
Maria Fernanda Granda

Advisors:
Dra. Nelly Condori-Fernández

Dra. Tanja E. J. Vos
Prof. Dr. Óscar Pastor López

PhD Thesis

Testing-Based Conceptual
Schema Validation in a

Model-Driven Environment

María Fernanda Granda Juca

A thesis submitted in partial fulfilment of the requirements for

the Ph.D. degree by the Universitat Politècnica de València

 Advisors:
 Dra. Nelly Condori-Fernández

 Dra. Tanja E. J. Vos
Prof. Dr. Óscar Pastor López

September 2017

This report was prepared by:

María Fernanda Granda
fgranda@pros.upv.es
PROS Research Centre
Univèrsitat Politècnica de València
Camino de Vera s/n, Edificio 1F, DISC
46022, Valencia, Spain

Advisors

- Dra. Nelly Condori Fernández, Universidade da Coruña, Spain

and Vrije Universitei Amsterdam, The Netherlands
- Dra. Tanja E. J. Vos, Universitat Politècnica de València, Spain
- Prof. Dr. Óscar Pastor, Universitat Politècnica de València,

Spain

External reviewers of the thesis

- Prof. Javier Dolado Cosin, University of the Basque Country,

Spain
- Prof. Haralambos Mouratidis, University of Brighton, United

Kingdom
- Prof. Jolita Ralyté, University of Geneva, Switzerland

Members of the Thesis committee

- President: Prof. Roel Wieringa, University of Twente, The

Netherlands
- Secretary: Prof. Jolita Ralyté, University of Geneva, Switzerland
- Speaker: Prof. Javier Tuya González, University of Oviedo, Spain

mailto:fgranda@pros.upv.es

To God and my family,
For their love, care and support in all my experiencies.

ACKNOWLEDGEMENTS

I am grateful for nights that became mornings, friends who became
family and dreams that became true. Anonymous.

This thesis is the result of several years of hard work, during which I

have received the professional and personal support of many people.

My thanks to all of them.

First of all, I would like to thank my thesis supervisors, Nelly

Condori Fernández, Tanja Vos and Oscar Pastor, for giving me the

opportunity to work with and learn from them. To Nelly, my diary

supervisor, thanks for the knowledge imparted on Requirements and

Empirical Evaluation, for the time dedicated to discussing my doubts

and advances, and demanding me to my utmost. To Tanja, for her

guidance and support in the area of Testing, for her enthusiasm at all

times. To Oscar, for believing in me from the beginning and pointing

me in the right direction in the world of Model-driven Development,

for his friendship and constant interest. To all three for their guidance

and support that have allowed me to get here.

Many thanks to all the people who have collaborated directly with

the development of this thesis. Special thanks to Sergio España and

Marcela Ruiz for allowing me to use their Communication Analysis

method and tool. To the Spanish everis company for allowing me to

evaluate and validate my tool using one of their cases. To Ivette Vilar

and Tania González for their time and valuable comments. To Ignacio

Panach for translating the Abstract into the Valencian language.

To all the colleagues of the PROS research group specially José

Reyes, Carlos Iñiguez, Francisco Valverde, Urko Rueda, Didier Bueno,

Raúl Soriano and Ana Cidad. Thank you for all the good moments.

I'm also going to thank all my friends who helped me disconnect

from work and inspired me with the motivation to move on: Sonia

León, Cristina Castillo, Gloria Mora, Sonia Cárdenas, Mauricio

Loachamin, Julio Sandobalín, Alejandro Catalá, Miguel Zúñiga, Priscila

Andrade, Priscila Cedillo, Freddy Serrano and Angel Cuenca.

Special thanks to Patricia Lago and Nelly Condori-Fernández for

allowing me to take part in their Software and Services group (S2) and

for the useful discussions we had during my stay in the Faculty of

Sciences at the Vrije Universiteit in Amsterdam. Also many thanks to

the rest of the people in the group particularly to Mojca, Maryam,

Damian and Giuseppe.

I also want to thank the reviewers of this thesis for agreeing to be a

part of the court and the external reviewers who will read a

preliminary version of the thesis and suggest improvements.

I want to thank my family for their love, prayers and constant

support, my mother, sisters, mother-in-law, father-in-law, sisters-in

law, brothers-in-law and my nieces and nephews. Finally, and very

important to me, many thanks to my husband Otto and our three

children Maria Paula, Luis Felipe and Maria Emilia for their patience

and understanding in hard times, for supporting me and encouraging

me in all the adventures undertaken, but especially for their

unconditional love and company.

This work has been supported by the Universidad de Cuenca,
and SENESCYT (Secretaría Nacional de Educación Superior, Ciencia y

Tecnología) of the Republic of Ecuador.

ABSTRACT
Despite much scepticism and problems for its adoption, the Model-

Driven Development (MDD) is being used and improved to provide

many inherent benefits for industry. One of its greatest benefits is the

ability to handle the complexity of software development by raising the

abstraction level. Models are expressed using concepts that are not

related to a specific implementation technology (e.g. Unified Modelling

Language -UML, Object Constraint Language –OCL, Action Language for

Foundational UML -ALF), which means that the models can be easier to

specify, maintain and document. As in Model-Driven Engineering

(MDE), the primary artefacts are the conceptual models, efforts are

focused on their creation, testing and evolution at different levels of

abstraction through transformations because if a conceptual schema

has defects, these are passed on to the following stages, including

coding. Thus, one of the challenges for researchers and developers in

Model-Driven Development is being able to identify defects early on, at

the conceptual schema level, as this helps reduce development costs

and improve software quality.

Over the last decade, little research work has been performed in

this area. Some of the causes of this are the high theoretical complexity

of testing conceptual schemas and the lack of adequate software

support. This research area thus admits new methods and techniques,

facing challenges such as generation of test cases using information

external to the conceptual schemas (i.e. requirements), the

measurement of possible automation, selection and prioritization of

test cases, the need for an efficient support tool using standard

semantics, the opportune feedback to support the software quality

assurance process and facilitate making decisions based on the analysis

and interpretation of the results.

The aim of this thesis is to mitigate some of the problems that

affect conceptual schema validation by providing a novel testing-based

validation framework based on Model-Driven Development. The use of

MDD improves abstraction, automation and reuse, which allows us to

alleviate the complexity of our validation framework. Furthermore, by

leveraging MDD techniques (such as metamodeling, model

transformations, and models at runtime), our framework supports four

phases of the testing process: test design, test case generation, test

case execution and the evaluation of the results, unlike traditional

testing approaches, which, in general, only support some of these

phases.

In order to provide software support for our proposal, we

developed the CoSTest ALF-based testing environment. To ensure that

CoSTest offers the necessary functionality, we first identified a set of

functional requirements. Then, after these requirements were

identified, we defined the architecture and testing environment of the

validation framework, and finally we implemented the architecture in

the Eclipse context. CoSTest has been developed to test several

properties on the executable model, such as syntactic correctness (i.e.

all the elements in the model conform to the syntax of the language in

which it is described), consistency between the structural and

behavioural parts (its integrity constraints) and completeness (i.e. all

possible changes on the system state can be performed through the

execution of the operations defined in the executable model). For

defective models, the CoSTest report returns a meaningful feedback

that helps locate and repair any defects detected.

The work involved in the thesis was validated by means of six

studies using cases found in the literature, as well as in a practical

industrial case. The first four studies were laboratory experiments to

validate and evaluate some CoSTest components such as mode-driven

generation of test cases, the mutant generator used to prioritize and

select test cases, as well as the generator of an ALF-based executable

conceptual schema. In the fifth study, the mutation analysis was

applied to evaluate the effectiveness and adequacy of CoSTest’ test

cases when detecting different defects in mutated CSs. In the last

study, CoSTest was assessed by means of the Technology Acceptance

Model (TAM) and the interview method. While the TAM allowed us to

subjectively measure usefulness and ease-of-use, the interview

method allowed us to identify its limitations and consider possible

improvements to be implemented in the tool. Overall, the results were

favourable. CoSTest was highly rated in perceived usefulness and ease-

of-use and also obtained positive results in the effectiveness of test

cases.

RESUM
A pesar de l’escepticisme i les dificultats en la seua adopció, el

Desenvolupament Orientat per Models (MDD, segons les sigles en

anglès) està sent usat i millorat per tal de proveir molts beneficis

potencials inherents a l’ indústria. Un dels majors beneficis és la

capacitat de manejar la complexitat del desenvolupament del

programari elevant el nivell d’abstracció. Els models s’expressen

mitjançant conceptes que no estan relacionats amb una tecnologia

d’implementació específica (per exemple, el Llenguatge de Modelat

Unificat – UML, Llenguatge de Restricció d’Objectes –OCL, Llenguatge

d’Acció per al Foundational UML – ALF), el que significa que els models

poder ser més fàcils d’especificar, mantindre i documentar. A causa de

que en una Enginyeria dirigida per models (MDE), els artefactes

primaris són els models conceptuals, els esforços es centren en la seua

creació, prova i evolució a diferents nivells d’abstracció mitjançant

transformacions, perquè si un esquema conceptual té defectes,

aquestos es passen a les següents etapes, inclosa la codificació. Per

tant, un del reptes per als investigadors i desenvolupadors en MDD és

poder identificar els defectes des del principi, a nivell de esquemes

conceptuals, perquè açò ajudaria a reduir els costos de

desenvolupament i millora de la qualitat del programari.

Durant l’última dècada, pocs treballs d’investigació s’han fet en

aquesta àrea. Algunes de les causes d’aquesta realitat són l’alta

complexitat teòrica de provar esquemes conceptuals i la falta de suport

de programari adequat. Per tant, aquesta àrea d’investigació admet

nous mètodes i tècniques, enfrontant reptes com la generació de casos

de prova mitjançant informació externa als esquemes conceptuals (es a

dir, requisits), la medició de una possible automatització, selecció i

priorització de casos de prova, la necessitat de una ferramenta de

suport rentable que utilitze una semàntica estàndard, la

retroalimentació oportuna per suportar el procés d’assegurament de la

qualitat del programari i la facilitat per a prendre decisions basades en

l’anàlisi i la interpretació dels resultats.

En aquesta tesi intentem mitigar alguns dels problemes que

afecten a la validació dels esquemes conceptuals, proporcionant un

nou marc de validació basat en proves que va ser construït mitjançant

un desenvolupament dirigit per models. L’ús de MDD permet un

augment en l’abstracció, automatització i reutilització que ens permet

alleujar la complexitat del nostre marc de validació. A més a més, al

aprofitar les tècniques MDD (com el metamodelat, les transformacions

de models i els models en temps d’execució), el nostre marc suporta

quatre fases del procés de prova: disseny, generació i execució de

casos de prova, així com l’avaluació de resultats del procés de prova.

Açò és diferent als enfoques de proves tradicionals, que en general

només admiteixen algunes d’estes fases.

Amb la finalitat de proporcionar suport de programari per a la

nostra proposta, hem desenvolupat un entorn de proves basat en el

llenguatge ALF que s’anomena CoSTest. Per tal d’assegurar que

CoSTest ofereix la funcionalitat necessària, identifiquem un conjunt de

requisits funcionals abans de desenvolupar la ferramenta. Després

d’identificar aquestos requisits, definim l’arquitectura i l’ambient de

proves del nostre marc de validació, i finalment, implementem

l’arquitectura en el context Eclipse. CoSTest ha sigut desenvolupat per

provar diverses propietats sobre el model executable com la correcció

sintàctica (és a dir, tots els elements del model s’ajusten a la sintaxi del

llenguatge en el que es descriu), consistència antre la part estructural i

el comportament (les seues restriccions d’integritat) i completitud (és a

dir, tots els canvis possibles en l’estat del sistema es poden realitzar

mitjançant l’execució de les operacions definides en el model

executable). Per als models defectuosos, l’informe de CoSTest retorna

una retroalimentació significativa que ajuda a localitzar i reparar els

defectes detectats.

El treball de tesi va ser avaluat mitjançant sis estudis usant casos

trobats a la literatura, així com un cas industrial. Els quatre primers

varen ser experiments de laboratori per validar y avaluar alguns

components de CoSTest tals com la generació dirigida per models dels

casos de prova, el generador de mutants usat per prioritzar i

seleccionar casos de prova, així com també el generador d’un esquema

conceptual executable basat en ALF. En el quart estudi, es va aplicar

l’anàlisi de mutacions per avaluar l’efectivitat i l’adequació dels casos

de prova de CoSTest al detectar defectes en esquemes conceptuals

mutats amb diferents tipus de defectes. En l’últim estudi, CoSTest va

ser avaluat amb la participació d’usuaris finals mitjançant el Model

d’Acceptació de Tecnologia (TAM) i el mètode d’entrevistes. Mentres

que el TAM ens va permetre mesurar l’ utilitat i facilitat d’ús d’una

manera subjectiva, el mètode d’entrevistes ens va permetre identificar

les limitacions i possibles millores que es poden implementar en la

ferramenta. En general, els resultats varen ser favorables. CoSTest va

ser altament valorat en la utilitat percebuda i la facilitat d’ús; també

varem obtindre resultats positius amb respecte a l’efectivitat dels casos

de prova.

RESUMEN
A pesar del escepticismo y dificultades en su adopción, el

Desarrollo Orientado por Modelos (MDD, por sus siglas en inglés) está

siendo usado y mejorado para proveer muchos beneficios inherentes a

la industria. Uno de sus mayores beneficios es la capacidad de manejar

la complejidad del desarrollo de software elevando el nivel de

abstracción. Los modelos se expresan utilizando conceptos que no

están relacionados con una tecnología de implementación específica

(por ejemplo, Lenguaje de Modelado Unificado -UML, Lenguaje de

Restricción de Objetos -OCL, Lenguaje de Acción para el Foundational

UML - ALF), lo que significa que los modelos pueden ser más fáciles de

especificar, mantener y documentar. Debido a que en una Ingeniería

dirigida por modelos (MDE), los artefactos primarios son los modelos

conceptuales, los esfuerzos se centran en su creación, prueba y

evolución a diferentes niveles de abstracción a través de

transformaciones, porque si un esquema conceptual tiene defectos,

éstos se pasan a las siguientes etapas, incluida la codificación. Por lo

tanto, uno de los retos para los investigadores y desarrolladores in

MDD es poder identificar los defectos temprano, a nivel de esquemas

conceptuales, ya que esto ayudaría a reducir los costos de desarrollo y

mejorar la calidad del software.

Durante la última década, pocos trabajos de investigación se han

realizado en esta área. Algunas de las causas de esta realidad son la

alta complejidad teórica de probar esquemas conceptuales y la falta de

soporte de software adecuado. Por lo tanto, este área de investigación

admite nuevos métodos y técnicas, enfrentando retos como la

generación de casos de prueba utilizando información externa a los

esquemas conceptuales (es decir, los requisitos), la medición de una

posible automatización, selección y priorización de casos de prueba, la

necesidad de una herramienta de soporte eficiente que utilice una

semántica estándar, la retroalimentación oportuna para apoyar el

proceso de aseguramiento de la calidad del software y facilitar la toma

de decisiones basadas en el análisis y la interpretación de los

resultados.

El objetivo de esta tesis es mitigar algunos de los problemas que

afectan la validación de los esquemas conceptuales, proporcionando

un nuevo marco de validación basado en pruebas que fue construido

usando un desarrollo dirigido por modelos. El uso de MDD permite un

aumento en la abstracción, automatización y reutilización que nos

permite aliviar la complejidad de nuestro marco de validación. Además,

al aprovechar las técnicas MDD (como el metamodelado, las

transformaciones de modelos y los modelos en tiempo de ejecución),

nuestro marco soporta cuatro fases del proceso de prueba: diseño de

pruebas, generación de casos de prueba, ejecución de casos de prueba

y la evaluación de los resultados. Esto es diferente a los enfoques de

pruebas tradicionales, que, en general, sólo admiten algunas de estas

fases.

Con el fin de proporcionar soporte de software para nuestra

propuesta, hemos desarrollado CoSTest, un entorno de pruebas

basado en el lenguaje ALF. Para asegurar que CoSTest ofrece la

funcionalidad necesaria, primero identificamos un conjunto de

requisitos funcionales. Luego, después de identificar estos requisitos,

definimos la arquitectura y el ambiente de pruebas de nuestro marco

de validación y, finalmente, implementamos la arquitectura en el

contexto de Eclipse. CoSTest ha sido desarrollado para probar varias

propiedades sobre el modelo ejecutable como la corrección sintáctica

(es decir, todos los elementos del modelo se ajustan a la sintaxis del

lenguaje en el que se describe), consistencia entre la parte estructural

y el comportamiento (sus restricciones de integridad) y completitud (es

decir, todos los cambios posibles en el estado del sistema se pueden

realizar a través de la ejecución de las operaciones definidas en el

modelo ejecutable). Para los modelos defectuosos, el informe de

CoSTest devuelve una retroalimentación significativa que ayuda a

localizar y reparar los defectos detectados.

El trabajo involucrado en la tesis fue validado mediante seis

estudios usando casos encontrados en la literatura, así como un caso

industrial. Los cuatro primeros fueron experimentos de laboratorio

para validar y evaluar algunos componentes de CoSTest tales como la

generación dirigida por modelos de los casos de prueba, el generador

de mutantes usado para priorizar y seleccionar casos de prueba, así

como también el generador de un esquema conceptual ejecutable

basado en ALF. En el quinto estudio, se aplicó el análisis de mutaciones

para evaluar la efectividad y la adecuación de los casos de prueba de

CoSTest al detectar defectos en esquema conceptuales mutados con

diferentes tipos de defectos. En el último estudio, CoSTest fue

evaluado con la participación de usuarios finales a través del Modelo

de Aceptación de Tecnología (TAM) y el método de entrevista.

Mientras que el TAM nos permitió medir la utilidad y facilidad de uso

de una manera subjetiva, el método de entrevista nos permitió

identificar las limitaciones y posibles mejoras que se pueden

implementar en la herramienta. En general, los resultados fueron

favorables. CoSTest fue altamente valorado en la utilidad percibida y

facilidad de uso; también obtuvimos resultados positivos con respecto

a la efectividad de los casos de prueba.

CONTENTS

PART I. PREFACE .. 1

1. Introduction ... 1

1.1 Motivation ... 2

1.2 Problem Statement ... 4

1.3 Objectives .. 4

1.4 Thesis Context ... 5

1.5 Means of Achieving the Proposed Objectives 6

1.6 Thesis Outline .. 7

2. Research Methodology ... 11

2.1 Framework for the CoSTest Design Science Project.................... 12

2.2 Statement of Research Goals and the Design Problem 13

2.3 Research Questions ... 17

2.4 Engineering, Design and Empirical Cycles 18

2.5 Summary.. 28

PART II. PROBLEM INVESTIGATION ... 31

3. Theoretical Framework ... 33

3.1 Concepts of Requirements Engineering 35

3.1.1 Modelling Requirements based on Communicational

Analysis .. 37

3.2 Concepts of the Conceptual Schema Quality 38

3.2.1 Model Quality for Conceptual Schemas 39

3.2.2 Practices to improve the Quality of Conceptual Schemas ... 40

3.3 Concepts of the Model-driven Environment 44

3.3.1 MDA Definitions and Assumptions 45

3.3.2 Overview of the Metamodeling Architecture 46

3.3.3 UML CD-based Conceptual Schemas 47

3.3.4 Executable UML Conceptual Schema Under Test 48

3.3.5 Defect Types in UML-based Conceptual Schemas 50

3.4 Summary and Conclusions .. 53

4. Related Work of Conceptual Schema Validation 55

4.1 Dimensions of the Related Work .. 56

4.1.1 Domain .. 57

4.1.2 Quality Goal .. 57

4.1.3 Method ... 58

4.2 Generation, Selection, Prioritization and Execution of Test Cases

 61

4.2.1 Test Case Generation ... 61

4.2.2 Test Case Selection and Prioritization 62

4.2.3 Test Case Execution ... 63

4.3 Comparison of Related Works .. 66

4.3.1 Dimension-Based Comparison ... 67

4.3.2 Testing feature Comparison ... 71

4.4 Summary and Conclusions .. 76

PART III. TREATMENT DESIGN ... 79

5. Validation Framework for Conceptual Schemas 81

5.1 Framework Overview ... 82

5.1.1 Phases of the Methodological Framework 83

5.2 Test Analysis ... 83

5.2.1 Requirements Specification based on Communicational

Analysis .. 84

5.2.2 Modelling Requirements based on Communicational

Analysis .. 85

5.3 Test Design .. 90

5.3.1 Test Data.. 91

5.4 Test Generation ... 91

5.4.1 Test Case Selection .. 91

5.4.2 Addressed Quality Goals ... 92

5.4.3 Test Types .. 92

5.4.4 Test Generation Criteria .. 94

5.4.5 Deriving test goals ... 94

5.4.6 Concrete and Executable Test Cases 95

5.5 Test Prioritization .. 106

5.6 Test Execution ... 111

5.6.1 Executable Conceptual Schema based on UML Class

Diagram ... 111

5.6.2 Architecture and Testing Environment 116

5.6.3 Execution Trace ... 118

5.7 Test Evaluation .. 119

5.7.1 Verifying the Syntaxis Correctness 119

5.7.2 Validating the Semantic Correctness 120

5.7.3 Verifying the Unnecesary Elements 121

5.7.4 Validating the Completeness... 122

5.8 Overview of the CoSTest Testing Process 126

5.9 Summary and Conclusions .. 127

6. Transformation Rules .. 131

6.1 An Overview of the MDT Process ... 132

6.2 Metamodels .. 133

6.2.1 Test Metamodel .. 134

6.2.2 Test Scenario Metamodel ... 136

6.2.3 Test Data Metamodel ... 137

6.3 Transformations ... 139

6.3.1 Transformation from Requirements Model to Test Model

 139

6.3.2 Transformation from Test Model to Test Scenario Model 147

6.3.3 Transformation from Test Model to Test Data Model 148

6.3.4 Transformation from Test Scenario Model to Test Scenario

Model with Abstract Test Cases .. 148

6.3.5 Transformation from Test Data Model and Abstract Test

Cases to Executable and Concrete Test Cases 150

6.3.6 Transformation from UML CD-based CS to Executable CS

under test .. 151

6.4 Summary and Conclusions .. 156

PART IV. TREATMENT VALIDATION ... 157

7. CoSTest Tool Implementation ... 159

7.1 General Overview and Architecture ... 159

7.2 The Test Model Manager .. 162

7.2.1 Presentation Manager .. 163

7.2.2 Test Model Generator ... 164

7.2.3 Graph and Tree Builder ... 165

7.2.4 Element Report Generator ... 165

7.3 The Test Scenario Model Manager ... 165

7.3.1 Presentation Manager .. 166

7.3.2 Test Model Generator ... 167

7.3.3 Tree Builder ... 167

7.3.4 Element Report Generator .. 167

7.4 The Test-Data Manager ... 167

7.4.1 Presentation Manager ... 169

7.4.2 Web-based Generator ... 170

7.4.3 Requirement-based Generator ... 170

7.4.4 Database Manager .. 170

7.5 The CSUT Processor... 171

7.5.1 Presentation Manager ... 171

7.5.2 CSUT Manager ... 174

7.6 The Test Processor .. 174

7.6.1 Presentation Manager ... 175

7.6.2 Test Manager ... 178

7.7 The Mutant Generator .. 179

7.7.1 Presentation Manager ... 180

7.7.2 Mutant Manager ... 181

7.8 The Batch Testing Processor ... 182

7.8.1 Presentation Manager ... 183

7.8.2 Batch Test Manager .. 184

7.9 Summary and Conclusions .. 184

8. Validation and Evaluation of the CoSTest Tool 187

8.1 Validating the Effectiveness of CoSTest CSUT Processor 190

8.1.1 Experimental Design .. 190

8.1.2 Conclusions and Changes on the CoSTest CSUT Processor

 194

8.2 Validating the CoSTest Transformation Rules 194

8.2.1 Definition of Basic and Derived Metrics with Rule Scope . 196

8.2.2 Definition of Basic and Derived Metrics with Transformation

scope 197

8.2.3 Experimental Design ... 201

8.2.4 Results and Discussion .. 205

8.3 Evaluating the CoSTest Mutant Generator 214

8.3.1 Experiment No 1: Evaluating the Mutation Operators

Implemented in CoSTest ... 215

8.3.2 Experiment No 2: Validating the Effectiveness and Efficiency

of Mutant Generator of CoSTest .. 218

8.4 Validating of the Effectiveness of CoSTest’ Test Cases 222

8.4.1 Experiment Goal and Questions 222

8.4.2 Variables ... 223

8.4.3 Metrics .. 223

8.4.4 Hypotheses ... 224

8.4.5 Experimental Material .. 225

8.4.6 Procedure .. 226

8.4.7 Analysis of Results ... 230

8.4.8 Discussion.. 238

8.4.9 Analysis of the Threats to the Validity of the Results 240

8.4.10 Conclusions and Changes to the Tool 241

8.5 Evaluating CoSTest User Perceptions 242

8.5.1 Experiment Research Goal .. 242

8.5.2 Research Methodology ... 242

8.5.3 Experiment Context: The everis’ Study Case 243

8.5.4 Experiment Reseach Questions .. 244

8.5.5 Case Selection .. 244

8.5.6 Methods of Data Collection .. 245

8.5.7 Experimental Subjects ... 246

8.5.8 Instrumentation .. 246

8.5.9 Experimental Procedure .. 247

8.5.10 Pilot Test .. 248

8.5.11 Analysis of the Threats to Validity 251

8.5.12 Answers to Experiment Research Questions 253

8.5.13 Discussion .. 254

8.6 Summary and Conclusions .. 256

PART V. FINAL DISCUSSION ... 259

9. Final Discussion ... 261

9.1 Summary of the Contributions of this Thesis 261

9.2 Thesis Impact .. 265

9.2.1 Publications .. 265

9.2.2 Academic Project Participation .. 268

9.2.3 Research Stay ... 268

9.3 A Work that Opens New Research Lines 268

9.3.1 Domain ... 268

9.3.2 Quality Goal .. 269

9.3.3 Method ... 269

REFERENCES .. 271

APPENDICES ... 287

Appendix A .. 289

Mutation Operators for UML CD-based Conceptual Schemas 289

Appendix B .. 291

Case Study: The Incident Management System 291

B.1 Test Analysis .. 291

B.1.1 Event Description Templates ... 291

B.1.2 Events Diagram .. 307

B.2 Test Design .. 307

B.2.1 Test Model ... 309

B.2.2 Test Scenario Model .. 309

B.2.3 Test Data .. 315

B.3 Test Case Generation .. 315

B.4 Mutant Generation ... 320

B.5 Test Execution ... 323

B.5.1 Generation of the Executable Conceptual Schema Under

Test 323

B.5.2 Generation of the Execution Trace 327

B.6 Test Evaluation .. 328

B.7 Conclusions ... 330

Appendix C .. 331

Supplementary Material on the Evaluation Study 331

C1. Characterization Form .. 331

C2. CoSTest Tool Installation Guide .. 334

C3. Guideline with Task Template for VideoClub Case 336

C4. User Acceptance Form .. 336

LIST OF TABLES
Table 3.1 Quality Goals based on 6C quality model from Mohaghehi et

