avoid the learning

effect and the problem is not confounded with the treatments.

155

Table 28 Summary of demographic questionnaire

 No. of subjects %

Average age

25-29 years

30-34 years

35-39 years

>39 years

7

5

4

5

33.0

24.0

19.0

24.0

Gender

Male

Female

15

6

71.4

28.6

Computing platform

Microsoft Windows

MacOS

Other

11

7

3

52.0

33.0

15.0

Courses taken

Java

HCI

MDD

21

11

13

100.0

52.0

62.0

Software development

experience

Average experience

9

43.0

Experience using gestures 15 71.0

Model-driven development

experience

Average experience

Poor experience

Very Poor experience

7

6

3

33.0

29.0

14.0

With the aim of comparing both methods against each other, each

subject uses both methods (treatments) on the same object; to

minimise the effect of the order in which subjects apply the methods,

we balanced the treatment applied in the first term. As Table 29

shows, the experiment is carried out with the subjects separated into

two groups (G1 and G2). Each group is composed of subjects that are

assigned according to a random value obtained by means of a random

numbers calculator available on the Internet

(https://www.random.org/). Therefore, the 21 subjects were

randomly split into two groups following a process known as

counterbalancing: (a) 11 subjects first apply gestUI and then the code-

https://www.random.org/

156

centric method, whilst (b) the other 10 subjects start with the code-

centric method and then apply gestUI.

Table 29 Crossover design

ID Treatment Subjects

I Code-centric method G1 G2

II Model-driven method (gestUI) G2 G1

Even though there was no time limit to perform the experiment, the

expected time to fulfill the tasks was around two hours. This value was

estimated based on two factors: (i) a previous pilot test and (ii) using

the KLM method (Keystroke Level Method) [140] [141]. KLM is a model

for predicting the time that an expert user needs to perform a given

task on a given computer system. KLM is based on counting keystrokes

and other low-level operations, including the user’s mental

preparations and the system’s responses [141]. Using this model, we

estimate the time required to input the lines of code required in the

code-centric method considering the operators and their average time

proposed in [142] and shown in Table 30.

Table 30 Operators and average time on KLM

Operator Description Average

Time

Observations

M Mental Operation 1.2 sec. Mentally prepare

H Home 0.4 sec. Home in on keyboard or mouse

(change of device).

P Point 1.1 sec. Point with mouse

K Keystroke 0.28 sec. Keystroke or mouse button

press

R(t) System

responsive

t sec. Waiting for the system to

become responsive (t)

The values of K operator is defined according to type of user: expert

typist, average skilled typist, average non-secretarial typist, worst

typist [140]. In this experiment, we consider the average of a non-

secretarial typist. R(t) operator (t indicates the time in seconds that the

user has to wait) defines the time when the computer is busy doing

some processing, and the user must wait before they can interact with

157

the system. The estimated values of time to perform the experiment

are shown in Table 31.
Table 31 Estimating time for the experiment

Treatment Previous pilot

test

By using

KLM

Code centric method 1h 08 min. 0h 57 min.

Model-driven

method

0h 24 min. 0h 21 min.

Total time 1h 32 min. 1h 18 min.

6.2.7 Experimental objects

The object used in the experimental investigation is a requirements

specification created for this purpose. It contains the description of a

problem related with the definition of custom gestures and the

inclusion of gesture-based interaction in user interfaces of a software

system supporting traditional interaction using a mouse and keyboard.

Figure 57 shows this software system containing a main user interface

to manage information of departments, teachers and classrooms in a

university by means of CRUD (Create, Read, Update, and Delete)

operations. Each option opens a new interface to specify information

required by the university.

Figure 57 Software system supporting traditional interaction

Using traditional interaction, when the subjects click on the ‘Manage

Departments’ button a new interface is opened, which contains the

information of each previously defined department in a grid included

158

in the user interface. Next, clicking on the ‘Create’ button, a new

interface is opened to enter information concerning a new

department. Finally, when the information is complete, the ‘Save’

button saves the information in a database.

The user must perform the same CRUD operations but using custom

gestures, that is, by means of gesture-based interaction. If gesture-

based interaction is included in user interfaces, the subjects can sketch

gestures on the touch-based display of the computer in order to

execute some actions (the CRUD operations). One gesture can contain

the definition of one or more actions, but the gesture-action

correspondence must be unique per interface. Gestures are defined

during the specification of the gesture-based interaction in each user

interface. In this case, the ‘D’ gesture contains two actions (each one

in a different interface): (i) it can be used to open the user interface to

manage departments, and (ii) it can be used to delete one previously

selected record in the database.

Even though the problem is small, it contains the necessary elements

to validate the method: (i) a gesture catalogue definition containing

the aforementioned six gestures, and (ii) the process to include the

gesture-based interaction in the existing user interface source code.

The inclusion of a greater number of user interfaces or gestures in the

catalogue during the experiment would mean repetitive work for the

subjects.

6.2.8 Instrumentation

All the material required to support the experiment was developed

beforehand, including the preparation of the experimental object,

instruments and task description documents for data collection used

during the execution of the experiment. The instruments used in the

experiment are described in Table 32.

159

Table 32 Instruments defined for the experiment

Instrument Description

Demographic
Questionnaire

Questionnaire to assess the subjects’ knowledge and
experience of the technologies and concepts used in the
experiment. This document includes questions
containing Likert-scale values ranging from 1 (strongly
disagree) to 7 (strongly agree)

Task Description
Document for the
code-centric method

Document that describes the tasks to be performed in
the experiment using the code-centric method and
containing empty spaces to be filled in by the subjects
with the start and end times of each step of the
experiment. This document contains guidelines to guide
the subject throughout the experiment and the source
code to be included in the user interface.

Task Description
Document for the
model-driven method
(gestUI)

Document that describes the tasks to be performed in
the experiment using the model-driven method and
containing empty spaces to be filled in by the subjects
with start and end times of each step of the experiment.
This document contains guidelines to guide the subject
throughout the experiment.

Post-test
Questionnaire for the
code-centric method

Questionnaire with 16 questions containing Likert-scale
values ranging from 1 (strongly disagree) to 7 (strongly
agree) to evaluate satisfaction of the whole process
when the subjects use the code-centric method to
define custom gestures and to include gesture-based
interaction.

Post-test
Questionnaire for the
model-driven method
(gestUI)

Questionnaire with 16 questions containing Likert-scale
values ranging from 1 (strongly disagree) to 7 (strongly
agree) to evaluate satisfaction of the whole process
when the subjects use the model-driven method
(gestUI) to define custom gestures and to include
gesture-based interaction.

6.2.9 Experiment procedure

This section describes the procedure used to conduct the experiment.

Prior to the experiment session, a pilot test was run with one subject

who finished the Master’s degree in Software Engineering in the

Universitat Politècnica de València. This pilot study helped us to

improve the understandability of some instruments.

In this experiment, we consider a user interface of the existing

software system mentioned in Section 6.2.7. In this user interface,

users perform CRUD operations to manage information by means of a

160

traditional interaction with a mouse and a keyboard. We are

interested in including gesture-based interaction in the user interfaces

of a software system. So, the experiment addresses a real problem, i.e.

the definition of custom gestures and the inclusion of gesture-based

interaction in an existing user interface to perform the

aforementioned operations.

Table 33 Gesture catalogue defined in the experiment

Action Gesture Description User interface

Open the

“Managing

Department” user

interface

The user sketches this

gesture to open the user

interface to manage

departments in the

university.

Main user

interface

Create a new

department

The user sketches this

gesture to open the user

interface to create a new

department.

Managing

departments

Read a

department

record

The user sketches this

gesture to open the user

interface to read the

previously selected record of

a department.

Managing

departments

Update the

information of the

existing

department

The user sketches this

gesture to open the user

interface to update the

previously selected record of

a department.

Managing

departments

Delete a record of

a department

The user sketches this

gesture to open the user

interface to delete the

previously selected record of

a department.

Managing

departments

Save the

information of a

department

The user sketches this

gesture to save the

information of a department

in the database.

Department

Information

161

Prior to the experiment, we define the gesture catalogue (see Table

33) that the subjects require to apply both treatments in the

experiment.

The gesture catalogue consists of four gestures to execute each CRUD

operations action and one additional gesture to save the information

in the database (‘S’ gesture). Observe that the gesture ‘D’ has an

overloaded meaning; that is, it triggers two distinct actions. However,

note that the gesture is interpreted differently in the context of two

distinct application windows (see the right-most column). Also,

potential usability issues regarding this gestures are not relevant to the

purposes of this experiment. This gesture catalogue is included in the

Task Description Document of each treatment.

Hence, the user interface must contain the definition of gestures to

perform CRUD operations. For instance, Figure 58 shows three

gestures defined in the user interface: (i) ‘D’, to open the user interface

to manage departments; (ii) ‘C’, to create a new department, by

opening the user interface to enter the information of a new

department; (iii) ‘S’, to save the information in the database.

Figure 58 Software system supporting gesture-based interaction

We consider two versions of the “Task Description Document”, as

explained in Table 32. We use a sub-index ‘c’ when naming the task

ID to express the treatment “Code-centric method” and we use a

sub-index ‘g’ to express this treatment gestUI when naming the

task ID. The subjects apply both treatments designed in the

experiment with the aim of managing the input of gestures

sketched by the users to execute actions in the software system.

162

Task Description Documents were delivered to the subjects before

starting the experiment.

The steps in the procedure of the experiment are:

Step 1: The goal of the experiment was introduced to the subjects

and guidelines on how to conduct the process were given to them.

Step 2: Each subject filled in a Demographic Questionnaire before

starting the experiment where the subjects were asked about age,

gender, courses taken, experience in software development,

experience in model-driven development, and experience using

gestures (Table 28). Results of this questionnaire are described in

Section 6.2.5.

Step 3: The subjects did the experiment divided into two groups

(G1 and G2) following the instructions given in the Task Description

Document of each method. In this experiment, for each method,

we separately evaluate two processes: (i) custom gesture definition

and (ii) inclusion of gesture-based interaction, since we are

interested in evaluating effectiveness and efficiency of the subjects

when they specify gestures on a touch-based device and when they

include gesture-based interaction. The evaluation of effectiveness

and efficiency, taking in account PTCCG, PTCCI, TFTI, and TFTG (see

Section 6.2.4) is performed based on the information registered in

the Task Description Document. Next, we evaluate each method

(code-centric and gestUI) in a global way with regard to PEOU, PU

and ITU. The sequence of steps for each group is the following.

- G1 group. G1 subjects applied the code-centric method to
complete Treatment I.

Treatment 1 (code-centric method). In this case, the subjects

received the Task Description Document containing instructions to

apply the code-centric method with the aim of adding new source

code to define custom gestures. Following the instructions

included in the Task Description Document, the subjects perform

163

a sequence of steps (see Table 34 that contains an excerpt of the

Task Description Document) to define the catalogue of gestures

described in Table 33. The definition of a gesture using the code-

centric method consists of the creation of an XML file whose

structure, in this case, is based on the gesture specification

according to $N gesture recogniser [126].

Table 34 An excerpt of the Task Description Document containing the sequence of
steps for custom gesture definition using the code-centric method

No. Task ID Task Description Observations

1 TG1C Definition of

gesture “C”

The subject sketches the “C” gesture using

a finger or a pen/stylus

2 TG2C Definition of

gesture “R”

The subject sketches the “R” gesture using

a finger or a pen/stylus

3 TG3C Definition of

gesture “U”

The subject sketches the “U” gesture using

a finger or a pen/stylus

4 TG4C Definition of

gesture “D”

The subject sketches the “D” gesture using

a finger or a pen/stylus

5 TG5C Definition of

gesture “S”

The subject sketches the “S” gesture using

a finger or a pen/stylus

6 TG6C Save gesture

catalogue

The subject saves the gesture catalogue

We provided the subjects with an Eclipse project containing

existing source code of the user interface. The subjects had to

include additional lines of code in order to add functionalities

related with gesture-based interaction. In a real industrial setting,

in the worst case scenario, the developers would have to write

such lines from scratch using the editor of the Eclipse IDE; in the

best case scenario, they would copy them from another project or

from a repository of software patterns and paste them in the

current project. We opted for providing the subjects with the

actual code they had to copy; we included the code and clear

instructions in the Task Description Document.

The rationale for providing them with the source code is the

following. On the one hand, it is true that this decision benefits the

code-centric method because it reduces the time needed to

164

complete the task. On the other hand, we indeed needed to

reduce the duration of the experiment. If the subjects had been

forced to write the source code to define gestures from scratch

and then include gesture-based interaction in the existing user

interface, they would have probably required a greater number

of hours (or maybe days!). We could not run such a long-term

experiment without running into serious threats to the validity of

the results (demotivation and exhaustion of the subjects

potentially leading to an unacceptable mortality rate, loss of

control over their activities outside of the laboratory leading to

unreliable outcomes, etc.). We therefore consider that providing

the source code was a good trade-off between relevance and

rigour. Also, based on the pilot experiments we had evidence-

based expectations that, nonetheless, the code-centric method

would be less efficient than the model-driven method. If the

difference between the efficiency of both methods is significant

and in favour of gestUI, then we can still claim with confidence

that, in a real setting where developers would even take longer to

write the code, adopting gestUI would still benefit them in terms

of gained efficiency.

An excerpt of the sequence of steps to perform in the experiment

to include gesture-based interaction using the code-centric

method is included in Table 35.

Tasks TI1C, TI2C and TI3C allow the adaptation of the source code

of $N gesture recogniser in the source code of the user interface

with the aim of adding a gesture recogniser in the software system

to recognise the gestures sketched by the users. TI4C includes a

panel in the user interface where the gestures are sketched by

using a finger or pen/stylus. TI5C and TI6C permit the inclusion of

listeners to sense the finger that is sketching a gesture. These

listeners capture the information produced on the user interface

when a gesture is sketched. TI7C and TI8C manage the process to

draw the gesture on the user interface. TI9C implements a method

165

to define the gesture-action correspondence. In this case, the

subject needs to execute a process to search actions included in

the source code. We use a user interface where the actions are

related with buttons definition (e.g. ‘Manage Departments’,

‘Create’, ‘Save’). Subjects define the action–gesture relationship

using the specification of gestures described in Table 33.

Table 35 An excerpt of the Task Description Document containing the sequence of
steps for gesture-based interaction inclusion using the code-centric method

Task

ID

Task Description

TI1C To include $N as gesture recogniser in the software system

TI2C To implement methods and attributes required to use $N as

gesture recognition

TI3C To implement the method to read gestures sketched by the user.

TI4C To add a new panel in the user interface to draw gestures.

TI5C To write a method to implement a listener sensing the finger (or

pen/stylus) that is drawing a gesture.

TI6C To write a method to implement a listener sensing that the

gesture definition is complete.

TI7C To implement a method to manage graphics in Java.

TI8C To implement a method to paint a gesture on the user interface.

TI9C To implement a method containing the gesture-action

correspondence

TI10C To compile the new version of the source code and to run the

software system

As a final result, the subjects obtain a new version of source code

containing gesture-based interaction in the user interface in order

to execute actions indicated in the requirements specification

using gestures. Then, in TI10C, the subjects must compile the

source code of the software system in Eclipse IDE, and then they

can execute the software system in order to test the gestures

defined in the process to execute the previously specified actions

in the experiment.

- G2 group. G2 subjects employed gestUI to complete Treatment II.

166

Treatment II (gestUI). In this procedure, we consider the same user

interfaces of the software system shown in Figure 57. G2 subjects

received the Task Description Document containing instructions to

apply gestUI to define custom gestures and to include gesture-

based interaction in the user interface. This treatment consists of

the definition of the gesture catalogue, and the specification of

data to apply model transformations in order to generate the

source code of the user interface containing the gesture-based

interaction.

Firstly, the subjects define the gesture catalogue by means of a

pen/stylus or a finger on a touch-based surface. These gestures are

stored in a repository, as described in Section 4.5 of the Chapter 4,

and then the platform-independent gesture catalogue (gesture-

catalogue model) is obtained. The tasks to perform this step are

included in Table 36, which shows an excerpt of the Task

Description Document for this treatment.

Table 36 An excerpt of the Task Description Document for custom gesture
definition using gestUI

Task ID Task Description

TG1G Definition of gesture “C”

TG2G Definition of gesture “R”

TG3G Definition of gesture “U”

TG4G Definition of gesture “D”

TG5G Definition of gesture “S”

TG6G Executing model-transformation to obtain a platform-

independent gesture catalogue

Secondly, with the aim of obtaining the platform-specific gesture

specification, subjects apply a model-to-model transformation

that requires as input the gesture catalogue model.