al. [9] .. 40

Table 3.2. Validation relevant methods for Conceptual Schemas 42

Table 3.3. Defect types in a UML-based model (excerpt taken from

[43]) ... 52

Table 4.1. Related approach comparison .. 68

Table 4.2. Testing features comparison .. 72

Table 5.1. Example of an Event Specification Template 88

Table 5.2. Test generation criteria for UML CD-based Conceptual

Schema .. 94

Table 5.3. Mutation operators for CS FOM taken from [116] 109

Table 5.4. Relationship between fault and reported defect 125

Table 6.1. Transformation rules for generation of the Test Model 141

Table 6.2. Transformation rules for generation of the Test Cases 141

Table 6.3. Transformation rules for generation of the Precedence

relations ... 142

Table 6.4. Transformation rules for generation of the test items

Assertions .. 142

Table 6.5. Transformation rules for generation of the test items

Triggers .. 142

Table 6.6. Transformation rules for generation of the test items

Services .. 143

Table 6.7. Transformation rules for generation of the test items Links

 ... 143

Table 6.8. Transformation rules for generation of the test items

Parameters .. 144

Table 6.9. Requirements Metamodel constructs used in this

transformation .. 145

Table 6.10. Transformation rules for generation of the Test Scenario

Model .. 147

Table 6.11. Transformation rules for generation of the Test Scenario

 .. 147

Table 8.1. Elements of the Subject Conceptual Schemas 191

Table 8.2. Basic metrics for Semantic and Syntactic Correctness of a

Rule ... 197

Table 8.3. Derived metrics for Semantic and Syntactic Correctness of a

Rule ... 197

Table 8.4. GQM for M2M transformation validation 202

Table 8.5. Elements of the CSs .. 203

Table 8.6. Elements of the requirements model included in the five

examples ... 206

Table 8.7. Elements of the Test Model generated for the five example

 .. 206

Table 8.8. Results of SyC_T1 and SeC_T1 for the five cases 208

Table 8.9. Elements of the Test Scenario Model generated for the five

examples ... 211

Table 8.10. Results of SyC_T2 and SeC_T2 for the five cases 212

Table 8.11. Specification of hypotheses ... 224

Table 8.12. Elements of the Subject Conceptual Schemas 225

Table 8.13. Faults and Fault Types detected by Mutant type 231

Table 8.14. Shapiro-Wilk Normality Tests ... 232

Table 8.15. Mann-Whitney U Test for Rate of Fault Detection by

Mutant Type.. 233

Table 8.16. Tests of Normality of Shapiro-Wilk 233

Table 8.17. Mann-Whitney U Test for Rate of Fault Type Detectiona 234

Table 8.18. Mutation Score by Mutant type 235

Table 8.19. Mutation Score of CoSTest Test Suites for First Order

Mutants ... 236

Table 8.20. Mutation Score of CoSTest Test Suites for High Order

Mutants ... 237

Table 8.21. Shapiro-Wilk Normality Tests ... 238

Table 8.22. Mann-Whitney U Test for Mutation Score by Mutant Typea

 .. 238

Table 8.23. Detail of the Activities .. 248

Table 8.24. Specification of hypotheses .. 253

Table A.1. Mutation Operators defined for a UML CD-based CS taken

from [115] .. 289

Table B.1. Communication Structure for TECH1 292

Table B.2. Communication Structure for USR1 293

Table B.3. Communication Structure for PLAN1 293

Table B.4. Communication Structure for INC1 294

Table B.5. Communication Structure for INC2 295

Table B.6. Communication Structure for INC3 295

Table B.7. Communication Structure for INC4 296

Table B.8. Communication Structure for INC5 297

Table B.9. Communication Structure for INC6 297

Table B.10. Communication Structure for INC7 298

Table B.11. Communication Structure for INC8 298

Table B.12. Communication Structure for INC9 299

Table B.13. Communication Structure for INC10 300

Table B.14. Communication Structure for INC11 300

Table B.15. Communication Structure for INC12 301

Table B.16. Communication Structure for INC13 302

Table B.17. Communication Structure for INC14 302

Table B.18. Communication Structure for INC15 303

Table B.19. Communication Structure for INC16 303

Table B.20. Communication Structure for INC17 304

Table B.21. Communication Structure for INC18 305

Table B.22. Communication Structure for INC19 305

Table B.23. Communication Structure for INC20 306

Table B.24. Communication Structure for INC21 306

Table B.25. Values for variables of test model for Incident Management

 ... 316

Table B.26. List of First Order Mutants generated for the case study 322

Table B.27. Testing results for the mutants of Table B.26 328

LIST OF FIGURES
Figure 1.1 Context of research work ... 6

Figure 2.1. Framework for design science of the CosTest project 13

Figure 2.2 Goal Structure of the design science research project for

CoSTest .. 16

Figure 2.3. Design cycle for the CoSTest project (part 1) 19

Figure 2.4. Design cycle for the CoSTest project (part 2) 20

Figure 2.5. Design cycle for the CoSTest project (part 3) 21

Figure 3.1. Research areas involved in this work 34

Figure 3.2. Communication Analysis requirements levels and workflow

[21] .. 37

Figure 3.3. Excerpt of the Metamodel of an UML Class Diagram [40] .. 47

Figure 3.4. Excerpt of UML-CD-based CS for Video Club case 49

Figure 3.5. Example of constraints for the Video Club system 50

Figure 3.6. Relationships among conceptual entities 51

Figure 4.1. Related Work dimensions ... 56

Figure 5.1. Overview of the validation Framework 83

Figure 5.2. Excerpt of a CA model for the Video Club case. 86

Figure 5.3. Examples of test goals generated for Video Club CS 95

Figure 5.4. Test Case Structure .. 96

Figure 5.5. UML class diagram for Video Club CS 97

Figure 5.6. VideoClub CS with examples of pre, post-conditions and

invariants ... 102

Figure 5.7. Example for validating pre-, post-conditions and invariants

 ... 102

Figure 5.8. Example of an invariant ... 103

Figure 5.9. Example of test case for asserting the non-occurrence of

events .. 104

Figure 5.10. Example of test vase validating a derivation rule 106

Figure 5.11. Selection process of the mutation operators 108

Figure 5.12. Excerpt of the Metamodel of an UML Class Diagram [40]

 .. 111

Figure 5.13. Textual definition for the package VideoClub by using ALF

language .. 114

Figure 5.14 Overview to generate an executable CSUT 114

Figure 5.15. Testing environment to test Conceptual Schemas 116

Figure 5.16. Example of an execution trace for Video Club CS 119

Figure 5.17. Excerpt of the CS with a syntactically incorrect code 120

Figure 5.18. Example of a CS with the corrected Alf code 120

Figure 5.19. Excerpt of the VideoClub CS with a semantic incorrect

defect .. 121

Figure 5.20. Example of the VideoClub CS with the corrected semantic

defect .. 121

Figure 5.21. Example of comparison of elements used in a coverage

analysis .. 122

Figure 5.22. Excerpt of the CS with a missing defect 123

Figure 5.23. Excerpt of a corrected CS .. 123

Figure 5.24. Example of the test case ... 124

Figure 5.25. Example of execution trace .. 124

Figure 5.26. Extended UML class diagram for Video Club CS 125

Figure 5.27. Overview of the testing process 126

Figure 6.1. An overview of our MDT approach 132

Figure 6.2. Overview of the sequence of proposed transformations . 133

Figure 6.3. Metamodels for the first transformation adapted from [121]

 .. 135

Figure 6.4. OCL Constraints for Test Metamodel 136

Figure 6.5. Test Scenario Metamodel adapted from [121]................. 137

Figure 6.6. Test Data Metamodel ... 138

Figure 6.7. Structure of T1 Transformation .. 140

Figure 6.8. Examples using graphical concrete syntax of (a) RM, (b) TM,

and (c) modified TM .. 146

Figure 6.9. Example of the first rule of the ATL transformation CA2TM

 .. 146

Figure 6.10. Structure of T2 Transformation 148

Figure 6.11. Structure of T3 transformation 148

Figure 6.12. Partial Acceleo code of transformation 149

Figure 6.13. Test Scenario with abstract test cases 150

Figure 6.14. Example of a concrete and executable test case for

VideoClub CS ... 151

Figure 6.15. Acceleo transformation rule for UML package 151

Figure 6.16. Partial definition for the class VideoClub by using ALF

language .. 152

Figure 6.17. Association and Aggregation of Order example using ALF

language .. 152

Figure 6.18. Partial view of the ALF unit including an inheritance

relation .. 153

Figure 6.19. Example of a constraint translated to ALF code.............. 154

Figure 6.20. Example of a derived association using ALF code 155

Figure 6.21. An example of class association 155

Figure 7.1. Screenshot of the CoSTest tool support 162

Figure 7.2. The CoSTest tool architecture ... 162

Figure 7.3. Test Model Manager design .. 163

Figure 7.4. Screenshot with a test configuration example of the CoSTest

tool .. 164

Figure 7.5. Screenshot with a test model example of the CoSTest tool

 ... 165

Figure 7.6. Test Scenario Model Manager design 166

Figure 7.7. Screenshot of a test scenario model example in the CoSTest

tool .. 168

Figure 7.8. Test Data Manager design ... 168

Figure 7.9. Screenshot for the data concretization in the CoSTest tool

 ... 171

Figure 7.10. CSUT Processor design .. 172

Figure 7.11. Screenshot for editing an executable CSUT in the CoSTest

tool .. 172

Figure 7.12. Screenshot for showing the parser results in the CoSTest

tool .. 173

Figure 7.13. Screenshot for showing the CSUT elements in the CoSTest

tool .. 173

Figure 7.14. Test Processor design ... 175

Figure 7.15. Screenshot of the test configuration in the CoSTest tool175

Figure 7.16. Screenshot of a test suite management example in the

CoSTest tool .. 176

Figure 7.17. Screenshot of a test execution report in the CoSTest tool

 .. 176

Figure 7.18. Screenshot of the Summary Generation tab of the CoSTest

tool .. 177

Figure 7.19. Screenshot of a log and coverage report in the CoSTest

tool .. 178

Figure 7.20. The Mutation UML tool architecture 180

Figure 7.21. Application of five mutation operators for our CS example

 .. 182

Figure 7.22. Batch Testing Processor design....................................... 183

Figure 7.23. Screenshot for Batch Testing of the CoSTest tool 184

Figure 8.1. i-th iteration of the experiment applying the CoSTest tool

 .. 193

Figure 8.2. Example of the calculation of the metrics SyC_T1 and

SeC_T1 ... 200

Figure 8.3. Process to evaluate a M2Mi in our proposal 204

Figure 8.4. Structure of T1 Transformation with the identified problems

 .. 210

Figure 8.5. i-th iteration of the experiment applying the CoSTest tool

 .. 217

Figure 8.6. i-th iteration of the experiment applying the CoSTest tool

 .. 220

Figure 8.7. Steps taken in experimental process 227

Figure 8.8. Application of five mutation operators on Video Club CS 229

Figure 8.9. Excerpt of a Constraint mutated by WCO8 operator 230

Figure 8.10. Box-plot for Rate of Fault Detection by Mutant Type 232

Figure 8.11. Box-plot for Rate of Fault Type Detection by Mutant Type

 .. 234

Figure 8.12. Box-plot for Mutation Score by Mutant Type 235

Figure 8.13. Example of an assertion conditional 239

Figure 8.14. Experimental Procedure .. 247

Figure B.1. Partial view of the message structure in the GREAT tool

[141] .. 307

Figure B.2. Event Diagram using Communication Analysis 308

Figure B.3. Test Model for IM case study .. 309

Figure B.4. Test cases of the test scenario #2 320

Figure B.5. Excerpt of the Conceptual Schema for Incident

Management System .. 321

Figure B.6. ALF unit for PMO class .. 323

Figure B.7. ALF unit for Incident_external_company association 323

Figure B.8. ALF unit for EXTERNAL_COMPANY_ANALYSYS class 324

Figure B.9. ALF unit for incident_resource_allocation association 324

Figure B.10. ALF unit for technician_resource_allocation association 324

Figure B.11. ALF unit for INCIDENT class ... 325

Figure B.12. ALF unit for RESOLUTION_PLAN class 326

Figure B.13. ALF Unit for RESOURCE_ALLOCATION class 326

Figure B.14. ALF unit for TECHNICIAN class .. 326

Figure B.15. ALF unit for USER class .. 326

Figure B.16. ALF unit for user_incident association 327

Figure B.17. Example of Execution Trace for the MAS_2 mutant 327

Figure B.18. Defect report obtained in the testing process for MAS_2 CS

 ... 329

Figure B.19. Coverage report obtained in the testing process for MAS_2

CS ... 329

Figure C.1. Characterization form: Demographic data 331

Figure C.2. Characterization form: Experience (1) 332

Figure C.3. Characterization form: Experience (2) 333

Figure C.4. Characterization form: Experience (3) 334

Figure C.5. Guideline for VideoClub case (1) 337

Figure C.6. Guideline for VideoClub case (2) 338

Figure C.7. User Acceptance Form: Perceived Usefulness 338

Figure C.8. User Acceptance Form: Perceived Ease-of-Use 339

PART I.

PREFACE

CHAPTER 1. INTRODUCTION

1

Chapter 1
INTRODUCTION
1. Introduction

A wide range of software engineering methods supports the

development of information systems (IS) by considering requirements

engineering as an essential activity, which specifies general knowledge

about the IS domain and the functions it has to perform. In the

Information Systems field, this knowledge is called a conceptual

schema1 [1]. According to Johnson and Henderson [2] a Conceptual

Schema or Conceptual Model is “a high-level description of an

application. It enumerates all concepts in the application that users can

encounter, describes how those concepts relate to each other, and how

those concepts fit into tasks that users perform with the application”.

In Model-Driven Development, the main artefacts are conceptual

schemas (CS) or models, and efforts are focused on their creation,

testing and evolution at different levels of abstraction through

transformations. If a conceptual schema has defects, these are passed

on to the following stages, including coding. Therefore, techniques for

improving the quality of conceptual schemas must be implemented to

1 In this thesis the terms "conceptual schema", “conceptual model” and
"model" are considered similar.

CHAPTER 1. INTRODUCTION

2

ensure the correct generation of final software products. One of the

challenges of Model-Driven Development is to be able to generate test

cases from the requirements, not only to identify defects, as well as to

validate requirements early on, at the level of conceptual schemas, so

that appropriate decisions can be taken based on the results of the

validation process, to help reduce development costs and improve

software quality. In this work we designed an approach for testing-

based conceptual schema validation in order to improve quality.

The rest of this chapter is organized as follows: Section 1.1 gives an

explanation of why this research is important. Section 1.2 summarizes

the problem resolved in the present thesis. Section 1.3 details the

defined thesis objectives. Section 1.4 presents the context of this work.

Section 1.5 summarizes the means of achieving the main objective.

Finally, Section 1.6 gives an overview of the structure of this document.

1.1 Motivation
Despite much scepticism and many problems [3], Model-Driven

Development (MDD) is being used and improved in order to provide

multiple inherent potential benefits for industry [4], [5]. One of its

greatest benefits is the ability to handle the complexity of software

development by raising the abstraction level. Models are expressed

using concepts that are not related to a specific implementation

technology (e.g. Unified Modelling Language -UML, Object Constraint

Language –OCL, Action Language for Foundational UML -ALF), which

means that the models can be easier to specify, understand, maintain

and document. As in Model-Driven Engineering (MDE), the primary

artefacts are the conceptual models, and ensuring their quality at an

optimum level is still challenging for researchers and developers.

Although verification2 and validation3 (V&V) are highly related to

the concepts of quality and software quality assurance, very few MDD

2 Verification is to check that the conceptual schema meets its stated
functional and non-functional requirements [1].

CHAPTER 1. INTRODUCTION

3

tools incorporate these activities into their development process. The

OO-Method (OOM) [6], a Model Driven Architecture (MDA) approach,

is a model-driven initiative with a technical multi-view (structural

model, dynamic model, functional model and presentation model),

where the structural view is the basis for the automatic derivation of

the other views, and this feature helps to minimize problems such as

multi-view specifications and synchronization, integration and change

propagation. The OO-Method has been successfully implemented in

industry through the Integranova4 commercial tool (previously known

as OLIVANOVA). This tool manages the syntactic verification of

conceptual schemas (e.g. syntactic correctness) [6], but it still does not

validate whether the model built meets the requirements and

expectations of the stakeholders.

With the ever-increasing complexity of software systems, the

ability to identify the vast majority of defects early on at the model

level is a challenge that if met could help to reduce development costs

and improve software quality [7]. The list of open problems presented

in [8] by Olivé includes the Complete and Correct Conceptual Schemas.

However, to assess the quality of a conceptual schema, we need a

quality model. In the literature, we can find several proposals, e.g. [9],

[10]. Although, Genero et al. [11] suggest that more work is needed on

model quality assessment. We will aim to set the quality properties

that can be improved using testing techniques.

Testing is part of a process of V&V, where the conceptual schema

operates under controlled conditions, (1) to verify that it behaves as

specified; (2) to detect defects, and (3) to validate user requirements

[12]. Therefore, (i) the close integration between model and code in a

model-driven development, (ii) the development of high-level

3 Validation is to ensure that the conceptual schema meets the
customer's expectations [1].

4 http://www.integranova.com/

CHAPTER 1. INTRODUCTION

4

languages suited for modelling CS (like UML/OCL with the ALF

language), generate the need to develop verification and validation

strategies to be applied early in the software life cycle (e.g. at CS level)

and to locate and point out defects in realistic schemas with minimum

cost.

This work aims to define a testing-based validation framework for

multi-view conceptual schemas (i.e. structural and behavioural). We

will focus on adapting testing techniques for Model-driven

environments, such as the OO-Method approach, because we believe

that testing can be a very effective and efficient way to identify defects

early on, and can play an important role in the validation of conceptual

schemas.

1.2 Problem Statement
Requirements errors are the most common cause of defects in

system development projects [13]. This suggests that it would be more

effective and efficient to focus quality assurance efforts on the early

phases, in order to catch defects as soon as they occur. In MDD, the

ability to identify defects early on is still a challenge that, if it were met,

could help to reduce development costs and improve the quality of

delivered software systems [7] [8]. Lightweight testing techniques for

improving the quality of the conceptual schemas must be

implemented. These techniques should be able to find defects with

minimum effort, and without the need for a strong testing background.

The starting point of this PhD Thesis begins with the statement of

the research problem “Improve the quality of the conceptual schemas

built in a model-driven environment in order to reduce the

development costs and improve the quality of delivery software

systems”.

1.3 Objectives
The main objective of this PhD thesis is to “Design a testing-based

validation framework to improve the quality of conceptual schemas

CHAPTER 1. INTRODUCTION

5

built in a Model-driven environment”. This main objective is dependent

on the achievement of the following specific objectives:

 Define the conceptual framework related to the conceptual
schema validation by using testing techniques in a Model-driven
environment.

 Design a framework for testing-based validation of conceptual
schemas integrated into a Model-driven environment.

 Validate the contribution of the testing-based framework in
ensuring the quality of conceptual schemas.

1.4 Thesis Context
This thesis aims to validate conceptual schemas by using model-

based testing techniques. Our approach contributes to improving the

quality of conceptual schemas built in a Model-driven environment, by

detecting and correcting defects at an earlier phase than traditional

testing techniques used successfully at code level.

Figure 1.1 shows an overview of the design of the proposed

solution, which is based on a series of model transformations for

automatically generating test cases from a requirements model. These

test cases are used for testing the conceptual schema, previously

prepared for use as a testing artefact (conceptual schema under test).

Then, the output will be the list of defects properly classified, which

will serve as feedback for relevant stakeholders like the analyst,

modeller or project manager.

This thesis has been developed in the context of the STAQ

(Software Testing and Quality) research group of the PROS Center

(Centro de Investigación en Métodos de Producción de Software),

Department of Information Systems and Computation (DSIC:

Departamento de Sistemas de Información y Computación) of the

Universitat Politècnica de València, Spain.

The work has been supported by Universidad de Cuenca and

Secretaría de Nacional de Educación Superior, Ciencia y Tecnología -

SENESCYT of Ecuador, and has been received financial support from

CHAPTER 1. INTRODUCTION

6

the SHIP (SMEs and HEIs in Innovation Partnerships, ref:

EACEA/A2/UHB/CL 554187), PERTEST (TIN2013-46928-C3-1-R),

European Commission (CaaS project) and Generalitat Valenciana

(PROMETEOII/2014/039).

Figure 1.1 Context of research work

1.5 Means of Achieving the Proposed Objectives
In order to achieve the main objective, we identify three means:

a) Software resources. Software tools and standards will be

required to perform the proposed approach through the

process such as 1) generate a test cases model from user’s

requirements, 2) generate concrete test cases, 3) specify and

transform the conceptual schema to an executable form, 4)

execute the testing, 5) report the results of this process and 6)

validate the solution design.

CHAPTER 1. INTRODUCTION

7

b) Expert support. Due to the multidisciplinary nature of this PhD

project proposal, it is supervised by three senior researchers,

who are respectively experts in Requirements Engineering,

Model-Driven Engineering and Software Testing & Quality.

Their advice and valuable feedback will be very helpful to

accomplish the research goal of this work.

c) Financial resources. This work is being supported by the

Secretary of Higher Education, Science and Technology

(SENESCYT: Secretaría Nacional de Educación Superior, Ciencia

y Tecnología), and University of Cuenca, both public bodies of

the Republic of Ecuador. Additionally, the work is being

developed at the STAQ (Software Testing and Quality) research

group of the PROS Center (Centro de Investigación en Métodos

de Producción de Software), Department of Information

Systems and Computation (DSIC: Departamento de Sistemas de

Información y Computación) of the Universitat Politècnica de

València, Spain.

1.6 Thesis Outline
We have divided the thesis into five parts and three appendices.

Part I is the preface, Part II presents the problem investigation, Part III

provides the treatment design, Part IV presents the treatment

validation, and finally, Part V provides the final discussion. Here we

describe the outline of the thesis.

Part I – Preface

Chapter 1 presents an overview of the research including the

motivation, problem statement, hypothesis and objectives addressed

in this PhD thesis as well as the context and means to achieve the

proposed objectives.

Chapter 2 describes the framework for the design science project

applied in this thesis, as well as the research goals, research questions

and the methodology followed.

CHAPTER 1. INTRODUCTION

8

Part II – Problem Investigation

Chapter 3 provides the reader with the theoretical framework

(knowledge) that is required for understanding the overall work.

Chapter 4 summarizes the main research efforts that have been carried

out in Validation of Conceptual Schemas.

Part III –Treatment Design

Chapter 5 describes the phases of the construction process of a model-

driven validation framework for conceptual schemas.

Chapter 6 details the metamodels and transformations rules used to

generate the test scenarios model from the requirements models,

which contains the test suite with the abstract test cases.

Part IV – Treatment Validation

Chapter 7 presents the tool support that has been developed to

support the methodological detailed in Chapters 5 and 6 as well as its

validation. This chapter presents the architecture and functionality of

the CoSTest tool.

Chapter 8 summarizes (1) a validation study of the two first model-to-

model transformations for the purpose of validating them with respect

to their syntactic and semantic correctness, (2) two laboratory

experiments for the purpose of evaluating the mutation operators and

the effectiveness and efficiency of CoSTest to generate mutants that

are used to evaluate the effectiveness of CoSTest’ test cases and that

also served to prioritize the test cases; (3) a comparative experiment

for the purpose of measuring CoSTest’ test cases in terms of

effectiveness; and (4) evaluation of user perceptions during the defect

correction process using the CoSTest’ report in an industrial case.

Part V- Final Discussion

CHAPTER 1. INTRODUCTION

9

Chapter 9 draws some conclusions about the present thesis and

summarizes the main contributions and publications that we obtained.

It also discusses future lines of research, which are the in line with the

limitations of the present work.

Appendix A includes the list of mutation operators used during the

build of the CoSTest’ mutant generator (Chapter 7) and during the

validation and evaluation of CoSTest described in Chapter 8.

Appendix B describes a case study aimed to exemplify our model-

driven validation framework. The appendix applies the CoSTest tool to

an example of a conceptual schema that represents an excerpt of the

Incident Management system defined by the everis company.

Appendix C includes material used during the evaluation study

described in Chapter 8 (see Section 8.5).

CHAPTER 2. RESEARCH METHODOLOGY

11

Chapter 2
RESEARCH METODOLOGY
2. Research Methodology

The nature of this research work lends itself to the use of the

design science framework [14] in the form of a new artefact, the

CoSTest framework.

Design science is the design and investigation of artefacts in context

[15]. In this PhD thesis, we design CoSTest to support stakeholders (e.g.

modellers and testers) in their tasks of modelling and validating

conceptual schemas in the requirements, analysis and design stages

during the development of an information system. CoSTest is therefore

an artefact in the context of validating the stakeholder’s requirements

at the conceptual schema level.

In this chapter, we introduce the Design Science Research

framework and describe the methodology applied. The chapter is

organized as follows: Section 2.1 presents the methodological

framework used in this thesis. Section 2.2 defines the research goals.

Section 2.3 describes the research questions. Section 2.4 presents the

methodology followed by summarizing and grouping the activities in

the design cycle and empirical cycle applied. Section 2.5 gives a

summary of the entire chapter.

CHAPTER 2. RESEARCH METHODOLOGY

12

2.1 Framework for the CoSTest Design Science

Project
Since we conceived this PhD Thesis as a design science project, it

consists of two activities (i.e. design and investigation). It iterates over

two issues involved in solving design problems (e.g. related to the

design of artefact CoSTest to improve a problem context) and

answering knowledge questions (e.g. related to knowledge of CoSTest

and the interation between CoSTest and the context in which it is

applied). However, these problems can create new problems (e.g.

building a prototype of the artefact, simulating its context, or designing

a measurement instrument) because an artefact may interact

differently in different contexts.

These interations may even contribute to stakeholder goals in one

context but create obstacles to goal achievement in another.

Therefore, a design science project is never restricted to one kind of

problem only and the design researcher should therefore study the

interaction between artefacts and contexts rather than artefacts alone

or contexts alone [15].

Figure 2.1 shows the framework for the design science of the

proposed testing framework, in which the interations between design

and investigation are extended to the social and knowledge contexts.

CoSTest’s social context consists of stakeholders, who may either

affect or may be affected by the project, potential users like modellers,

testers, researchers, etc. who are part of organizations that need to

validate conceptual schemas during the development of an

information system, and sponsors that provide the financial support for

this PhD thesis.

In the knowledge context, CoSTest is involved with very diverse

theories, such as model-based engineering, particularly founded on the

model-driven development paradigm, requirements engineering for

analysis of information systems from a communicational perspective

CHAPTER 2. RESEARCH METHODOLOGY

13

supported by the Communication Analysis method, software quality

for defining the test automation framework, lessons learned from the

experience of researchers in earlier design science projects, practical

knowledge in Eclipse Modelling Framework for implementing model-

driven and model-based tools, and several conceptual schemas taken

from different testing domains.

Design a testing-based
validation framework (CoSTest)

to improve the quality of
conceptual schemas built in a

Model-driven environment

Find knowledge about
CoSTest in context

CoSTest and its context to investigate

Knowledge and new design problems

DESIGN INVESTIGATION

DESIGN SCIENCE APPLIED TO COSTEST PROJECT

SOCIAL CONTEXT FOR COSTEST PROJECT

Designs: the CoSTest
framework, mutation

operators

Stakeholders: Modellers, testers, reseachers, etc.
Organisations and sponsors: PROS research center, Universitat Politècnica de València, SENESCYT and University
of Cuenca

Goals, budgets

KNOWLEDGE CONTEXT FOR COSTEST PROJECT

Model-based engineering, requirements engineering, quality software, empirical software engineering,
design science, communicational analysis, OO-Method, UML/OCL, Alf, Eclipse modelling framework, etc.

Existing problem-
solving knowledge,

Existing designs

New problem-
solving knowledge,

new designs

Existing answers to
knowledge
questions

New answers to
knowledge
questions

Figure 2.1. Framework for design science of the CosTest project

This framework is used to define the thesis’ research goals.

2.2 Statement of Research Goals and the Design

Problem
In this work, we can distinguish research goals from the external

stakeholder’s goals (sponsors and potential end-users).

In addition to our intrinsic motivation as researchers to answer the

knowledge questions, as well as to design and test the new artefact

(CoSTest), we want to improve the way in which the quality assurance

of conceptual schemas is performed in an early phase of the software

lifecycle.

CHAPTER 2. RESEARCH METHODOLOGY

14

We therefore promote the use of conceptual schemas as a high

level analysis of information systems to specify the functionality of an

IS and to generate the respective test cases.

The use of different artefacts by requirements analysts, modellers,

testers and developers is avoided, thus making their work easier. By

using models it is possible to automate the testing process and reduce

the cost, increase the effectiveness of the tests and optimize the

testing cycle.

In addition, the Software Engineering community (potential

external stakeholder) proposes the use of testing techniques as a

mechanism to contribute to ensuring the software product quality [12].

Following this proposal, our motivation is to define a testing-based

validation approach to support quality assurance process of conceptual

schemas in a Model-driven environment.

The sponsors (academics) of this PhD thesis supported our

research, which is not a market-oriented project (with a well-defined

possible utility of the designs and knowledge that will come out of this

project).

This thesis is thus an exploratory project in which the aim of the

researchers was to explore the possibility of a model-driven testing

framework for conceptual schemas.

This exploratory research is therefore motivated by the research

goals regardless of whether or not it satisfies a set of specific

stakeholders or end-user needs.

Figure 2.2 shows the goal hierarchy of the CoSTest design science

research project. Since this project is an exploratory research, we focus

on the design science research goals.

However, we have also included some speculative social context

goals. Starting from the bottom up in Figure 2.2 the lowest level goals

(instruments design goals) are to define the requirements for the

CHAPTER 2. RESEARCH METHODOLOGY

15

model-driven testing framework (G1), and build prototypes of the

CoSTest testing framework (G2).

These instruments were used to answer knowledge questions such

as: (a) how can available treatments detect defects in conceptual

schemas? (G3), (b) what is the effectiveness and quality of test suites

generated by the CoSTest prototype? (G4) and (c) what are the effects

of the prototype’s implementation as regards stakeholder’s

perceptions of its usefulness, user experience and user satisfaction?

(G5).

This knowledge is generalizable and could be used to predict the

effectiveness and efficiency of the CoSTest framework to detect

defects in conceptual schemas (G7). Answering these questions also

contributed to the artefact design goal of designing a model-driven

testing framework to improve conceptual schema quality in a Model-

driven environment (G6). This in turn contributes to the goal of

problem context improvement.

The CoSTest framework will be part of a software testing lifecycle

to be used in model-driven/based software development projects.

The sponsor’s goal (speculative) is to reduce development costs

and improve the quality of the delivered software system (G8). G7 and

G8 are high-level goals (speculative) that would be achieved in the

future.

However, we include these goals in this document because the

social and prediction goals are part of the goal structure of the CoSTest

framework.

CHAPTER 2. RESEARCH METHODOLOGY

16

Figure 2.2 Goal Structure of the design science research project for CoSTest

The goal structure has various challenges (design problems and

knowledge questions) that need to be overcome.

Below we introduce the main design problem statement (a.k.a.

technical research problem -TRP) derived from the artifact design goal

(G6):

Improve the quality of the conceptual schemas by designing a

testing-based validation framework that satisfies a model-driven

environment in order to reduce the development costs and improve

the quality of delivery software systems.

CHAPTER 2. RESEARCH METHODOLOGY

17

2.3 Research Questions
In order to provide a solution to the technical research problem

mentioned above, we present the list of research questions (RQ)

derived from design goals (DP) and knowledge questions (KQ).

RQ1 (KQ): What are the testing-based validation techniques that can be

used on conceptual schemas in an MDD environment? This research

question is related to G1. In order to answer this question, we have

considered the following sub-questions:

─ RQ1.1 (KQ): Which testing techniques can be effectively used or
adapted for conceptual schemas?

─ RQ1.2 (KQ): What kind of defects can be detected in the conceptual
schemas using a testing strategy?

─ RQ1.3 (KQ): Which Model-driven environment requirements should
be considered when developing the testing-based approach?

─ RQ1.4 (KQ): How can an approach for testing-based validation of
conceptual schemas be integrated into a Model-driven
environment?

─ RQ1.5 (KQ): Which of the existing quality assurance frameworks is the
most suitable for use in Model-driven environments?

─ RQ1.6 (KQ): What quality properties can be improved using testing
techniques in conceptual schemas?

If conceptual schema testing is feasible, as implied in the first

question of this research work, then another main research question

arises:

RQ2 (TRP): How to build a testing framework that detects defects at

conceptual schema level so that it contributes to the achievement of

the quality of software systems in a Model-driven environment? This

research question is related to G6, which refers to the main research

goal. In order to answer RQ2, the following specific research questions

must be addressed:

─ RQ2.1 (DP): How to build a prototype tool that supports the CoSTest
framework so that researchers can validate the proposed treatment
on UML-CD based conceptual schemas? This research question is
based on G2.

CHAPTER 2. RESEARCH METHODOLOGY

18

─ RQ2.2 (KQ): How can the treatment detect defects in conceptual
schemas? This research question is related to G3.

RQ3 (KQ): To what extent will our testing-based validation approach

contribute to ensuring the quality of conceptual schemas? In order to

answer this question, we have considered the following sub-questions:

─ RQ3.1 (KQ): What is the effectiveness and adequacy of test suites
generated by the CoSTest prototype? This is an empirical research
question related with G4.

─ RQ3.2 (KQ): What effects are produced by the prototype as regards
stakeholder’s perceptions about its usefulness, user experience and
user satisfaction? This is an empirical research question related with
G5.

2.4 Engineering, Design and Empirical Cycles
Since the development of CoSTest (RQ1) is a design science

research project, it follows the design cycle proposed by Wieringa [15]

to describe design and research activities.

For tasks related to the design problem, Wieringa’s design cycle

describe the activities related to the following three tasks: problem

investigation (T1), treatment design (T2) and treatment validation (T3).

The design cycle is part of the engineering cycle, in which a designed

and validated treatment is implemented in the problem context, and

the implementation is evaluated [15] (see Figures 2.3 -2.5).

In problem investigation, we seek to understand how to validate

and verify conceptual schemas by using testing techniques, and the

what current approaches that have been proposed to achieve this. To

do this, from the existing surveys and systematic reviews concerning

software testing, we select some testing strategies as possible

candidates to implement our approach (RQ1.1, RQ1.2).

CHAPTER 2. RESEARCH METHODOLOGY

19

Figure 2.3. Design cycle for the CoSTest project (part 1)

CHAPTER 2. RESEARCH METHODOLOGY

20

Figure 2.4. Design cycle for the CoSTest project (part 2)

CHAPTER 2. RESEARCH METHODOLOGY

21

Figure 2.5. Design cycle for the CoSTest project (part 3)

CHAPTER 2. RESEARCH METHODOLOGY

22

We also identify the most relevant quality properties which need to

be considered for conceptual schemas built in a Model-driven

environment (RQ1.5, RQ1.6) as well as the characteristics and

resources needed to support the testing-based validation approach

(RQ1.3). By considering these identified quality properties, we can

analyse and identify the properties that are affected by defects that

have so far been detected in conceptual models.

Based on the relationships between quality properties and defects,

we can thus evaluate the selected testing techniques in order to

identify those that can be effectively used or adapted for our purpose

(RQ1.4). One of the outcomes of this phase will be a conceptual

framework that should aid our understanding of the proposed

approach, as well as identify the stakeholders, their goals and any

problems with the existing solutions. This will provide the criteria to

judge the treatment design.

Treatment design is characterized by its iterative nature. In this

task, we specified the requirements and context assumptions for the

new treatment based on design specifications identified in the previous

phase, and our own logical reasoning. Based on this and on the results

of the problem investigation, the researchers designed several versions

of the CoSTest model-driven based testing framework for conceptual

schemas in order to answer RQ2.1 and RQ2.2. The next iteration

refines the solution by adding insights from several interviews with

academic and industrial experts to improve the approach. Further

iterations use inputs from the analysis of laboratory experiments and

the results of treatment validation tasks.

Finally, the treatment validation task solves a knowledge problem

which asks if the treatment design (prototype) is effective (e.g. finding

defects capability, functional coverage). We then build a prototype: (i)

a tool that supports the CoSTest framework, so that researchers can

validate our treatment by conducting experiments to answer RQ3.1

and RQ3.2.

CHAPTER 2. RESEARCH METHODOLOGY

23

For the tasks related to the investigation (i.e. treatment validation),

we followed the empirical research cycle, which has the structure of a

rational decision cycle, just like the engineering cycle: research

problem analysis (T1’), research and inference design (T2’), validation

(T3’), research execution (T4’) and data analysis (T5’). Then, our

proposed framework was validated by (i) a comparative experiment of

the results obtained in the two first model-to-model transformations in

order to evaluate their syntactic and semantic correctness, (ii)

laboratory experiments to validate the different methods used in

CoSTest as well as to validate the effectiveness of the CoSTest test

cases, (iii) interviewing some IT practitioners to ask their opinion about

the usefulness and ease-of-use of the CoSTest tool. Several empirical

cycles were thus included in this thesis in order to validate the different

parts of the treatment.

For each validation task different protocols were applied according

to the subjects, knowledge questions and goals of the study. For

example, for the validation of CoSTest feasibility we decided to

perform laboratory experiments with a mutation analysis. Figures 2.3-

2.5 show some tasks of the empirical cycles applied to different parts

of CoSTest.

As the engineering and design cycle do not prescribe a rigid

sequence of activities [15] we conceived a system engineering

execution sequence for CoSTest in which the activities are iterated and

may even be performed simultaneously for different aspects of the

problem and for alternative treatments. After each iteration a decision

is made to stop or to go ahead with the next iteration. Throughout the

engineering cycle each iteration uses knowledge about the problem

and treatment generated by the previous ones.

Since the work involved in this thesis was carried out over six years,

we do not describe all the iterations performed on the design and

empirical cycle tasks; instead we present below a list of the tasks and

CHAPTER 2. RESEARCH METHODOLOGY

24

some research methods (RM) used in each phase of the proposed

regulative cycle.

T1. PROBLEM INVESTIGATION
- Investigate the stakeholders and the need for the validation approach
for conceptual schemas in a Model-driven environment. RM: literature
review and conceptual analysis
- Define the goals and the criteria to judge the proposed treatment.
RM: conceptual analysis.
- Define conceptual framework of the new solution. RM: literature
review, conceptual analysis.

- Identify testing techniques and type of defects at conceptual
schema level. RM: literature review, application of the defect
classification scheme, conceptual analysis.
- Identify the most relevant quality properties which need to be
considered for conceptual schemas built in a Model-driven
environment. RM: literature review.
- Identify the characteristics and resources needed to support the
goals. RM: literature review and conceptual analysis

T2. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design a new validation framework for conceptual schemas
integrated into a Model-driven environment.

- Design a process to derive an executable conceptual schema under
test.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify an executable language for UML-based conceptual schemas
- Identify the transformation rules between elements of the
conceptual schema and the language.
- Identify the characteristics and resources needed to support the
derivation of the executable CS.

T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.

CHAPTER 2. RESEARCH METHODOLOGY

25

- Design the process to generate the test cases.

- Design an approach for generating an executable conceptual schema

integrated into a Model-driven environment.

T3’. TREATMENT VALIDATION
- Validate analytically the derivation strategy of an executable CS by
providing several CS under certain conditions.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis.
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify the entities of the test model and test scenario model.
- Identify the transformation rules between entities of the models.
- Identify the characteristics and resources needed to support the
model generation.

T2’. TREATMENT DESIGN
- Specify requirements for the model-driven generation (new treatment).
RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for generating the test model from requirements

and then the test scenario model from test model into a Model-driven

environment.
T3’. TREATMENT VALIDATION
- Validate analytically the model-driven generation strategy (metamodels
and transformation rules) by providing requirements and CS.
T1’’. PROBLEM ANALYSIS
-Establish the conceptual framework, goal, experiment research
questions and population.
T2’’. RESEARCH & INFERENCE DESIGN
- Define the experimental context, objects of study, variables and metrics
- Define hypotheses and to design the experiment.
T3’’. VALIDATION
- Evaluate the experimental design
- Review the instruments for collecting data
- Analyse threats on the experiment validity
T4’’. RESEARCH EXECUTION
- Collect data: constructs for both models (test model and test scenario)
T5’’. DATA ANALYSIS
- Descriptions of the results
- Application of statistical tests and corroboration of hypotheses
- Explanations and generalizations.
- Answer to the knowledge questions.

CHAPTER 2. RESEARCH METHODOLOGY

26

- Design a method to prioritize test cases

- Define the testing strategy.

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify the defects that occur on UML CD-based CS.
- Identify the class diagram element features that can be mutated of
an UML CD-based CS.
- Identify the restrictions and resources needed to support the CS
mutation

T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Define the mutation operators for CS. RM: literature review and
conceptual analysis
T3’. TREATMENT VALIDATION
- Validate some properties of the mutation operators for conceptual
schemas.
T1’’. RESEARCH PROBLEM ANALYSIS
-Establish the conceptual framework.
T2’’. RESEARCH & INFERENCE DESIGN
- Define the context, objects of study, measures and procedure
- Design an artefact (tool) to automate the generation of CS mutants
T3’’. VALIDATION
- Analyse threats on the experiment validity
T4’’. RESEARCH EXECUTION
- Collect data: contribution factor, mutation score, impact indicator for
each mutation operator
T5’’. DATA ANALYSIS
- Description and discussion of results

T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify the commands to run test cases against the CS
- Identify the faults generated in Alf
- Relate the faults generated by Alf with the defect to be reported.

CHAPTER 2. RESEARCH METHODOLOGY

27

- Define the results visualization for feedback and reports. RM:
conceptual analysis and defect classification schema.
- Specify usage guidelines for applying the proposed validation
approach. RM: conceptual analysis.

T3. TREATMENT VALIDATION
- Validate the effectiveness of CoSTest by means of a comparative
experiment.

- Relate the faults generated by Alf with the defect to be reported.
- Identify the characteristics and resources needed to support the
testing process. RM: literature review and conceptual analysis

T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for executing the test cases against the CS and
detect the defects using Alf.
T3’. TREATMENT VALIDATION
- Validate the testing process on executable CS mutants. RM: laboratory
experiments using mutation testing.
T1’. PROBLEM INVESTIGATION
-Define the goals and the criteria to judge the proposed treatment. RM:
conceptual analysis
-Define the conceptual framework to the new treatment. RM: literature
review, conceptual analysis.

- Identify the commands to run test cases against the CS
- Identify the faults generated in Alf
- Relate the faults generated by Alf with the defect to be reported.
- Identify the characteristics and resources needed to support the
testing process. RM: literature review and conceptual analysis

T2’. TREATMENT DESIGN
- Specify requirements for new treatment. RM: conceptual analysis.
- Investigate available treatments. RM: literature review.
- Design an approach for executing the test cases against the CS and
detect the defects using Alf.
T3’. TREATMENT VALIDATION
- Validate the testing process on executable CS mutants. RM: laboratory
experiments using mutation testing.

CHAPTER 2. RESEARCH METHODOLOGY

28

- Evaluate CoSTest user perceptions by means of interviewing potential
stakeholders and using an observational case study.

2.5 Summary
Since this PhD thesis was conceived as an exploratory research

project, this chapter summarizes the methodology followed in this

T1’. PROBLEM ANALYSIS
-Establish the conceptual framework, goal, experiment research questions
and population.
T2’. RESEARCH & INFERENCE DESIGN
- Define the experimental context, objects of study, variables and metrics
- Define hypothesis.
- Design the experiment.
T3’. VALIDATION
- Evaluate the experimental design
- Review the instruments for collecting data
- Analyse threats on the experiment validity
T4’. RESEARCH EXECUTION
- Collect data: rate of fault detection, rate of fault type detection,
mutation score.
T5’. DATA ANALYSIS
- Description of the results
- Application of statistical tests
- Explanations and generalizations
- Answer to knowledge questions.
- Discussion of the results

T1’. PROBLEM ANALYSIS
-Establish the conceptual framework, goal, experiment research questions
and population.
T2’. RESEARCH & INFERENCE DESIGN
- Define the experimental context, objects of study, variables and metrics
- Define hypothesis.
- Design the experiment.
T3’. VALIDATION
- Evaluate the experimental design using a pilot test
- Review the instruments for collecting data
- Analyse threats on the experiment validity
T4’. RESEARCH EXECUTION
- Collect data: practitioners’ perceptions
T5’. DATA ANALYSIS
- Answer knowledge questions.
- Discussion of the results

CHAPTER 2. RESEARCH METHODOLOGY

29

work, which has been taken from Wieringa’s design science [15]. The

different motivations and goals were then identified according to the

stakeholders and potential end-users. Also, the goal structure and

related research questions were presented to derive the different tasks

of regulative cycles (i.e. design and empirical) to overcome a design

problem and knowledge problem. A brief description is given of the

different tasks in the design and empirical cycles.

In the next chapter, we will discuss related work on the validation

of conceptual schemas from different standard, industrial and academy

view points.

PART II.

PROBLEM

INVESTIGATION

CHAPTER 3. THEORETICAL FRAMEWORK

33

Chapter 3
THEORETICAL FRAMEWORK
3. Theoretical Framework

In the context of MDD, where conceptual schemas (models) are the

basis of the whole development process, the quality of the CSs has a

high impact on the final quality of the software systems derived from

them [20]. Hence, CSs may directly affect both the efficiency (time,

cost, effort) and the effectiveness (quality of the results) of information

systems development.

Conceptual Schemas are developed using a modelling language.

The de-facto standard for analysis and design of object-oriented

software systems is the Unified Modelling Language (UML) [16], which

is extended with OCL (Object Constraint Language) constraints [17].

The variety of UML diagrams provide flexibility and applicability to

modellers to create CSs in the different spaces where they can be used

(problem, solution and background) [18]. However, since the modelling

process is a human task, it is difficult to avoid introducing defects into

the CSs (e.g. inconsistency, incorrect, redundant and imprecise

elements).

Although defects may be inevitable, we should minimize their

number and impact on software quality through testing and/or

inspecting the CS. Testing aims to detect defects in a system by

CHAPTER 3. THEORETICAL FRAMEWORK

34

comparing the expected results (expressed in system requirements) to

the observed results (the behaviour of the implementation of the

System Under Test (SUT). In many organizations testing processes

begin after the code has been completed [19]. In order to detect

defects before they become extremely expensive to fix and manage

inevitable changes during software lifecycle, testing activities should

start as soon as possible (the requirements level) in the software

lifecycle and the Information on the defect types that occur in the

earlier stages of the software development life cycle can be used to

give feedback to stakeholders (e.g. modellers, developers, testers)

about detecting defects and how they can be tracked, reduced and

resolved. If the purpose is to get a good quality CS, the information on

each defect must be related to the quality goals affected, according to

an appropriate quality model for models in an MDD context, as

proposed in [9].

The purpose of this chapter is to provide the basic knowledge

required to understand the overall thesis. As shown in Figure 3.1, this

work is placed in the intersection of three research areas that have

some aspects in common. These disciplines are: Requirements

Engineering, Software Quality (focused on Conceptual Schema Quality),

and Model-driven Development.

 Figure 3.1. Research areas involved in this work

The rest of this chapter is organized as follows: Section 3.1 briefly

describes the modelling requirements based on Communicational

CHAPTER 3. THEORETICAL FRAMEWORK

35

Analysis used in this thesis. Section 3.2 describes the concepts of the

Conceptual Schema Quality, such as the quality model for conceptual

schemas taken as reference to our work and the testing terminology

and the testing artefacts involved in our proposal. Section 3.3

summarizes the model-driven development concepts related to this

research, and Section 3.4 summarizes and presents the conclusions of

the chapter.

3.1 Concepts of Requirements Engineering
A general definition defines Requirements Engineering as a

particular research discipline in the fields of software engineering.

Following this definition, the discipline searches for, defines, and

provides new techniques, instruments, and methods to support the

requirements document process of a software system.

A more specific definition states that requirements engineering is

the first phase of the software engineering life cycle, which is

responsible for a systematic development of a requirements document

that describes what, a system shall do. Loucopoulos and Karakostas

define Requirements Engineering as “a systematic process of

developing requirements through an iterative co-operative process of

analyzing the problem, documenting the resulting observations in a

variety of representation formats, and checking the accuracy of the

understanding gained” [20].

The second definition of requirements engineering is assumed in

this research, by which requirements engineering consists basically of

the elicitation, analysis, documentation (specification), verification and

validation. During elicitation, the requirements are elicited from all

possible sources, e.g. from input documents or through interviews with

the customer and users. The output of this first activity is the raw

requirements. These are analyzed in the second step for consistency,

feasibility, incompleteness, and ambiguity. If problems are detected in

the analysis activity, the problems must be re-negotiated among the

stakeholders until all the stakeholders agree upon the set of

CHAPTER 3. THEORETICAL FRAMEWORK

36

requirements. Then, in the third step these requirements are

documented at an appropriate level of detail (e.g. requirements

model), and are integrated into the requirements document in the

fourth activity. The requirements document is then validated with

respect to correctness and completeness of the requirements to the

customer and user needs. The validated requirements then serve as

the major input for the system development and the acceptance as

well as for the test case generation as they are required in our

proposal.

Several techniques can be used to specify the requirements in the

system requirements document. The most popular techniques to

specify the user requirements are natural language and use cases. Even

though natural language presents several disadvantages such as

ambiguities, unclearness, and redundancies, it is the most frequently

used technique to describe requirements in industry. On the other

hand, the use cases focus on the more structured description of the

interaction between the different users and the system by using a

graphical and textual representation, however, they are also in form of

natural language and also present the above disadvantages.

The acquisition of requirements is achieved through language

manipulation (communication with stakeholders). However, it is

usually convenient to specify these requirements in models, such as

conceptual schemas. As we describe in Section 3.2.2, some V&V

techniques require semi-formal or formal models to be applied, and

models are often used for specification purposes and as a base for

design and implementation (including automatic generation of code in

MDD context). In our research, we need to capture the functional

requirements in a clear and concise manner, which is typically not

possible with natural language. We therefore use a Requirements

Engineering method called Communication Analysis (CA) to specify

requirements models, which minimizes the disadvantages of writing

the requirements in natural language.

CHAPTER 3. THEORETICAL FRAMEWORK

37

3.1.1 Modelling Requirements based on

Communicational Analysis
Communication Analysis is a Requirements Engineering method

that analyses the communicative interactions between company’s

Information Systems (CIS) and their environment [21].

The methodological core of Communication Analysis is the

information system analysis stage, the result of which is an analysis

specification, a communication‑oriented documentation that describes

the information system. For this purpose, CA proposes a requirements

structure with five levels (see Figure 3.2):

Figure 3.2. Communication Analysis requirements levels and workflow [21]

(i) System/subsystems level (L1) refers to an overall description of

the organisation and its environment (Organisational System and

Subject System, respectively) and also involves decomposing the

problem in order to reduce its complexity, (ii) Process level (L2) refers

to business process description both from the dynamic viewpoint (by

CHAPTER 3. THEORETICAL FRAMEWORK

38

identifying flows of communicative interactions, a.k.a. communicative

events) and the static viewpoint (by identifying business objects), (iii)

Communicative interaction level (L3) refers to the detailed description

of each communicative event (e.g. the description of its associated

message) and each business object, (iv) Usage environment level (L4)

refers to capturing requirements related to the usage of the Computer

Information System (CIS), the design of user interfaces, and the

modelling of object classes that will support IS memory, and (v)

Operational environment level (L5) refers to the design and

implementation of CIS software components and architecture (further

information can obtained in [21]).

3.2 Concepts of the Conceptual Schema Quality
The meaning of quality has been widely discussed and everybody

agrees that quality is an important property of products. ISO/IEC 9126

[22] (an international standard for the evaluation of software quality

consistent with ISO 9000 [23], a family of standards related to quality

management) define the quality of a software as: “The totality of

features and characteristics of a product or service that bear on its

ability to satisfy stated or implied needs”. Most approaches to quality

evaluation therefore decompose the concept of quality into a set of

lower level quality properties (also called “goals”, “attributes” or

quality characteristics) which may be precisely measured.

In the context of modelling, the quality of a CS or model is the

degree to which a set of model quality properties is present. Therefore,

the set of quality goals with their relations, accompanied by a set of

practices or means to achieve the quality goals and evaluation

methods for evaluating quality goals define a Quality Model [9].

This section describes the quality model taken as reference for this

research project as well as the basic concepts and testing artefacts

used in the testing-based validation process of the conceptual

schemas.

CHAPTER 3. THEORETICAL FRAMEWORK

39

3.2.1 Model Quality for Conceptual Schemas
Different quality models can be found in the literature for

describing the quality of CSs such as that developed by Lindland,

Sindre, and Sølvberg [16] (1994), and its numerous extensions and

refinements (e.g. Krogstie and Sølvberg [17], 2003; Krogstie et al. [18],

2006; and Krogstie [19], 2012). This quality framework classifies model

quality into three categories (i) the syntax quality (relationship

between the model and modelling language norms, i.e. syntax), (ii)

semantic quality (relationship between the model and problem

domain); and, (iii) pragmatic quality (comprehensibility by the

stakeholders). Krogstie [19] added some quality goals for the

understanding and assessment of models quality to the Lindland's

framework; such as physical quality (model is persistent, current and

available), empirical quality (model has features visual or textual

communication to help minimal error frequency), social quality

(relationship agreements between different model interpretations) and

deontic quality (if the model meets the objectives of modelling). Other

quality models such as those found in [3] and [20] also discuss the

concept of model quality within the context of UML.

However, the MDD approach allows many activities to be

automated in software development. Conceptual schemas in MDD are

expected to get progressively more complete, precise and executable

and be used to generate the code and other artefacts such as test

cases. Therefore, MDD add new requirements to the development

process such as consistency between models, technical comprehension

by tools and support changeability. In [21] Mohagheghi et al. describe a

quality model (6C) oriented to Model Driven Engineering (MDE). They

perform a combination of quality models and identify the following six

classes of conceptual schema quality goals (see Table 3.1).

For the purpose of conceptualizing the quality properties

considered in this thesis, we adopted the quality model proposed by

Mohagheghi et al. [9].

CHAPTER 3. THEORETICAL FRAMEWORK

40

Table 3.1 Quality Goals based on 6C quality model from Mohaghehi et al. [9]

Quality Goal (QG) Description

Correctness
QG1

Including correct elements and relations between them,
and including correct statements about the domain; not
violating rules and conventions; for example adhering to
language syntax. Thus it covers both syntactic correctness
(right syntax or well-formedness) and semantic correctness
(right meaning and relations relative to the knowledge
about the domain).

Completeness QG2 Having all the necessary information that is relevant and
being detailed enough according to the purpose of
modelling. It is a semantic quality.

Consistency
QG3

Having no contradictions in the models, related to syntactic
quality. It covers consistency between views that belong to
the same level of abstraction or development phase
(horizontal consistency), and between views that model
the same aspect, but at different levels of abstraction or in
different development phases (vertical consistency). It also
covers semantic consistency between models; i.e, the
same element does not have multiple meanings in
different diagrams or models.

Comprehensibility QG4 Being understandable by the intended users, either human
users or tools. It is related with the pragmatic quality.

Confinement
QG5

Being in agreement with the purpose of modelling and the
type of system, and being restricted to the modelling goals;
such as including relevant diagrams and being at the right
abstraction level. It is related with the semantic quality.

Changeability
QG6

Supporting changes or improvements so that models can
be changed or revolved rapidly and continuously. It is
related with the pragmatic quality.

3.2.2 Practices to improve the Quality of

Conceptual Schemas
In order to assess whether a CS meets the above quality goals,

several methods can be employed. All these methods aim to validate

and verify (V&V) the CS according to a quality model.

The IEEE [24] defines validation as the “confirmation by

examination and provisions of objective evidence that the particular

requirements for a specific intended use are fulfilled”. On the other

hand, the same standard defines verification as the “confirmation by

CHAPTER 3. THEORETICAL FRAMEWORK

41

examination and provisions of objective evidence that specified

requirements have been fulfilled”.