Thirdly, the subject selects the user interface and the platform-

specific gesture specification to design the gesture-based

interaction by defining the gesture-action correspondence. This

correspondence is defined with the aim of assigning each gesture

167

to an action. Figure 59 shows the interface of the tool that contains

the process to define this correspondence consisting of steps 1 to

4 shown in red.

Figure 59 Gesture-action correspondence definition using tool support

Table 37 contains the description of the steps shown in Figure 59.

Finally, gestUI generates the code with a new version of the user

interfaces including gesture-based interaction. Then, the subjects

use Eclipse IDE to compile the source code of the software system

and afterwards they test the gestures defined in the process.

Table 37 Gesture-action correspondence step-by-step definition

No. Description Explanation

1 It selects a gesture from the

gesture catalogue

This contains the gesture

selected by the subject.

2 It selects an action from the list of

actions included in the user

interface

This contains the actions

selected by the subject.

3 It contains the gesture-action

correspondence definition

The subject confirms the

gesture-action correspondence.

4 It generates the new version of

the source code of the user

interface

This contains the process to

generate the source code of the

user interface containing

gesture-based interaction.

168

At the end of this process, the result is the generated source code

of the user interface of the software system supporting gesture-

based interaction to execute actions, according to the definition of

gesture-action correspondence. Figure 58 shows the same

software system described in Figure 57 but supporting gesture-

based interaction.

Step 4. Subjects filled in the corresponding Post-Test Questionnaire

according to the treatment employed in the experiment.

According to Table 29, in Section 6.2.6, after the G1 subjects

employed the code-centric method they must employ gestUI to

complete Treatment II, repeating steps 1 to 3 again. In similar way,

after the G2 subjects employed the gestUI method they must

employ the code-centric method to complete Treatment I.

The data to evaluate PEOU, PU and ITU in this experiment were

obtained from the post-task and post-test questionnaires. After the

data were gathered, they were checked for correctness and the

subjects were consulted when necessary. The data obtained of the

aforementioned questionnaires filled in by the subjects are used to

measure the response variables defined in Section 6.2.4.

6.2.10 Threats of validity

In this section we discuss the most important threats to the validity of

this evaluation. We have classified the threats according to Wohlin

et.al. [138], each of which is discussed below.

Internal validity: The main threats to the internal validity of the

experiment are:

(i) Subject’s experience in defining gesture-based interaction: this

threat was resolved since none of the subjects had any

experience in tasks related to the topic of custom gesture

definition included in the experiment, according to the pre-

test questionnaire. So, the subjects’ experience in both

treatments is the same.

169

(ii) Subject’s experience in software development: there are some
factors that can influence the experiment:

a. Some of the subjects could have more experience than

others in the development of software. Although we used

the pre-test questionnaire in order to find out their

experience in this field, this threat could not be resolved

since we designed the groups in a random way. This threat

could affect the evaluation of the effectiveness and the

efficiency because the time required to perform the

experiment depends on the experience level of the

subjects.

b. In some cases, subjects without an adequate level of

experience in managing source code could produce syntax

errors in the source code when inserting the additional

source code. This threat could be resolved, since the

subjects received adequate information and printed

source code without errors included in the Task

Description Document with the aim of obtaining a new

version of the existing source code of the user interface.

(iii) Information exchange among subjects: this threat was

resolved since the experiment was developed in one session,

and it was difficult for the subjects to exchange information

with each other;

(iv) Learning effect: this threat could not be resolved in both

treatments (described in Section 6.2.9) since the process to

define custom gestures is identical to the five gestures

included in the experiment. Therefore, the definition of the

first gesture required more time and effort compared to the

following gestures. This threat could affect the evaluation of

efficiency and effectiveness because the time needed to

perform the experiment depends on the experience level of

the subjects.

170

External validity: The main threats to the external validity of the

experiment are:

i. Duration of the experiment: there are some factors that can

influence the duration of the experiment.

a. Since the duration of the experiment was limited to 2

hours, only one interface, six actions (CRUD

operations + save the information + open the interface

to manage departments) and five gestures were

selected. However, repetitive tasks could permit a

reduction of time since the subject already knows the

process to perform. This threat could not be resolved

since these tasks, even though repetitive, were

necessary to build the system.

b. Since the subjects receive source code that has not

been written by them or known before the

experiment, then they require time to analyse the

structure and the logic of the existing source code

before the inclusion of the additional source code.

This threat could be resolved by including adequate

instructions in the Task Description Document in order

to perform the experiment.

c. If any subject requires the maximum amount of time

to perform the experiment, which is 2 hours

(according to what is specified in Section 6.2.6), the

information is considered not valid to process because

this situation can represent some of the following

situations: (i) the subject writes source code slowly

using the keyboard and mouse, (ii) a subject does not

have the same experience in the use of software tools

for software development in relation to other subjects

and he/she requires more time to complete the

experiment probably performing additional tasks (e.g.

171

checking if the source code was completely

transcribed from the Task Description Document to

the Eclipse project, checking for syntax errors in the

source code).

d. Total time required to perform the experiment

depends of the typing speed and the experience of the

subject in managing source code. This threat could not

be resolved in Treatment I (it contains more lines of

code to write than Treatment II) since we do not check

each subject’s typing ability on the computer.

e. Time required to check whether the inclusion of the

gesture-based interaction was successful varies

depending on the experience of the subjects. This

threat could be resolved since the subjects answered

a question in the pre-test questionnaire about

experience in the use of an IDE to develop software in

a positive way (43% have an “average” self-rated

expertise and 38% have an “experienced” self-rated

experience).

ii. Representativeness of the results: despite the fact that the

experiment was performed in an academic context, the results

could be representative with regard to novice evaluators with

no experience in evaluations related with the gesture

interaction definition and inclusion. With respect to the use of

students as experimental subjects, several authors suggest

that the results can be generalised to industrial practitioners

[143] [144].

Construct validity: The main threat to the construct validity of the

experiment is:

(i) Type of measurements to consider in the experiment:

measurement that are commonly employed in this type of

experiment were used in the quantitative analysis. The

172

reliability of the questionnaire was tested by applying the

Cronbach test, the obtained value is higher than the

acceptable minimum (0.70).

Conclusion validity: The main threats to the conclusion validity of

the experiment are:

(i) Validity of the statistical tests applied: this was resolved by

applying Wilcoxon Signed-rank test, one of the most common

tests used in the empirical software engineering field.

According to Wohlin et al. [138] if we have a sample whose

size is less than 30 and we have a factor with two treatments,

we can use non-parametric statistical tests such as the

Wilcoxon Signed-rank test. In Section 6.2.11 the non-

parametric tests used in this experiment are detailed.

(ii) Low statistical power: this happens when the sample size is

not large enough. The power of any statistical test is defined

as the probability of rejecting a false null hypothesis.

According to G*Power [145] the sample size needed for an

effect size of 0.8 is 20 subjects, which is the number of subjects

we have. So, this threat has been minimized.

6.2.11 Data analysis

The calculated values are checked to see the p-value (significance

level). An important issue is the choice of significance level which

specifies the probability of the result being representative. Generally

speaking, the practice dictates rejecting the null hypothesis when the

significance level is less than or equal to 0.05 [139].

The first step is to analyse the reliability of the data obtained in the

experiment: we start by calculating the Cronbach coefficient (alpha).

In this case, the result obtained is 0.736. According to Maxwell [146] if

the Cronbach coefficient is greater or equal to 0.7 then the reliability

of the data is assumed.

173

Boone et al. [147] recommend some data analysis procedures for

Likert scale data: (a) for central tendency: mean, (b) for variability:

standard deviation, (c) for associations: Pearson’s r, and (d) other

statistics using: ANOVA, t-test, regression. According to Juristo et al.

[139], if we have a sample whose size is less than 30 and it follows a

normal distribution, then we employ t-distribution (Student’s), but if

the sample does not follow a normal distribution then we can apply

the Wilcoxon Signed-rank test in order to analyse the data obtained in

the experiment. A normality test using the Shapiro-Wilk test is

required in order to verify if the data is normally distributed. We use

this test as our numerical means of assessing normality because it is

more appropriate for small sample sizes (< 50 samples). Then, using

Shapiro-Wilk we obtained the result that the data is not normally

distributed. In this case, we cannot apply the t-distribution test

because this test requires normally distributed data. So, we apply the

Wilcoxon Signed-rank test.

The next step is verifying whether the data satisfy the sphericity

condition and whether they are homogeneous:

- In order to check the sphericity condition, Mauchly’s test can be

used. However, in this work, there are only two levels of repeated

measures (with the gestUI method and with a code-centric

method), which precludes a sphericity violation and the test is

unnecessary.

- Non-parametric Levene’s test is used to test if the samples have

homogeneity in their variances. In the result of this test we can

observe in column “Sig.” in Table 38, that the non-parametric

Levene’s test for homogeneity of variances provides a

p_value>0.05, allowing us to assume that the data have

homogeneity in their variances.

174

Table 38 Non-parametric Levene's test for the variables in the experiment

Variable F df1 df2 Sig.

PEOUg 0.353 1 19 0.560

PEOUc 0.004 1 19 0.948

PUg 0.042 1 19 0.840

PUc 0.754 1 19 0.396

ITUg 0.147 1 19 0.706

ITUc 0.416 1 19 0.527

In Section 6.3, we report the quantitative results of the experiment

based on the statistical analysis of the data using (i) descriptive

statistics (mainly arithmetic mean), (ii) box-and-whisker plot, (iii)

Spearman’s Rho correlation coefficient to study the correlation

between both treatments, and (iv) the Wilcoxon Signed-rank test

with the aim of addressing the research questions. The results of

applying Wilcoxon Signed-rank test are described grouped by

variables (PTCCI, PTCCG, TFTI, TFTG, PU, PEOU and ITU).

Additionally, at the end of Section 6.3, we include the results of the

effect size calculation in order to check the meaningfulness of the

results and allow comparison between studies.

A significance level of 0.05 was established to statistically test the

obtained results with subjects in the experiment. The analysis has

been performed using the SPSS v.23 statistical tool.

6.3 Results

In this section, the subscript ‘g’ located at the end of each variable

means “using the gestUI method”, and the subscript ‘c’ means

“using the code-centric method”. Next, we analyse the results for

each research question.

6.3.1 RQ1: Effectiveness in the inclusion of gesture-based

interaction

According to Section 6.2.4, in the inclusion of gesture-based

interaction, effectiveness (represented by PTCCI) was defined as

175

the percentage of correctly carried out tasks during the process of

inclusion of gesture-based interaction in the user interface. We

consider two treatments to analyse PTCCI in the inclusion of

gesture-based interaction: PTCCIg and PTCCIc.

Table 39 Descriptive statistics for PTCCI

 N Min. Max. Mean Std.

Dev.

PTCCIg 21 50 100 82.1429 17.9284

PTCCIc 21 50 100 77.3810 15.6220

Valid N 21

According to Table 39, the mean of PTCCIg (82.14%) is greater than

the mean of PTCCIc (77.38%), that is, the subjects achieved a

greater percentage of correctly carried out tasks using gestUI than

when they employed the code-centric method.

Figure 60 Box-and-whisker plot of PTCCI

Figure 60 presents the box-and-whisker plot containing the

distribution of the PTCCI variable per method. The medians of

PTCCIg and PTCCIc are similar, but the third quartile is better for

PTCCIg, since the percentage of correctly carried out tasks achieved

176

by the subjects using gestUI is greater than the percentage

achieved when the subjects use the code-centric method. This

means that gestUI is slightly more effective than the code-centric

method when the subjects include gesture-based interaction in

user interfaces.

Using Spearman’s Rho correlation coefficient, we obtained the

result shown in Table 40. The samples of PTCCI have a positive

correlation (0.638). So, we can conclude that PTCCIg and PTCCIc are

strongly correlated, that is, when the percentage of correctly

carried out tasks using gestUI increases, the percentage using the

code-centric method also increases.

Table 40 Spearman's Rho correlation coefficient of PTCCI
Correlations

 PTCCIg PTCCIc

Spearman’s

rho

PTCCIg

Correlation Coefficient

Sig. (2-tailed)

N

1,000

.

21

,638**

,002

21

PTCCIc

Correlation Coefficient

Sig. (2-tailed)

N

,638**

,002

21

1,000

.

21

**. Correlation is significant at the 0.01 level (2-tailed)

In order to check whether the observed differences were significant

we ran the Wilcoxon Signed-rank test. We obtained the results shown

in Table 41 and Table 42.

Table 41 Wilcoxon Signed-rank test for PTCCI
Ranks

 N Mean

Rank

Sum of

Ranks

PTCCIc

-

PTCCIg

Negative Ranks

Positive Ranks

Ties

Total

6a

2b

13c

21

4,50

4,50

27,00

9,00

a. PTCCIc < PTCCIg b. PTCCIc > PTCCIg c. PTCCIc = PTCCIg

177

Table 42 Wilcoxon Signed-rank test statistics for PTCCI
Test statistics a

 PTCCIc - PTCCIg
Z

Asymp. Sig. (2-tailed)

-1,414b

,157

a. Wilcoxon Signed Ranks Test b. Based on positive ranks

They show that two subjects (2/21) have obtained a greater number

of correctly carried out tasks using the code-centric method compared

to gestUI to include gesture-based interaction in the experiment. Six

subjects (6/21) have obtained a greater number of correctly carried

out tasks using gestUI compared to the code-centric method.

However, thirteen subjects (13/21) have obtained the same number

of correctly carried out tasks for both methods.

The 2-tailed p-value obtained with this test was p=0.157>0.05,

therefore, according to this result, we cannot reject the null hypothesis

and can conclude that “There is no difference between the

effectiveness of the gestUI and the code-centric methods in the

inclusion of gesture-based interaction in user interfaces”.

6.3.2 RQ2: Effectiveness in the definition of custom gestures

According to Section 6.2.4, in the definition of custom gestures,

effectiveness (represented by PTCCG) was defined as the percentage

of correctly carried out tasks in the custom gesture definition. We

consider two treatments to analyse PTCCG in the custom gesture

definition: PTCCGg and PTCCGc.

Table 43 Descriptive statistics for PTCCG

 N Min. Max. Mean Std. Dev.

PTCCGg 21 75 100 91.6667 12.0762

PTCCGc 21 25 100 71.4286 19.8206

Valid N 21

According to Table 43, the mean of PTCCGc (71.43%) is less than the

mean of PTCCg (91.67%), that is, the subjects achieved a relatively

178

greater percentage of correctly carried out tasks using gestUI than

when they employed the code-centric method.

Figure 61 presents the box-and-whisker plot containing the

distribution of the PTCCG variable per method. The median, the first

quartile and the third quartile are better for PTCCGg, since it achieved

a greater percentage of correctly carried out tasks. This means that

gestUI was more effective than the code-centric method when the

subjects define custom gestures.

Figure 61 Box-plot-whisker of PTCCG

Using Spearman’s Rho correlation coefficient we obtained the results

shown in Table 44. The samples of PTCCG have a positive correlation

(0.456). Then, we can conclude that PTCCGg and PTCCGc have a

moderate correlation, that is, when the percentage of correctly carried

out tasks with PTCCGg increases, there is a moderate increment in the

percentage of PTCCGc.

179

Table 44 Spearman's Rho correlation coefficient of PTCCG
Correlations

 PTCCGg PTCCGc

Spearman’s

rho

PTCCGg

Correlation Coefficient

Sig. (2-tailed)

N

1,000

.

21

,456*

,038

21

PTCCGc

Correlation Coefficient

Sig. (2-tailed)

N

,456*

,038

21

1,000

.

21

*. Correlation is significant at the 0.05 level (2-tailed)

In order to to check whether the observed differences were significant

we ran the Wilcoxon Signed-rank test. We obtained the results shown

in Table 45 and Table 46.

Table 45 Wilcoxon Signed-rank test for PTCCG
 Ranks

 N Mean

Rank

Sum of

Ranks

PTCCGc

-

PTCCGg

Negative Ranks

Positive Ranks

Ties

Total

14a

0b

7c

21

7,50

0,00

105,00

,00

a. PTCCGc < PTCCGg b. PTCCGc > PTCCGg c. PTCCGc = PTCCGg

Table 46 Wilcoxon Signed-rank test statistics for PTCCG
Test Statistics a

 PTCCGc - PTCCGg

Z

Asymp. Sig. (2-tailed)

-3,556b

,000

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

It shows that fourteen subjects (14/21) have obtained more correctly

carried out tasks using gestUI compared to using the code-centric

method, zero (0/21) subjects have obtained more correctly carried out

tasks using the code-centric method than using gestUI, and there are

180

seven (7/21) subjects that have obtained the same percentage using

both methods.

The 2-tailed p-value obtained with this test was p=0.000<0.05,

therefore, according to this result, we reject the null hypothesis and

can conclude than “gestUI is more effective than the code-centric

method in the definition of custom gestures”.

6.3.3 RQ3: Efficiency in the inclusion of gesture-based interaction

According to Section 6.2.4, efficiency (represented by TFTI) was

defined as the time to finish the task during the inclusion of gesture-

based interaction in the user interface. We consider two treatments

to analyse TFTI in the inclusion of gesture-based interaction: TFTIg and

TFTIc.

According to Table 47, the mean of TFTIc (28.38) is greater than that

of TFTIg (19.71), that is, the time required to include gesture-based

interaction in the experiment using the code-centric method is greater

than the time needed to perform this task using gestUI.

Table 47 Descriptive statistics for TFTI

 N Min. Max. Mean Std. Dev.

TFTIg 21 9.00 33.00 19.7143 7.0224

TFTIc 21 18.00 49.00 28.3810 7.8834

Valid N 21

Figure 62 presents the box-and-whisker plot containing the

distribution of the TFTI variable per method. The medians, first

quartile and third quartile are better for TFTIg, since the time needed

to conduct the experiment is less when the subjects use gestUI rather

than when the subjects use the code-centric method. This means that

the time to finish the task with gestUI is better than with code-centric.

181

Figure 62 Box-plot for TFTI

Using Spearman’s Rho correlation coefficient we obtained the

results shown in Table 48. The samples of TFTI have a positive

correlation (0.210). Then, we can conclude that TFTIg and TFTIc

have a weak correlation, that is, between TFTIg and TFTIc there is

not a significant relationship (Sig. (2-tailed)>0.05) in the process of

including gesture-based interaction.

Table 48 Spearman's Rho correlation coefficient of TFTI

Correlations

 TFTIg TFTIc

Spearman’s

rho

TFTIg Correlation Coefficient

Sig. (2-tailed)

N

1,000

.

21

,210

,361

21

TFTIc Correlation Coefficient

Sig. (2-tailed)

N

,210

,361

21

1,000

.

21

In order to check whether the observed differences were significant

we ran the Wilcoxon Signed-rank test. We obtained the results shown

in Table 49 and Table 50. They show that eighteen subjects (18/21)

have employed more time using the code-centric method compared

to gestUI to include gesture-based interaction in the experiment.

Three subjects (3/21) have employed less time using the code-centric

182

method than gestUI to include gesture-based interaction in the

experiment.

Table 49 Wilcoxon Signed-rank test for TFTI
Ranks

N Mean Rank

Sum of

Ranks

TFTIc -

TFTIg

Negative Ranks

Positive Ranks

Ties

Total

3a

18b

0c

21

7,17

11,64

21,50

209,50

a. TFTIc < TFTIg b. TFTIc > TFTIg c. TFTIc = TFTIg

Table 50 Wilcoxon Signed-rank test statistics for TFTI

Test Statistics a

 TFTIc - TFTIg

Z

Asymp. Sig. (2-tailed)

-3,269 b

,001

a. Wilcoxon Signed Rank Test
b. Based on negative ranks

The 2-tailed p-value obtained with this test was p=0.001<0.05,

therefore, according to this result, we reject the null hypothesis and

we can conclude than “gestUI is more efficient than the code-centric

method in the inclusion of gesture-based interaction in user

interfaces”.

6.3.4 RQ4: Efficiency in the definition of custom gestures

According to Section 6.2.4, efficiency (represented by TFTG) was

defined as the time to finish the task during the custom gesture

definition. We consider two treatments to analyse TFTG in the

definition of custom gestures: TFTGg and TFTGC.

According to Table 51, the mean of TFTGc (154.67) is greater than the

mean of TFTGg (31.89), which means that the time required to define

custom gestures in the experiment using the code-centric method is

greater than the time to do this task using gestUI.

183

Table 51 Descriptive statistics for TFTG

 N Min. Max. Mean Std. Dev.

TFTGg 21 12.75 66.75 31.8929 16.8301

TFTGc 21 60.50 346.25 154.6786 66.5967

Valid N 21

Figure 63 Box-plot of TFTG

Figure 63 presents the box-and-whisker plot containing the

distribution of the TFTG variable per method. The median, first

quartile and third quartile are better for TFTGg, since TFTGg needs

less time to complete the task. This means that gestUI was more

efficient than code-centric method regarding the time required by

the subject to define custom gestures during the experiment.

Using Spearman’s Rho correlation coefficient, we obtained the

result shown in Table 52. The samples of TFTG have a positive

correlation (0.216). Then, we can conclude that TFTGg and TFTGc

have a weak correlation, that is, when the time required to define

custom gestures using code-centric method increases, the time

using gestUI method also has a weak increment.

184

In order to check whether the observed differences were

significant, we run Wilcoxon Signed-rank test. We obtain the results

shown in Table 53 and Table 54. It shows that twenty-one subjects

(21/21) have employed more time using the code-centric method

than gestUI to define custom gestures in the experiment.

Table 52 Spearman's Rho correlation coefficient of TFTG
Correlations

 TFTGg TFTGc

Spear

man’s

rho

TFTGg Correlation

Coefficient

Sig. (2-tailed)

N

1,000

21

,216

,346

21

TFTGc Correlation

Coefficient

Sig. (2-tailed)

N

,216

,346

21

1,000

.

21

The 2-tailed p-value obtained with this test was p=0.000<0.05,

therefore, according to this result, we reject the null hypothesis and

we can conclude than “When the subjects define gestures, gestUI is

more efficient than the code-centric method”.

Table 53 Wilcoxon Signed-rank test for TFTG
Ranks

N

Mean

Rank

Sum of

Ranks

TFTGc -

TFTGg
Negative Ranks

Positive Ranks

Ties

Total

0a

21b

0c

21

,00

11,00

,00

231,00

a. TFTGc < TFTGg b. TFTGc > TFTGg c. TFTGc = TFTGg

185

Table 54 Wilcoxon Signed-rank test statistics for TFTG
Test Statisticsa

 TFTGc – TFTGg

Z

Asymp. Sig. (2-tailed)

-4,015b

,000

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks

6.3.5 RQ5: Perceived Ease of Use

According to Section 6.2.4, the variable PEOU is defined as perceived

ease of use of the method. We consider two treatments to analyse

PEOU: PEOUg and PEOUC.

Table 55 presents the results obtained through questions related to

PEOU within Post-task and Post-test questionnaires. In this case, the

mean is above 3.0 in both cases. There is a difference of 0.042 between

the mean of PEOUc and the mean of PEOUg, that is, the PEOU of gestUI

is relatively greater than the PEOU of the code-centric method.

Table 55 Descriptive statistics for PEOU

 N Min. Max. Mean Std. Dev.

PEOUg 21 1 5 3.2857 0.2154

PEOUc 21 1 5 3.3280 0.5073

Valid N 21

Table 56 Spearman's Rho correlation coefficient of PEOU

Correlations

 PEOUg PEOUc

Spearman’s

rho

PEOUg Correlation coefficient

Sig. (2-tailed)

N

1,000

.

21

,408

,066

21

PEOUc Correlation coefficient

Sig. (2-tailed)

N

,408

,066

21

1,000

.

21

Using Spearman’s Rho correlation coefficient we obtain the next

result (Table 56). The samples of PEOU have a positive correlation

186

(0.408). So, we can conclude PEOUg and PEOUc have a moderate

correlation, that is, when the perceived ease of use with gestUI

increases, PEOU using the code-centric method also increases.

Figure 64 shows the box-and-whisker plot containing the

distribution of the PEOU variable per method. The medians of both

treatments are the same. The first quartile is slightly better for

gestUI and the third quartile is slightly better for the code-centric

method. This means that there are no differences between both

treatments.

In order to check whether the observed differences were

significant, we ran the Wilcoxon Signed-rank obtaining the results

shown in Table 57 and Table 58. They show that eight subjects

(8/21) perceive that gestUI is easier to use than the code-centric

method, eight subjects (8/21) perceive than the code-centric

method is easier to use than gestUI and, five (5/21) perceive that

both methods are easy to use.

Figure 64 Box-plot for PEOU

187

Table 57 Wilcoxon Signed-rank test for PEOU
Ranks

N

Mean

Rank

Sum of

Ranks

PEOUc -

PEOUg

Negative Ranks

Positive Ranks

Ties

Total

8a

8b

5c

21

8,25

8,75

66,00

70,00

a. PEOUc < PEOUg b. PEOUc > PEOUg c. PEOUc = PEOUg

Table 58 Wilcoxon Signed-rank test statistics for PEOU

Test Statisticsa

 PEOUc – PEOUg

Z

Asymp. Sig. (2-tailed)

-,104b

,917

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks

The 2-tailed p-value obtained with this test was p=0.917>0.05,

therefore, according to this result, we cannot reject the null

hypothesis and we can conclude than “gestUI is perceived as easier

to use than the code-centric method”.

6.3.6 RQ6: Perceived Usefulness

According to Section 6.2.4, the variable PU is defined as perceived

usefulness of the method. We consider two treatments to analyse

perceived usefulness: PUg and PUc.

Table 59 presents the results obtained through questions related

to PU in Post-task and Post-test questionnaires. In this case, the

mean of PUc is less than PUg, that is, perceived usefulness of gestUI

(mean=3.82) is greater than the perceived usefulness of the code-

centric method (mean=3.28).

188

Table 59 Descriptive statistics for PU

 N Min. Max. Mean Std. Dev.

PUg 21 1 5 3.8176 0.3451

PUc 21 1 5 3.2786 0.5762

Valid N 21

Figure 65 presents the box-and-whisker plot containing the

distribution of the PU variable per method. The median, first

quartile and third quartile of PUg is better than PUc. This means

that the subjects perceived gestUI to be more useful than the code-

centric method.

Using Spearman’s Rho correlation coefficient, we obtain the next

result (Table 60). The samples of PU have a positive correlation

(0.310). So, we can conclude that PUg and PUc have a weak

correlation, that is, when the perceived usefulness of the code-

centric method increases, the perceived usefulness using the

gestUI method also increases.

Figure 65 Box-plot of PU

189

Table 60 Spearman's Rho correlation coefficient of PU

Correlations

 PUg PUc

Spear

man’s

rho

PUg Correlation Coefficient

Sig. (2-tailed)

N

1,000

.

21

,310

,172

21

PUc Correlation Coefficient

Sig. (2-tailed)

N

,310

,172

21

1,000

.

21

In order to check whether the observed differences were

significant, we ran the Wilcoxon Signed-rank obtaining the results

shown in Table 61 and Table 62. This test shows that fifteen

subjects (15/21) perceive gestUI to be more useful than the code-

centric method in the experiment. Three subjects (3/21) perceive

the code-centric method to be more useful than gestUI, and three

(3/21) consider that both methods have the same level of

perceived usefulness in the experiment.

Table 61 Wilcoxon Signed-rank test for PU

Ranks

N

Mean

Rank

Sum of

Ranks

PUc -

PUg
Negative Ranks

Positive Ranks

Ties

Total

15a

3b

3c

21

10,63

3,83

159,50

11,50

a. PUc<PUg b. PUc > PUg c. PUc = PUg

The 2-tailed p-value obtained with this test was p=0.001<0.05,

therefore, according to this result, we reject the null hypothesis and

we can conclude than “gestUI is perceived as more useful than the

code-centric method”.

190

Table 62 Wilcoxon Signed-rank test statistics for PU

Test Statisticsa

 PUc – Pug

Z

Asymp. Sig. (2-tailed)

-3,239b

,001

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

6.3.7 RQ7: Intention to Use

According to Section 4.4, the variable ITU is defined as the intention

to use of the method. We consider two treatments to analyse ITU:

ITUg and ITUc.

Table 63 presents the results obtained through questions related

to ITU in Post-test and Post-task questionnaires. In this case, the

mean of ITUg (3.74) is above 3.0 while the mean of ITUc (2.93) is

below to 3.0.

Table 63 Descriptive statistics for ITU

 N Min. Max. Mean Std. Dev.

ITUg 21 2 5 3.7381 0.7179

ITUc 21 1 4 2.9286 0.6761

Valid N 21

Figure 66 presents the box-and-whisker plot containing the

distribution of the ITU variable per method. The median, the first

and third quartile are better for ITUg. This means that gestUI has a

greater intention to use than the code-centric method when the

subjects use it to define custom gestures and to include gesture-

based interaction.

Using Spearman’s Rho correlation coefficient we obtain the next

result (Table 64). The samples of ITU have a positive correlation

(0.080). So, we can conclude that ITUg and ITUc have a very weak

correlation, that is, when the intention to use of gestUI (ITUg)

increases, the intention to use of the code-centric method (ITUc)

increases very little compared with ITUg.

191

Figure 66 Box-plot of ITU
Table 64 Spearman's Rho correlation coefficient of ITU

Correlations

 ITUg ITUc

Spe

arm

an’s

rho

ITUg Correlation Coefficient

Sig. (2-tailed)

N

1,000

.

21

,080

,731

21

ITUc Correlation Coefficient

Sig. (2-tailed)

N

,080

,731

21

1,000

.

21

Table 65 Wilcoxon Signed-rank test for ITU

Ranks

 N Mean

Rank

Sum of

Ranks

ITUc –

ITUg

Negative Ranks

Positive Ranks

Ties

Total

13a

2b

6c

21

8,65

3,75

112,50

7,50

 a. ITUc < ITUg b. ITUc > ITUg c. ITUc = ITUg

192

In order to check whether the observed differences were

significant, we ran the Wilcoxon Signed-rank obtaining the results

included in

Table 65 and Table 66. They show that gestUI has greater intention

to use than the code-centric method (13/21 subjects), the code-

centric method has two (2/21) subjects with intention to use, and

six (6/21) subjects have an intention to use for both methods.

Table 66 Wilcoxon Signed-rank test statistics for ITU

Test Statisticsa

 ITUc – ITUg

Z

Asymp. Sig. (2-

tailed)

-3,005b

,003

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks

The 2-tailed p-value obtained with this test was p=0.003<0.05,

therefore, according to this result, we reject the null hypothesis,

and we can conclude that “gestUI has an intention to use greater

than the code-centric method”.

In summary, the result of each hypothesis is shown in Table 67.

6.3.8 Effect-size calculation

According to Kotrlik [148], effect size measures focus on the

meaningfulness of the results and allow comparison between studies,

furthering the ability of researchers to judge the practical significance

of results presented. We use means and standard deviations of the

metrics defined in this experiment to calculate Cohen’s d and effect-

size correlation r. The calculation was performed using the effect size

calculator provided by the University of Colorado (Colorado Springs),

available at http://www.uccs.edu/~lbecker/.

http://www.uccs.edu/~lbecker/

193

Table 67 Summary of the results obtained in the experiment

194

Based on the work of Lakens [149], we can see that the effect size is

“Large” if d>0.8, “Medium” if d<=0.5 and d>0.2, and “Small” if d<0.2.

In Table 68, we present the results of the effect size calculation of the

metrics included in this experiment and this shows the equivalences

applied to the results obtained.

Table 68 Effect size of the metrics

Response

variable

Metric Mean St. Dev. Cohen’s

d

Equivalence

Effectiveness in

the inclusion of

gesture-based

interaction.

PTCCI

PTCCIg

PTCCIc

82.1429

77.3810

17.9284

15.6220
0.2832 Medium

Effectiveness in

the custom

gesture

definition.

PTCCG

PTCCGg

PTCCGc

91.667

71.428

12.076

19.821
1.233 Large

Efficiency in the

inclusion of

gesture-based

interaction.

TFTI

TFTIg

TFTIc

19.714

28.381

7.022

7.883
1.161 Large

Efficiency in the

custom gesture

definition.