Applying the above definitions in the modelling context, validation

is an activity that answers the question: “Are we developing the right

model?”, i.e. whether all the knowledge in the model is sufficiently

correct and relevant to the problem domain. On the other hand,

verification is an activity that answers the question “Are we developing

the model right?”, i.e. whether the model satisfies quality properties

such as consistency. According to the ISO/IEC 9126 [25]classification

[25], validation aims to check the external quality and verification aims

to check the internal quality.

The contributions of this thesis are aimed at enhancing conceptual

schema validation in the context of a model-driven development. The

application of techniques aimed at validating requirements may

depend on the formalization level of the requirements specifications.

The methods applicable to validation are suitable for software

validation in general, and for models validation (e.g. requirements

models, design models, test model, etc.) in particular.

In this thesis, we classify methods from two perspectives: (1) the

way in which the analysis is performed; and (2) the level of

formalization. This classification is an oversimplification for the

purpose of this thesis.

First, regarding the way in which the analysis is performed, we

classify methods into two categories:

Static methods. Static methods examine a model and reason over

all the possible behaviours that might arise at run time [26]. It means

that the model is read by humans, or pursued by a computer, but not

executed as a program. Hence, static methods work at “compile time”.

Dynamic methods. Dynamic methods operate by executing a

program (in our case, a CS or model) and observing its executions [27].

CHAPTER 3. THEORETICAL FRAMEWORK

42

It means that the model is run (or executed) by means of a computer.

Hence, dynamic methods work at “run time”.

Second, regarding their level of formalization, we classify methods

into two categories:

Formal methods. Wing [28] describes formal methods as

“mathematically based techniques for describing system properties.

Such formal methods provide frameworks within which people can

specify, develop, verify and validate systems in a systematic, rather

than ad-hoc manner”.

Non-formal methods. Unlike formal methods, non-formal methods

do not try to follow a rigorous approach but to use informal

techniques. Non-formal methods have the advantage that the user

does not need be an expert in understanding mathematical models.

They are easy to illustrate and can be used to validate models written

in natural language, increasing the participation of non-technical

stakeholders. As a drawback, given their non-formality, they can be

ambiguous and provide a non-precise result.

In the following, we briefly review some of the existing methods,

classifying them into the above categories (see Table 3.2). Note that,

again, our classification is an oversimplification which only includes a

subset of the many existing methods devoted to validation.

Table 3.2. Validation relevant methods for Conceptual Schemas

 Static Methods Dynamic Methods

Non-formal
methods

Reviews
Inspections

Formal methods Testing
Simulation and Animation

Review

The IEEE [29] standard defines a review as “a process or meeting

during which a software product is presented to project personnel,

managers, users, customers, user representatives, or other interested

CHAPTER 3. THEORETICAL FRAMEWORK

43

parties for comment or approval”. The IEEE [29] also defines a

technical review as “a systematic evaluation of a software product by a

team of qualified personnel that examines the suitability of the

software product for its intended use and identifies discrepancies from

specifications and standards. Technical reviews may also provide

recommendations of alternatives and examination of various

alternatives”. The purpose of a technical review is to achieve at a

technically superior version of the software product reviewed, whether

by correction of defects or by recommendation or introduction of

alternative approaches.

Inspection

The IEEE [29] standard defines an inspection as “a visual

examination of a software product to detect and identify software

anomalies, including errors and deviations from standards and

specifications. Inspections are peer examinations led by impartial

facilitators who are trained in inspection techniques. Determination of

remedial or investigative action for an anomaly is a mandatory element

of a software inspection, although the solution should not be

determined in the inspection meeting”. Compared to the technical

reviews and walkthroughs, inspections are more structured. The IEEE

standard [29] states that inspections should be done according to the

project plan.

The above techniques have mainly been applied to analyse source

code [30]. However, these techniques can also be applied in earlier

phases of software development such as requirements specification

[31] or design [32] [33].

Paraphrasing [34] and Explanation Generation [35] techniques are

attempts to verbalize and provide explanations about the behaviour of

conceptual schemas in order to facilitate their comprehension and

validation, supporting the conceptual modelling activity.

CHAPTER 3. THEORETICAL FRAMEWORK

44

Simulation and Animation

According to Bicarregui J. et al. [36], animation facilities allow users

to execute operations of the specification with user supplied

parameters, thereby calculating the value of the output parameters

and the new system state. The method we propose to test conceptual

schemas belongs to this category of validation techniques. Formal

requirements specifications (like conceptual schemas defined in a

formal modelling language) can be validated by using these techniques

that execute them through animation (e.g. [37], [38]).

Testing

Testing is probably the most popular method used for the dynamic

verification and validation of a software artefact and is done by

running a discrete set of test cases, where a test case consists of input

values and their expected output. The test cases are suitably selected

from a finite but very large input domain. During testing the actual

behaviour is compared with the intended or expected behaviour. The

emphasis of software testing is to validate and to verify the design and

the initial construction.

Testing could be categorized as functional and non-functional

testing. Functional testing is concerned with what the software artefact

does its features or functions. Non-functional testing is concerned with

examining how well the software artefact does its job and includes

performance, usability, portability, maintainability, etc. However,

testing is an expensive practice to improve the quality of CS and

requires stop criteria because a complete testing is infeasible [12].

3.3 Concepts of the Model-driven Environment
As mentioned before, this research focuses on the design of a

testing based validation framework that satisfies a model-driven

environment in order to improve conceptual schema quality. This

section provides the reader with the lexicon and tools used throughout

model-driven testing. First, we introduce MDA definitions and

assumptions as well as the concepts of the metamodeling architecture

CHAPTER 3. THEORETICAL FRAMEWORK

45

used in our work. Then, we summarize the concepts of the UML CD-

based Conceptual Schemas and also of an executable UML CS. Finally,

we summarize the concepts of the OMG standards for specifying

executable models.

3.3.1 MDA Definitions and Assumptions
The Object Management Group (OMG) has defined its own

proposal for applying MDE practices to system’ development, which is

called MDA (Model-Driven Architecture). The entire MDA

infrastructure is based on few core definitions and assumptions. The

main elements of interest for MDA are the following [39]:

- A System is the subject of any MDA specification. It can be a

program, a single computer system, some combination of parts

of different systems, or a federation of systems.

- Problem Space (or domain) is the context where the system

operates.

- Solution Space is the spectrum of possible solutions that satisfy

the system requirements.

- Architecture is the specification of the parts and connectors of

the system and the rules for the interactions of the parts using

the connectors.

- Platform is a set of subsystems and technologies that provide a

coherent set of functionalities oriented towards the

achievement of a specified goal.

- Viewpoint is a description of a system that focuses on one or

more particular concerns.

- View is a model of system seen under a specific viewpoint.

- Metamodel constitutes the definition of a modeling language,

which provides a way of describing the whole class of models

that can be represented by that language. Therefore, we can

define models of the reality, and then models that describe

models (called metamodels) and recursively models that

describe metamodels (called meta-metamodels). Then, a

model conforms a metamodel in the way that a computer

CHAPTER 3. THEORETICAL FRAMEWORK

46

program conforms to the grammar of the programming

language in which it is written [39].

- Transformation is a correspondence relation between

elements in a source metamodel and elements in a target

metamodel. It is defined at metamodel level, and then applied

at the model level, upon models that conforms to those

metamodels. Therefore, executing a Model-to-Model (M2M)

transformation transforms a source model Ma conforming to a

metamodel MMa into a target model Mb conforming to a

metamodel MMb (where MMa and MMb can be the same or

different metamodels).

3.3.2 Overview of the Metamodeling Architecture
Since our proposal complies with the principles of Model-Driven

Architecture, it distinguishes different types of models at various levels

of abstraction, as follows [39]:

Computation-Independent Model (CIM) is the most abstract

modelling level and represents the requirements of the solution

without any binding to computational implications.

Platform-Independent Model (PIM) is the level that describes the

behaviour and structure of the system, regardless of the

implementation platform.

Platform-Specific Model (PSM) contains all the required

information regarding the behaviour and structure of an application on

a specific platform that developers may use to implement the

executable code.

A set of mappings between each level and the subsequent one can

be defined through model transformations. Typically, every CIM can

map to different PIMs, which in turn can map to different PSMs.

In this thesis, UML (Unified Model Language) [40] class diagrams

define the metamodels presented in Chapter 6, while ATL (ATLAS

CHAPTER 3. THEORETICAL FRAMEWORK

47

Transformation Language) [41] defines the model transformations. We

select both solutions, as they are well-known languages. UML is

proposed by OMG (Object Management Group) and is frequently used

in MDE for defining metamodels. ATL is one of the most popular and

widely used model transformation languages [41]. ATL is a hybrid

transformation language that contains a mixture of declarative and

imperative constructs. Helpers and transformation rules are the

constructs used to specify the transformation functionality.

3.3.3 UML CD-based Conceptual Schemas
The aim of this work is to design test cases to find faults in a

Conceptual Schema during the analysis and design of the software by

deliberately changing a UML CD-based CS, resulting in wrong behaviour

and possibly causing a failure. The CS of a system should describe its

structure and behaviour (constraints). In this paper a UML-based class

diagram is used to represent such a CS.

A class diagram (see Figure 3.3) is the UML’s main building block

that shows elements of the system at an abstract level (e.g. class,

association class), their properties (ownedAttribute), relationships (e.g.

association and generalization) and operations.

Figure 3.3. Excerpt of the Metamodel of an UML Class Diagram [40]

CHAPTER 3. THEORETICAL FRAMEWORK

48

In UML an operation is specified by defining pre- and post-

conditions. Figure 3.3 shows an excerpt of the UML structure for a class

diagram and highlights eight elements of interest for this work.

3.3.4 Executable UML Conceptual Schema Under

Test
If we want to dynamically test models to detect potential

misconceptions expressed in it, we need to be able to execute the

models. An executable model is a model with a structure (what is it?)

and behavioural specification (what does it do?) detailed enough to be

systematically executed in a production environment.

Structural model

The structural model specifies the static part of an information

system [1], which is formed by a set of classes, a set of attributes of

each class, a set of associations among classes, a set of generalizations

among classes and a set of integrity constraints (i.e. conditions that

must be satisfied in all states of an information system).

All elements in the class diagram are assumed to be correct

instances of the corresponding metaclasses of the UML metamodel

[40].

Some integrity constraints (mainly cardinalities) may be graphically

represented in the CD, while the rest of them may be textually

specified in OCL [17]. Figure 3.4 shows an excerpt of structural model

of our Video Club CS.

Behavioural model

The behavioural model specifies the dynamic part of an

information system, i.e. the valid changes in the system state, as well

as the functions that the system can perform [1]. In UML there are

several models to specify the behaviour of a system at a high level of

abstraction, for instance, using use case diagrams, activity diagrams,

state chart diagrams, etc. However, as we have introduced, in order to

be executable, the behavioural models must be detailed enough. For

CHAPTER 3. THEORETICAL FRAMEWORK

49

this reason, in this thesis, in order to define a detailed behavioural

model, we use operations. Operations are sequences of atomic steps

that users may execute to query and/or modify the information

modelled in the structural model. The Operations are attached to UML

classes.

Figure 3.4 shows three operations related to the Rental class (i.e.

new rental, RENTAL_INFO and set_return_date).

Figure 3.4. Excerpt of UML-CD-based CS for Video Club case

In addition, the pre and post conditions and invariants included in

the class diagram are also operations or part of operations (i.e. pre and

post condition). For example Figure 3.5 shows some constraints

attached to the class Rental of the Video Club CS.

CHAPTER 3. THEORETICAL FRAMEWORK

50

Figure 3.5. Example of constraints for the Video Club system

3.3.5 Defect Types in UML-based Conceptual

Schemas
A conceptual schema may not always represent the functionality it

is intended for. The causes and consequences of deviations from the

expected function in conceptual schema are factors that affect the

dependability and quality of a software product. The terminology

presented below was adapted from IEEE std. 1044-2009 [42] for

executable conceptual schemas.

- Defect: An imperfection or deficiency in a work product where

that work product does not meet its requirements or

specifications and needs to be either repaired or replaced.

- Fault: A manifestation of a defect in a conceptual schema.

- Failure: An event in which the conceptual schema does not

perform a required function within specified limits.

When a defect is encountered during model execution it is called a

fault, but it is not a fault if it is detected by inspection or static analysis.

Therefore, a fault is a subtype of defect and may cause a failure when it

is encountered. We adjusted the description of the scope of the

relationships between conceptual entities proposed by the standard

IEEE on one hand, with the conceptual entities of our study (UML-

based conceptual models) on the other. This resulted in Figure 3.6,

where these relationships are depicted graphically. The red frame

directly corresponds to the IEEE standard.

CHAPTER 3. THEORETICAL FRAMEWORK

51

As seen in Figure 3.6, a conceptual schema represents the

(software) systems requirements at an abstract level. It may consist of

several UML diagrams (structural and behavioural), where each

diagram type contains different type (modelling element) of

information about the system.

Additionally, the conceptual schema has associated quality

properties that support the representation or description of the

requirements. These quality properties are usually threatened by

defects that occur at the diagram elements level of the conceptual

schema.

Figure 3.6. Relationships among conceptual entities

A defect may be associated with a single Corrective Change

Request of the Conceptual Schema, which attempts to resolve the

defect and each Corrective Change Request may be associated with, at

the most, a single Conceptual Schema Release.

Figure 3.6 also shows the other two causes of a Conceptual Schema

Changed Request (CSCR), perfective change request of a conceptual

schema and adaptive change request of a conceptual schema.

CHAPTER 3. THEORETICAL FRAMEWORK

52

The defects at the conceptual level can be located in several ways

through V&V techniques, which use a detection mechanism (based on

rules, metrics, and modelling conventions) for this purpose.

According to the nature of the technique, this can be statically or

dynamically supported by a tool and can have a type of scope that

depend on its purpose (i.e. detect, prevent and resolve).

The defects have insertion activity, severity, priority and probability

of occurrence. They are detected at any specific time by noticing a

specific description (symptom) using a detection mechanism. Each of

these aspects is relevant for the purpose of the required analysis and

also allows a classification of the defects. In previous work [43] we

classified UML model defects reported in the literature and related the

types of the defects with the CS quality goals (see Section 3.2) affected

by them. Table 3.3 summarizes the CS defect types.

Table 3.3. Defect types in a UML-based model (excerpt taken from [43])

Defect Cause Sub modes Affected
Quality

Goal

 MISSING Something is absent that should be present. QG2, QG4

WRONG
Something is

incorrect,
inconsistent or

ambiguous.

Inconsistent: There are contradictions in the models
(1) vertical inconsistency (i.e. contradictions between
model versions) and (2) horizontal inconsistency (i.e.
contradictions between different model views).

QG1,
QG3,

QG4, QG5

Incorrect: There is a misrepresentation of modelling
concepts, their attributes and their relationships, as
well as the violation of the rules by combining of
these concepts at the time of building partial or
complete models.

QG1, QG4

Ambiguous (wrong wording): The representation of a
concept in the model is unclear, and could cause a
user (e.g. modeller) to misinterpret its meaning.

QG1,
QG3

UNNECESSARY
(Extra)

Something is
present that
need not be.

Redundant: If an element has the same meaning that
other element in the model.

QG5

Extraneous: If there are items that should not be
included in the model because they belong to
another level of abstraction, e.g. details of
implementation, which are decisions (e.g. type of
data structure used at code level) that are left to be
made by the developers, and is not specified at an
earlier level (e.g. CS).

QG5, QG6

CHAPTER 3. THEORETICAL FRAMEWORK

53

Missing and unnecessary elements (i.e. redundant and extraneous)

and incorrectly modelled requirements are the main causes of a design

model inaccuracy that can be detected by requirements testing.

Inconsistent defects can only be found by comparing CS versions, so

that testing is not required in this case. Ambiguous elements require

user (e.g. modeller, low-level designer) criteria to find defects.

In this thesis we face the challenge of detecting defects (missing,

correctness and unnecessary elements) on conceptual schemas by

testing.

3.4 Summary and Conclusions
This thesis aims at enhancing conceptual schema validation in the

context of model-driven development. In this chapter we describe the

concepts related to three research areas on which our research is

based: Requirements Engineering (Section 3.1), Conceptual Schema

Quality (Section 3.2) and Model-driven Environment (Section 3.3).

Requirements Engineering and Quality both aim to support the

development of software products to meet stakeholder’s expectations

regarding functionality and quality at different stages of the software

development life cycle (e.g. conceptual schema used in both analysis

and design phases). We adopted the quality model proposed in

Mohagheghi et al. [21] (see Section 3.2) for the purpose of

contextualizing the CS quality goals considered. In order to assess

whether a Conceptual Schema meets the desired quality goals, several

methods can be employed. In this chapter we have reviewed and

classified a subset of the most relevant analytical methods used in

several fields of computer science, both in hardware and software

(mainly in source code) verification and validation:

• Static and non-formal methods: Walkthroughs, reviews and
inspections.

• Static and formal methods: Data-Flow Analysis, Constraint-Based
Analysis and Abstract Interpretation.

• Dynamic and non-formal methods: Testing.

CHAPTER 3. THEORETICAL FRAMEWORK

54

• Dynamic and formal methods: Model Checking.

The testing of conceptual schemas may be an important and

practical means of validation because it allows checking correctness

and completeness according to stakeholders’ needs and expectations.

In conjunction with the automatic checking of basic test adequacy

criteria, it can also contribute to improving the consistency,

comprehensibility, confinement and changeability of the elements

defined in the schema.

As we explain in Section 3.3, the Model‑driven theoretical

framework is indeed a vital base on which the testing-based framework

for validation of UML CD-based conceptual schemas is built.

The theoretical framework for Communication Analysis [21] (a

Requirements Engineering method) (see Section 3.1.1) is important for

the purpose of modelling the functional requirements of the CS

considered in this thesis and also defines the artefacts that are part of

the input of our proposal.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

55

Chapter 4
RELATED WORK OF CONCEPTUAL

SCHEMA VALIDATION
4. Related Work of Conceptual Schema

Validation
In software engineering the requirements are usually elicited and

specified before implementing them. Requirements can be specified in

different kinds of artefacts and in different levels of formalization (i.e.

unrestricted natural language, disciplined documentation or formal

notation) [44]. The application of techniques aimed at validating

requirements may depend on the formalization level of their

specification. In particular, conceptual schemas defined in UML are

formal specifications of functional requirements and their validation is

the main objective of the conceptual schema testing approach

proposed in this thesis (Chapter 5).

Validation of software conceptual schemas has been a topic

addressed in the literature. The work related to this thesis can be

analysed in three dimensions: (1) the domain, i.e. the kind of model to

be validated; (2) the type of method employed to perform the

validation; and (3) the CS quality goal improved by the validation.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

56

In Chapter 3, we explained the general knowledge related to the

problem of conceptual schema validation in a model-driven

environment.

In this chapter, we review a representative set of existing

techniques on validating conceptual schemas according to the above

dimensions. Firstly, Section 4.1 describes the three dimensions and

briefly cites the related works. Section 4.2 reviews the most

representative works for the generation, selection, prioritization and

execution of test cases, which are fundamental challenges addressed

by the main contribution of this thesis. Section 4.3 compares the

related works and Section 4.4 summarizes and presents the

conclusions of the chapter.

4.1 Dimensions of the Related Work
In this section, we analyse how requirements specifications can be

validated in conceptual schemas. The related work can be analysed

from three perspectives (see Figure 4.1)

Figure 4.1. Related Work dimensions

Domain. Refers to the kind of model used to perform the validation.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

57

Quality Goal: Refers to the quality goal of the CS to be improved with

the validation.

Method: Refers to the type of method employed to perform the

validation.

In the rest of this section we briefly describe these dimensions.

4.1.1 Domain
The domain dimension refers to the kind of model to be validated.

In the software modelling context, the focus of the validation may be

the structural model, the behavioural model or both.

Regarding the first group, only a few works (e.g. [45], [46], [47])

analyse structural models separately from behavioural models. These

works are related with static methods such as review and inspections

[48].

In the second group there are some research proposals devoted to

the problem of validating only behavioural models. For instance, in the

UML context, there are works focusing on validating only activity

diagrams [49], state machine diagrams [50], [51] and state machine

diagram with an activity diagram [52].

The remaining works require both type of models (structural and

behavioural) to validate the requirements in the CS, e.g. class diagram

including operations and OCLs [53]; class diagram, interaction diagram

and activity diagrams [54]; class and sequence [55] [56], and so on.

In Section 4.3 we review in detail the most related works.

4.1.2 Quality Goal
This dimension refers to the quality goal to be improved with the

validation.

Several quality goals such as consistency, completeness,

comprehensibility and confinement can be assessed by means of

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

58

manual human inspections and reviews; as proposed in [57][58][47],

and also by using checklists [18]. Both modelling experts and non-

technical experts should be involved in inspections; especially for

evaluating comprehensibility and confinement aspects. The OORT

techniques (Object-Oriented Reading Techniques) are an example of

systematic inspection techniques to inspect (‘‘compare”) UML

diagrams with each other for completeness and consistency (vertical

and horizontal) [50].

On the other hand, testing works (e.g. [53], [54], [55] [56]) mainly

aim at the completeness of a CS by validating the requirements.

However, semantic correctness, confinement and changeability can be

improved by analysing the elements covered and elements not covered

(extraneous elements) by test cases (see Tables 3.1 and 3.3 in Sections

3.2.1 and 3.3.5 respectively).

Since information from separate diagrams (i.e. structural and

behavioural) should be combined for the purpose of testing, the

consistency between these diagrams should be addressed previous to

the testing process. Thus, if the testing process is supported by a tool

for CS execution, then the incorrect defects are detected by the parser

in a previous step to testing, so that the syntactic correctness goal is

also improved.

CS comprehensibility by both humans and tools is addressed when

the completeness, consistency and correctness of a CS is improved (see

Tables 3.1 and 3.3 in Sections 3.2.1 and 3.3.5, respectively).

4.1.3 Method
The method dimension refers to the type of method employed to

perform the validation. As we explained in Chapter 3, a variety of

methods can be used to analyse a model. They can be classified into

static/dynamic and formal/non-formal.

In the following, we review requirements validation techniques

that may be applicable to conceptual schemas. Reviews and

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

59

Inspections are general techniques that can be applied to other kinds

of requirements specifications. Others have been specifically proposed

to validate conceptual schemas, such as testing, simulation and

animation. Additionally, we briefly review a representative set of

verification approaches which can be used in conjunction with

validation techniques to enforce the V&V process, as explained in

Section 3.2.2.

Inspections and Reviews

 Similar techniques in this respect are the inspections and reviews

of requirements specifications [59], [44]. Inspections do not require

formal requirements specifications. However, when semi-formal or

formal specifications are the requirements artefacts under inspection,

the process may be more clear, structured and traceable.

Conceptual schemas specify functional requirements and they can

also be inspected and reviewed [50], [60], [46], [48]. However, as

requirements validation is hard to judge only by inspecting the models,

a model with executable properties is needed to evaluate them and to

detect potential misconceptions expressed in the model.

Simulation and Animation

Techniques that execute CSs through simulation and animation

[61], [52], [62][63], present facilities for the users to uncover

inconsistencies and execute operations of the specification with

parameters supplied by users, thereby calculating the value of the

output parameters and the new system state. The idea of animating

conceptual schemas for validation purposes dates back to the mid-80s.

Dignum et al. [64] describe a conceptual language (CPL) and a tool that

generates a prototype from a CPL schema, which can be tested. The

generated prototype makes it possible to build an Information Base

state, perform consistency checks and ask questions about the

contents of the Information Base. A similar approach was taken in [58]

and [65], with the PPP and TROLL light language and environment,

respectively. [49], [55]

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

60

Several tools support editions, simulations and animation of UML

models. For instance, the USE tool by Gogolla et al. [55] receives a UML

class diagram and a set of declarative operations and is able to validate

the structure/behaviour according to the modeller/designer

expectations (such as the consistency of UML models and the

independence of OCL constraints) through animation. In this context,

the authors Dotan and Kirshin [52]; and Teilans et al. [63] present tools

providing graphical visualization of simulations on activity diagrams

highlighting active states and fireable transitions, coupled with means

to visualize and record execution traces.

Testing

In the context of MDD, testing techniques have also been applied

for testing models. In these approaches the artefact under test is a

model instead of a source code. Some examples are: [56] an approach

for testing UML design models to uncover inconsistencies; [61] an

Eclipse plug-in for animating and testing UML models; and [66] a

method which applies the principles of TDD (Test-Driven Development)

to conceptual modelling.

It is important to point out that an important initiative for building

executable UML models is the fUML[67], promoted by the OMG

(Object Management Group). Research on a model execution

framework based on fUML is presented by Mijatov et al. [49]. This

framework will enable efficient testing and validating of UML activity

diagrams by providing debugging capabilities, as well as a test.

Testing is part of a process of Validation & Verification, where the

conceptual schema operates under controlled conditions in order to:

(1) verify that it behaves as specified; (2) detect defects, and (3)

validate user requirements [12]. A lot of work on automatic

verification procedures have been reported in the related literature,

such as [68], [69], [70], which are focused on an automatic check of

desirable properties in conceptual schemas (e.g. a well-formed

instantiation of the model, and consistency between models and with

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

61

constraints) and the development of automated reasoning procedures

or the semi-automated control of them. As suggested in [27], static and

dynamic analysis can interact. In this regard, we believe the dynamic

method developed in this thesis can be integrated with static methods,

for instance to verify well-formed instantiations of the CS.

Since functional testing is the validation method addressed in this

thesis, in the next Section we summarize related work on the

generation, selection and prioritization process of the test cases

required by the testing process.

4.2 Generation, Selection, Prioritization and

Execution of Test Cases
Since testing uses model (sometimes a mental model) [71] as the

basis for the construction of test cases, a good set of test cases is

directly related to how adequately the model captures the features of

the CS under test (CSUT). Nevertheless, designing test cases manually

can yield inconsistent test cases even if the model is trust-worthy.

Moreover, when the model changes, test cases must be updated and

this is not always feasible manually, mainly when the number of tests

grow. So that manual generation and execution of tests can be costly

and error prone.

In this context, the purpose of model-based testing (MBT) [72] is to

use explicit models to automatize testing. Instead of a manual design,

tests are generated by a tool that processes the input model and the

generated tests can be automatically run against an executable

software artefact (e.g. code, executable model).

4.2.1 Test Case Generation
Some methods of test case generation depend on the application,

e.g. test case generation for web application, object oriented

application, structured systems, UML applications, applications based

on evolutionary and genetic algorithms and many others. Throughout

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

62

the years, several different methods have been proposed for

generating test cases.

At the time of writing this thesis, there are two main surveys (i.e.

Escalona et al. [73] and Denger and Mora [74]), that review existing

approaches dealing with generating test cases from functional

requirements. Escalona’s survey, published at the end of 2011, cites 24

approaches; the oldest dates back to 1988 (Category-Partition Method)

and the newest to 2009. Denger’s, published in 2003, cites 12

approaches; the oldest from 1988 (it is the same approach used in

Escalona’s survey) and the newest from 2002.

From these surveys, we can see that it is very common in software

testing to generate test cases from models (e.g. [75], [76], [77]).

However, the artefact under test is a model (i.e. UML CD-based CS).

Therefore, works that generate test cases using a strategy that takes

the information for tests from another abstraction level used for the

early requirements is required, e.g. communicational analysis [21]

(communication-oriented business process modelling method), i* [78]

(a goal-oriented modelling method) and so on.

Regarding generation strategy, we can see from these surveys that

only a recent work [73] introduces a Model-driven testing (MDT)

approach, transforming an extended use case pattern (i.e. activity

diagram with all paths) to activity diagrams with single paths. These

authors propose test cases as an activity diagram to validate a system

at code level and not at conceptual schema level, as is required.

In Section 4.3 we will review in detail the generation process of the

related works.

4.2.2 Test Case Selection and Prioritization
The selection and prioritization of test cases are the two major

solutions to the problem of test case optimization.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

63

Test case selection is a method of selecting a subset of test cases

from a test suite to reduce the time, cost and effort of the software

testing process. Leon and Podgurski [79] presented an empirical

comparison of four different techniques for filtering large test suites:

test suite minimization, prioritization by additional coverage, cluster

filtering with one-per-cluster sampling, and failure pursuit sampling.

Test case prioritization is a method of scheduling and ranking the

test cases from multiple software test suites. There are many

approaches to scheduling and ranking the test cases. Each and every

test case is assigned a priority, but sometimes an issue may arise when

multiple test cases have the same priority or weights. Rothermel et al.

[80] define nine techniques (i.e. no prioritization, random, optimal,

total branch coverage, additional branch coverage, total statement

coverage, additional statement coverage, total fault-exposing-potential

and additional fault-exposing-potential) for test suite prioritization for

rate of Fault Detection. Note that test case selection and prioritization

are closely related. In fact, given a prioritization of test cases, one can

filter them simply by choosing the first n tests in the order. Therefore,

any test case prioritization algorithm can be used as a test case

selection algorithm. However, in general the reverse is not true.

Only Pilskalns et al.’s testing method [56] (see Section 4.1.3)

selects the test cases based on variable partitions that can be derived

from CS information.

4.2.3 Test Case Execution
The Executable UML approach aims at defining UML models with a

behavioural specification precise enough to be effectively executed. In

its purest state, an Executable UML eliminates the need for

programming the software system. The software models are directly

used to run the system through compilation or model interpretation.

There have been model execution tools and environments for

years, even before UML. However, each tool defined its own semantics

for model execution, often including a proprietary action language, and

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

64

models developed in one tool could not be interchanged with or

interoperate with models developed in another tool. A Jordi Cabot post

[81] describes a list of Executable UML tools; for each tool Cabot

provides the name and URL, whether the tool is free, commercial or

whatever and if the tool supports the recent Executable UML standards

or its own kind of executable UML.

In order to model executable models, whilst the UML specification

is necessary, it is not sufficient. This is for two reasons:

1. UML is not specified precisely enough to be executed. Although a

UML defines some execution semantics it is not expressive enough

to describe each computable function.

2. Graphical modelling notations are not good enough for detailed

specifications because this notation tends to be very tedious for

exhaustive specifications, confusing the specification rather than

enhancing it. Graphical notation is preferred when the diagram is

intuitive, but if the diagram is more verbose than a textual

representation, then textual is preferred.

In order to overcome these issues, the OMG has extended the UML

standard to allow the models to be executable. In particular, two new

standards have been recently added to the UML standard: the

“Foundational Subset for Executable UML Models” (fUML) [67] and the

“Action Language for fUML” (ALF) [82]. In the following we introduce

both standards and give examples of their usage.

The Foundational Subset for Executable UML Models (fUML) [67],

is an executable subset of the UML that allows the structural and

behavioural semantics of systems to be defined in an operational style.

In order to precisely specify the behaviour, fUML includes the concept

of action. An action is the fundamental unit of behaviour specification.

It takes a set of inputs (input pins) and converts them into a set of

outputs (output pins), where a pin is a typed and multiplicity element

that provides values to actions and accepts result values from them.

Some of the actions modify the state of the system in which the action

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

65

is executed. However, neither UML 2.X nor fUML provide any concrete

textual syntax for actions, but an abstract syntax, which is not really

precise.

In order to cover this shortcoming, the OMG proposed in October

2011 the Action Language for Foundational UML (ALF) [83], the first

beta version of a concrete syntax conforming to the abstract syntax of

the standard fUML. Essentially, ALF is an unambiguous, concise and

readable textual language (a kind of pseudocode) that allows designers

to completely specify fine-grained behavioural aspects of the model

(e.g. to define the behaviour of a method of a class). ALF can be

attached to any place with UML behaviour. For instance, ALF sentences

can be used directly to specify the behaviours of the transitions on a

statechart diagram, the method of an operation or the classifier

behaviour of a class.

ALF also provides an extended notation that may be used to specify

structural modelling elements. Therefore, it is possible to specify a

UML model entirely using ALF, though ALF syntax only directly covers

the limited subset of UML structural modelling available in the fUML

subset. However, in this thesis we use UML Class diagram to represent

the structural part of a CS and then the CS is automatically transformed

to ALF. This is because: (1) we believe a graphical notion of the

structural model is more intuitive; and (2) neither the fUML subset (nor

ALF) allows integrity constraints associated to the class diagram to be

defined, an element that the conceptual schema used in this thesis

takes into consideration.

Before the adoption of ALF, several action languages emerged such

as Object Action Language (OAL) [84], Shlaer-Mellor Action Language

(SMALL) [85], Action Specification Language (ASL) [86]. A Jordi Cabot

post [87] summarizes Stephen Mellor’s quest of more than a decade

ago to standardize executable UML tools through OMG standards for

precise UML model execution semantics and a UML action language.

So that, although there are a number of studies addressing the

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

66

verification of UML models that include actions [88] [89] [90] [91], only

some of them [92][93] [94] [95] are aligned with the ALF action

language standard.

The Papyrus tool [96][97], an open-source UML tool under the

Eclipse Modelling Project uses ALF to validate UML models. This tool

has executable modelling capabilities including: (1) creating a complete

program as a graphical UML class model, with detailed behavioural

code written textually using ALF; (2) synchronizing the graphical

representation of a UML class with its textual representation in ALF; (3)

concurrent execution of an activity and (4) debugging an executing

activity. This means a user (modeller/analyst/tester) can manually

enter the tests as an activity diagram to perform the testing and

debugging process. There is also a work [96] that provides feedback

and lessons learned by the Papyrus team regarding the

implementation and use of the fUML with ALF from the perspective of

domain-specific users.

Research has also been carried out [98][99] on using fUML and ALF

as the basis for specifying the semantics of domain-specific modelling

languages. However, to the authors’ knowledge, there is no possibility

of automatically obtaining a full version of the UML model in ALF code

from these tools.

This thesis describes the use of ALF for generating executable test

cases as well as for translating a UML CD-based CS in an executable

model. These ALF-based artefacts are then used within the CoSTest

process for validation of UML-based Conceptual Schemas by executing

the test cases against the executable CS in an ALF-based testing

environment.

4.3 Comparison of Related Works
In this section we compare the validation works related with this

thesis based on the three dimensions (i.e. domain, quality goal and

method). We also compare the main features of the testing technique

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

67

used in these works such as generation, selection and prioritization of

the test cases.

4.3.1 Dimension-Based Comparison
A lot of research has been devoted to the problem of V&V (verify

and validate) UML models. However, those most closely related to the

present work are those which focus on the behaviour defined in

structural models (pre and post conditions and invariants related to

operations of the classes). Although none of the works addresses

exactly the same problem as our focus (i.e. generating test cases for

validating CS based on UML class diagram), some research has been

done to address similar problems. In this section we review related

works that have at least two dimensions (kind of model and validation

method) in common with our work.

Table 4.1 classifies the related works that deal with the validation

of UML models and positions our work in relation to them. For each

approach, we include the following information:

 Work. References of the work.

 Source CS. Indicates the kind of model.

 Language of the Under Test CS. Indicates the kind of CS under

test

 Supported Constraints. Indicates whether OCL integrity

constraints are considered when analysing the models.

 Technique. Indicates the technique employed during the

validation.

 Analysis. Refers to the type of analysis used for validation

 Quality Goal. Enumerates the main quality goals addressed by

the work. (see Sections 3.2.1. and 3.3.5)

As can be seen in Table 4.1, a few works target the validation

dynamics for UML-CD based CS.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

68

Table 4.1. Related approach comparison

* Indirectly addressed by the method (see Table 3.3)

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

69

Dinh-Trong et al. [54] present an approach for testing UML models

consisting of class diagrams, sequence diagrams, and activity diagrams

by simulating the model’s behaviour and validating OCL class invariants

and pre- and post-conditions of operations. In this approach a test case

consists of the definition of the initial objects and links of the system

under test and a sequence of operation calls. For executing test cases,

Java code is generated from the UML model under test.

The generated code simulates the behaviour of the defined activity

diagrams which is specified with their own action language JAL. For

evaluating OCL constraints during the simulation, USE is applied.

An interesting tool to validate UML/OCL conceptual is USE

presented by Gogolla et al. [55]. The tool requires the classes and

operations to be specified that check whether a concrete instantiation

given is accepted by the schema and the OCL constraints, but does not

invent new instances that could complement the given instantiation to

make it valid in case it is not.

Pilskalns et al. [56] present an approach for testing UML models

composed of class and sequence diagrams. OCL class invariants and

pre-/post-conditions of operations are used to validate the correct

behaviour of models. To execute test cases, a UML model is

transformed into another format called Testable Aggregate Model

(TAM) on which a symbolic execution is applied.

The OCL constraints are validated after the execution of each

message defined in the sequence diagrams with USE [55]. When

applying the UML evaluation approach, faults and inconsistencies can

be revealed throughout the process. Inconsistencies (e.g. class,

operation parameters between class diagram and sequence diagram)

are revealed via static analysis by combining the behavioural,

structural, and constraint information. Two different types of faults can

be revealed by application of dynamic testing techniques applied to the

aggregate model. The first type of fault can be classified as a path fault

(this type of fault often occur because the modeller/designer did not

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

70

address all paths associated with a condition), which is found by

traversing the TAM. The second type of fault, known as an OCL fault,

occurs when states recorded in the execution trace or instance table

violate OCL expressions.

The most recent work, and the one most closely related to our

framework is the testing approach proposed by Tort and Olivé [53]

with their CSTL Processor tool [100]. These artefacts have been used in

a method [101] to apply the principles of TDD (Test-Driven

Development) to conceptual modelling. CSTL Processor extends the

USE core to testing the structural and behavioural schema elements.

However, this solution is limited to the testing elements (i.e. test

scenarios with test cases, test data and oracles) that are manually

entered by the tester using the CSTL language. Thus, the CS should be

entered into the CSTL Processor tool by using the USE language, which

makes this method unsuitable for a Model-driven environment in

which automation is required for these task types. Even though the

results of their testing are presented in a tool, they do not provide any

kind of feedback to help designers repair defects.

The above approaches have the following weaknesses:

i. For defining the CS under test (CSUT), these approaches use

their own formalisms (i.e. Java, USE, TAM and CSTL), which are

different from the standard semantics (e.g. fUML) for

executable UML models.

ii. These works address validation and none addresses the

syntactic correctness of the CSs used in the validation.

iii. Most of these approaches only focus on verifying the

consistency between the structural and behavioural models

(i.e. OCL constraints) by using action sequences taken from the

same CS or defined ad-hoc by the tester to test the CS

behaviour. Only Tort et al.’s work [53] addresses the

completeness and correctness of the CS. However, as can be

seen in Table 3.3. (Section 3.3.5) defects of consistency,

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

71

correctness and completeness also affect other quality goals,

such as confinement and comprehensibility, and we have

added ‘*’ to this information in Table 4.1.

4.3.2 Testing feature Comparison
Testing is one of the time consuming and costly phases in the

software development process, so that any advances in software

testing methods and tools can reduce the time and cost of software

development.

Software testing consists of activities, for instance generation,

selection and prioritization of test cases, execution of the test values

on the software artefact being tested, and evaluating the test results.

In this section we review related work on these issues. Table 4.2

classifies related works that deal with the generation, selection,

prioritization and execution of test cases for UML models. For each

approach, we include the following information:

 Work. References of the work.

 Test Case Source. Indicates the source information for

generation of test cases.

 Test Values Source. Refers to the source for the test values.

 Test Case Generation. Indicates the process kind for generation

of test cases.

 Oracle Generation. Indicates the technique employed for

generation of the test oracle.

 Test Case Selection. Indicates the selection process of the test

cases.

 Test Case Prioritization. Refers to the prioritization of test

cases.

 Execution Environment. Indicates the execution environment

for testing.

 Repairing Feedback. Indicates whether the approach returns

some kind of repairing feedback beyond a simple yes/no

answer.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

72

Table 4.2. Testing features comparison

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

73

As can be seen in Table 4.2 none of the works targets the

generation, selection and prioritization of test cases for UML-CD based

CS. Therefore, the described approaches have the following

weaknesses:

i. A significant weakness is that these works (i.e. [53], [54], [55],

[56]) use their own CS or modeller/designer criteria to define

the test cases, which can derive incomplete and inappropriate

test cases.

ii. Regarding the source of the test values, only Pilskalns et al. [56]

generate test values based on variable partitions derived from

the CS. In the other cases, the test values are provided by the

modeller or Tester, which can cause values not considered in

the test cases.

iii. Regarding test case generation, a weak point of the related

work is that most of them deal with the manual and

unsystematic derivation of test cases. Only the method

proposed by Gogolla et al. [55] generates the test cases semi-

automatically using snapshots code. This means it is not

possible to state the relative execution order of test cases (i.e.

test scenarios) that are expected to be executed.

iv. One of the limitations of the most of the related work (i.e. [54],

[55], [56]) is that they use their OCL constraints as the test

oracles, so that these constraints need to be present in the CS.

Only Tort et al. [55] use assertions entered manually for

modeller/designer/tester enabling the specification of arbitrary

test cases that are separated from the UML model, so the

assertions could be evaluated for any point in time as well as

for time periods of the execution of the CS under test.

v. Regarding the selection and prioritization of test cases, none of

them describes the criteria or the process applied to select or

prioritize the test cases. We therefore considered that they do

an ad-hoc selection. However, when the testing phase is done

using an appropriate selection of test cases, the testing effort is

reduced.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

74

vi. Each work has defined its own environment to execute the test

cases based on the USE tool, which requires specifying both the

CS and the test cases in their own formalism different from the

standard semantics (e.g. fUML) for executable UML models.

vii. Finally, we would like to highlight that most of the cited

methods simply provide a response or failure (showing

whether the input test designed to validate a specific CS

element is satisfied or not). However, none clearly identifies

the source of the problems (i.e. defect type and location) nor

assist the modeller/designer to repair them. For instance, when

the testing is not satisfied, Tort et al. [53] return a verdict to

indicate whether the constraints are satisfied (i.e. pass) or not

(fail) and when the base information state is inconsistent (i.e.

error). Dinh-Trong et al. [54] report test failures whenever the

following situations occur: uninitialized variables in conditions,

uninitialized parameters passed in operations calls, non-

existent target object of an operation call, pre-and post-

conditions evaluate to false. Pilskalns et al. [56] can reveal a set

of faults related to inconsistency via static analysis, and two

faults types when test cases are executed: path faults (i.e. a

path associated with a condition is not included in the TAM)

and a OCL faults (i.e. execution trace violate OCL expressions)

using the USE tool. Gogolla et al. [55] reports inconsistencies

when invariants are contradictory. Thus, none of these works

includes goals and test oracles in their test cases to help

identify and locate the detected defects, which means an

additional effort is required to identify and locate them in the

CS.

The state-of-the-art as reviewed in this section indicates that no

definitive approach adequately solves the problem of validating

conceptual, which means the following challenges must be addressed:

Challenge 1: Test Case Generation. The test cases with oracles and

test goals generated using information external to the CS (i.e.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

75

requirements), the measurement of possible automation and the need

for a profitable supporting tool using a standard semantic.

Challenge 2: Test input values. The testing framework should allow

(based on any coverage criteria) input data for the parameters of the

operations under test to be specified or generated in order to test

different execution scenarios.

Challenge 3: Allow to select and prioritize the generated test

cases.

Challenge 4: Generate Executable Conceptual Schema under test

(CSUT). UML CD-base Conceptual Schemas are our CSUTs. However, a

transformation into standard executable semantics (e.g. fUML) are

required to execute the UML models.

Challenge 5: Testing Environment. The testing framework should

allow to execute the test cases against the CS under test and reporting

the detected defects in an environment based on a standard

executable semantic for UML models.

Challenge 6: State validation. Assertions regarding the runtime

state of the tested model, consisting of objects, their feature values,

and links, should be possible for any point in time as well as for time

periods of the execution of the CS under test.

Challenge 7: Execution order. It should be possible to test the

chronological order in which events are executed during the execution

of the CS under test. Furthermore, it should be possible to state the

relative execution order of test scenarios that are expected to be

executed.

Challenge 8: Input / output validation. The testing framework

should enable to check whether an input of a test case results in a

given output using test oracles.

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

76

Challenge 9: Syntactic Correctness and Consistency Verification.

The testing framework should enable checking whether the CS is

correctly represented in terms of the syntax of the modelling language,

as well as if the structural part is consistent with the specified

behaviour (i.e. OCL constraints). The framework should recognize well-

formed and ill-formed CS, reporting defects, if any.

Challenge 10: Repairing Feedback. The testing framework should

help the modeller (analyst/designer) to locate and correct the defects

detected in the CS.

These points are dealt with in the next Chapter.

4.4 Summary and Conclusions
In the related work on conceptual schema validation, several

existing methods claim that they perform the validation of a

conceptual schema in different degrees through animation, simulation

and testing of the behaviour of a Conceptual Schema. However, these

methods in fact verify the consistency between the structural part and

the behavioural model (i.e. OCL constraints) using tool support. For

validation, these methods need to inspect the results to determine

defects, because, although some approaches point out the source of

the problem, they do not indicate how the modeller/designer can

correct the defect. This is because the methods focus on exploring the

CS in order to execute or simulate CS states (but not on finding

defects).

Test case generation is among the most labour-intensive tasks in

software testing and also one that has a strong impact on its

effectiveness and efficiency. For these reasons, it has also been one of

the most active topics in the research on software testing for several

decades, resulting in many different approaches and tools (see Section

4.2). However, these techniques are focussed on the code level and our

proposal aims to generate test cases for revealing requirements

defects that may be detected in the CS at the conceptual modeling

stages (i.e. analysis and design).

CHAPTER 4. RELATED WORK OF CONCEPTUAL SCHEMAS VALIDATION

77

Testing-based conceptual schema validation is a research area that

admits new methods and techniques, facing challenges such as

generation of test cases using information external to the conceptual

schemas (i.e. requirements), the measurement of possible automation,

selection and prioritization of test cases and the need for a profitable

supporting tool using standard semantics, opportune feedback to

support the software quality assurance process and facilitate making

decisions based on the analysis and interpretation of the results.

PART III.

TREATMENT DESIGN

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

81

Chapter 5
VALIDATION FRAMEWORK FOR

CONCEPTUAL SCHEMAS
5. Validation Framework for Conceptual

Schemas
As mentioned in the previous chapters, the aim of this thesis is to

provide a set of methods to help modellers (analysts/designers) and

testers to improve the quality of conceptual schemas. The methods

provided as part of this thesis are organized in a validation framework.

This chapter describes the thesis’ main contribution: the testing-

based validation framework for Conceptual Schemas in a Model-driven

environment that overcomes the challenges specified in Chapter 4 and

grouped in two issues: the validation of requirements at an early phase

(i.e. conceptual schemas) and the automatic generation of test cases

for conceptual schemas. To meet these challenges, our methodological

framework advocates the use of Model-Driven Engineering (MDE)

techniques, which involve the intense use of models to support the

different phases of the proposed framework. We believe that the use

of MDE reduces the complexity of the proposed validation approach

because it allows modellers and testers to work at a high level of

abstraction and also increases automation and reuse. In our approach,

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

82

the level of abstraction is raised by allowing modellers to specify

requirements using a Requirements Engineering method that provides

high-level conceptual constructs.

Automation is increased by means of model transformations, which

take the requirements models as input and automatically generate test

case implementations which are integrated in a testing environment

that executes them against executable conceptual schemas to assist

testers during the validation of requirements of conceptual schemas.

Reuse is increased by allowing testers to reuse parts of the test models

for generating test cases for other types of conceptual schemas (i.e.

OO-Method based conceptual schemas). We thus enable the rapid

construction of test models and also automate the implementation of

test cases via the composition of reusable test model components.

This Chapter is organized into seven sections: Section 5.1 gives an

overview of the validation framework followed to generate the test

cases, execute them against executable conceptual schemas and report

the test results. Section 5.2 describes the Test Analysis phase and

Section 5.3 summarizes the Test Design phase. Section 5.4 presents the

Test Generation phase. Section 5.5 states Test Prioritization. Section

5.6 describes Test Execution. Section 5.7 details the Test Evaluation

phase. Section 5.8 gives an overview of the testing process and Section

5.9 contains the summary and conclusions of this chapter.

5.1 Framework Overview
In this section, before detailing our methodological framework, we

provide a general overview.

According to the vision of Weber et al. [102], we understand a

framework as a holistic and concise description of concepts and

methods relating to a specific domain. In this thesis, as mentioned in

Chapter 1, we propose a framework to help modellers,

analysts/designers to improve the quality of their conceptual schemas.

Our model-driven validation framework provides an execution

environment for the automation of test cases (i.e. test scripts) and thus

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

83

provides the user with various benefits that help design, generate,

select, execute and report the automated test scripts.

5.1.1 Phases of the Methodological Framework
Figure 5.1 graphically depicts the model-driven testing based

validation framework proposed in this thesis, which is described in the

next sections.

DESIGN

Knowledge

GENERATION
Abstract

Test Scripts

Test Scenario
Model

Test Model

EXECUTION

CSUT

Requirements Engineer

EVALUATION
Defects Report
and Coverage

Analysis

Tester

Test
Data

Concrete and
Executable
Test Scripts

Requirements
Model

Executable CS

Example
Values

ANALYSIS

PRIORIZATION

Analyst/Modeller

Conceptual Schema

Selected Concrete
and Executable

Test Scripts
Tester

Based on
Mutation
Analysis

Clients

Tester

Test Cases
Selection

Figure 5.1. Overview of the validation Framework

5.2 Test Analysis
In this Section, we focus on the analysis phase of our validation

framework. This phase requires a study of the requirements, talks to

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

84

various stake-holders to obtain communicative interactions between

the information systems and its environment.

In this phase, the software requirements are understood and

modelled in a requirements model using Communication Analysis [21]

(see Section 3.1.1). The requirements model is an instance of the

Requirements Metamodel proposed by España [103], which describes

the system requirements at business level and is specified by the

domain experts and system analysts.

5.2.1 Requirements Specification based on

Communicational Analysis
Our first reason for using Communication Analysis is to obtain a

single model to specify the functionality of an Informatin System (IS)

and to generate the respective test cases. In this way the use of

different artefacts by requirements analysts, testers and developers is

avoided, thus making their work easier. As the events sequence

describes the expected exchanges of messages between the actor and

the system, this can be used to define the test cases. In particular,

while the communicative events indicate the actions to be performed

in a complete and uninterrupted way under certain constraints, the

message structures for each communicative event contain references

to the types involved that represent actors, or business concepts, the

relationships between them and parameterized messages with data

types existing in the conceptual schema of the system (the class

diagram and state machines). However, this forces the requirements

analyst to be precise and rigorous in the semantics given to each CA

concept and thus may not be so easy to build. To reduce this

complexity, we use the existing editor tool [15], which is a Domain

Specific Language to create a Communicative Event Diagram (CED) and

introduce a message structure for each communicative event.

Our second reason comes from the fact that requirements-based

testing [3], particularly model-driven testing [16], is being increasingly

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

85

used. There is thus a need for a systematic approach to generating test

cases from requirements model.

Our third reason is in the MDD context, where it is possible to

obtain a test model from a requirements model by means of model

transformations, so that the process can continue to generate the

executables test cases. This means when a modification is made in the

requirements model, not only is the test model automatically re-

generated, but so are the concrete test cases.

Finally, CA has been integrated into a UML-compliant Model-Driven

Development framework [6], as well as a model transformation

strategy defined by España et. al [104] to derive the initials versions of

conceptual schemas from Communication Analysis requirements

models. This means that it includes the primitives (Event Specification

Template primitives) that a model-driven method needs (fine-grained

enough to be represented directly in code) to express the structure and

dynamics of an IS.

5.2.2 Modelling Requirements based on

Communicational Analysis
Communication Analysis offers several modelling techniques for

business process modelling and requirements specification. The

Communicative Event Diagram (CED) describes the business processes

from a communicational perspective. Figure 5.2 shows two CEDs of the

CA model for the Video Club case (i.e. management of users and movie

rents, respectively). A CED consists of a structured sequence defined by

precedence relationships among Communicative Events (CE) (the

rounded boxes in Figure 5.2). A CE is an action related to information

(acquisition, storage, processing, retrieval and / or distribution). A CE is

carried out in a complete and uninterrupted way when there is an

external stimulus to the system (i.e. user login into the system). A CE

can be specialized by means of event variants, which are alternative

events that define paths in the CED (e.g. in Figure 5.2 the Login

Resolution is specialized into Login is accepted or login is rejected).

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

86

Figure 5.2. Excerpt of a CA model for the Video Club case.

A CED has relationships to specify ingoing and outgoing

communicative interactions and three actor roles: i) the primary roles

(i.e. primary actor) that trigger the CE and provide the input

information, ii) the receiver roles (i.e. receiver actor) that need to be

informed of the occurrence of an event; and iii) the interface roles (i.e.

support actor) that is in charge of editing and entering input

information. In the example, in the CE Register User, the partner acts

as primary role, the manager as receiver role and the salesman as

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

87

interface role. To describe a CE in detail, España et al. [21] proposed to

use Event Specification Templates.

The Event Specification Template structures the requirements [21]

and is a textual specification technique that is used to describe both

ingoing and outgoing messages transmitted to the IS in a

Communicative Event. It uses a Message Structure to define the

information that is communicated in the event.

The template is composed of a header and three categories of

requirements: contact, communicational content and reaction

requirements. The header contains information about the CE such as

event identifier, name, goal, a narrative description, and so on. Contact

(requirements related to the triggering of the event by an actor to

communicate something to the information system, e.g.

preconditions), message (specify the contents of the message being

communicated to or from the IS, e.g. message fields, domain of the

message fields, message constraints); and reaction requirements

describe how the IS reacts to the communicative event occurrence

(e.g. stores new knowledge, makes new knowledge and conclusions

available to the corresponding actors). Therefore, this category of

requirements includes business objects being registered (i.e.

treatments) and outgoing communicative interactions being generated

by the event (e.g. linked behaviours and linked communications),

among other requirements. Our research covers the testing of the

requirements related to communicative events. A simplified Event

Specification Template of event is shown next in Table 5.1.

The Message Structure specifies the information communicated to

or from the Information System [105]. Table 5.1 shows the Message

Structure for the communicative event (i.e. a salesman registers a

movie) in our example.

The following grammatical constructs are of interest for the

purpose of Test Model derivation (see [105] for further information on

this technique).

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

88

Table 5.1. Example of an Event Specification Template

7. REGISTER MOVIE INFORMATION

Goals: From the point of view of the information system, the objective of this event is
to record the relevant information about the movie rents.
Description: When a partner rent movies, both the rent date and return date should be
registered in the SI. More than one movie may be included in a rental. The rental price
is calculated as a derivative, adding the movie prices that make up the rental.

Contact requirements

Primary actor: Partner
Communicational channel: In person
Temporal restrictions: none
Frequency: none

Communicational content requirements

Support actor: Salesman
Communication Structure: (see the next partial view of a Message Structure)

FIELD OP DOMAIN EXAMPLE VALUE

RENTAL =
< id rental +
 pick up date +
 return date +
 total +
 Partner +
RENTALLINES =
{RENTALLINE =
<rental number +
 price +
 Movie >
MOVIESTATUS =
<status +
 Movie >>}

g
i
i
i
i

i
d
i

i
i

Number
date
date
money
PARTNER

Number
Money
MOVIE

Text
MOVIE

7260
18-05-2016
20-05-2016
2.5
User100, Jorge Vidal
100, Valencia,…

250
this.movie.rental_price
100, Everest,…

Rented
100, Everest,…

Structural restrictions: One rent can have many movies.
Contextual restrictions: Rental is identified by the id rental.