TFTG

TFTGg

TFTGc

31.893

16.8301

154.678

66.5967

2.5279 Large

Satisfaction

PU

PUg

PUc

3.8176

3.2786

0.3451

0.5762

1.1349 Large

PEOU

PEOUg

PEOUc

3.2857

3.3280

0.2154

0.5073

0.1085 Small

ITU

ITUg

ITUc

3.7381

2.9286

0.7179

0.6761

1.1609 Large

According to this classification, the results obtained for effect size

show that:

(i) In the case of PTCCG, TFTI, TFTG, PU and ITU, the effect size

calculated through Cohen’s d is greater than 0.8, which means

that it is classified as “Large”. So, there is a significant

195

difference in the application of each method in this

experiment related to: effectiveness in the definition of

custom gestures (PTCCG), efficiency in the inclusion of

gesture-based interaction (TFTI), efficiency in the definition of

custom gesture (TFTG), perceived usefulness (PU) and

intention to use (ITU).

(ii) In the case of PTCCI, the effect size calculated through Cohen’s

d is equals to 0.2832 (d>0.2), which is classified as “Medium”.

So, the difference in the application of each method to include

gesture-based interaction in a user interface considering the

effectiveness in the inclusion of gesture-based interaction, is

not important.

(iii) In the case of PEOU, the effect size calculated through Cohen’s

d is less than 0.2 (d=0.1085), which is classified as “Small”. So,

there is a minimum difference in the application of each

method in this experiment related to the perceived ease of use

(PEOU).

In the next section, we analyse the results obtained in this experiment.

6.4 Discussion

In this section, we discuss the results of the experiment described

in Section 6.3 in order to draw some conclusions regarding the

comparison of gestUI (a model-driven method) and the code-

centric method (traditional software development). In order to

validate gestUI, three aspects are considered in this experiment:

effectiveness (using PTCCI, PTCCG), efficiency (using TFTI and TFTG)

and satisfaction (using PU, PEOU and ITU). The discussion about the

results obtained in the experiment is performed according to the

aforementioned research questions.

6.4.1 Effectiveness

RQ1: Effectiveness in the inclusion of gesture-based interaction

RQ1 is related to the PTCCI metric that is defined as the percentage

of task correctly carried out in the inclusion of gesture-based

196

interaction in a user interface. Regarding PTCCI, the results

obtained by applying statistical tests show that:

- Through the Wilcoxon Signed-rank test, there is no significant

difference between the results obtained when the subjects

applied gestUI and when the subjects applied the code-centric

method to include gesture-based interaction in an existing user

interface. We consider that the small difference obtained

(approximately 4%) by applying both methods to calculate PTCCI

is because (i) the subjects used existing source code (included in

the Task Description Document) instead of writing the source code

from scratch as is done in a typical development process [119].

This context helped to obtain better results with the code-centric

method and the difference was less than expected; (ii) the subjects

were not familiar with the process defined in gestUI to apply a

model-driven method (i.e. by using model transformations to

include gesture-based interaction); (iii) the subjects did not have

experience in the inclusion of gesture-based interaction and when

they applied gestUI, the process was not very intuitive to follow.

RQ2: Effectiveness in the definition of custom gestures

RQ2 is related with the PTCCG metric that is defined as the

percentage of task correctly carried out in the custom gesture

definition (PTCCG). Values obtained applying statistic tests for

PTCCG show that:

- Through the Wilcoxon Signed-rank test we found that gestUI is

significantly more effective than the code-centric method in the

definition of custom gestures. The percentage obtained with

gestUI is greater than the percentage obtained with the code-

centric method. In this case, the difference between the

percentage of task correctly carried out in the custom gestures

definition using gestUI or using the code-centric method is almost

20%. This difference is due to subjects using gestUI having a more

intuitive process to follow to define gestures and to obtain a XML

file containing the description of the gesture. Using the code-

197

centric method, the process of defining gestures is more complex

because it includes additional tasks (e.g. analyse the shape of the

gesture, draw it and define it using XML, among others) requiring

more effort.

6.4.2 Efficiency

RQ3: Efficiency in the inclusion of gesture-based interaction

RQ3 is related with the TFTI metric that is defined as the time to

finish the task during the inclusion of gesture-based interaction in

the user interface. Values obtained for TFTI show that:

- Through the Wilcoxon Signed-rank test we found that gestUI is

significantly more efficient than the code-centric method in the

inclusion of gesture-based interaction in user interfaces. When the

subjects did the experiment using gestUI, they required less time

than when they used the code-centric method. The difference of

time between both methods is moderate (8.67 min.), this could be

related to the ability to type the source code in a correct way,

probably because the subjects had experience developing

software (according to the demographic questionnaire, the

average self-rated programming expertise was 43%). Also, they

required less time to type source code since they had experience

using the integrated development environment used in the

experiment (according to the demographic questionnaire 38% had

an “experienced” level and 43% had a “medium experienced” level

with Eclipse Framework).

RQ4: Efficiency in the definition of custom gestures

RQ4 is related with TFTG that is defined as the time to finish the

task during the custom gesture definition (TFTG). Obtained results

show that:

- Through the Wilcoxon Signed-rank test we found that the time

required to define custom gestures using gestUI is less than the

time required using the code-centric method. The difference is

high (122.7857) since some subjects had some problems with the

198

definition of gestures using XML language as they were not

familiar with the syntax of XML. Another aspect that could have

increased the time required with the code-centric method is

related to syntax errors generated during the process of gesture

definition. If the subjects run the experiment first with gestUI and

then with the code-centric method, they require a longer time that

those subjects that run the experiment first with the code-centric

method and then with gestUI. In this case, there were some

problems when the subjects employed $N to recognise some

gestures sketched by them. This could have had some influence in

the duration of the process of custom gesture definition.

In summary, regarding effectiveness and efficiency, we can say

that:

- The result obtained in the experiment permit one to say, in

general, that the effectiveness and efficiency of gestUI are greater

than those of the code-centric method.

- Considering the metrics PTCCG, TFTG and TFTI, the results

obtained with Cohen’s d value (d>0.8, i.e. “Large”) suggest a high

practical significance for the results obtained. Also, Cohen’s d

value (d = 0.2832 for PTCCI) suggested a moderate practical

significance for the results obtained.

- Concerning the values of TFTG and TFTI obtained in the

experiment, we think that if the subjects had written the source

code from scratch, the difference in time would have been greater.

In general, the overall results lead us to interpret that gestUI has

achieved better effectiveness and efficiency for the subjects in

almost all the analysed statistics in comparison with the code-

centric method.

- Finally, considering effect size, we can conclude that in

comparison, effectiveness and efficiency of gestUI are better than

those obtained with the code-centric method in the custom

gesture definition.

199

6.4.3 Satisfaction

RQ5: Perceived ease of use

RQ5 is related with PEOU that is defined as perceived ease of use

(PEOU). Obtained results show that:

- Through the Wilcoxon Signed-rank test we found that the

difference between PEOUg (3.286) and PEOUc (3.328) is minimal

(0.0423). So, we can say that the subjects perceive that both

methods are easy to use. However, in the case of the code-centric

method, this result could be influenced by the inclusion of source

code in the Task Description Document as was explained in Section

6.2.8. This decision was taken with the aim of reducing the

complexity of the code-centric method and the time required to

do the experiment.

RQ6: Perceived Usefulness

RQ6 is related with PU that is defined as perceived usefulness (PU).

Obtained results show that:

- Through the Wilcoxon Signed-rank test we found that there is

difference (0.539) between the values of PUg (3.8176) and PUc

(3.2786). So, we can say that the subjects perceive gestUI to be

more useful than the code-centric method. The subjects perceive

the usefulness of gestUI by noting that if gestUI is easy to use they

may find gestUI more useful, and hence, have some motivation to

use it. Specifically, the subjects perceive the usefulness of gestUI

when they use it to automatically obtain source code to include

gesture-based interaction in a user interface based on a

specification of gestures and actions to define the gesture-based

interaction.

RQ7: Intention to use

RQ7 is related with ITU that is defined as intention of use. Obtained

results show that:

200

- Through the Wilcoxon Signed-rank test we found that there is a

difference (0.8095) between the values of ITUg (3.7381) and ITUc

(2.9286). So, we can say that the subjects have an intention to use

gestUI greater than the code-centric method. This conclusion is

based on the fact that the subjects considered gestUI as easy to

use and useful compared to the code-centric method.

In general, the results of our work indicate that gestUI is accepted

by the subjects since the results obtained for effectiveness,

efficiency and satisfaction with gestUI are better that the results

obtained with the code-centric method. With these results we

could say that gestUI is a hopeful approach and justifies further

investigation.

6.5 Conclusions

This validation process compares a model-driven method (gestUI)

versus a traditional software development method (the code-centric

method) in terms of (i) effectiveness in the custom gesture definition,

(ii) effectiveness in the inclusion of gesture-based interaction, (iii)

efficiency in the custom gesture definition, (iv) effectiveness in the

inclusion of gesture-based interaction,) and satisfaction (PEOU, PU and

ITU) through an experimental investigation. Results show that, in

general, gestUI has a greater effectiveness, efficiency and satisfaction

level than the code-centric method, and gestUI was also perceived by

the subjects as easier to use than the code-centric method.

Some aspects that must be contextualised according to the type of

experiment are:

(i) The sample size is small, twenty-one (21) subjects.

(ii) The subjects were M.Sc. and Ph.D. students and they do not

have enough experience in the topics included in the

experiment: tasks related with the custom gesture definition

and the inclusion of gesture-based interaction.

201

(iii) The subjects have experience in software development using

the Java programming language, which could have influenced

the results obtained with the code-centric method.

(iv) We consider that the decision to include source code in the

Task Description Document to reduce the time for the code-

centric method has reduced the differences in terms of

efficiency between treatments, since subjects only had to

transcribe the source code specified in the document.

Gesture definition is interesting for the subjects since they can

specify their own gestures with the aim of executing actions in a

user interface. In this context, each subject defined four gestures in

order to use them in the user interface doing CRUD operations in a

database. The subjects could define their own gestures according

to their preferences.

Even though the experimental results are good for the usefulness of

gestUI, we are aware that more experimentation is needed to confirm

these results. Existing results must be interpreted within the context

of this experiment. In general, the subjects considered gestUI a good

solution since they defined custom gestures and they included the

gestures in the user interface in a short time compared to the time

required when they used the code-centric method

202

203

 CHAPTER

TECHNICAL

ACTION

RESEARCH

7

 The topics covered in this chapter are:

7.1 Introduction

7.2 Capability Design Tool

7.3 Validation using Technical Action Research

7.4 Action Research Procedure

7.4 Analysis and Interpretation of results

7.5 Threats to validity

7.6 Conclusions

204

205

Chapter 7. Technical Action Research

7.1 Introduction

In this chapter, we describe the validation of gestUI through

Technical Action Research (TAR). We conduct this evaluation with the

purpose of knowing the experience of subjects in the industry when

they apply gestUI in a tool they use to carry out their activities. This

evaluation is complementary to that described in Chapter 6.

TAR can be seen as a research method that starts from the opposite

side of traditional research methods. TAR starts with an artefact, and

then tests it under practical conditions by using it to solve concrete

problems [30].

According to Wieringa [150], TAR is related with the use of an

experimental artefact to help a client and to learn about its effects in

practice. The artefact is experimental, which means that it is still under

development and has not yet been transferred to the original problem

context. In a validation process with TAR, the researcher uses an

artefact (e.g. method and a tool) in a real-world project to help a client,

or gives the artefact to others so they can use it assisted by the

researcher [150].

In this chapter, we report the validation of gestUI in real-world

conditions through TAR. During the validation process, we aimed to

discover just how gestUI can help stakeholders (e.g. software

engineers, end-users) to define custom gestures and to include

gesture-based interaction in existing user interfaces. We also aimed to

obtain practical interpretations of the system from industry

practitioners. We use TAR in the context of the CaaS Project (FP7 ICT

Programme Collaborative Project no. 611351). The main outcomes of

CaaS are: (i) the Capability-Driven Development (CDD) methodology

[151] and (ii) the CDD environment. The Capability Design Tool is a

CASE tool in the CDD environment that supports capability modelling

according to the CDD meta-model [152]. Everis, a multinational firm

206

offering business consulting, as well as development, maintenance

and improved information technology, collaborated in the evaluation.

Everis’s CaaS-project team is developing an e-government platform by

applying the whole CDD methodology and environment.

We report on a user evaluation that involves business consultants

using gestUI to include gesture-based interaction in a user interface

and then carrying out a modelling task by means of gestures. We base

the empirical validation on well-known frameworks and techniques,

such as:

(i) The Method Evaluation Model (MEM) [133] to relate

subjects’ performance, perceptions and intentions. MEM is

described in Chapter 6.

(ii) The User Experience Questionnaire (UEQ) [153] to

measure user experience with gestUI.

(iii) Microsoft Reaction Cards (MRC) to obtain desirability level

and user experience [154] with gestUI.

The main goal of the User Experience Questionnaire (UEQ) is to

obtain a fast and immediate measurement of user experience of

interactive products [155]. The questionnaire format supports the user

response to immediately express feelings, impressions, and attitudes

that arise when they use a product [156]. The questionnaire consists

of bipolar contrasting attributes on a seven-scale ranking. Figure 67

shows an excerpt of the user experience questionnaire.

The subjects express their agreement with the attributes by ticking

the circle that most closely reflects their impression. The seven-scale

ranking is converted into a positive and a negative scale, where +3

represents the most positive and the -3 represents the most negative

value [157]. The user experience questionnaire contains six scales with

26 items in total: attractiveness, efficiency, perspicuity, dependability,

stimulation, novelty [158].

207

Figure 67. An excerpt of User Experience Questionnaire (taken of www.ueq-

online.org)

Product reaction cards (PRC) are called Microsoft Reaction Cards

(MRC) since they were developed by Microsoft [154] as part of a

“desirability toolkit” created to get the quality of desirability, a key

component in user satisfaction [159]. MRC consist of a pack of 118

cards with 60% positive and 40% negative or neutral adjectives, from

which subjects choose the words that reflect their feelings toward

their interactive experience with a product [154]. Assessment based

on PRC has been recognized as one of the preferred methods for

measuring the perceived desirability of visual designs [159]. Figure 68

shows an excerpt of the 118 positive and negative phrases of Microsoft

Reaction Cards.

The remainder of this chapter is organized as follows: Section 7.2

describes the Capability Design Tool. Section 7.3 (Validation using

Technical Action Research) describes the experimental planning.

208

Section 7.4 includes the action research procedure. Analysis and

Interpretation of the TAR results are detailed in Section 7.5. Section

7.6 includes the discussion about the threats to validity of the results

obtained in the experiment. Finally, the conclusions of the experiment

are included in Section 7.7.

Figure 68. An excerpt of the 118 positive and negative phrases of Microsoft

Reaction Cards

7.2 Background: Capability Design Tool

CDD is a novel paradigm in which services are customised on the

basis of the essential business capabilities and delivery is adjusted

according to the current context [160]. The CDD methodology for

capability-driven design and development consists of various

components addressing different modelling aspects, such as context

modelling, business services modelling, pattern modelling or capability

modelling.

The CaaS project developed three components to support CDD

[152]:

(i) CDD methodology, is based on agile and model driven

information systems development principles and consists

of the CDD development process, a language for

209

representing capabilities according to the CDD meta-

model, as well as modelling tools.

(ii) Capability delivery patterns, representing reusable

solutions for reaching business goals under different

situational contexts. The context defined for the capability

should match the context in which the pattern is applicable

in. Patterns will represent reusable solutions in terms of

business process, resources, roles and supporting IT

components (e.g. code fragments, web service definitions)

for delivering a specific type of capability in a given context.

(iii) CDD environment providing a modelling tool called

Capability Design Tool (CDT). The CDT (Figure 69) is

designed as an integrated development environment built

using Eclipse Modelling Framework (EMF) technologies13

and Graphiti14 on top of Eclipse’s Graphical Editing

Framework-GEF15. CDT supports capability modelling

according to the CDD metamodel, including context

modelling and goal, process and concept models.

We modified the source code of CDT to include gesture-based

interaction such a way it supports two modes of operation:

(i) The traditional interaction mode already existing in the

tool, in which the user can manipulate the primitives and

connectors contained in a diagram using mouse and

keyboard.

(ii) The gesture-based interaction mode is added in the CDT by

using gestUI, in which the user can draw diagrams by

means of gestures sketched by a finger or pen to obtain a

primitive.

13 http://www.eclipse.org/emf

14 http://www.eclipse.org/graphiti/

15 http://www.eclipse.org/gef

http://www.eclipse.org/emf
http://www.eclipse.org/graphiti/
http://www.eclipse.org/gef

210

Figure 69. CDT with traditional interaction using keyboard and mouse

Figure 70 shows the CDT interface with gesture-based interaction.