Reaction requirements

Treatments: The rent lines are recorded and they are assigned to the movie rent.
Movie status is updated to “Rented”.
Linked behaviour: The rent is related to a partner.
Linked communications: none

A Substructure is an element that is part of a message structure.

For example, Partner, RENTALLINES, RENTALINE, Movie, MOVIESTATUS

are substructures of RENTAL. The initial substructure is the first level of

a message structure. In our case RENTAL = <id rental + pick up date +

return date + total + Partner + RENTALLINES, MOVIESTATUS>.

There exist two classes of substructures;

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

89

i. Field: Basic informational element of the message and is not
composed of other elements.

a) Data Field: To represent a piece of data with a basic domain. For id
rental, pick up date, return date, total, rental number, price and
status.

b) Reference Field: Field whose domain is a type of business object.
For instance, Partner and VideoClub both refer to a partner and
VideoClub respectively, and are already known to the IS.

ii. Complex substructure: Any substructure that has an internal
composition.

a) Aggregation Substructure: Specify the composition of several
substructures in such a way that they remain grouped as a whole.
It is represented by angle brackets < >. For instance, RENTALLINE=
<rental number + price + Movie>.

b) Iteration Substructure: Specify a set or repetition of the
substructures it contains. It is represented by curly brackets { }. For
instance, a submission can be related to several RENTALLINES and
MOVIESTATUS.
Each field is characterised by properties, some of which are
described below.

It must have a significant Name (e.g. pick up date).

An acquisition operation (OP) specifies the origin of the

information that the field represents.

1) Input (i): The information of the field is provided by the primary

actor.

2) Generation (g); The IS can automatically generate the field

information (e.g. id rental).

3) Derivation (d): The field information is already known by the IS

and therefore can be derived from its memory; i.e. it was previously

communicated in a preceding communicative event. This operation can

have an associated derivation formula (e.g. price in RENTALLINE).

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

90

If the attribute operation is of the “derivation” type, the derivation

formula indicates the formula in ALF language (e.g.

this.movie.rental_price for price of RENTALLINE).

A Domain specifies the type of information that the field contains

(e.g. text, number, Partner).

An Example Value is a value for the field, provided by the

organisation (e.g.7260 for id rental).

The minimum Cardinality is a value that indicates the minimum

cardinality of the data field. The maximum Cardinality is a value that

indicates the maximum cardinality of the data field.

An isIdentifier is a Boolean value that indicates if a data field is an

identifier field of a substructure.

For each Communicative Event in the CED a message structure is

required with information needed to express its behaviour.

5.3 Test Design
In this phase, the test basis information is taken from the

requirements model and is transformed into a Test Model (TM) with

the test conditions/items (something that could be tested e.g. services,

triggers, assertions and links) ordered by precedence relationships,

which generates an ordered graph. This model conforms to the

Metamodel of the Test Model (TMM). The details of metamodel and

transformations are discussed in Chapter VI.

Then, the different paths are identified from Test Model to

generate the Test Scenarios Model with the test items combined into

abstract test cases. The test cases are abstracts in the sense that they

do not contain concrete objects. The metamodel and transformation

are discussed in detail in Chapter VI.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

91

5.3.1 Test Data
For specification of test values, data is extracted from the Test

Model and stored in a data base. These values are the example values

passed to the test model from the requirements model. Another data

source is the values directly entered into the data base by the user

(modeller or tester). Finally, a web-based generation strategy of valid

test strings using regular expressions provided by the user (modeller or

tester) may be used to generate test values (e.g. [106]).

5.4 Test Generation
Test cases can also be generated by traversing from parent root to

child node using a classic pathfinder or graph traversal algorithm [107].

When all the nodes in a path from parent to child node are traversed,

then it is considered as one test scenario. All nodes should be covered

to make sure all flows in an application are covered. One flow is

considered as one test scenario.

Test suite for CS is a set of one or more test scenarios. Each test

scenario is a story that consists of one more test cases. In this phase,

abstract test scripts are generated from a test scenario model. Then,

the concrete and executable test cases (scripts) are generated from a

test scenario model to describe what the system is supposed to do

with the inputs taken from the data base, as well as the oracle and

goals of the test case. All this is done through model-to-model and

model-to-text transformations following a model-driven development.

The details of model-driven generation are discussed in Chapter 6. In

the following sections we summarize the design decisions considered

for generation of the test cases.

5.4.1 Test Case Selection
Since the generation process generates many test cases to cover

the different test scenarios, we need know which test cases should be

inventoried and which should be deleted. Because test scenarios may

share some statements in common (common path in the test scenario

model), the generation process of test cases may get a large number of

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

92

duplicate test cases. The criterion to identify duplicate test cases is by

matching the Test statement. Then, we omit the generation of the

duplicated test cases and keep both the type of generated test case

and the duplicate test cases to report as a result of the generation

process.

5.4.2 Addressed Quality Goals
The test cases mainly address the validation of two CS quality goals

[9]: the correctness (covers both syntactic correctness -right syntax or

well-formedness, and semantic correctness -right meaning and

relations relative to the knowledge about the domain) and

completeness (i.e. all the necessary information is defined in the CS).

However, other quality goals are also addressed, such as Consistency,

Confinement, Comprehensibility and Changeability (see Section 4.1.2).

5.4.3 Test Types
Test types define the general types of expectations that need to be

specified in test cases for testing conceptual schemas. In conceptual

modeling, (a fragment of) the lifetime of an information system is a

sequence of CS states, which represents a snapshot of the state of the

domain as an instance of the conceptual schema [53]. In our approach,

we conceive test cases for testing conceptual schemas as a sequence of

states of the CS (i.e. concrete user story), together with formalized

expectations (i.e. test oracles and test goals) about these states. This

sequence of states is expected to be successfully executed if the

required knowledge is correctly and completely defined in the

conceptual schema. So, these kinds of tests are as follows:

Asserting the content of an object

The objective of this test kind is checking that, in a concrete object

state (explicitly created by the fixture of the test case) the value of

basic and derived knowledge defined in the schema is as expected. If

the assertion is true, then the conceptual schema has the correct

knowledge to provide information about the object state as expected.

Otherwise, the knowledge defined in the conceptual schema needs to

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

93

be changed (the specification of the derived knowledge or the

specification of some events is incorrect).

Asserting the Occurrence of an Event

The second test kind corresponds to the assertion of the

occurrence of an event in a CS state reached by a test case. If the

assertion is true, then the event has occurred as expected and the

resultant CS state complies with its specification. Otherwise, some

constraints that prevent the event from occurring are too restrictive, or

the specification of the event is not correct.

Asserting the Non-Occurrence of an Event

This is the rationale for the third test kind, which corresponds to

the assertion of the non-occurrence of a CS event. If the assertion is

true, then the event has not been allowed to occur as expected.

Otherwise, the set of constraints related to the event need to be

modified (i.e. need to be more restrictive) in order to prevent its

occurrence.

Then, the tester can select the type of test case:

 Partial (only positive test cases): This kind of test case uses

assertions to test the occurrence of an event and the contents of

CS objects.

 Complete, which adds test cases (thus of positive test cases) with

some negative conditions such as values out of range based on

variable partitions that can be derived from CS information,

constraint violations, minimum cardinality violation, and unique

value violation for class variables. In this way, we test the non-

occurrence of an invalid event.

In this context, the constraints that can be validated are restricted to

those that can be represented in ALF language [83].

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

94

5.4.4 Test Generation Criteria
In addition, for selection of the test cases to be generated, our

framework applies a set of generation criteria adapted from Andrews’

proposal [108] based on coverage elements (i.e. classes, associations

and generalizations) in the structural part as well as the behavioural

part (condition, all message paths) (see Table 5.2).

Table 5.2. Test generation criteria for UML CD-based Conceptual Schema

Association-end multiplicity (AEM) criterion
Given a test suite T and a test model TM, T must cause each representative
multiplicity-pair in TM to be created.

Generalization (GN) criterion
Given a test suite T and a test model TM, T must cause every specialization defined
in a generalization relationship to be created.

Class attribute (CA) criterion
Given a test suite T, a test model TM, and a class C, T must cause a set of
representative attribute value combinations in each instance of class C to be
created.

Condition coverage (Cond) criterion
Given a test suite T and test model TM, T must cause each condition in each
decision in TM to evaluate to both TRUE and FALSE.

Full predicate coverage (FP) criterion
Given a test suite T and test model TM, T must cause each clause in every condition
in TM to take the values of TRUE and FALSE while all other clauses in the predicate
(condition) have values such that the value of the predicate will always be the same
as the clause being tested.

Each message on link (EML) criterion
Given a test suite T and diagram Class (DC), T must cause each message on a link
connecting two objects in CD to be executed at least once.

All message paths (AMP) criterion
Given a test suite T and test model TM, T must cause each possible message path
(sequence of message numbers) in TM to be taken at least once.

Collection coverage (Coll) criterion
Given a test suite T and test model TM, T must test each interaction with collection
objects of various representative sizes at least once.

5.4.5 Deriving test goals
In our framework the test generation criteria and test types can be

used to derive test goals. Figure 5.3 shows some examples of test goals

for Video Club CS based on the Coll criterion.

For example, (i) the Coll criterion may be associated with test goals

for test case positive that require the system to be brought into a

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

95

specific configuration that has a specified number of objects in a

collection appearing in a test model; (ii) the EML criterion can be used

to generate a test goal for test case positive that stipulates the specific

links to be exercised during tests; (iii) the CA and Cond criteria may be

used to derive the attribute value in each instance of class rental to be

created; (iv) the FP and Cond criteria can be used to derive test goals

for test case negative that stipulate values for a specific condition; (v)

the CA criterion may be used to generate a test goal for a test case

negative that validate the attribute value in each instance of class

videoclub to be created; alternatively, (vi) the AMP criterion can be

used to define a test goal for test case positive that stipulates the

specific paths to be exercised during tests.

Figure 5.3. Examples of test goals generated for Video Club CS

5.4.6 Concrete and Executable Test Cases
In our test framework, we adapt the UTP’s terminology [109] and

consider that a test case is a specification of one case to test the

conceptual schema including what to test with, which input, result, and

under which conditions. Then, the test cases generated by our

proposal exhibit the following properties:

- A test case consists of a fixture and one or more statements that

execute one of the tests applicable to conceptual schemas, such as

i. Validate the Object 'videoclub_' was created (test case positive)

ii. Validate the link 'videoclub_movie.createLink(videoclub_,movie_);'

with a valid value (test case positive)

iii. Validate the derived Attribute 'context rental inv

property_total_derivation:' (test case positive)

iv. Validate unique value: 'context VideoClub:: new_videoclub() post:

VideoClub->isUnique e (e.id_videoclub)' (test case negative)

v. Validate a value above the upper limit 'context videoclub::

new_VideoClub() pre: p_atrid_videoclub<=10000' (test case

negative)

vi. Validate the 'line 28' with valid values (test case positive)

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

96

testing assertions about the occurrence or the non-occurrence of

an event. The fixture is a set of statements (e.g. create an object or

link, execute an object method) that create a CS state and define

the values of the CS variables.

- The oracle and test goal of each test case is derived from type of

test cases selected in the previous phase. The expected value

(oracle) to the positive test cases is the assertionEqual or

assertionTrue equal “true” and with negatives conditions the

assertionFalse must be true otherwise the test case failed.

- Each execution of a test case starts with the execution of the

fixture.

- It is assumed that the execution of each test case starts with an

empty state. With this assumption, test cases of a CS are

independent of each other, and the order of their execution is

therefore irrelevant.

In ALF, an executable test case is an activity that provides the

specification of parameterized behaviour as the coordinated

sequencing of subordinate ALF units. It is the fundamental mechanism

for behavioural modelling in ALF.

Each concrete test case has a name and consists of a set of

statements (see Figure 5.4).

Figure 5.4. Test Case Structure

The last statement of a concrete test case is an assertion. The

formal definition of ALF Language syntax is given in [82]. In this section,

we describe the syntax and semantics of the five kinds of statements

related to test conceptual schemas:

private import namespace::*;
public import Library;
//Goal: … <oracle< ... (<test type>)
activity TestCaseName () {
…
assert …
}

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

97

 Statements that update the information of the CS objects,

 Statements that assert the occurrence of events,

 Statement that assert the non-occurrence of events,

 Statements that assert the content of the CS objects.

Updating the information of the CS object

When the execution of a test case begins, the CS information is

assumed to be empty and, therefore we need to set up in a progressive

way the different CS states to check a state that cannot be reached by

valid events.

ALF includes statements that can be used to explicitly set up a CS

state in a test case. We describe them below using examples based on

the schema fragment of Video Club (see Figure 5.5).

Figure 5.5. UML class diagram for Video Club CS

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

98

 We define that entityID is a new instance of the any entity type

with the following statement:

EntityType entityID=new EntityType();

 To define that the value of attribute att of entity entityID is val

(where val is a valid OCL expression) we write:

entityID.att=val;

The types of att and val must be compatible; otherwise the verdict

of the test case in which the statement appears is Inconclusive.

Often, it is convenient to state in a single statement the creation of
a new entity entityID as an instance of entity type EntityType. The
syntax is as follows:

entityID= new EntityType (parameter1=value1, …,
parameterN=valueN);

where entityID must be a new identifier and the valuei are values

or expressions. For example, for creation of a videoclub instance:

videoclub_= new
VideoClub(p_atrid_videoclub=100,p_atrmanager_name= "Jose
Vicente Vidal",p_atrcity= "Valencia",p_atraddress=
"Guardia Civil 21",p_atrpostal_code= "46020");

 Instances of an n-ary UML association Assoc with roles r1,. . ., rn

are created with the following statement:

 AssociationName.createLink(entityA, entityB);

Where entityA and entityB must be end members of the

association. For example, to create an instance of the association

videoclub_movie:

videoclub_movie.createLink(videoclub_,movie_);

 Entities can be deleted with the following statement:

objectID_.destroy();

For example, to delete the videoclub instance.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

99

videoclub_.destroy();

The deletion of an entity implies the deletion of its attributes and

the links in which it participates. However, note that (per UML

Superstructure, 7.3.3 [110]) the composition annotation is on the part

end of the composite association. For example:

assoc rental_rentaline {
 public 'rental':Rental[1];
 public 'rentallines': compose RentalLine;
}

That is, in the above association, Rental is the composite while

Rentalline is the part. Thus, when an instance of class Rental is

destroyed, if there is a link of association rental_rentalline with

that object at one end, then that link and the instance of Rentalline

at the other end will also be destroyed.

Asserting the Occurrence of Events

An event is an execution of some operation (method) of the

schema, which may have several kinds of defects. Among which are

highlighted:

1. The pre-conditions of the event may not allow the occurrence of

valid events.

2. The post-conditions may not precisely define the intended effect of

events.

3. The method of an operation may produce a CS state that does not

satisfy the schema invariants.

Testing the schema may be a practical means of detecting those

defects. This is done by setting up for each event in the requirements

model one test case with a CS state (i.e. fixture) and an instance of that

event followed by an assertion of the (satisfactory) occurrence of that

event.

In ALF, the event (or operation method) is a behavioural feature of

a class that provides the specification for invoking an associated

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

100

method behaviour. Only classes may have operations as features. An

operation is called on an instance of a class that has it as a feature

using an invocation expression:

entityId.EventId();

execute the EventId associate with the entityId, whose

characteristics (attribute values) can be defined as in the case of

entities with the assignment of the value for its attributes att1,..., attn.

The syntax is as follows:

entityId.EventId(att1=value1,..., attn.=valuen);

As an example:

videoclub_.movieunique();

Once the concrete event EventId has been executed in a test case

in order to assert that it may occur in the current state of the CS, the

conceptual modeller asserts that the current CS state must be

consistent by writing the following statement:

Assert<AssertType>((“message”, assertion);

As an example:

AssertTrue("MovieUnique", videoclub_.movies->isUnique e

(e.id_movie));

The verdict of this assertion is determined as follows:

1. Check that the preconditions of the event are satisfied. The

verdict is Inconclusive if any of the event preconditions is not

satisfied.

2. Execute the method of the corresponding operation.

3. Check that the new CS state is correct (as defined in Asserting

the CS state). The verdict is Inconclusive if any of the

constraints is not satisfied.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

101

4. Check that the event post-conditions are satisfied. The verdict

is Inconclusive if any of the post-conditions is not satisfied;

otherwise the verdict of the whole assertion is Pass.

5. Check that the current CS state is correct (as defined in

Asserting the semantically correctness of a CS state). The

verdict is Fail if that check fails (events may not occur in

incorrect CS states). A CS state is called semantically correct if it

satisfies all invariant defined in the conceptual schema.

If the verdict from step 1 is Inconclusive, then the conceptual

modeller must change the CS state in order to make it valid. If the

verdict from steps 1, 2 or 3 is Inconclusive, then the event has not

occurred as expected by the conceptual modeller/tester. If the verdict

from step 1 is Inconclusive then the following two cases are possible:

(1) domain experts consider that the CS state and event occurrence are

indeed invalid or, if it is valid, then (2) the non-satisfied constraint(s) is

incorrect. In the former, the conceptual modeller/tester may prefer to

change the assertion to assert non-occurrence (see below). In the

latter, the corresponding event constraint(s) must be corrected. If the

verdict from step 3 is Inconclusive, then the method, the event

constraints or some schema constraint must be ill-specified. If the

verdict from step 4 is Inconclusive then either the method of the

operation or some post-condition is incorrect: the method may not

produce the intended CS state, or the post-conditions may be ill-

specified. If the verdict from step 5 is Fail, then the conceptual

modeller/tester must change the CS state in order to make it valid.

As an example, let’s assume the extension of Figure 5.5 shown in

Figure 5.6, in which video clubs are restricted with pre- and post-

conditions, which restrict the id of the movies to be unique and values

between 1 and 10000. Consider, now, the following test case (see

Figure 5.7):

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

102

Figure 5.6. VideoClub CS with examples of pre, post-conditions and invariants

Figure 5.7. Example for validating pre-, post-conditions and invariants

The execution of the test case fails (as detected in step 5) because

the occurrence of the event movieunique() is not defined in the

conceptual schema. This event corresponding to the following

invariant:

There are at least two possible actions that can be performed to

make the test case Pass:

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

103

1. If movies may exist with duplicated id, then the isIdentifier has to

be changed to false in the requirement model, and the test cases have

to be regenerated.

2. If the domain experts confirm that when a Movie is created an

invariant of the conceptual schema must ensure that it is not a

duplicate code such as the invariant shown in Figure 5.8.

Figure 5.8. Example of an invariant

Then, the execution of the test case pass.

A conceptual modeller may use this kind of assertion not only to

check that the domain events defined in the schema behave as

expected, but also to check that each domain event type is satisfiable.

An event type is satisfiable if there is at least one CS state and one

instance of that event type such that the event constraints are

satisfied. If the conceptual modeller is able to set up a CS state and an

instance of the Event for which assert occurrence gives the verdict

Pass, then by definition Event is satisfiable. If the conceptual modeller

is unable to set up such a CS state and event, this is not formal proof

that EventId is unsatisfiable, but in many practical cases it provides a

clue that helps to uncover a faulty event specification.

Asserting the non-occurrence of Events

A correct domain event specification must not only accept valid

event executions, but also reject invalid ones. An event execution is

invalid if it may not occur in the domain in the current CS state. Testing

the conceptual schema may be a practical means of detecting missing

events. This is done by setting up for each event one or more test cases

with a CS state and an instance of that event considered may not occur

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

104

in that state, followed by an assertion of the non-occurrence of that

event.

In ALF, in order to assert that the event eventId may not occur, the

tool generates the following sentence:

assertFalse(“message”, assertion);

Consider, now, the following test case (see Figure 5.9):

The verdict of this assertion is determined as follows:

1. Check that the current CS state is semantically correct (as

defined in previous Section). The verdict is Inconsistent if

that check fails.

2. Check the satisfaction of the event constraints. The verdict

is Fail if the event constraints are satisfied and Pass if one

or more event constraints are not satisfied.

Figure 5.9. Example of test case for asserting the non-occurrence of events

If the verdict of the assertion is Fail then two cases are possible: (1)

the event is indeed valid or, if it is not, then (2) some event constraint

is missing. In the former, the event may occur in the domain, and the

conceptual modeller may prefer to change the assertion to assert

occurrence. In the latter, the conceptual modeller/tester must define a

new event constraint or refine an existing one in order to make it more

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

105

constraining. In the example of Figure 5.6, if we assume now that two

rental lines cannot be created with the same number, then the

following event constraint must be added to pass the previous test

case:

context RentalLine::new_rentalline()
post: RentalLine->isUnique e(e.rental_number);

Asserting the contents of CS objects

It is often useful to include in a test case an assertion on the current

state of the CS. The purpose may be to check that one or more

derivation rules derive the expected results, or that a navigational

expression yields the expected results or that the effect of one or more

events implies an expected result in the CS. In ALF, to assert that the

current state of the CS satisfies a Boolean condition defined as a

constraint, the tool generates the following statement:

assertEqual (“message”, assertion);

where assertion is an expression in ALF over the variables of the

test case. The verdict of the assertion is Inconclusive if the current

state is inconsistent (as defined in Section Asserting the consistency).

The verdict is Pass if assertion evaluation is true and Fail otherwise. If

the verdict is Fail, two cases are possible: (1) assertion should not be

True or (2) the derivation rules and/or domain events do not give the

expected results. In the former, the conceptual modeller may prefer to

change the assertion to assert false (see below). In the latter, the

conceptual modeller must change the derivation rules and/or the

domain events specification.

Additionally, we have developed in ALF the following assertions to

evaluate dates, real values, and compare data collections:

AssertEqualDate(in label: String, in value1: Date, in
value2: Date)
AssertEqualReal(in label: String, in value1: Real, in
value2: Real)
AssertList(in label: String, in list: any[*] sequence,

in expected: any[*] sequence)

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

106

As an example, let’s consider again the schema of Figure 5.6 and

that the derivation rule of the derived attribute total of Rental class is

defined as follows:

context Rental inv property_total_derivation:
this.total=this.rentallines->collect e(e.price)->reduce
Sum;

A conceptual modeler that wants to test that derivation rule may

write the following test case (see Figure 5.10).

The verdict of the assertion is Fail. The conceptual modeller expects

that rentallines.prices includes the prices of the movies, and

therefore the result should be their sum.

Figure 5.10. Example of test vase validating a derivation rule

The derivation rule does not derive the expected results because it

assigns a fixed value to each movie price. The test case will pass if the

derivation rule is corrected as follows:

context RentalLine inv property_price_derivation:
this.price=this.movie.rental_price;

5.5 Test Prioritization
Since a testing process manages many test cases, we need to know

how good a test case is. To do this job efficiently, we need to know the

test case prioritization, which test cases should be executed? Which

are critical? One problem in the design of tests to assess test case

quality is that real software artefacts of appropriate size including real

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

107

faults are hard to find and hard to prepare appropriately (for instance,

by preparing correct and faulty versions) [111]. Even when software

artefacts with real faults are available, these faults are not usually

numerous enough to allow the experimental results to achieve

statistical significance [111].

In this context, mutation testing is one of the ways of assessing the

quality of a test suite to prioritize efforts in those that are critical. This

method injects artificial faults or changes into a CS (mutant generation)

and checks whether a test suite is “good enough” to detect these

artificial faults. The artificial faults can be created automatically, by

using a set of mutation operators (MO) to change (i.e. mutate) some

parts of the software artefact. Mutants can be classified into two types:

First Order Mutants (FOM) and Higher Order Mutants (HOM) [112].

FOMs are generated by applying mutation operators only once. HOMs

are generated by applying mutation operators more than once [113].

Assuming that the software artefact being mutated is syntactically

correct, a mutation operator must produce a mutant that is also

syntactically correct. Each faulty artefact version, or mutant, is

executed against the test suite. The ratio of detected mutants over the

total number of the non-equivalent mutants is known as the “mutation

score” and indicates how effective the tests are in terms of fault

detection. Thus, mutation test adequacy criteria can assist in

optimizing the testing process [114]. It can be used for defining a test

set - selecting tests from the immense test pool. The condition for test

selection is detection of faults in the mutated software artefacts.

In Mutation testing the most critical activity is the adequate design

of mutation operators so that they reflect the typical defects of the

artefact under test. Therefore, we are required to design a set of

mutation operators for Conceptual Schemas (CS) based on Unified

Modelling Language (UML) Class Diagrams (CD). The main potential

advantage of mutation operators is to describe precisely the mutants

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

108

that can generate and thus support a well-defined, fault-injecting

process.

Figure 5.11 illustrates the definition process of mutation operators.

As inputs, the metamodel of an UML Class Diagram [40], the defect

types in a UML-based model [43] were provided.

Figure 5.11. Selection process of the mutation operators

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

109

Each element of UML Class diagram was analysed based on defect

types that can be injected. Then, all mutation operators were used to

generate mutants. A static analysis and parsing (using ALF parser) of

the mutants was performed in order to discard equivalent and non-

valid mutants. Then, a selection process was performer in order to

obtain a list of mutation operators (i.e. FOM and HOM) for mutation

usage (see Table A.1 in Appendix A).

Finally, the researchers met for decision‑making with two main

objectives: 1) to focus on evaluating the usefulness of the mutation

operators for FOM and 2) to automatize the mutant generation (see

Section 7.7) and evaluate its feasibility. In a previous work [43], we

presented a defects classification at model level and in [115] described

the process of selection of the 18 mutation operators from a list of 50

for generating First Order Mutants to UML CD-based CS (see Table 5.3).

Table 5.3. Mutation operators for CS FOM taken from [116]

Code Mutation Operator rule

1 UPA2 Adds an extraneous Parameter to an Operation

2 WCO1 Changes the constraint by deleting the references to a class Attribute

3 WCO3 Change the constraint by deleting the calls to specific operation.

4 WCO4 Changes an arithmetic operator for another and supports binary
operators: +, -,*,/

5 WCO5 Changes the constraint by adding the conditional operator “not”

6 WCO6 Changes a conditional operator for another and supports operators:
or, and

7 WCO7 Changes the constraint by deleting the conditional operator “not”

8 WCO8 Changes a relational operator for another and supports operators: <,
<=, >, >=, ==, !=

9 WCO9 Changes a constraint by deleting a unary arithmetic operator (-).

10 WAS1 Interchanges the members of an Association.

11 WAS2 Changes the association type (i.e. normal, composite).

12 WAS3 Changes the multiplicity of an Association member (i.e. *-*, 0..1-0..1,
*-0..1)

13 WCL1 Changes visibility kind of the Class (i.e. private)

14 WOP2 Changes the visibility kind of an operation.

15 WPA Changes the Parameter data type (i.e. String, Integer, Boolean, Date,
Real).

16 MCO Deletes a constraint (i.e. pre-condition, post-condition constraint,
body constraint)

17 MAS Deletes an Association.

18 MPA Deletes a Parameter from an Operation.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

110

As opposed to code-based mutation, our mutation operators are

based on the element characteristics of a UML CD–based CS and

although some of the proposed operators perform syntactic changes at

the constraints level, they are mainly focused (i.e. 41 of 50 operators)

on the semantic changes of the high-level CD constructs. Our mutation

operators are classified according to the element affected by the

operator, injected defect type, and the action required by the mutation

operator to generate valid mutants (syntactically correct). Since our

purpose is to select mutation operators to be used to evaluate testing

approaches, the selection process of mutation operators was divided

into two iterations.

In the first iteration, some operators were excluded because they

generated only equivalent mutants (e.g. UCO2, UAS3, UAS4) and non-

valid mutants, (e.g. WCL4, UCO1, UAS1), which require a static

technique (without CS execution) for detecting (e.g. syntax analysis or

structural coverage analysis), and so are not useful for mutation

testing. In the second iteration, we aimed to analyse the dependencies

between different operators and to reduce the cost of applying

mutation testing by selecting 18 mutation operators that generate only

first order mutants.

These 18 mutation operators were implemented in our tool

support called CoSTest (see Chapter 7) and validated on three

conceptual schemas (see Sections 8.3.1 and Section 8.3.2). Based on

the results obtained by applying the mutation testing, 56% (10/18) of

our mutant operators generated a high number of killed mutants

(score mutation=100 %). These results suggest that these operators

generated mutants that are relatively easy to detect by the provided

test suites. In the other case 44% (8/18) of the operators related to

characteristics of associations (i.e. multiplicity and aggregation type)

and constraints generated hard to detect mutants and their application

would stimulate selection of high quality tests. However, the behaviour

of the mutation operators may depend on the characteristics of the CS

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

111

they are applied to, such as the number, element type and complexity

of constraints.

Therefore, the test cases that validate multiplicity and constraints

have to be prioritized in a test suite as well as the test cases that cover

complete test scenarios. However, the aggregation types require a

static analysis for their validation.

5.6 Test Execution
Since test scripts (test case instructions) have to be executed

against the conceptual schema under test, we require an executable CS

as input to the testing environment.

5.6.1 Executable Conceptual Schema based on

UML Class Diagram
A class diagram (see Figure 5.12) is the UML’s main building block

that shows elements of the system at an abstract level (e.g. Class,

association class), their properties (ownedAttribute),

relationships (e.g. association and generalization) and

operations. In UML an operation is specified by defining

constraints. Figure 5.12 shows an excerpt of the UML structure

[40] for a class diagram and highlights eight elements of interest for

this work.

Figure 5.12. Excerpt of the Metamodel of an UML Class Diagram [40]

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

112

An executable model is at the next higher layer of abstraction,

abstracting away both specific programming languages and decisions

about the organization of the software (e.g. data structure and

partitioning) so that a specification built in Executable UML can be

deployed in various software environments without change [37]. A key

ingredient of any Executable UML variant is the use of an Action

language (kind of a pseudocode) that allows designers to completely

specify fine-grained behavioural aspects of the model (e.g. to define

the behaviour of a method of a class).

But, why do we need ALF? Programming languages such as Java,

C++ or another programming language are not designed to manipulate

the elements of a CS. They do not provide the facilities that we need to

be able to express the actions in a CS in a clear and precise, yet

abstract, manner. However, programming languages allow the

developer to manipulate all sorts of implementation-specific features

that are wholly inappropriate in a PIM. For instance, it is commonplace

in modelling to want to navigate across an association (i.e. finding the

associated object/s at the other end of an association). With a

programming language we would need to know how the association is

going to be implemented, for instance with any data structure

therefore navigate the association using the operations related with

this data structure. This immediately makes the model implementation

platform specific. However, ALF allows the association to be navigated

simply and concisely, without restricting the ways in which associations

can be implemented. Figure 5.6 shows part of Video Club CS using an

UML class diagram with constraints.

ALF is a platform independent language that works at the same

semantic level as the rest of the UML-based CS. This means that

actions allow direct manipulation of the elements of the PIM (no

assumptions are made about middleware, implementation language or

software design policy) and they are capable of being translated into

different implementations for different platforms and languages.

Syntactically, ALF is based on several key design principles [82]:

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

113

• ALF has a largely C-legacy (“Java like”) syntax, since that is most

familiar to the community that programs detailed behaviours.

Nevertheless, ALF allows UML textual syntax when it exists (e.g., colon

syntax for typing, double colon syntax for name qualification, etc.).

• ALF does not require graphical models to change in order to

accommodate the use of the action language (e.g., special characters

are allowed in names, arbitrary names are allowed for constructors,

etc.). Further, while ALF maps to the fUML subset in order to provide

its execution semantics, it is usable in the context of models not limited

to the fUML subset.

• ALF uses an implicit type system that allows but does not require

the explicit declaration of typing within an activity, always providing for

static type checking, based at least on typing declared in the structural

model elements.

• ALF has the expressivity of OCL in the use and manipulation of

sequences of values. These sequence expressions are fully executable

in terms of fUML expansion regions, allowing the simple and natural

specification of highly concurrent computations.

• ALF provides a naming system that is based on UML namespaces

for referencing elements outside of an activity but also provides for the

consistent use of local names to reference flows of values within an

activity. ALF adds the concept of a unit to the basic UML concepts of

namespaces and packages. A unit is a namespace defined using ALF

notation that is not itself textually contained in any other ALF

namespace definition. Units are lexically independent (though

semantically related) segments of ALF text. Figure 5.13 shows the ALF

unit definition for this example. In this definition, we can see the

classes and associations that are formed the VideoClub package.

A unit may also have subunits that define namespaces that are

owned (directly or indirectly) by the unit but whose ALF definition is

given by a unit that is textually separate from the base unit. Inclusion in

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

114

the base unit is indicated using a stub declaration in the base unit and a

namespace declaration in the definition of the subunit.

Figure 5.13. Textual definition for the package VideoClub by using ALF language

Therefore, we generate the CS under test using the structural part

(class diagram with pre, post-conditions and invariants) and

transforming CSUT into ALF units and transforming the pre, post-

conditions and invariants into behavioural information (i.e. methods)

to be used in CSUT execution (testing purposes) (see Figure 5.14).

Further information is detailed in Section 6.3.6.

Figure 5.14 Overview to generate an executable CSUT

We decided to use the Reference Implementation5 as an fUML

engine because (1) it is based on the reference implementation and (2)

it provides an execution log. Thanks to (1) we have confidence in its

conformity to the fUML specification. And (2) means that systematic

5 http://modeldriven.github.io/fUML-Reference-Implementation/

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

115

testing (i.e. reviewing hundreds of logs) is simpler than with the Moka6

implementation, which is more suitable for interactive testing.

The translation of UML CD-based CS into ALF is performed in two

steps:

1. Mode-to-text transformation translates the UML CD-based CS

into ALF units. This transformation is written in ATL code. It

takes as inputs an UML CD-based CS, and gives as output an ALF-

based CS. The resulting Alf-based CS contains the elements

generated from the translation of all CS elements given as input.

2. ALF unit parsing. Semantically, ALF maps the CS to the

Foundational UML (fUML [67]) subset. The resulting ALF-base CS

is semantically equivalent to the original one. Then fUML

provides the virtual machine for the execution of the ALF units.

An ALF-based CS can be executed from the command line using the

ALF shell script (for Unix) or the alf.bat batch file (for Windows/DOS).

The ALF-based CS is compiled in an in-memory representation and

executed using the fUML Reference Implementation. Further details

can be found in the ALF Reference Implementation [117].

The current version of our ALF transformation supports most UML

CD constructs with the following notable exceptions: (1) features

required to specify abstractions could be added with relatively little

work; (2) transformation of OCL constraints. Currently, the UML CD-

based CSs used in our approach use directly the ALF language to

specify the constraints. But, there is an approach enabling OCL and

fUML Integration by transformation that could be used to address this

issue [118].

6 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

116

5.6.2 Architecture and Testing Environment
In order to perform conceptual schema testing, our validation

framework is based on the architecture shown in the scheme in Figure

5.15.

In our validation framework for conceptual schemas, conceptual

modellers define an explicit specification of the conceptual schema of

the information system under development. Then, a collection of

automated tests is generated to test the schema by our testing

framework. A formal language to define the conceptual schema and a

formal language to define the test programs are required to make this

approach applicable in practice. In this Thesis, we test conceptual

schemas defined in UML and ALF languages (the corresponding

concepts and notation are explained in detail in [82]).

Figure 5.15. Testing environment to test Conceptual Schemas

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

117

Semantically, ALF maps the CS to the Foundational UML (fUML

[67]) subset, after which fUML provides the virtual machine for the

execution of the ALF language. An ALF-based CSUT can be executed

from the command line using the ALF shell script (for Unix) or the

alf.bat batch file (for Windows/DOS).

The CSUT is compiled to an in-memory representation and

executed using the fUML Reference Implementation. Usage is:

alf [options] unitName

where unitName is the fully qualified name of a unit (e.g. test case)

to be executed. The allowable options are

-d level: Sets the debug level for trace output from the fUML

execution engine. Useful levels are:

 OFF turns off trace output.

 ERROR reports only serious errors (such as when a primitive

behaviour implementation cannot be found during execution).

 INFO outputs basic trace information on the execution of

activities and actions.

 DEBUG outputs detailed trace information on activity

execution.

The default is as configured in the log4j.properties file in the

installation directory.

-f: Treat the unitName as a file name, rather than as a qualified

name. The named file is expected to be found directly in the model

directory and the unit must have the same name as the file name (with

any ‘.alf’ extension removed).

-l path: Sets the library directory location to path. If this option is

not given and the ALF_LIB environment variable is set, then the value

of ALF_LIB is used as the library directory location. Otherwise, the

default of Libraries is used.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

118

-m path: Sets the model directory location to path. Qualified name

resolution to unit file paths is relative to the root of the model

directory. If this option is not given, the default of Models is used.

-p: Parse and constraint check the identified unit, but do not

execute it. This is useful for syntactic and static semantic validation of

units that are not executable by themselves.

-P: Parse and constraint check, as for the -p option, and then print

out the resulting abstract syntax tree. Note that the printout will occur

even if there are constraint violations.

-v: Sets verbose mode, in which status messages are printed about

parsing and other processing steps leading up to execution. If this

option is used alone without specifying a unit name (i.e., alf -v), then

just version information is printed.

More details can be found in the ALF Reference Implementation

Wiki [119].

ALF is also such a language, but one that is an OMG standard that

can be consistently implemented across a number of tools, promoting

the same sort of interoperability for textual behavioural specification

that the UML standard already does for graphical modelling.

This is the reason why in this thesis we focus on ALF language as

our testing environment. However, the ideas presented in this

document could be adapted to any of the above action languages.

5.6.3 Execution Trace
Execution traces resulting from execution of test cases are

configured to report faults and syntax errors found during testing

process by ALF parser.

Figure 5.16 shows an example of an execution trace for Video Club

CS.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

119

Figure 5.16. Example of an execution trace for Video Club CS

5.7 Test Evaluation
Since the tests are part of a validation and verification process,

automated procedures (i.e. syntax and coverage analysis) were used to

verify the models as a preliminary step to the test process.

5.7.1 Verifying the Syntaxis Correctness
All languages have a syntax, i.e. a set of rules about how elements

of the language can be combined together meaningfully in that

language. Then, specifications written in a specific language must

comply with the syntax imposed by the language in which they are

defined. This relationship between the specification and the language

in which it is described is known as conformance.

We consider an executable conceptual schema is syntactically

correct if all the elements satisfy the rules defined in the UML/fUML

metamodel and well-formedness rules (WFR) – constrainst that restrict

the possible set of valid (or well-formed) models.

Consider the excerpt of the class diagram shown in Figure 5.17 and

the constructor operation (in the context of class CorporatePartner) to

create an instance of this class.

Constraint violations:
 behaviorInvocationExpressionReferentConstraint in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/VideoClub_TS_1_TC_36.alf at line 17, column 12
 instanceCreationExpressionDataTypeCompatibility in

C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-

ALF\VideoClub\/VideoClub_TS_1_TC_36.alf at line 20, column 22

 positionalTupleArguments in

C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-

ALF\VideoClub\/VideoClub_TS_1_TC_36.alf at line 20, column 34

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

120

Figure 5.17. Excerpt of the CS with a syntactically incorrect code

The above operation is not syntactically correct because the call to

an alternative constructor is not the first line in the definition for the

method of a constructor operation. Then, the repaired operation is

shown in Figure 5.18.

Figure 5.18. Example of a CS with the corrected Alf code

5.7.2 Validating the Semantic Correctness
We consider an executable conceptual schema (i.e. a set of ALF

units with action-based operations) is semantically correct if all

possible changes (inserts/updates/deletes/ . . .) on all parts of the

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

121

system state can be performed through the execution of those

operations. Element exists but some statement about the domain is

incorrect. For example, consider the excerpt of the class diagram and a

test case composed by the operation set_status shown in Figure 5.19.

Figure 5.19. Excerpt of the VideoClub CS with a semantic incorrect defect

This conceptual schema is semantically incorrect since, for

example, the operation set_status exists but the expected parameter

type (i.e. String) is different than expected (i.e. Integer). Then, in order

to correct this semantic error, the designer should change the type of

the pt_Status parameter to an Integer. The repaired operation is

shown in Figure 5.20.

Figure 5.20. Example of the VideoClub CS with the corrected semantic defect

5.7.3 Verifying the Unnecesary Elements
In addition, unnecessary elements (i.e. redundant/repeated

elements or extraneous elements) in the schema can be uncovered by

analysis of coverage of the elements included in the conceptual

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

122

schema and the executed in the test cases. An example of a CS

containing an extraneous association is shown in Figure 5.21.

Figure 5.21. Example of a CS containing an extraneous association

5.7.4 Validating the Completeness
The method we have developed for validating the completeness

property takes as input an executable model composed by a structural

model (a UML class diagram) and a behavioural model (a set of Alf

operations). So, a Conceptual Schema is complete if all elements

exercised in the test cases exist on CS.

Then, our method returns either a positive answer, meaning that

the behavioural model is complete, or a corrective feedback, consisting

in a set of actions that should be included in some operation of the

behavioural model in order to make it complete.

For example, consider the excerpt of the class diagram and a test

case composed by the operation new Partner shown in Figure 5.22.

This conceptual schema is incomplete since, for example, the class

Partner does not exist. Then, in order to correct this defect, the

designer should change the CS by adding the Partner class. The

repaired operation is shown in Figure 5.23.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

123

Figure 5.22. Excerpt of the CS with a missing defect

Figure 5.23. Excerpt of a corrected CS

This phase is done by using the oracles and goals included in the

test cases. A test case returns the verdict Pass, Fail or Inconclusive.

When the verdict is Fail, a defect list and a status of failed execution is

provided. The execution of the test cases may produce an output with

several defects (e.g. missing class, incorrect operation and missing

operation), which are contained in the list. When the verdict is

Inconclusive, this means that the execution of the test case is not

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

124

conclusive. For instance, if the fixture has caused a fault, this leads to

an inconclusive status. This verdict can optionally return a defect list

too. Otherwise, the status of the test case is Pass. As an example,

consider again the conceptual schema of Figure 5.6. A conceptual

modeller/tester that wants to test that Session entity may execute

the test case shown in Figure 5.24.

Figure 5.24. Example of the test case

After test execution a generated error log is as follows (see Figure

5.25):

Figure 5.25. Example of execution trace

The verdict of the assertion is Fail. Then, the execution trace is

analysed by using the information shown in Table 5.4. Then, the defect

missing class (or private) is reported. The test case will pass if

the schema is corrected as Figure 5.26 shows.

--------Test Case: 2--------
Constraint violations:
 instanceCreationExpressionConstructor in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 10, column 19
 positionalTupleArguments in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 10, column 31
 classificationExpressionTypeName in
C:\Users\Usuario\workspace\COSTest\ExecutableTestCases\UML-
ALF\VideoClub\/PA_login_TS_1_TC_2.alf at line 12, column 37

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

125

Figure 5.26. Extended UML class diagram for Video Club CS

Table 5.4. Relationship between fault and reported defect

Fault reported by Defect Reported

propertyAccessExpressionFeatureResolution Missing or private
Association

instanceCreationExpressionConstructor Missing Class (or private)

behaviorInvocationExpressionReferentConstraint Missing Operation (or
private)

propertyAccessExpressionFeatureResolution Incorrect Association

linkOperationExpressionArgumentCompatibility Incorrect Association
Ends

instanceCreationExpressionConstructorlessLegality Incorrect Constructor

assignmentExpressionSimpleAssignmentTypeConformance Incorrect Parameter Data
Type

tupleNullInput in a createlink statement Incorrect null Value in
Association Parameter

tupleNullInput in an operation statement Incorrect null Value in
Parameter

instanceCreationExpressionDataTypeCompatibility Incorrect Operation
Signature

behaviorInvocationExpressionArgumentCompatibility Incorrect Parameter Data
Type

superInvocationExpressionOperation Incorrect Super Class

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

126

Finally, the test evaluation generates a report with test cases

verdicts, detected faults, times report and coverage of test cases.

5.8 Overview of the CoSTest Testing Process
Testing methods for UML conceptual schemas are likely to differ

depending on the testing criteria used [108]. To illustrate the testing

process and highlight some of the issues that needed to be solved

during the development of this PhD thesis, Figure 5.27 summarizes the

testing process, which is divided into three phases.

i. Test Suite Generation

1. Transform the Requirements Model (based on Communication

Analysis) into Test Model.

2. Transform the Test Model into Test Scenario Model

(sequences of events from test model).

Figure 5.27. Overview of the testing process

3. Generate the test values for test cases from Test Model

(variables concretization). Tester (optionally) can enter new

test values.

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

127

4. Transform each test scenario into Test cases scripts (ALF

script), which contains the abstract test cases.

5. Select the type of test cases (e.g. only positive test cases or

including negative test cases)

6. Generate concrete and executable test cases

7. Prioritize and select the test cases for execution based on

mutation analysis.

ii. Generation of the Executable Conceptual Schema under test

(CSUT)

8. Generate the CS under test using both structural (class

diagram) and behavioral information (pre, post-conditions and

invariants) and transforming CSUT into ALF units to be used in

model execution (testing purposes).

9. Parse the CS before starting the execution of CS (testing

process).

iii. Test Execution

10. Execute the test cases (scripts) against the CS under test.

11. Generate the testing report and coverage analysis.

Since our proposal for generation of test cases complies with the

principles of Model-Driven Testing, in the next chapter we describe in

detail the Model-Driven process applied in our Testing framework. The

tool support is described in detail in Chapter 7.

5.9 Summary and Conclusions
In this thesis, we propose a testing-based validation of conceptual

schemas, manly in order to enhance the validation of completeness

(missing elements). However, confinement and changeability can be

improved by analysing the elements covered and elements do not

cover (extraneous elements) by test cases. Since the testing process

has to transform the CSUT into an executable format, then redundant

and incorrect elements are detected by the parser as a previous step to

testing, so that the correctness goal is also improved. The CS

comprehensibility by humans and tools is addressed when the

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

128

completeness, consistency and correctness of the CS is improved (see

Tables 3.1 and 3.3 in Sections 3.2.1 and 3.3.5 respectively).

As the quality of a conceptual schema should not be considered as

an after-thought, we aim to validate each step of the conceptual

modelling process. Our proposal therefore allows both types of

complete and incomplete models to be validated according to the

evolution of the requirements.

Tool-supported rigorous analysis of design models can enhance the

ability of developers to identify potentially costly design problems

earlier and correcting design problems early also reduces the effort

wasted on implementing faulty designs.

The testing process is based on test scenarios to execute high-level

conceptual schemas regardless of the platform by using the standard

Action Language by the OMG, ALF [82]. The validation framework

follows a top-down approach to generate the test cases, where the test

model is the master that generates the test scenarios and the test

cases. In order to automate the test suite generation, we selected a

model-driven architecture to address the analysis, design and

implementation phases. The test design is therefore independent of

the adaptation layer or test execution system and the test artefacts are

independent of the implementation domain. This reduces costs and

efforts in test system maintenance and supports communication

between conceptual schema development (modellers) and the test

department (testers).

In this chapter, we show how a model-driven generation for test

cases written in the ALF language can be used to support testing of

conceptual schemas. In the approach, a conceptual schema based on

UML class diagram is transformed into an executable conceptual

schema (ALF scripts), and a requirements model based on

Communicational Analysis is transformed into a test model that

characterizes valid sequences of test cases. A test case is an object

configuration that describes a system state. A sequence of object

CHAPTER 5. MODEL-DRIVEN TESTING FRAMEWORK

129

interactions is called a Test Scenario. These test scenarios are

transformed into ALF scripts. Then, a conceptual schema based on a

UML class diagram is transformed into an executable conceptual

schema in order to execute against the test cases.

The methods provided as part of this thesis are organized in a

testing-based validation framework.

Testing is part of a process of Validation & Verification, therefore,

we used testing in conjunction with automated procedures (i.e. syntax

and coverage analysis) aimed at verifying models.

Testing is one of the most critically important phases of the

software development life cycle and consumes significant resources in

terms of effort, time and cost. In this thesis, we share the criteria and

try to reduce the number of test cases, while maintaining quality and

customer satisfaction when faced with the challenge of testing

complex applications with limited resources.

In the next chapters, we study in depth each of the proposed

model-driven transformations as well as the validation method we

have developed to validate them.

CHAPTER 6. TRANSFORMATION RULES

131

Chapter 6
TRANSFORMATION RULES
6. Transformation Rules

Model manipulation is a central activity in Model Driven

Engineering (MDE) activities. Models are merged and aligned (e.g. to

create a model of the system from different views), refactored (i.e. to

improve their internal structure without changing their observable

semantics), refined (i.e. to detail high-level models), and translated to

other languages/representations, e.g. as part of code-generation,

validation, verification or simulation processes. All these operations on

models are implemented as model transformations, which automate

the translation of models between a source and a target language

using a model transformation language.

The objective of this chapter is to describe in detail the Model-

Driven Testing (MDT) process applied in our Testing framework

described in Chapter 5.

This chapter is divided into four sections: Section 6.1 describes the

Model-Driven Testing (MDT) process, Section 6.2 analyses

metamodels; Section 6.3 defines the different transformations types

required by our MDT process; and Section 6.4 summarizes and

concludes the chapter.

CHAPTER 6. TRANSFORMATION RULES

132

6.1 An Overview of the MDT Process
This Section offers a global view of test suite generation process

from a CA–based requirements model, by means of metamodels and

transformations. Figure 6.1 shows the different types of models,

metamodels and transformations of our proposal at various levels of

abstraction, where each model is an instance of its metamodel.

Figure 6.1. An overview of our MDT approach

Five metamodels and six transformations are required in the MDT

process (see artefacts highlighted with a thick line in Figure 6.1). Figure

6.2 shows an overview of the metamodel elements and the

transformation sequence with the results generated in the MDT

process.

CHAPTER 6. TRANSFORMATION RULES

133

Figure 6.2. Overview of the sequence of proposed transformations

6.2 Metamodels
As shown in Figure 6.1 five metamodels are required in our

approach, from which three are designed to define the information

managed by the test suite generation process.

The first metamodel enumerates the elements to model the UML

model, therefore more details about it can be found in UML

documentation [40]. The second metamodel defines the elements to

CHAPTER 6. TRANSFORMATION RULES

134

model the requirements model (RM). The metamodels for CA based

requirement models are described in [103][120]. Note that a full

explanation of RM metamodel is outside the scope of this thesis, but

several examples and experiences of this specification can be obtained

at the project’s web site

(https://staq.dsic.upv.es/webstaq/costest.html). The third metamodel

enumerates the elements to model the test model. The fourth one lists

the elements to model test scenarios. The fifth one details the

elements for the test data model and the fifth metamodel gives the

UML structure [40] for a class diagram.

Previous work describes the Test metamodel and Test Scenario

metamodel as the Abstract Test Cases metamodel [121]. We adapted

them by (1) including some elements such as the traceability elements

(i.e. location and trule) in the class Element of the first

metamodel (2) changing the class name TestComponent by

TestCase in both metamodels with the purpose of clarifying the

element purpose, and so on.

The three metamodels defined for our proposal are described

below.

6.2.1 Test Metamodel
The goal of this metamodel (tcmetamodel) is to include the

relevant information for generating the Test Model (TM) with the test

items and their order of precedence from a CA Requirements Model.

The elements of this metamodel are represented in Figure 6.3 and

described below.

The TestModel element represents a container for test case

sequences. The key concepts of this metamodel are the TestCase

and Precedence elements.

A TestCase element is a container for test items to be tested. A

Precedence element is a relationship that models the test cases

sequences.

CHAPTER 6. TRANSFORMATION RULES

135

Figure 6.3. Metamodels for the first transformation adapted from [121]

TestItem element is a supertype that contains the CS elements

to be tested. In a test model there is at least one test case that

formalizes the user-system interaction sequences. This is related to the

Data Class, which contains the expected value. In a test model there is

at least one test case that formalize the user-system interaction

sequences.

A Link element models a structural relationship between classes.

A Service element models an action performed by an external

element of the system under test such as user input or a server

response.

A Trigger element models an action that will be carried out by

the system and that may be verified in order to evaluate the test

correction, e.g. updates in the system data or other system or user

outputs.

A Call element is a super type for the test item in a test case.

Instances of Call element must be either a Link, Service or

Trigger element. A Call element is a container of the Parameter

elements, which contains information about the parameters required

CHAPTER 6. TRANSFORMATION RULES

136

in the test items (i.e. service, trigger and link). The Parameter may

be an Input or Output parameter and is related to the Data Class,

which contains its value for the concretization process.

The Assertion is an element that indicates Constraint

statements. These statements are used to designate preconditions,

post-conditions and the derivation condition of the class attribute.

The Element class is a supertype that contains the element name

and traceability information of each one of them (i.e. location and

transformation rule that generated it).

Figure 6.4 shows the corresponding OCL constraints for the TM

metamodel. The constraints are: names must be unique within their

respective contexts, classes must have a name and the multiplicity

constraints for relations.

Figure 6.4. OCL Constraints for Test Metamodel

6.2.2 Test Scenario Metamodel
For the second transformation, we defined another metamodel

(see Figure 6.5), which is the PST for our MDT proposal. The goal of this

metamodel (atcmetamodel) is to define the information obtained

after applying the algorithm for path analysis in the test model. A test

scenario is a possible test case for testing a concrete test scenario. The

elements of this metamodel are represented in Figure 6.5 and

described below.

CHAPTER 6. TRANSFORMATION RULES

137

The TestScenarioModel element represents a container for

test scenarios.

The key concept of this metamodel is the TestScenario

element. A test scenario represents a user-system interaction

sequence (user story). Going back to the preceding metamodel, a test

scenario is a concrete path across TM. The steps performed during the

test scenario execution are classified in terms of the concepts defined

below.

Figure 6.5. Test Scenario Metamodel adapted from [121]

A TestCase element is a supertype that contains the

TestItems to be tested. In a test scenario there is at least one test

case that formalizes the user-system interaction sequences.

The TestItem instances and the elements have already been

introduced in the previous section.

6.2.3 Test Data Metamodel
The goal of this metamodel is to formalize the information required

to concretize the values by applying the Category-Partition Method to

functional requirements.

CHAPTER 6. TRANSFORMATION RULES

138

Figure 6.6 describes this metamodel, which is further explained

below.

The Model element represents a container for operational

variables, patterns and input types related to the test model.

Figure 6.6. Test Data Metamodel

The key concept of this metamodel is the Variable metaclass,

which contains information about the operational variables of the test

model such as name, data type, lower and upper values (these are

used as boundary values of the variable range), isIdentifier (i.e. true

when the variable is an identifier of the class and otherwise it is false),

derivationFormula (i.e. its contains the derivation formula when the

variable is derived), test item and test cases where the variable is

located. The variable class is a container of the Data values. During

the test cases concretization, a variable may take a value from one of

its sets of data.

The Data element models values of the variable. Each value is

related a pattern and input type. An Input_Type element models

the input type used to concretize the Data value for each variable.

A Pattern element models a regular expression required to

validate the value assigned to the variable when the concretization

process is done manually or automatically by using a web-based

CHAPTER 6. TRANSFORMATION RULES

139

generation. Examples of possible patterns may be an email pattern

("^[\\w-]+(\\.[\\w-]+)*@[A-Za-z0-9]+(\\.[A-Za-z0-9]+)*(\\.[A-Za-

z]{2,})$"), and the Spain post code (“^([1-9]{2}|[0-9][1-9]|[1-9][0-9])[0-

9]{3}$”).