In this case, we have included two new elements: (i) the palette (right)

allows changing the operation mode between traditional and gesture-

based interaction; (ii) the main menu (up) has a new item (“Gesture”)

to redefine custom gestures based on our approach.

Figure 70. CDT with gesture-based interaction

7.3 Validation using Technical Action Research

The foundations of this TAR [150] are supported by means of

setting up a theoretical framework, which allows the definition of

research questions, response variables and their measures.

211

7.3.1 Goal of the TAR

The goal is to validate gestUI in real-world conditions in relation to two

parameters:

i. its acceptance by means of:

- Perceived Ease of Use (PEOU), its definition is included in

Section 6.1. According to Davis [137], when a software system

is perceived as easier to use than another, it is more likely to

be accepted by users;

- Perceived Usefulness (PU) by the subjects, its definition is

included in Section 6.1. According to Davis [137] if a user

perceives the system as an effective way of performing the

tasks, then there is a positive user-performance relationship.

ii. The user experience by using the User Experience Questionnaire

(UEQ) and the Microsoft Reaction Cards (MRC).

In this validation, we wanted to know if gestUI can help software

engineers in defining custom gestures and including gesture-based

interaction in existing user interfaces of a CASE tool used in an

industrial context. Then, with the purpose of knowing how gestUI is

perceived in this context we measure PEOU and PU with subjects who

use the CDT tool in their daily work. That is, in this second evaluation,

we are interested in knowing how is perceived gestUI when it is used

to include gesture-based interaction in the aforementioned CASE tool.

In the first evaluation described in the previous chapter, PEOU and PU

were measured within a different context and applying gestUI to

include gesture-based interaction in a form-based software.

7.3.2 Experimental subjects

The TAR was conducted in collaboration with two technical analysts

from Everis, a partner in the CaaS Project.

212

The technical analysts were women computer engineers with at least 5

years of experience in software development. They also had experience

in using CDT with the traditional interaction. They are currently working

on a CaaS project using the CDT tool with traditional interaction

(keyboard and mouse) and had never seen gestUI before the TAR

session. The background and experience of the subjects were found

through a demographic questionnaire handed out at the first session of

the experiment. This instrument consists of 15 questions on a 5-point

Likert scale.

7.3.3 Research questions

We focused on four research questions:

RQ1: Do the subjects consider that gestUI is easy to use and useful in

defining custom gestures?

RQ2: Do the subjects consider that gestUI is easy to use and useful for

gesture-based interactions on user interfaces?

RQ3: What is the subject’s experience when performing the process of

obtaining gesture-based interfaces with gestUI?

RQ4: What is the desirability level of subjects when they use gestUI to

generate gesture-based interfaces?

7.3.4 Factor and Treatment

In this case, the factor detected in the experiment is the CDT

interaction method. This factor has only one treatment: the use of

gesture-based interaction. We chose only this treatment since it was

the goal of the experiment and the subjects already had knowledge of

the process using the traditional interaction (mouse and keyboard).

213

Table 69. Instruments defined for the validation

214

7.3.5 Response variables

Response variables are the effects studied in the experiment caused

by the manipulation of factors. In this experiment, we have four

response variables (PEOU, PU, UEQ and MRC) to analyse the

acceptance of the Everis technical analysts.

7.3.6 Instruments for the TAR

All the material required to support the experiment was developed

beforehand, including the preparation of the experimental object,

instruments and task description documents for data collection used

during the execution of the experiment. The instruments prepared to

perform the TAR are described in Table 69.

7.3.7 Experimental Object

With the aim of performing the TAR, we considered CDT as an

experimental object in this validation. Using this experimental object,

the subjects must sketch an excerpt of a diagram defined in Everis (see

Figure 71), with the primitives included in Table 70. This diagram is an

example of work related to a project on the development of an e-

government platform.
Table 70. Gesture catalogue defined by the subjects

Primitive Symbol Gesture
Context Set

Context Element

Context Element

Range

Capability

Goal

KPI

215

Figure 71. Excerpt of a model defined in Everis

7.4 Action Research Procedure

This section describes the TAR procedure used to conduct the

experiment performed in a meeting room in Everis offices. Previous to

the TAR session, a pilot test was run with a researcher from the PROS

Research Centre in the Universitat Politécnica de Valencia. This pilot

test helped us improve the understandability of the instruments.

The steps of the experiment procedure are:

Step 0: The first step is related to the gesture catalogue definition,

which was completed for the subjects before the TAR session. In a

previous session, the subjects filled in the Gesture Catalogue

Definition Form with the gestures to be used in CDT to draw the

aforementioned diagram. The subjects defined custom gestures for

each primitive of the aforementioned diagram according to their

preferences (Table 70).

Step 1: Before the experiment each subject filled in a Demographic

Questionnaire in which they were asked about their experience in

tasks related with CDT, experience with gesture-based interaction,

experience in software development, and experience in model-driven

development.

Step 2: The planned action research procedure was described to the

subjects with a verbal explanation.

216

Step 3: By means of a live demo, the subjects were instructed to use

gestUI in gesture definition and inclusion of gesture-based interaction

on the user interface of CDT.

Step 4: Subjects used gestUI to define the gestures previously specified

in the Gesture Catalogue Definition Form (Table 70) following the

process defined in Chapter 4 to define a gesture. Subjects used the

Task Description Document to follow the required instructions in order

to obtain the gesture catalogue, and to include gesture-based

interaction in the interface of CDT.

Step 5: Subjects filled in the Post-Task Questionnaire on their opinion

of gestUI regarding custom gesture definition and inclusion of gesture-

based interaction in CDT.

Step 6: Subjects employed CDT to draw the diagram shown in Figure

71. They used the Gesture Catalogue Definition Form to help them

with the previously defined gestures.

Step 7: Subjects redefined three gestures using the module to

redefinition included in CDT.

Step 8: Subjects filled in the Post-Task Questionnaire to assess gestUI

capacity to define custom gestures and to include gesture-based

interaction.

Step 9: Subjects filled in the User Experience Questionnaire on their

experience with custom gesture definition and the inclusion of

gesture-based interaction.

Step 10: Subjects filled in the Microsoft Reaction Cards on the

desirability level of using gestUI to define custom gestures and include

gesture-based interaction.

Table 71 contains a summary of the steps performed in the

experiment, the instruments used in each step and the time estimated

to perform each step.

217

Table 71. A summary of the experiment procedure

ID Description Instrument used Time
1 Subjects filled in the Demographic

Questionnaire on their experience in
related topics.

Demographic
questionnaire

8 min.

2 The planned action research
procedure was described to the
subjects.

Verbal explanation 10 min.

3 Subjects were instructed to use
gestUI in gesture definition and
inclusion of gesture-based
interaction on the user interface of
the CDT.

Live demo 10 min.

4 Subjects employed gestUI to define
the gestures previously specified in
the gesture catalogue. They
employed the Task Description
document to follow the required
instructions.

Task Description
Document

15 min.

5 Subjects filled in the Post-Task
Questionnaire on their opinion of
gestUI.

Post-Task
Questionnaire

5 min.

6 Subjects employed the CDT to draw
the diagram shown in Figure 71. They
used the Gesture Catalogue
Definition Form to help them with the
previously defined gestures.

Task Description
Document and
Gesture Catalogue
Definition Form

20 min.

7 Subjects redefined three gestures
using the module to redefinition
included in the CDT

Task Description
Document

10 min.

8 Subjects filled in the PEOU and PU
Post-Task Questionnaire to assess
gestUI capacity to define custom
gestures and include gesture-based
interaction.

Post-Task
Questionnaire

5 min.

9 Subjects filled in the User Experience
Questionnaire on their experience
with custom gesture definition and
the inclusion of gesture-based
interaction.

User Experience
Questionnaire

5 min.

10 Subjects filled in the reaction cards
on the desirability level of using
gestUI to define custom gestures and
include gesture-based interaction.

Microsoft Reaction
Cards

8 min.

Total time 96 min.

218

7.5 Analysis and Interpretation of results
Since there were only 2 subjects involved in the TAR we did not

apply any statistical test to analyse and interpret the information. We

analysed the responses of each subject regarding each research

question obtained from the aforementioned instruments containing

the questionnaires filled in by the subjects:

Regarding RQ1, the results obtained through the questionnaires

show that both subjects think that the feature to define custom

gestures implemented in gestUI is perceived as both easy to use and

useful.

Regarding RQ2, the results obtained from the questionnaires show

that both subjects think that the feature to include gesture-based

interaction implemented in gestUI is perceived as both easy to use and

useful.

Regarding RQ3, after completing the tasks, the subjects filled out

the UEQ, obtaining the results shown in Figure 72 and Figure 73. The

values vary from -3 to +3. The six scales, their description [156], the

values obtained and their corresponding percentages in the TAR are

shown in Table 72.

Table 72. Results obtained from the UEQ

Scale Description
Value obtained

Custom gesture
definition

Gesture-based
interaction

Attractiveness Overall impression of the
product

2.42 (81%) 2.25 (75%)

Perspicuity Is it easy to get familiar with
the product?

2.75 (92%) 2.75 (92%)

Efficiency Can users solve their tasks
without unnecessary effort?

1.38 (46%) 1.63 (54%)

Dependability Does the user feel in control
of the interaction?

1.63 (54%) 2.00 (67%)

Stimulation Is it exciting and motivating
to use the product?

2.25 (75%) 2.50 (83%)

Novelty Is the product innovative
and creative?

2.38 79%) 2.63 (88%)

219

The results obtained show that efficiency and dependability scales

in custom gesture definition had values lower than 67%. The efficiency

scale in gesture-based interaction also had a value lower than 67%. In

both cases, efficiency is related to items such as: fast/slow,

inefficient/efficient, impractical/practical, and organized/cluttered.

Figure 72. UEQ results: custom gesture definition interaction

Figure 73. UEQ results: inclusion of gesture-based interaction

Regarding RQ4, we applied MRC to study positive and negative

aspects related with the inclusion of gesture-based interaction (blue

line) and custom gesture definition (orange line). With the aim of

220

reporting these results, we use two figures: (i) Figure 74 shows positive

results and Figure 75 shows negative results. Values showed in Figure

74 represent the frequency of use of each positive adjective for the

subjects in the experiment (e. g. “simplistic” was selected two times,

one time per subject). These values correspond to the values included

in the "Value" column in Table 73, which shows the most frequently

used positive adjectives on the gestUI experience.

Table 73. Reaction cards positive results

Process Positive Adjective Value

Custom Gesture
Definition

Simplistic 2

Innovative, Customizable, Useful,
Clear, Easy to use.

1

Inclusion of Gesture-
based Interaction

Innovative, Useful 2

Comfortable, Creative, Attractive,
Time saving, Simplistic, Easy to use.

1

From Figure 75 we obtained the negative results related with the

inclusion of gesture-based interaction and custom gesture definition

shown in Table 74. The meaning of the values included in this figure is

the same as in Figure 74.

Table 74. Reaction cards negative results

Process Negative Adjective

Value

Custom Gesture Definition

Too technical 2

Time consuming, Unattractive 1

Inclusion of Gesture-based
Interaction

Slow 2

Sensible, Annoying, Fragile 1

In the case of custom gesture definition, the subjects described the

custom gesture definition as simplistic but also too technical and time

consuming. This opinion could have been related with the null

experience of the subjects in custom gesture definition in using CDT

and also because the UI of gestUI to define gestures could have been

better designed to obtain an attractive gesture definition process. In

the case of the inclusion of gesture-based interaction, the subjects

defined it as innovative and useful, but also that the inclusion of

gesture-based interaction is slow, sensitive and annoying. This opinion

221

could have been due to the null experience of the subjects in the use

of gestures to draw diagrams.

Figure 74. Reaction cards positive results

The subjects considered the new proposal to redefine gestures as

useful and thought that it helped them to solve memorizing or

sketching problems.

222

Figure 75. Reaction cards negative results

7.6 Threats to validity

This section deals with the most important threats to the validity of this

evaluation, classified according to Wohlin et al. [138]:

(A) Internal Validity: the main threats to the internal validity of the

experiment are: (1) Subject experience in tasks performed in the

experiment: this threat was eliminated since none of the subjects had

any experience in tasks related with custom gestures definition or the

inclusion of gesture-based interaction in user interfaces. (2) Subject

experience in the use of CDT with gesture-based interaction: this threat

was eliminated since none of the subjects had any experience in the

use of CDT with gesture-based interaction.

(B) External Validity: the main threat to the external validity of the

experiment was: (1) Duration of the experiment: since the duration of

the experiment was limited to 96 minutes, only one diagram was

selected with six primitives and six gestures. However, experience in

the use of CDT in traditional interaction and repetitive tasks could have

223

affected the duration of the experiment, since the subjects already

knew the process to be performed. This threat could not be ruled out

since they were familiar with the repetitive tasks required to build the

diagram. (2) Representativeness of the results: the experiment was

performed in an industrial context on subjects with no experience in

the tasks related with the experiment. This means the results could only

be representative for novice evaluators with no experience in custom

gesture definition and in the inclusion of gesture-based interaction.

(C) Validity Conclusions: The main threat to the validity of the

experiment was: (1) Validity of the statistical test applied: In this case,

we did not apply any statistical tests to obtain answers to the research

questions because the sample size was too small. However, we

considered the results obtained with other methods, such as MRC and

UEQ.

7.7 Conclusions

This chapter describes the validation of gestUI in industry by means

of a TAR, studying (i) PEOU; (ii) PU; (iii) the desirability level with MRC;

and, (iv) user experience with UEQ.

To validate the performance of gestUI in industrial settings, we

included gesture-based interaction in the CDT tool from the CaaS

Project. The subjects were two business analysts from a consultancy

firm who defined custom gestures by either fingers or pen/stylus and

also redefined some gestures from the gesture catalogue considered

in the experiment.

The main findings of the study are: (1) gestUI helped the business

analysts to define custom gestures and include gesture-based

interaction in user interfaces. (2) The subjects considered gestUI easy

to use and useful for defining custom gestures and including gesture-

based interaction in CDT. (3) Although the subjects did not enjoy

defining custom gestures and applying the automated

transformations, they did feel motivated while using this version of the

CDT.

224

225

 CHAPTER

CONCLUSIONS,

DISCUSSION

AND FUTURE

WORK

8

 The topics covered in this chapter are:

8.1 Summary of the thesis

8.2 Contribution of this thesis

8.3 Future Work

8.4 Conclusion

8.5 Publications

226

227

Chapter 8. Conclusions, Contributions and Future

Work
This chapter summarizes the thesis, discusses its findings and

contributions, points out limitations of the current work, and also

outlines directions for future research.

The purpose of this thesis is to develop a methodological framework

based on MDA for the development of user interfaces with gesture-

based interaction of software systems.

The chapter is divided into five sections. Section 8.1 is a summary of

the thesis. Section 8.2 presents a discussion of the contributions of the

current work. Section 8.3 discusses the future work. Section 8.4 brings

the thesis to a conclusion and finally, Section 8.5 describes the

publications that emerged during the development of this thesis.

8.1 Summary of the thesis

This thesis has introduced gestUI, a model-driven method to define

custom gestures and to include gesture-based interaction in user

interfaces of software systems.

Chapter 1 contains the introduction of the thesis. It describes the

motivation, the problem statement, the research questions and the

thesis objectives. Also, it describes the research methodology, the

expected contributions and the thesis context.

In Chapter 2, a theoretical framework has been presented where a

series of concepts related to the work developed in this thesis have

been included. It is considered that the thesis is framed in two areas:

model-driven development and human-computer interaction. In this

sense, this theoretical framework has been divided into two parts

including in each one concepts that help to explain and to understand

the work done.

Chapter 3 includes the State of the Art in the two aforementioned

areas. We describe the results of the search in the related literature

228

regarding gesture representation and the gesture recognition tools

with the aim of knowing the different techniques used to describe the

gestures and the tools developed for their recognition. Then, we

describe the results of the search in the related literature with respect

to the Model-driven Engineering in the Human-Computer Interaction,

where we review works that consider models to create a user interface

that includes user interaction. Finally, we include the results of the

search in the related literature in relation to two evaluations

techniques: empirical evaluation and technical action research with

the aim of knowing how are used these techniques in the evaluation

of methods.

In Chapter 4, we describe our proposal called gestUI. In this chapter

we explain why we consider the model-driven paradigm in the design

of gestUI. Also, we explain why we consider the Model-View-

Controller design pattern to design the method. Then, we describe the

needed resources to obtain gesture-based user interfaces. The

description of gestUI comprises features, metamodel description,

components of the method and model transformations used in the

process to include gesture-based interaction in user interfaces. Also,

we explain the process to personalize the gesture definition from

scratch and from an existing definition of custom gestures. Finally, we

include an overview of gestUI to include gesture-based interaction in

user interfaces.

Chapter 5 describes the tool support that has been built to support the

models and activities of gestUI. This chapter includes the description

of its components and how have been implemented using Eclipse

Modelling Framework and Java programming language. The chapter

concludes with a demonstration of the applicability of the tool support

in a form-based software system and in a Case Tool.

In Chapter 6 the empirical evaluation performed to evaluate the

usability of gestUI is described. The usability was measured with

effectiveness, efficiency and satisfaction. The chapter includes the

design of the experiment and the analysis of the reliability of the data

229

obtained in the experiment. Then, it describes the results obtained

applying Wilcoxon Signed-rank test and Shapiro-Wilk because the data

is not normally distributed. Finally, we include the discussion of the

results regarding effectiveness, efficiency and satisfaction.

Chapter 7 includes the description of the technical action research

applied to evaluate gestUI in an industrial context. This chapter

describes the Capability Design Tool that has been modified to include

gesture-based interaction using gestUI. Also, the design of the

experiment, the analysis and interpretation of the results are included.

Finally, the threats to validity of the experiment are described.

8.2 Contribution of this thesis
As a result of the development of this thesis various contributions can

be highlighted. These contributions are the evidence of achieving the

research goals, as well as the answers of the established research

questions. The main contributions are presented below:

- With regard to research question 1 (What elements should be

considered for the definition of a method to include gesture-

based interaction in user interfaces?), we contribute with a

theoretical framework to establish a common knowledge about

the model-driven paradigm and gestUI (Chapter 2). In this chapter,

we define the most important concepts related with the elements

required to define a method to include gesture-based interaction

in user interfaces of software systems.

- Regarding research question 2 (What model-driven methods exist

to include gesture-based interaction in user interfaces with

human--computer interaction based on gestures?), our

contribution is centred in Chapter 3 (State of Art) where are

describe the results of a search of related literature regarding

methods that permit to define user interfaces.

- With regard to research question 3 (Is it possible to define a

model-driven method for the inclusion of gesture-based

interaction in software systems user interfaces?), we can say that

it is possible to define a method based on the model-driven

230

paradigm that permits the inclusion of gesture-based interaction

in user interfaces of software systems. Our proposal (gestUI,

described in Chapter 4) is a model-driven method designed to

define custom gestures and to include gesture-based interaction.

By following the model-driven paradigm, gestUI is contained in

three layers: platform-independent layer, platform-specific layer

and source code layer where are defined the elements that permit

to define custom gestures and to include gesture-based

interaction. Therefore, our contribution is related with the

definition of these elements: conceptual model definition

(metamodel described in Section 4.5.2), model transformations

(model-to-model and model-to-text transformations described in

Section 4.5.4), transformation rules that permit to obtain the user

interface with gesture-based interaction and the additional

feature to redefine existing gestures of a user interface (described

in Section 4.6).

Also, we define a tool that permits to represent a gesture based

on the conceptual model specified with the previously obtained

information (included in Section 4.5.2). We include a gesture

recognition algorithm that permits to recognise custom gestures

sketched by the users. In this case, we adopt an existing gesture

recognition algorithm known as $N.

We use Java programming language and Eclipse Modelling

Framework to define components of the proposed method in a

tool support (Chapter 5) to demonstrate its applicability.

- Regarding research question 4 (What advantages and

disadvantages has the model-driven method for the inclusion of

gesture-based interaction in software system user interfaces?),

two demonstrations have been performed (described in Chapter

5) with gestUI to evaluate its feasibility before to apply it in

empirical tasks. We apply gestUI to test custom gestures in three

gesture recognition tools (quill, iGesture and $N) obtaining good

results. Also, we apply gestUI to include gesture-based interaction

in a form-based software system. In this case, we define a gesture

231

catalogue and we include gesture-based interaction in a user

interface of this software system.

We perform an empirical comparative evaluation to validate

gestUI (described in Chapter 6). We measure the usability of gestUI

based on efficiency, effectiveness and satisfaction obtaining

positive results.

Additionally, we perform a technical action research of gestUI in

everis with the aim of evaluating our method in an industrial

context (described in Chapter 7). This evaluation was performed in

the context of the “Capability as a Service” - CaaS Project (FP7 ICT

Programme Collaborative Project no. 611351). We measure

usability of gestUI and user satisfaction when they use gestUI to

perform tasks associated with a project related with CaaS Project.

We obtain positive results of this evaluation.

8.3 Future work
The research that is presented in this thesis is not a closed work; it can

be improved and extended in several ways. The following paragraphs

summarize the research directions that are planned for the near

future. The main goal of this future work will be to overcome some of

the limitations of the work that has been developed thus far.

- We consider that is necessary to extend the solutions of the tool

to include mobile devices as target platform in the application of

gestUI. In this way, users will be able to define custom gestures

and to include gesture-based interaction via gestUI on mobile

devices, overcoming the current difficulties when the developers

use the traditional tools for these tasks. Therefore, we need to

include in the tool support some model transformations to

consider the mobile devices as an additional target when we apply

gestUI.

- We plan to apply gestUI in the user interface development process

of software systems for disabilities people. The main goal is to help

to these people to improve the communication with other people

and to improve the access to public services requiring technology.

232

This is an application of gestUI in mobile devices that will help us

to evaluate the additions in gestUI to include a new target

platform.

8.4 Conclusion

Interfaces with new techniques of interaction play an important role

in the field of software engineering that mainly includes software

systems supporting gesture-based interaction. At present, there are

more and more devices that support gesture-based interaction,

however, certain tasks make difficult the process of development of

software system with this type of interaction. Developers of such

software systems are faced with the following challenges:

i. Manage high complexity: Developing software systems that

support gesture-based interaction across multiple

heterogeneous devices represent a complex process.

ii. An increase of efficiency of multi-platform software

development across heterogeneous computing platforms

(Windows, iOS, Android, Windows Phone etc.).

iii. An integration of user centered design into the development

process, extending the existing methods to cover the necessary

adaptation options.

The aim of this PhD thesis is to propose a model-driven method that

helps to solve these challenges with the capability to be integrated into

different model-driven processes to develop user interfaces.

Our proposal described in this thesis has the following benefits:

 It is based on MDA which has in its favour the advantages of the

methodology.

 It is independent of target device platform. The target platform

may be decided by the developer in the PSM definition stage.

 It does not require the developer to learn a set of SDK’s or some

programming languages.

233

 Time to develop is reduced when the source code of gesture-

based user interface is automatically generated.

 Definition of the new gestures is performed through a

specification of features, without the necessity of a developer or

user.

Empirical evaluation was performed and it showed that gestUI is

perceived more efficient than the code-centric method considered in

the evaluation. Regarding effectiveness, this got similar results in the

empirical evaluation.

Then, we apply a Technical Action Research in an industrial context in

collaboration with the company “Everis” (Valencia, Spain) in order to

know the usability level by means of UEQ and MRC. The results are

described by means of positive and negative phrases as shown in

Chapter 7.

Its main current limitations are related to the target interface

technologies (currently, only Java) and the fact that multi-finger

gestures are not supported. These limitations will be addressed in

future work.

8.5 Publications

Papers

- Parra, O.

“A model-driven method for gesture-based interface requirements

specification”, 20th International Working Conference on

Requirements Engineering: Foundation for Software Quality

(REFSQ 2014). Doctoral Symposium. Publication: On-line

http://ceur-ws.org/Vol-1138/. ISSN: 1613-0073, Essen, Germany,

2014.

- Parra, O., España, S., Pastor, O.,

“Including multi-stroke gesture-based interaction in user interfaces

using a model-driven method”, XVI International Conference on

Human Computer Interaction – Interaccion 2015, Publication:

Online http://dl.acm.org/citation.cfm?doid=2829875.2829931,

http://ceur-ws.org/Vol-1138/
http://dl.acm.org/citation.cfm?doid=2829875.2829931

234

ISBN: 978-1-4503-3463-1, DOI: 10.1145/2829875.2829931.

Vilanova I la Geltrú, Spain, 2015.

- Parra, O., España, S., Pastor, O.,

“A Model-driven Method and a Tool for Developing Gesture-based

Information System Interfaces”, CAiSE Forum at the 27th

International Conference on Advanced Information System

Engineering – CaiSE 2015, Publication: Online http://ceur-

ws.org/Vol-1612/. ISSN: 1613-0073, Stockholm, Sweden, 2015.

- Parra, O., Pastor, O.,

“gestUI: Un método dirigido por modelos para incluir interacción

gestual multi-trazo en interfaces de usuario”, XVIII Iberoamerican

Conference on Software Engineering (CIbSE 2015), Poster.

Publication: Print ISBN: 978-1-5108-0387-9. Lima, Perú, 2015.

- Parra, O., España, S., Pastor, O.

“Including Gesture-based Interaction in Capability Design Tool”,

2nd International Workshop on Capability-oriented Business

Informatics. Publication: Online http://ceur-ws.org/Vol-1408/.

ISSN: 1613-0073. Lisbon, Portugal, 2015.

- Parra, O., España, S., Panach, J., Pastor, O., Buriel, V.

“gestUI tool: A tool to include gesture-based interaction in user

interfaces through model-driven”, Tool Demonstration on 35th

International Conference on Conceptual Modeling –ER 2016, Core

Index: A. Publication: On-line

http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-

parra.pdf, Gifu, Japan, 2017.

- Parra, O., España, S., Pastor, O.,

“Tailoring user interfaces to include gesture-based interaction with

gestUI”, 35th International Conference on Conceptual Modeling –

ER 2016, Core Index: A. Publication: On-line

https://link.springer.com/book/10.1007%2F978-3-319-46397-

1?page=3#toc, Proceedings part of the Lecture Notes in Computer

Science (LNCS, volume 9974). DOI: 10.1007/978-3-319-46397-1,

Gifu, Japan, 2017.

- Parra, O., España, S., Panach, J., Pastor, O.

http://ceur-ws.org/Vol-1367/paper-07.pdf
http://ceur-ws.org/Vol-1367/paper-07.pdf
http://ceur-ws.org/Vol-1408/
http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-parra.pdf
http://er2016.cs.titech.ac.jp/assets/papers/ER2016-tool-parra.pdf
https://link.springer.com/book/10.1007%2F978-3-319-46397-1?page=3#toc
https://link.springer.com/book/10.1007%2F978-3-319-46397-1?page=3#toc

235

“Extending and validating gestUI using Technical Action Research”,

IEEE 11th International Conference on Research Challenges in

Information Science – RCIS 2017, Core Index: B, Brighton, UK,

2017.

Journals

- Parra, O., España, S., Pastor, O.,

“gestUI: A Model-driven Method and a Tool for Including

Gesture-based Interaction in User Interfaces”, Complex Systems

Informatics and Modeling Quarterly – CSIMQ, Vol. 6, Publication:

Online https://csimq-journals.rtu.lv/article/view/csimq.2016-

6.05. ISSN: 2255-9922. DOI: 10.7250/csimq.2016-6.05. 2016.

- Parra, O., España, S., Panach, J., Pastor, O.

“An empirical comparative evaluation of gestUI to include gesture-

based interaction in user interfaces”, Under Review in Journal of

Systems and Software, July 2017.

https://csimq-journals.rtu.lv/article/view/csimq.2016-6.05
https://csimq-journals.rtu.lv/article/view/csimq.2016-6.05
http://dx.doi.org/10.7250/csimq.2016-6.05

236

237

 APPENDIX

A CODE-CENTRIC

METHOD FOR

DEVELOP USER

INTERFACES WITH

GESTURE-BASED

INTERACTION

A

 The topics covered in this chapter are:

A.1 Introduction

A.2 The code-centric method

238

239

Appendix A. A code-centric method for develop user

interfaces with gesture-based interaction

A.1 Introduction

This appendix presents the description of a code-centric method for

develop user interfaces with gesture-based interaction.

Figure 76 shows the user interface development life cycle for this

method. In this case, we start from existing activities and products

(represented by means of colour grey) used to develop interfaces that

must be enhanced to support gesture-based interaction and a set of

new activities and products (represented by means of the colour

white) that deal explicitly with the gesture-based interaction. In the

following section we describe proposed activities and products of this

method.

A.2 The code-centric method

The code-centric method consists in a set of tasks [29] (e.g.

conceptualization and requirements gathering, analysis and functional

description, design, coding, testing and deployment) related with the

implementation of a software system using a programming language

and a tool where software engineers work entirely by editing source

code (e.g. Microsoft Visual Studio, Eclipse Window Builder, NetBeans,

etc.).

An example of this method is the process to develop a user interface

by means of Eclipse SWT Designer (Window Builder) [162]. This toolkit

does not include components to define custom gestures nor to include

gesture-based interaction. SWT works under the assumption that the

user interface is already implemented and the developer writes

additional source code containing gesture-based interaction.

240

The set of activities to perform with the aim of including gesture-based

interaction in an existing source code through the code-centric

method (Figure 76) is detailed in the following paragraphs:

Figure 76. A code-centric method for develop user interfaces with gesture-based
interaction

1. Activity C1: this activity allows software engineers to define the

gestures requirement specification (by means of a language to

specify requirements, e.g. text) which makes up the gesture

241

catalogue and the actions to be performed using said gesture

catalogue. The product obtained in this process is a requirements

document containing the specification of the interaction between

gestures and actions included in a user interface.

2. Activity C2: this activity permits software engineers to select the

user interface to include the gesture-based interaction according

to the aforementioned requirements specification, then he/she

analyses the source code of the selected user interface with the

aim of determining the actions included in the user interface

source code. The software engineer defines the gesture-action

correspondence by specifying the gesture that allows the

execution of an action included in the user interface.

3. Activity C3: this activity allows software engineers to specify, by

means of XML language each gesture included in the requirements

document of the gesture catalogue. This gestures specification is

required in order to be supported by the gesture recognizer

algorithm. In this work we use $N [126] as the gesture recognizer.

The product obtained in this step is the gesture catalogue

specification written in XML.

4. Activity C4: in this activity the software engineer implements the

methods needed to execute the actions specified with the

previously defined gestures, that is, the software engineer

combines two products (i) gesture-based interaction source code

and (ii) gesture catalogue specification in order to obtain the

gesture-based user interface. The product obtained in this last

step is the user interface source code including gesture-based

interaction.

5. Activity C5: this permits testing gestures using existing frameworks

(e.g. quill, iGesture, $N). The gesture catalogue is generated

according to the gesture definition of each framework, hence the

users sketch gestures in order to test them.

There are activities represented in Figure 76 (e.g. “Implement

interface”, “Interface design”) whose functionality is included in the

process of development of user interfaces using some tools available.

These activities are not described in this Appendix because we

consider that these activities belong to traditional development

242

methods for obtaining user interfaces by using typical development

tools.

When a software engineer employs a code-centric method to include

gesture-based interaction some of the following problems are

involved [117] [118] [119]: (i) the software engineer has two options

to obtain the source code: writing the methods required to implement

the software from scratch or adapting existing source code; (ii) the

gesture specification is not multi-platform; (iii) it is hard to reuse the

source code to support gesture-based interaction in other platforms;

(iv) software engineers require skills in the programming language of

each platform employed in the implementation of IS user interfaces;

(v) in some cases, the IDE is not available in all platforms required by

users.

This thesis proposes a method that pretends to help to solve these

problems.

243

References

[1] J. v. Biljon and P. Kotzé, “Modelling the Factors that Influence Mobile
Phone Adoption,” Proceedings of the 2007 annual research
conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, pp.
152-161, 2007.

[2] G. Dapper and P. Egbert, “A gestural interface to free-form
deformation,” Proceedings of Graphics Interface, pp. 113-220, 2003.

[3] D. Wigdor and D. Wixon, Brave NUI World: Designing Natural User
Interfaces for Touch and Gesture, UK: Morgan Kaufmann Publishers -
Elsevier, 2011.

[4] E. v. d. Hoven and A. Mazalek, “Grasping gestures: Gesturing with
physical artifacts,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, vol. 25, no. 3, pp. 255-271, 2011.

[5] T. Schlomer, B. Poppinga, N. Henze and S. Boll, “Gesture Recognition
with a Wii Controller,” in Proceedings of the Second International
Conference on Tangible and Embedded Interaction, Bonn, Germany,
2008.

[6] J. Yao, T. Fernando and H. Wang, “A multi-touch natural user interface
framework,” International Conference on Systems and Informatics
(ICSAI), pp. 499-504, 2012.

[7] D. Rubine, “Specifying gesture by example,” ACM SIGGRAPH
Computer Graphics, vol. 25, no. 4, pp. 329-337, 1991.

[8] D. Saffer, Designing Gestural Interfaces, USA: O'Reilly Media Inc.,
2009.

[9] P. Kortum, HCI Beyond the GUI: Design for Haptic, Speech, Olfatory,
and Other Nontraditional Interfaces, USA: Morgan Kaufmann
Publishers, 2008.

[10] M. Bhuiyan and R. Picking, “A Gesture Controlled User Interface for
Inclusive Design and Evaluative Study of Its Usability,” in Journal of
Software Engineering and Applications, 2011.

[11] M. Karam and M. C. Schraefel, “A taxonomy of Gestures in Human
Computer Interaction,” ACM Transactions on Computer-Human
Interactions, pp. 1-45, 2005.

[12] J. Yang, Y. Xu and C. S. Chen, “Gesture interface: modeling and
learning,” Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, vol. 2, no. 4, pp. 1747-1752, 1994.

244

[13] Fujitsu Laboratories Ltd., “Fujitsu Laboratories Develops Ring-Type
Wearable Device Capable of Text Input by Fingertip,” 13 01 2015.
[Online]. Available:
http://www.fujitsu.com/global/about/resources/news/press-
releases/2015/0113-01.html. [Accessed 22 10 2016].

[14] Y. Song, D. Demirdjian and R. Davis, “Continuous body and hand
gesture recognition for natural human-computer interaction,”
Journal ACM Transactions on Interactive Intelligent Systems (TiiS) -
Special Issue on Affective Interaction in Natural Environments, vol. 2,
no. 1, pp. 1-25, 2012.

[15] Y. Song, D. Demirdjian and R. Davis, “Tracking body and hands for
gesture recognition: NATOPS aircraft handling signals database,” in
Face and Gesture 2011, Santa Barbara, CA, 2011.

[16] S. Kim, Y. Ban and S. Lee, “Tracking and Classification of In-Air Hand
Gesture Based on Thermal Guided Joint Filter,” Sensors, vol. 17, no. 1,
pp. 1-20, 2017.

[17] P. Cardoso, J. Rodrigues, S. L., A. Mazayev, E. Ey, T. Correa and M.
Saleiro, “A Freehand System for the Management of Orders Picking
and Loading of Vehicles,” Universal Access in Human-Computer
Interaction. Access to the Human Environment and Culture. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9178,
pp. 422-431, 2015.

[18] A. Weiss, M. Bader, M. Vincze, G. Hasenhütl and S. Moritsch,
“Designing a service robot for public space: an action and
experiences-approach,” in Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction - HRI '14,
Bielefeld, Germany, 2014.

[19] S. Tan and A. Nareyek, “Integrating facial, gesture, and posture
emotion expression for a 3D virtual agent,” in Proceedings of the 14th
International Conference on Computer Games: AI, Animation, Mobile,
Interactive Multimedia, Educational & Serious Games, 2009.

[20] L. Corral, A. Sillitti and G. Succi, “Mobile multiplatform development:
An experiment for performance analysis,” Procedia Computer Science
- Elsevier, vol. 10, pp. 736-743, 2012.

[21] J. Folks, “Using Microsoft Visual Studio to Create a Graphical User
interface,” 03 04 2015. [Online]. Available:
http://www.egr.msu.edu/classes/ece480/capstone/spring15/group
11/doc/AppNote/ECE480_AppNotes_JoshuaFolks.pdf. [Accessed 17
01 2017].

245

[22] D. Gallardo, E. Burnette and R. McGovern, Eclipse in Action. A guide
for Java developers, Greenwich: Manning Publications Co., 2003.

[23] G. Meixner, G. Calvary and J. Coutaz, “Introduction to Model-Based
User Interface,” December 2013. [Online]. Available:
http://www.w3.org/2011/mbui/drafts/mbui-intro/. [Accessed 21 02
2014].

[24] M. Hesenius, T. Griebe, S. Gries and V. Gruhn, “Automating UI Tests
for Mobile Applications with Formal Gesture Descriptions,” Proc. of
16th Conf. on Human-computer interaction with mobile devices &
services, pp. 213-222, 2014.

[25] S. H. Khandkar, S. M. Sohan, J. Sillito and F. Maurer, “Tool support for
testing complex multi-touch gestures,” in ACM International
Conference on Interactive Tabletops and Surfaces, ITS'10, NY, USA,
2010.

[26] N. Aquino, J.Vanderdonckt, J. I. Panach and O. Pastor, “Conceptual
Modeling of Interaction,” in Handbook of Conceptual Modeling.
Theory, Practice, and Research Challenges, Springer , 2011, pp. 335-
358.

[27] P. E. Papotti, A. F. do Prado, W. Lopes de Souza, C. E. Cirilo and L.
Ferreira Pires, “A Quantitative Analysis of Model-Driven Code
Generation through Software Experimentation,” Proceedings of 25th
International Conference CAiSE 2013, vol. LNCS 7908, pp. 321-337,
2013.

[28] S. Beydeda and V. G. M. Book, Model-Driven Software Development,
Springer, 2005.

[29] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[30] R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, Enschede, The Netherlands: Springer-
Verlag New York Inc., 2014.

[31] R. Wieringa, “Design science methodology: principles and practice,”
in Proceeding of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, Cape Town, South Africa, 2010.

[32] F. Paternó, “Model-based tools for pervasive usability,” Interacting
with Computers, vol. 17, no. 3, pp. 291-315, 2005.

[33] A. Hevner, S. March, J. Park and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75-
105, 2004.

246

[34] T. Lukman and M. Mernik, “Model-Driven Engineering and its
Introduction with Metamodeling Tools,” in 9th International PhD
Workshop on Systems and Control, Slovenia, 2008.

[35] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE
Computer Society, vol. 20, no. 5, pp. 19-25, 2003.

[36] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and
Soul of Model-Driven Software Development,” Software IEEE , vol. 20,
no. 5, pp. 42-45, 2003.

[37] K. Tripathi, “A Study of Interactivity in Human Computer Interaction,”
International Journal of Computer Applications, vol. 16, no. 6, pp. 4-6,
2011.

[38] F. Karray, M. Alemzadeh, J. Saleh and M. Arab, “Human Computer
Interaction: Overview on State of the Art,” INTERNATIONAL JOURNAL
ON SMART SENSING AND INTELLIGENT SYSTEMS, pp. 137-159, 2008.

[39] Oxford University, Oxford Paperback Dictionary and Thesaurus,
London, UK: Oxford University Press, 2009.

[40] B. Altakrouri and A. Schrader, “Describing movements for motion
gestures,” in 1st International Workshop on Engineering Gestures for
Multimodal Interfaces - EGMI 2014, Rome, Italy, 2014.

[41] N. Gillian and J. Paradiso, “The Gesture Recognition Toolkit,” Journal
of Machine Learning Research, vol. 15, pp. 3483-3487, 2014.

[42] M. Kaushik and R. Jain, “Gesture Based Interaction NUI: An
Overview,” International Journal of Engineering Trends and
Technology (IJETT), vol. 9, no. 12, pp. 633-636, 2014.

[43] Apple, “Event Handling Guide for iOS,” 28 01 2013. [Online].
Available:
https://developer.apple.com/library/ios/documentation/EventHand
ling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.p
df. [Accessed 26 04 2014].

[44] Z. Fitz-Walter, S. Jones and D. Tjondronegoro, “Detecting Gesture
Force Peaks for Intuitive Interaction,” in Proceedings of the 5th
Australasian Conference on Interactive Entertainment - IE '08,
Brisbane, Australia, 2008.

[45] M. Nacenta, Y. Kamber, Y. Qiang and P. Kristensson, “Memorability of
Pre-designed & User-defined Gesture Sets,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI
2013, Paris, France, 2013.

[46] U. Oh and L. Findlater, “The challenges and potential of end-user
gesture customization Factors in Computing Systems,” in Proceedings
of the SIGCHI Conference on Human , Paris, France, 2013.

247

[47] S. Zhai, P. Kristensson, C. Appert, T. Andersen and X. Cao,
“Foundational Issues in Touch-Screen Stroke Gesture Design - An
Integrative Review,” Foundations and Trends in Human-Computer
Interaction, vol. 5, no. 2, pp. 97-205, 2012.

[48] B. Signer, U. Kurmann and M. Norrie, “iGesture: A General Gesture
Recognition Framework,” in 9th Conf. on Document Analysis and
Recognition, Brazil, 2007.

[49] D. Willems, R. Niels, M. van Gerven and L. Vuurpijl, “Iconic and multi-
stroke gesture recognition,” Pattern Recognition, vol. 42, no. 12, pp.
3303-3312, 2009.

[50] L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke
Recognizer for User Interface Prototypes,” Proceedings of Graphics
Interface (GI '10), pp. pp. 245-252, 2010.

[51] J. Wobbrock, A. Wilson and Y. Li, “Gestures without Libraries, Toolkits
or Training: A $1 Recognizer for User Interface Prototypes,” in
Proceedings of ACM Symposium on User Interface Software and
Technology - UIST 2007, Newport, Rhode Island, USA, 2007.

[52] J. Wobbrock and L. Anthony, “$N-protractor: A fast and accurate
multistroke recognizer,” in Proceedings of the 38th Graphics Interface
Conference, GI 2012, Toronto, ON, Canada, 2012.

[53] R. Vatavu, L. Anthony and J. Wobbrock, “Gestures as Point Clouds: A
$P Recognizer for User Interface Prototypes,” in ICMI'12, Santa
Monica, California, USA, 2012.

[54] S. Swigart, “Easily Write Custom Gesture Recognizers for Your Tablet
PC Applications,” 11 2005. [Online]. Available:
https://msdn.microsoft.com/en-us/library/aa480673.aspx.
[Accessed 25 03 2016].

[55] W. Liu, “Natural user interface- next mainstream product user
interface,” IEEE 11th International Conference on Computer-Aided
Industrial Design & Conceptual Design (CAIDCD), vol. 1, pp. 203-205,
2010.

[56] P. Zheng and L. Ni, Smartphone and Next Generation Mobile
Computing, San Francisco, USA: Elsevier, 2006.

[57] J. Miller and J. Mukerji, MDA Guide version 1.0.1, OMG, 2003.

[58] O. DRAFT, “The MDA Foundation Model,” FRI Camb AB Edits, 2010.

[59] A. Kleppe, J. Warmet and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, USA: Addison Wesley, 2003.

[60] P. Mohagheghi, V. Dehlen and T. Neple, “Definitions and Approaches
to Model Quality in Model-Based software development - A review of

248

literature,” in Information and Software Technology Journal,
Butterworth-Heinemann Newton, MA, USA, 2009.

[61] S. Mellor, S. Kendall, A. Uhl and D. Weise, MDA Distilled. Principles of
Model-Driven Architecture, Addison-Wesley Professional, 2004.

[62] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Future of Software Engineering
(FOSE'07), Minneapolis, MN, 2007.

[63] N. Koch, “Transformation techniques in the model-driven
development process of UWE,” in Proceedings of the sixth
international conference on Web engineering - ICWE '06, Palo Alto,
California, USA, 2006.

[64] J. Tolvanen and S. Kelly, “Model-Driven Development Challenges and
Solutions - Experiences with Domain-Specific Modelling in Industry,”
in Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2016), 2016.

[65] M. Asadi, M. Ravakhah and R. Ramsin, “An MDA-based System
Development Lifecycle,” IEEE Computer Society - Second Asia
International Conference on Modelling & Simulation, pp. 836-842,
2008.

[66] N. Chungoora, R. Young, G. Gunendran, C. Palmer, Z. Usman, N.
Anjum, A. Cutting-Decelle, J. Harding and K. Case, “A model-driven
ontology approach for manufacturing system interoperability and
knowledge sharing,” Computers in Industry Journal , vol. 64, no. 4, pp.
392-401, 2013.

[67] A. Kriouile, T. Gadi and Y. Balouki, “CIM to PIM Transformation: A
criteria Based Evaluation,” International Journal on Computer
Technology & Applications, vol. 4, no. 4, pp. 616-625, 2013.

[68] I. Kurtev, “State of the Art of QVT: A Model Transformation Language
Standard,” Applications of Graph Transformations with Industrial
Relevance, vol. 5088, pp. 377-393, 2008.

[69] S. Deelstra, M. Sinnema, J. v. Gurp and J. Bosch, “Model Driven
Architecture as Approach to Manage Variability in Software Product
Families,” in Proceedings of the Workshop on Model Driven
Architectures: Foundations and Applications, 2003.

[70] J. Gray, Y. Lin and J. Zhang, “Automating Change Evolution in Model-
Driven Engineering,” Computer, vol. 39, no. 2, pp. 51-58, 2006.

[71] O. M. G. -. OMG, “MOF Model to Text Transformation Language,
v1.0,” Object Management Group Inc., 2008.

[72] A. Manoli, J. Muñoz, V. Pelechano and O. Pastor, “Model to Text
Transformation in Practice: Generating Code from Rich Associations

249

Specifications,” Lecture Notes in Computer Science - Springer -
Advances in Conceptual Modeling - Theory and Practice, vol. Volume
4231, pp. pp 63-72, 2006.

[73] L. Rose, N. Matragkas, D. Kolovos and R. Paige, “A Feature Model for
Model-to-Text Transformation Languages,” in MiSE 2012, Zurich,
2012.

[74] L. D. Spano, A. Cisternino and F. Paternó, “A Compositional Model for
Gesture Definition,” Proceedings of the 4th International Conference
HCSE-2012, pp. 34-52, 2012.

[75] A. Lascarides and M. Stone, “Formal Semantics for Iconic Gesture,” in
Proceedings of brandial'06, the 10th International Workshop on the
Semantics and Pragmatics of Dialogue (SemDial10), 2006.

[76] G. Giorgolo, “A Formal Semantics for Iconic Spatial Gestures,” Logic,
Language and Meaning, Vols. Lecture Notes in Computer Science, vol
6042 , pp. 305-314, 2010.

[77] K. Kin, B. Hartmann, T. DeRose and M. Agrawala, “Proton: Multitouch
Gestures as Regular Expressions,” Proceedings of the SIGCHI
Conference on Human Factors in Computing System - CHI'12, pp.
2885-2894, 2012.

[78] K. Kin, B. Hartmann, T. DeRose and M. Agrawala, “Proton++: A
Customizable Declarative Multitouch Framework,” Proceedings of
UIST 2012, pp. 477-486, 2012.

[79] L. Spano, A. Cisternino, F. Paternó and G. Fenu, “GestIT: A Declarative
and Compositional Framework for Multiplatform Gesture Definition,”
in Proceedings of the 5th ACM SIGCHI symposium on Engineering
interactive computing systems - EICS '13, London, United Kingdom,
2013.

[80] B. Puype, Extending the iGesture Framework with Multimodal
Gesture Interaction Functionality, Vrije Universiteit Brussel, 2010.

[81] Ideum, “GestureML,” 13 12 2016. [Online]. Available:
http://www.gestureml.org/doku.php. [Accessed 05 07 2017].

[82] M. Görg, M. Cebulla and S. Rodriguez, “A framework for abstract
representation and recognition of gestures in multi-touch
applications,” in 3rd International Conference on Advances in
Computer-Human Interactions, ACHI 2010, 2010.

[83] T. Hachaj and M. Ogiela, “Semantic Description and Recognition of
Human Body Poses and Movement Sequences with Gesture
Description Language,” in Computer Applications for Bio-technology,
Multimedia, and Ubiquitous City, 2012.

250

[84] N. Group, “wiki.nuigroup.com/Gesture_Recognition,” 27 10 2009.
[Online]. Available: wiki.nuigroup.com/Gesture_Recognition.
[Accessed 10 07 2016].

[85] D. Kammer, J. Wojdziak, M. Keck, R. Groh and S. Taranko, “Towards a
formalization of multi-touch gesture,” ACM International Conference
on Interactive Tabletops and Surfaces - ITS'10, vol. 3/94, pp. 49-58,
2010.

[86] H. Lü and Y. Li, “Gesture Coder : A Tool for Programming Multi-Touch
Gestures by Demonstration,” in CHI 2012: ACM Conference on Human
Factors in Computing Systems, 2012.

[87] H. Lü, M. Negulescu and Y. Li, “Gesturemote : Interacting with Remote
Displays through Touch Gestures,” in Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces - AVI
'14, Como, Italy, 2014.

[88] S. Ruffieux, D. Lalanne, E. Mugellini and O. A. Khaled, “Gesture
recognition corpora and tools: A scripted ground truthing method,”
Computer Vision and Image Understanding, vol. 131, pp. 72-87, 2015.

[89] A. C. Long, J. A. Landay and L. A. Rowe, “quill: A Gesture Design Tool
for Pen-based User Interfaces,” 2009.

[90] F. Beuvens and J. Vanderdonckt, “Designing Graphical User Interfaces
Integrating Gestures,” Proceedings of the SIGDOC'12, pp. 313-322,
2012.

[91] M. Guimaraes, V. Farinazzo and J. Ferreira, “A Software Development
Process Model for Gesture-Based Interface,” in IEEE International
Conference on Systems, Man, and Cybernetics, Seoul, Korea, 2012.

[92] M. Nielsen, M. Storring, T. Moeslund and E. Granum, “A Procedure
for Developing Intuitive and Ergonomic Gesture Interfaces for Man-
Machine Interaction,” Aalborg University, Aalborg, Denmark, 2003.

[93] A. Bragdon, R. Zeleznik, B. Williamson, T. Miller and L. J., “GestureBar:
Improving the Approachability of Gesture-based Interfaces,” in
Proceedings of the 27th international conference on Human factors in
computing systems - CHI 09, Boston, MA, USA, 2009.

[94] O. Pastor and J. C. Molina, Model-Driven Architecture in Practice. A
Software Production Environment Based on Conceptual Modeling,
Spain: Springer, 2007.

[95] R. Deshayes, C. Jacquet, C. Hardebolle, F. Boulanger and T. Mens,
“Heterogeneous modeling of gesture-based 3D applications,” in
Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, 2012.

251

[96] J. Coutaz and G. Calvary, “HCI and Software Engineering for User
Interface Plasticity,” in The Human-Computer Handbook -
Fundamentals, Evolving Technologies, and Emerging Applications,
Julie, A. Jacko ed., CRC Press Taylor and Francis Group, 2012, pp.
1195-1220.

[97] G. Calvary, D.-P. A., A. Occello, R.-G. P. and M. Riveill, “At the Cross-
Roads between Human-Computer Interaction and Model-Driven
Engineering,” ARPN Journal of Systems and Software, vol. 4, no. 3, pp.
64-76, 2014.

[98] Q. V. J. M. B. B. L. F. M. T. D. Limbourg, “UsiXML: A User Interface
Description Language for Context-Sensitive User Interfaces,” in
Proceedings of the ACM AVI'2004 Workshop "Developing User
Interfaces with XML: Advances on User Interface Description
Languages", 2004.

[99] G. Mori, F. Paternó and C. Santoro, “CTTE: Support for Developing and
Analyzing Task Models for Interactive System Design,” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 28, no. 8, pp. 797-
813, 2002.

[100] F. Valverde, J. I. Panach and O. Pastor, “An Abstract Interaction Model
of a MDA Software Production Method,” in Twenty-Sixth
International Conference on Conceptual Modeling - ER 2007 -
Tutorials, Posters, Panels and Industrial Contributions, Auckland, New
Zeland, 2007.

[101] J. Vanderdonckt, “A MDA-Compliant Environment for Developing
User Interfaces of Information Systems,” Advanced Information
Systems Engineering LNCS in Computer Science, vol. 3520, pp. 16-31,
2005.

[102] J. Vanderdonckt, “Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges,” in ROCHI'08, Iasi,
Romania, 2008.

[103] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J.
Vanderdonckt, “A Unifying Reference Framework for multi-target
user interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289-
308, 2003.

[104] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët and R. Barendse, “A
Comparative Case Study of Model Driven Development vs Traditional
Development: The Tortoise or the Hare,” in 4th European Workshop
on "From code centric to model centric software engineering:
Practices, Implications and ROI, Enschede, The Netherlans, 2009.

[105] C. Bunse, H. Gross and C. Peper, “Embedded System Construction -
Evaluation of Model-Driven and Component-Based Development

252

Approaches,” in M. R. Chaudron (Ed.) Models in Software Engineering:
Workshops and Symposia at MODELS 2008, Heidelberg, Springer,
2009, pp. 66-77.

[106] F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini and M. Torchiano,
“Using UniMod for Maintenance Tasks: An Experimental Assessment
in the Context of Model Driven Development,” in Proceedings on 4th
International Workshop on Modeling in Software Engineering (MiSE),
Zurich, Switzerland, 2012.

[107] N. Condori-Fernandez, J. I. Panach, A. I. Baars, T. Vos and O. Pastor,
“An empirical approach for evaluating the usability of model-driven
tools,” Science of Computer Programming, vol. 78, pp. 2245-2258,
2013.

[108] Y. Martinez, C. Cachero and S. Meliá, “Evaluating the Impact of a
Model-Driven Web Engineering Approach on the Productivity and the
Satisfaction of Software Development Teams,” Proceedings of 12th
International Conference Web Engineering - ICWE 2012, vol. LNCS
7387, pp. 223-237, 2012.

[109] Y. Martinez, C. Cachero and S. Melia, “MDD vs Traditional Software
Development: a practitioner subjective perspective,” Information and
Software Technology, vol. 55, no. 2, pp. 189-200, 2013.

[110] Y. Martinez, C. C. and S. Meliá, “Empirical study on the maintainability
of Web applications: Model-driven Engineering vs Code-centric,”
Empirical Software Engineering, vol. 19, pp. 1887-1920, 2014.

[111] M. Cervera, M. Albert, V. Torres and V. Pelechano, “On the usefulness
and ease of use of a model-driven Method Engineering approach,”
Information and Software Technology, vol. 50, pp. 36-50, 2015.

[112] J. I. Panach, S. España, O. Dieste, O. Pastor and N. Juristo, “In search
of evidence for model-driven development claims: An experiment on
quality, effort, productivity and satisfaction,” Information and
Software Engineering, vol. 62, no. C, pp. 164-186, 2015.

[113] M. Morales-Trujillo, H. Oktaba and M. Piattini, “Using Technical-
Action-Research to Validate a Framework for Authoring Software
Engineering Methods,” in Proceedings of the 17th International
Conference on Enterprise Information Systems, 2015.

[114] A. Morali and R. Wieringa, “Risk-based confidentiality requirements
specification for outsourced IT systems,” in Proc. 2010 18th IEEE Int.
Requir. Eng. Conf. RE2010, 2010.

[115] U. Abelein, “User-Developer Communication in Large Scale IT
Projects,” Heidelberg University, 2015.

[116] V. Antinyan, M. Staron and A. Sandberg, “Validating Software
Measures Using Action Research A Method and Industrial

253

Experiences,” in Proceedings of the 17th International Conference on
Enterprise Information Systems, 2016.

[117] A. Milicevic, D. Jackson, M. Gligoric and D. Marinov, “Model-based,
Event-Driven Programming Paradigm for Interactive Web
Applications,” in OnWard! 2013, Indiana, USA, 2013.

[118] S. Sim and R. Gallardo-Valencia, “Introduction: Remixing Snippets and
Reusing Components,” in Finding Source Code on the Web for Remix
and Reuse, New York, Springer Science+Business, 2013, p. 348.

[119] J. Farrell, An Object-Oriented Approach to Programming Logic and
Design, Boston: Course Technology, 2013.

[120] S. Mellor, A. Clark and T. Futagami, “Guest Editor'Introduction:
Model-Driven Development,” IEEE Software, vol. 20, no. 5, pp. 14-18,
2003.

[121] C. Atkinson and T. Kuhne, “Model-Driven Development: A
Metamodeling Foundation,” IEEE Software, vol. 20, no. 5, pp. 36-41,
2003.

[122] D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in mobile
Applications,” JOURNAL OF COMPUTING, vol. 2, no. 1, pp. 65-72,
2010.

[123] S. S. Hasan and R. K. Isaac, “An integrated approach of MAS-
CommonKADS, Model-View-Controller and web application
optimization strategies for web-based expert system development,”
Expert Systems with Applications, vol. 38, pp. 417-428, 2011.

[124] F. Buschmann, R. Meunier, H. Rohnert and P. Sommerlad, Pattern-
oriented Software Architecture. A System of Patterns, England: John
Wiley and Sons Inc., 2001.

[125] O. Parra, S. España and O. Pastor, “Including multi-stroke gesture-
based interaction in user interfaces using a model-driven method,” in
Proceedings of the XVI International Conference on Human Computer
Interaction - INTERACCION '15, Vilanova i la Geltrú (Barcelona), 2015.

[126] L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke
Recognizer for User Interface Prototypes,” Proc. of Graphics Interface,
pp. 245-252, 2010.

[127] M. Teimourikia, S. Comai, H. Saidinejad and F. Salice, “Personalized
Hand Pose and Gesture Recognition System for the Elderly,” in
Universal Access in Human-Computer Interaction. Aging and Assistive
Environments, Springer, 2014, pp. 191-202.

[128] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya and V. Vasudevan,
“uWave: Accelerometer-based personalized gesture recognition and

254

its applications,” in IEEE International Conference on Pervasive
Computing and Communications, Galveston, TX, 2009.

[129] C. Rolland, “Capturing System Intentionally with Maps,” Conceptual
Modeling in Information Systems Engineering, pp. 141-158, 2007.

[130] P. Soffer and C. Rolland, “Combining Intention-Oriented and State-
Based Process Modeling,” in Proceedings Conceptual Modeling -
ER2005, 2005.

[131] K. Krugler, “Krugle Code Search Architecture,” in Finding Source Code
on the Web for Remix and Reuse, New York, USA, Springer
Science+Business, 2013, p. 348.

[132] I. Sommerville, Software Engineering, Boston, USA: Addison-Wesley,
2011.

[133] D. Moody, “The Method Evaluation Model: A Theoretical Model for
Validating Information Systems Design Methods,” in ECIS 2003
Proceedings, Naples, Italy, 2003.

[134] ISO/IEC, “Ergonomics of human-system interaction,” 28 09 2015.
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:9241:-
210:ed-1:v1:en. [Accessed 10 11 2016].

[135] ISO/IEC/JTC 1/SC 7, ISO/IEC 25062:2006, Software engineering -
Software product Quality Requirements and Evaluation (SQuaRE) -
Common Industry Format (CIF) for usability test reports, Geneva: ISO,
2006.

[136] E. de Queiroz, J. Fechine and A. Barbosa, “Towards a
multidimensional approach for the evaluation of multimodal
application user interfaces,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2009.

[137] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance,” MIS Quarterly, vol. 13, pp. 319-339, 1989.

[138] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell and A.
Wesslèn, Experimentation in Software Engineering, Berlin: Springer,
2012.

[139] N. Juristo and A. Moreno, Basics of Software Engineering
Experimentation, Springer US, 2001.

[140] D. Kieras, “Using the Keystroke-Level Model to Estimate Execution
Times,” University of Michigan, Michigan, USA, 2001.

[141] S. Card, A. Newell and T. Moran, The Psychology of Human-Computer
Interaction, Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1983.

[142] J. H. Kim and R. C. Miller, “6.813/6.831 User Interface Design,” MIT,
02 09 2009. [Online]. Available:

255

http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictive-
evaluation/klm.shtml. [Accessed 28 10 2015].

[143] P. Runeson, “Using Students as Experiment Subjects – An Analysis on
Graduate and Freshmen Student Data,” Proceedings 7th International
Conference on Empirical Assessment & Evaluation in Software
Engineering, pp. 95-102, 2003.

[144] M. Svahnberg, A. Aurum and C. Wohlin, “Using students as subjects -
an empirical evaluation,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008.

[145] F. Faul, E. Erdfelder, A. G. Lang and A. Buchner, “G*Power3: A flexible
statistical power analysis program for the social, behavioural, and
biomedical sceinces,” Behavior Research Methods, vol. 39, pp. 175-
191, 2007.

[146] K. Maxwell, Applied Statistics for Software Managers, Prentice-Hall,
2011.

[147] H. Boone and D. Boone, “Analyzing Likert Data,” Journal of Extension.
Sharing Knowledge, Enriching Extension, vol. 50, no. 2, 2012.

[148] J. Kotrlik, “The Incorporation of Effect Size in Information Technology,
Learning, and Performance Research,” Information Technology,
Learning, and Performance Journal, vol. 21, no. 1, pp. 1-7, 2003.

[149] D. Lakens, “Calculating and reporting effect sizes to facilitate
cumulative science: a practical primer for t-tests and ANOVAs,”
Frontiers in Psychology, vol. 4, no. Article 863, pp. 1-12, 2013.

[150] R. Wieringa and A. Morali, “Technical Action Research as a Validation
Method in Information Systems Design Science,” in 7th International
Conference - DESRIST 2012, Las Vegas, USA, 2012.

[151] S. Bērziša, G. Bravos, T. Cardona, U. Czubayko, S. España, J. Grabis, M.
Henkel, L. Jokste, J. Kampars, H. Koç, J. Kuhr, C. Llorca, P. Loucopoulos,
R. Juanes, O. Pastor, K. Sandkuhl, H. Simic, J. Stirna, F. Valverde and J.
Zdravkovic, “Capability Driven Development: An Approach to
Designing Digital Enterprises,” in Business & Information Systems
Engineering, 2015.

[152] S. España, T. González, J. Grabis, L. Jokste, R. Juanes and F. Valverde,
“Capability-driven development of a SOA platform: a case study,” in
First International Workshop on Advances in Services DEsign based on
the Notion of CApability (ASDENCA 2014), 2014.

[153] M. Schrepp, A. Hinderks and J. Thomaschewski, “Applying the User
Experience Questionnaire (UEQ) in Different Evaluation Scenarios,”
Proceedings of the Third International Conference, DUXU 2014, Held
as Part of HCI International 2014, vol. 8517, pp. 383-392, 2014.

256

[154] C. Barnum and L. Palmer, “Tapping into Desirability in User
Experience,” in Usability of Complex Information Systems: Evaluation
of User Interaction, Boca Raton FL, CRC Press, 2011, pp. 253-279.

[155] H. Santoso, M. Schrepp, R. Kartono Isal, A. Yudha Utomo and B.
Priyogi, “Measuring User Experience of the Student-Centered e-
Learning Environment,” The Journal of Educators Online-JEO, vol. 13,
no. 1, pp. 58-79, 2016.

[156] M. Rauschenberger, M. Schrepp, M. Pérez Cota, S. Olschner and J.
Thomaschewski, “Efficient Measurement of the User Experience of
Interactive Products. How to use the User Experience Questionnaire
(UEQ).Example: Spanish Language Version,” International Journal of
Artificial Intelligence and Interactive Multimedia, vol. 2, no. 1, pp. 39-
45, 2013.

[157] A. Nawaz, J. L. Helbostad, L. Chiari, F. Chesani and L. Cattelani, “User
Experience (UX) of the Fall Risk Assessment Tool (FRAT-up),” in IEEE
28th International Symposium on Computer-Based Medical Systems,
Sao Carlos, 2015.

[158] B. Laugwitz, T. Held and M. Schrepp, “Construction and Evaluation of
a User Experience Questionnaire,” in HCI and Usability for Education
and Work USAB 2008. Lecture Notes in Computer Science, Berlin,
Heidelberg, 2008.

[159] S. Adikari, C. McDonald and J. Campbell, “Quantitative Analysis of
Desirability in User Experience,” in Australasian Conference on
Information Systems , Adelaide, 2015.

[160] J. Stirna, J. Grabis, M. Henkel and J. Zdravkovic, “Capability Driven
Development – An Approach to Support Evolving Organizations,” in
PoEM 2012, 2012.

[161] T. Merčun, “Evaluation of information visualization techniques:
analysing user experience with reaction cards,” Proceedings of the
Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Visualization, pp. 103-109, 2014.

[162] L. Vogel, Eclipse Rich Client Platform. The complete guide to Eclipse
application development, Lars Vogel, 2015.

[163] P. Kardasis and P. Loucopoulos, “Expressing and organising business
rules,” Information and Software Technology, vol. 46, pp. 701-718,
2004.

[164] S. Jamieson, “Likert scales: How to (ab)use them,” Medical Education,
vol. 38, pp. 1217-1218, 2004.