6.3 Transformations
The metamodels described above depict the information on the

proposed test artefacts. The goal of this section is to define a process

to obtain instances of the test metamodel from instances of the

requirements metamodel, as well as instances of the test scenario

metamodel from instances of the test metamodel. As mentioned at the

beginning of this chapter, this process is modelled by means of

transformations, which are relations oriented from a source toward a

target metamodel, codified in ATL transformations. Figure 6.2

represents a global view of the transformations. All transformations

are specified in ATL and implemented in a supporting tool through Java

language. The transformations rules are introduced in the next sections

and include specific metrics to ensure the quality of these

transformations. ATL specification has many low-level details and a

high-level representation of the transformation process structure is

explained in the following sections.

6.3.1 Transformation from Requirements Model

to Test Model
The goal of this transformation (T1 from Figure 6.2) is to obtain a

test model conformed to the test metamodel described in the previous

section.

The main task of this transformation is to invoke the 25 rules

(mappings) depicted in Figure 6.7.

These rules are organized into eight groups: the first two generate

the structure of the test model (i.e. test cases and precedence

relations), R1 maps requirements RequirementModel to TestModel,

R2_1 and R2_2 rules map each CommunicativeEvent or EventVariant to

a TestCase.

CHAPTER 6. TRANSFORMATION RULES

140

Figure 6.7. Structure of T1 Transformation

The third group of rules generates the Precedence relations, the

rules R3_1 and R3_2 rule maps each Precedence between

CommunicativeEvent and EventVariant to a Precedence between

TestCase, and the rules R3_3, R3_4 and R3_5 map the relations with

logical nodes (i.e. AND or OR) to nodes Precedence.

CHAPTER 6. TRANSFORMATION RULES

141

The fourth group of rules generates the test items Assertion in the

respective TestCase. The rules R4_1 maps TextualRequirement to an

Assertion. The rules R4_2 and R4_3 map a Precondition of a

CommunicativeEvent or EventVariant respectively to a test item

Assertion.

The following three groups of rules (R5-R7) derives the test items

Trigger, Service and Link by analysing the properties of the structures

Aggregation, ReferenceField, Specialisation and Iteration. The

structures DataField, ReferenceField and Aggregation are mapped to

instances of Parameter of the test items (i.e. Trigger, Service and Link).

For generating test items we use the methodological core of the OO-

Method proposed by Pastor [122], which is implemented into an

object‑oriented model‑driven development framework with automatic

code generation capabilities [6].

Tables 6.1-6.8 show the transformation rules between RM and TM.

We construct them in such a way (base on steps) that they can be

evaluated easily on model instances.

These transformation rules together specify the complete

structural correspondence for an RM and its equivalent TM, which was

validated by using the conceptual schemas derived from the

Communicational Analysis requirements models by using the strategy

proposed in España et al. [104].

Table 6.1. Transformation rules for generation of the Test Model

Group # 1. Generation of the Test Model

Preconditions: none

Steps ATL rule

1 Create a TestModel with the requirements Model name. R1

Table 6.2. Transformation rules for generation of the Test Cases

Group # 2. Generation of the Test Cases

Preconditions: Class TestModel has already been generated.

Steps ATL rule

1 For each CommunicativeEvent and EventVariant in the CE diagram,
draw a TestCase (TC) in the TestModel.

R2_1,
R2_2

2 Do not draw the Start, End and Logical Nodes (i.e. Or, And) (if any).

CHAPTER 6. TRANSFORMATION RULES

142

Table 6.3. Transformation rules for generation of the Precedence relations

Group # 3. Generation of the Precedence relations

Preconditions: Classes TestCase have already been generated

Steps ATL rule

1 For each Precedence relation in the CE diagram, draw a Precedence
in the Test Model. In case of a Communicative event with Event
Variants, draw a precedence for each EventVariant and from each
event variant, so that the test cases relate independently.

R3_1
R3_2

2 If there is a Precedence that starts from a Logical Node (i.e. Or, And)
draw the Precedence from the previous CommunicativeEvent or
EventVariant to the logical node until the next CommunicativeEvent
or EventVariant.

R3_3
R3_4
R3_5

Table 6.4. Transformation rules for generation of the test items Assertions

Group # 4. Generation of the Assertions

Preconditions: Classes TestCase have already been generated.

Steps ATL
rule

1 For each TextualRequirement add an Assertion as a precondition in
the respective TC.

R4_1

2 For each Precondition in a CommunicativeEvent and EventVariant add
an Assertion as a precondition in the respective TC.

R4_2,
R4_3

Table 6.5. Transformation rules for generation of the test items Triggers

Group # 5. Generation of the Triggers

Preconditions: Classes TestCase have already been generated.

Steps ATL
rule

1 For each Aggregation class that has a ReferenceField that extends a
business object, add a Trigger in the respective TestCase and label it
with the Aggregation name. If the substructure corresponds to a
specialised CommunicativeEvent, a Trigger is derivate in each
EventVariant.
The Trigger type is ‘set’ and the owner is the domain name of the
ReferenceField. Continue with Step 5.

R5_1

2 For each Aggregation class that has Aggregation children and no a
ReferenceField a Trigger in the respective TestCase is derivate.
The Trigger name has to correspond to the Aggregation parent name.
The owner is the Aggregation parent name and the Trigger type is
‘register’.
An Input Parameter instance is created. The Parameter name is ‘p_this’
plus the name of the Aggregation parent.
The Parameter type is the domain name of the ReferenceField.
Continue with Step 5.

R5_2

3 For each Iteration substructure that has no Aggregation child, but has a
ReferenceField that extends a business object a Trigger in the
respective TestCase is derivate.

R5_3

CHAPTER 6. TRANSFORMATION RULES

143

The Trigger name has to correspond to the Iteration name. The Trigger
type is ‘set’ and the owner corresponds to the domain name of the
ReferenceField. Continue with Step 5.

4 For each EventVariant that has both a related Aggregation and a
ReferenceField that extends a business object, a Trigger in the
respective TC is derived.
The Trigger name has to correspond to the name of the last parameter
of the Aggregation related to EventVariant. The Trigger type is ‘set’ and
the owner corresponds to the domain name of the ReferenceField.
Continue with Step 5.

R5_4

5 After (1) and (2) an input Parameter instance is created. The Parameter name is
‘p_this’ plus the domain name of the ReferenceField. The Parameter type is the
domain name of the ReferenceField.

6 After (1), (2), (3) and (4). For each DataField contained in the substructure, Rule
8_1 is called.

Table 6.6. Transformation rules for generation of the test items Services

Group # 6. Generation of the Services

Preconditions: Classes TestCase have already been generated.

Steps ATL
rule

1 For each Aggregation related with a CommunicativeEvent or
EventVariant without ReferenceField, a ‘new’ Service has to be
generated in the TC.
The Service name has to correspond to the Aggregation substructure
name.
For each DataField instance in the Aggregation substructure, an Input
Parameter instance has to be created with the domain value as its
type. Therefore, the rule R8_1 (CommunicativeEvent) or R8_2
(EventVariant) is called.
An Output Parameter has to be created with the Aggregation
substructure name in lowercase.

R6_1

Table 6.7. Transformation rules for generation of the test items Links

Group # 7. Generation of the Links

Preconditions: Classes TestCase have already been generated.

Steps ATL
rule

1 For each Iteration substructure whose parent is an Aggregation
substructure and its child an Aggregation substructure, a Link is
generated between the parent Aggregation name (Input parameter)
and child Aggregation substructure (Output parameter).

R7_1

2 For each ReferenceField within an Aggregation a Link is generated according
to:

2.a If the ReferenceField does not extend a Business Object and there is
no ReferenceField in the same substructure that extends a business
object. The ReferenceField belong an Aggregation substructure
related with a CommunicativeEvent or EventVariant.

R7_2

CHAPTER 6. TRANSFORMATION RULES

144

The Link is between the domain name of the ReferenceField (Input
parameter) and parent Aggregation name (Output parameter).

2.b If the ReferenceField extends a Business Object and there is another
ReferenceField in the same substructure.
The Link is between the domain name of the other ReferenceField
(Input parameter) and the domain name of the ReferenceField
(Output parameter).

R7_3

2.c If the ReferenceField does not extend a Business Object and there is
a parent Specialization substructure with child Aggregation.
The Link is between the domain name of the ReferenceField (Input
parameter) and Aggregation name (Output parameter). The
Aggregation where the ReferenceField is excluded.

R7_4

3 For each Aggregation substructure whose parent is a Specialisation
substructure and this parent has an Iteration substructure with
Aggregation substructures, a Link is generated between the parent
Aggregation (Input parameter) and Iteration child Aggregation
(Output parameter).

R7_5

Table 6.8. Transformation rules for generation of the test items Parameters

Group # 8. Generation of the Parameters

Preconditions: Classes Service, Trigger or Link have already been generated.

Steps ATL
rule

1 A DataField generates an Input Parameter instance with the domain
value as its type.

R8_1

2 A ReferenceField generates an Input Parameter instance with the
domain value as its type. The name is formed by 'p_agr' plus domain
value in lowercase.

R8_2

3 An Aggregation generates an Input Parameter instance with the
substructure name as its type and name in lowercase.

R8_3

4 An Aggregation generates an Output Parameter instance with the
substructure name as its type and name in lowercase.

R8_4

Table 6.9 shows a list of required and non-required RM metamodel

constructs for test model generation. Each row describes a pair of

constructs that match and their correspondence. Some metaclasses

such as NODE (i.e. END, START) and LOGICAL_NODE (AND, OR) are

informational resources. In the other hand, some metaclasses (e.g.

ORGANISATIONAL_ROLE, ORGANIZATIONAL_ACTOR, and GOAL)

required in the CA to model the requirements levels (i.e. L1, L4, and L5

see Section 3.1.1) but they are not used for our proposal and so are not

mapped to the test metamodel instances.

CHAPTER 6. TRANSFORMATION RULES

145

Table 6.9. Requirements Metamodel constructs used in this transformation
Communication

Analysis (CA) mapping
Test Model (TM)

mapping
CA-TM mapping

correspondence

Model Test Model 1:1

Precedence Precedence 1:n

Communicative Event Test Case 1:1

Assertion 1:1

Textual Requirement 1:1

Event Variant 1:1

Test Case 1:1

Aggregation Trigger 1:1

Link 1:n

Parameter(Output) 1:n

Parameter(Input) 1:n

Reference Field Link 1:n

Parameter (input) 1:n

Trigger 1:n

Data Field Parameter (input) 1:1

Iteration Link 1:n

Specialisation Link 1:n

Node (End, Start) - Informational

Logical node (And, Or) - Informational

Communicative Interaction
(ingoing, outgoing)

- Informational

Organisational actor - Not used

Organizational role - Not used

Organisational goal - Not used

Organisational Location - Not used

Organisational Module - Not used

Strategy - Not used

Operationalisation - Not used

Goal - Not used

Communicative Role - Not used

Communicational Channel - Not used

Support role set - Not used

Organisational role set - Not used

Organisational Unit - Not used

Process - Not used

Indicator - Not used

Business object field - Not used

Business object class - Not used

The second part of this transformation modifies the Test Model by

adjusting the Test Model precedence relationships. For the sake of

readability, we use concrete syntax to describe instances of

Requirements Model (RM), Test Model (TM) and Test Scenario Model

(TSM) for Sudoku CS (see Figure 6.8). Figure 6.8 depicts the graphical

concrete syntax of the models RM (see Figure 6.8a), TM (see Figure

6.8b) and modified TM (see Figure 6.8c).

CHAPTER 6. TRANSFORMATION RULES

146

Since a communicative event in RM can have more than one

precedence relationship (see the communicative event 3 in Figure

6.8a), we modified the TM (see Figure 6.8b and Figure 6.8c) so that

each node only has an input and output relationship except to the start

and end nodes (i.e. only input or output relationship, but not both) as

well as the predecessor node to a decision node (i.e. test case 4 in TM)

or successor node to a logical node (i.e. test case 4 in TM).

|

1 2

3

4

5.1 5.2 5.3

6

1 2

3

4

5.1 5.2 5.3

6

CommunicativeEvent

a) Requirements Model b) Test Model

EventVariant

Start Node

End Node

Precedence 1

2

3

4

5.1 5.2 5.3

6

c) Test Model (modified)

TS1 TS2

Precedence
Test Case

Figure 6.8. Examples using graphical concrete syntax of (a) RM, (b) TM, and (c)
modified TM

Then, this transformation has been formalized in 25 ATL rules (see

column ATL in Tables 1-8) and included in our CoSTest tool (see

Chapter 8). Figure 6.9 shows part of the related ATL code.

Figure 6.9. Example of the first rule of the ATL transformation CA2TM

CHAPTER 6. TRANSFORMATION RULES

147

6.3.2 Transformation from Test Model to Test

Scenario Model
This second transformation consists of processing the TestModel

obtained in the previous transformation by using 8 transformation

rules grouped into two groups (9 and 10, see Tables 6.10-6.11) in order

to generate the TestScenarioModel.

Table 6.10. Transformation rules for generation of the Test Scenario Model

Group # 9. Generation of the Test Scenario Model

Preconditions: none

Steps Rule

1 Create the TestScenarioModel with the TestModel name. R9

Table 6.11. Transformation rules for generation of the Test Scenario

Group # 10. Generation of the Test Scenario

Preconditions: TestScenarioModel has already been generated.

Steps Rule

1 For each path in the TestModel a TestScenario is generated by
grouping the respective TestCase. The test suite name is set to
‘AbsTestScenario_’ + sequential number.

R10

2 For each TestCase in TM a TestCase is generated in TSM R2’

3 For each Assertion in TM an Assertion is generated in TSM R4’

4 For each Trigger in TM a Trigger is generated in TSM R5’

5 For each Service in TM a Service is generated in TSM R6’

6 For each Link in TM a Link is generated in TSM R7’

7 For each Parameter in TM a Parameter is generated in TSM R8’

This transformation aims to find all the possible scenarios from the

test model. Our transformation is an implementation of a classic

pathfinder or graph traversal algorithm using recursive functions in

Java Language [107] to generate the Test Scenario Model. A

TestScenarioModel consists of a set of TestScenario. Each

TestScenario (i.e. model path) groups the corresponding

TestCase with the respective TestItem (i.e. Assertion,

Trigger, Service and Link). Figure 6.10 offers an overview of

this transformation.

CHAPTER 6. TRANSFORMATION RULES

148

Figure 6.10. Structure of T2 Transformation

6.3.3 Transformation from Test Model to Test

Data Model
The goal of this third transformation is to obtain a data model from

the test model. The transformation entry point only aims to call the

mapping shown in Figure 6.11.

Figure 6.11. Structure of T3 transformation

The first direct mapping generates the test data model from the

test model directly. The second mapping generates variables from

input parameters related to Test Items of Service or Trigger type

located in the different TM test cases.

6.3.4 Transformation from Test Scenario Model

to Test Scenario Model with Abstract Test

Cases
The goal of this fourth transformation is to obtain the test

scenarios with abstract test cases from the test scenario model. The

transformation is specified in Acceleo (see a partial view in Figure

6.12).

CHAPTER 6. TRANSFORMATION RULES

149

Figure 6.12. Partial Acceleo code of transformation

The transformation in Figure 6.12 invokes the mapping for every

test scenario and creates a file (.alf) to contain the test items related to

the test scenario, keeping the classification between test cases and test

items (i.e. precondition assertions, services, triggers, links,

postcondition assertions and invariants).

This transformation is a repetitive operation that traverses all the

test scenarios from the test scenario model, creating a set of ALF

scripts with abstract test cases (see Figure 6.13).

The test cases are abstracts in the sense that they do not contain

concrete objects.

[comment encoding = UTF-8 /]
[module generateTScenarios ('http://atcmetamodel/1.0')]
[template public generateTScenarios
(aTestScenarioModel:TestScenarioModel)]
[comment @main/]
[for (tsc:TestScenario|aTestScenarioModel.testScenarios)]
[file (tsc.name+'_'+aTestScenarioModel.name+'.alf',false,'UTF-8')]
 private import [aTestScenarioModel.name/]::*;
 public import Alf::Library::BasicTypes::*;
 public import Alf::Library::Asserts::*;
 // Conceptual Schema under Test: [aTestScenarioModel.name/]
 // Goal: Verify and Validate the Test Scenario: [tsc.name/]
 // The Script consists of [aTestScenarioModel.testScenarios->size()/]
Test Scenarios
 activity [tsc.name+'_'+aTestScenarioModel.name/] () {
 [for (tcase:TestCase|tsc.testCases)]
 // Test Case: [tcase.name/]
. . .
 [if tcase.testItems->selectByKind (Link)->size()>0]
 // Links
 [/if]
 [for (tl:Link|tcase.testItems->selectByKind (Link))]
 [tl.name/].createLink ([tl.parameters->selectByKind (Input).
name.toLower ()/]_, [tl.parameters->selectByKind (Output).name.toLower
()/]_);
 [/for]
. . .
 [/for]
}
[/file]
[/for]
[/template]

CHAPTER 6. TRANSFORMATION RULES

150

Figure 6.13. Test Scenario with abstract test cases

6.3.5 Transformation from Test Data Model and

Abstract Test Cases to Executable and

Concrete Test Cases
The goal of this fifth transformation is to obtain the executable and

concrete test cases by merging the elements of the two prior

transformations, relating test data model and abstract test cases to

concretize the variable of the test cases.

Hence, this transformation takes both artefacts, a test data model

and a scenario with abstract test cases test as inputs, and generates

executable and concrete test cases as output by merging the

information of the input artefacts.

Then, the mapping associates each variable of the test case

statements with a concrete value from the test data model, if any. In

addition, the assertions are added according to the type of test case

(see Section 5.4.3). The results of this transformation are concrete and

executable test cases.

Figure 6.14 shows an example of a concrete and executable test

case for the Videoclub conceptual schema.

CHAPTER 6. TRANSFORMATION RULES

151

Figure 6.14. Example of a concrete and executable test case for VideoClub CS

6.3.6 Transformation from UML CD-based CS to

Executable CS under test
We use the ALF language as a notation for representing UML CD-

based CS and for reasoning about this model. To obtain the result

outlined in the previous section we defined a model-to-text

transformation of UML to ALF, which we describe in this section. The

mapping is specified as an ATL transformation included in the CoSTest

tool and we outline here its points of interest.

Packages

Figure 6.15 shows the Acceleo transformation for a UML package

such as the Video Club example depicted in Figure 5.6.

Figure 6.15. Acceleo transformation rule for UML package

CHAPTER 6. TRANSFORMATION RULES

152

Classes

 Figure 6.16 shows the partial ALF subunit translated for the class

VideoClub of our example, where we can see the definition of the

class attributes and part of the class constructor (i.e. @Create).

Figure 6.16. Partial definition for the class VideoClub by using ALF language

Associations

Figure 6.17 shows two examples of the ALF-based textual definition

for associations. The first one (a) is the association between Partner

and Rental classes and the second association (b) is the aggregation

between Rental and RentalLine classes, which is transformed in

a statement with a compose clause.

Figure 6.17. Association and Aggregation of Order example using ALF language

Inheritance

Inheritance poses a particular problem in translating UML to ALF,

since a subclass is dependent on its superclass, and this is an operation

dependence, since creation of a subclass instance requires invocation

of its superclass constructor. The inheritance relations are translated

into ALF by using the specializes clause.

CHAPTER 6. TRANSFORMATION RULES

153

Figure 6.18 shows an example of inheritance relations translated

for the PrivatePartner class.

Figure 6.18. Partial view of the ALF unit including an inheritance relation

Constraints

Constraints are included in the UML models using mechanisms

such as body, pre and post conditions. These mechanisms need to be

translated into ALF elements to be executable. Depending on the role

of the constraint, we generate a different scaffolding:

– body: If the corresponding operation is missing from the class

model, we create a new operation and associated method.

– pre, post, inv: For each constraint we generate a new conditional

associated with a side-effect free operation that returns an Error

message when the constraint is violated. Bodies of other operations in

CHAPTER 6. TRANSFORMATION RULES

154

the model are changed in operations that check pre- and post-

conditions of the operation and invariants of the class.

– derive: We create a getter operation (e.g.,

property_<FeatureName>_derivation). We attach the operation

generated from the constraint expression to the getter and add a call

for this operation in the class constructor. See derived Association in

the next subsection.

– def: We create a new operation and associated method.

– init: We set the value of the property to the result of the

compilation of the constraint expression in the class constructor.

Figure 6.19 shows a constraint attached to the class Rental of the

VideoClub CS with the corresponding ALF code, which is translated

to an operation of the Rental class.

Figure 6.19. Example of a constraint translated to ALF code

Derived Associations

For derived associations, we add an attribute to the class (e.g.

sequence) and create a getter operation (e.g.,

association_<DerivedAssociationName>_derivation). We then attach

the operation generated from the constraint expression to the getter.

Figure 6.20 shows the attribute and method generated for the derived

association rentedMovies of the VideoClub example (see Figure

5.6).

CHAPTER 6. TRANSFORMATION RULES

155

Figure 6.20. Example of a derived association using ALF code

Association classes

The association class effect can be equivalently modelled with a

class with two associations as shown in Figure 6.21. Therefore, we used

this equivalence to transform an association class into ALF units.

Figure 6.21. An example of class association

CHAPTER 6. TRANSFORMATION RULES

156

6.4 Summary and Conclusions
Developing model transformation definitions is expected to

become a common task in model driven software development.

Software engineers should be supported in performing this task by

mature MDE tools and techniques in the same way as they are

presently supported by classical IDEs, compilers, and debuggers in their

everyday programming work.

In this chapter we have detailed the three metamodels and six

transformations that we defined to implement our model-driven

testing framework using the Eclipse Modelling Framework

(http://www.eclipse.org/modeling/emf). For implementing the

transformations, we used Java, ATL and Acceleo languages integrated

into the Eclipse platform, one of the most popular development

platforms in the software development community. These artefacts are

required to implement the tool support described in Chapter 8.

In Chapter 8 the validation of the two main M2M transformations

will be described and discussed.

PART IV.

TREATMENT

VALIDATION

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

159

Chapter 7
COSTEST TOOL IMPLEMENTATION

7. CoSTest Tool Implementation
Testing software would be extremely difficult without a reliable,

fast and automated tool that runs the artefact software against a test

suite, reporting the detected faults.

In Chapter 5, we proposed a validation framework for testing

executable conceptual schemas. In this chapter, we summarise the

prototype tool that we built to support the proposed validation

framework.

CoSTest supports the generation, management and execution of

automated tests against the executable conceptual schemas and

makes the proposed testing framework feasible in practice.

This chapter is organized as follows: Section 7.1 explains the

architecture and functionality of the CoSTest tool support. Sections

7.2-7.8 summarize individual tool functionalities. Section 7.9 contains a

summary and conclusions of the chapter.

7.1 General Overview and Architecture
The main purpose of the tool is to support our testing-based

framework described in Chapter 5 for validating CSs according to

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

160

stakeholders’ requirements. CoSTest is a software tool that supports

the generation, management and execution of test suites.

CoSTest works as standalone desktop application for Windows

platforms and is available for downloading from the project website

(https://staq.dsic.upv.es/webstaq/costest.html). Video tutorial with

examples of its use may also be found on the project website, together

with additional information and resources such as source files of

requirements and conceptual schemas and complementary

documentation.

CoSTest has been developed in the context of Design Science,

which is the general framework of the present research work (Chapter

2). The development and refinement of the contributions presented in

this Thesis were supported by the knowledge and experience acquired

during continuous development of this tool and by its application in

several laboratory experiments and case studies (Chapter 8).

Our tool may be used by testers/modellers/analysts in any

development phase of a CS based on UML class diagrams. For example,

as part of the test-last validation (i.e. correctness and completeness are

checked by testing after the CS definition) or test-first development of

conceptual schemas, in which the elicitation and definition is driven on

a set of test cases.

The implemented release of the tool deals with schemas defined in

UML class diagrams. Additionally, CoSTest is also able to deal with a

representative set of constraints that involve two successive states of

the modelled system (i.e. pre and post conditions), and on creation-

time constraints (i.e. invariants and derived values). The definition of

these additional features and their implementation are explained in

Section 5.4.3.

We chose Eclipse (http://www.eclipse.org) as the technological

platform and used the Eclipse Modelling Framework

(http://www.eclipse.org/modeling/emf) to implement the

http://www.eclipse.org/modeling/emf

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

161

metamodels. Atlas Transformation Language

(http:////www.eclipse.org/atl/) and Acceleo Language

(http://www.acceleo.org) to implement the model transformations.

CoSTest’s main features are as follows:

1. The generation of a Test Model from a Requirements Model.

2. The generation of a Test Scenario Model containing the

Abstract Test Cases.

3. The generation and management of values for Data

Concretization.

4. The generation and management of executable Conceptual

Schemas under Test.

5. The generation and management of Executable Test Cases

(scripts).

6. The execution of the test cases and the automated

computation of Testing Results, which include verdicts, reports

of defects and failing information as well as the automatic

analysis of testing coverage according to a basic set of testing

adequacy criteria.

7. The Mutant Generation of first order mutants for conceptual

schemas, which are required to prioritize and validate the

quality of CoSTest’s test suite.

8. The Batch Testing allows the execution of the test suite and

the automated computation of testing results for a set of

selected CS.

The user interface of the CoSTest tool is implemented in Java Swing

[123], assisted by a specialized tool to design graphical interfaces in

Java, called JFormDesigner. The user interface of the tool is composed

of seven tabs (see Figure 7.1) with one tab for each of the above

features.

Figure 7.2 shows the main components of the CoSTest tool

architecture. In the following sections, we describe the responsibilities

and the implementation of each component.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

162

Figure 7.1. Screenshot of the CoSTest tool support

Figure 7.2. The CoSTest tool architecture

7.2 The Test Model Manager
The Test Model Manager provides functionalities for generating

and viewing the test model. Figure 7.3 shows the main components

with a 3-layer architecture of the Test Model Manager, which consists

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

163

of the Presentation Manager, the Test Model Generator, Graph and

Tree Builder, and the Element Report Generator.

Req. Model

P
re

se
n

ta
ti

o
n

La

ye
r

Test Model Generator

Lo
gi

c
La

ye
r

D
at

a
La

ye
r

Test Model Manager

Test Model
Visualizer

File (.xmi)

Loaded
into

Loaded into

Element Report
Generator

File (.xls)

Artifact Component

External flowLegend

Graph
Configurator

Presentation Manager

Graph and Tree
Builder

Internal flow

Test Model

Figure 7.3. Test Model Manager design

7.2.1 Presentation Manager
The Presentation Manager implements two user interfaces: one

related to the visualization configuration and another related to test

model generation. The user interface for generating test models selects

source and target files, which are saved as persistent files in a specified

directory of the files system. The interface also provides functionalities

to open existing test models, then the test model is presented as a

graph and a visual tree. The graph view is provided by the JGraph and

ListenableGraph libraries and the visual tree is implemented by

XMLTreePanel library. The interface also includes a comboBox to

select the CSUT type. Two options are available: (1) OO-Method

conceptual model and (2) UML, depending on the derivation strategy

of the CS elements. The interface also includes the following buttons:

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

164

 Generate Test Model to request the generation of the test

model by the Test Model Generator.

 Report Elements to request a report of the generated

elements as well the requirements model elements used in

the transformation. This report helps to calculate the

metrics presented in Chapter 8.

 Graph Configuration to call the interface to configure the

visualization.

Figure 7.4 shows the user interface to configure the visualization,

which can adjust the graph properties such as visualize the grid and the

route tree edges, personalize the scale, change the distances between

node levels, nodes as well as the node width.

Figure 7.4. Screenshot with a test configuration example of the CoSTest tool

Figure 7.1 and Figure 7.5 show a CoSTest screenshot with the test

model for the Video Club system using a visual tree.

7.2.2 Test Model Generator
Every time the user requests the generation of the test model, the

Presentation Manager communicates with the Test Model Generator

which executes the ATL model transformation (i.e. ca2tc.asm) in order

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

165

to generate the test model. Then, the test model is used by the

Presentation Manager in order to show the result of the model

transformation.

Figure 7.5. Screenshot with a test model example of the CoSTest tool

7.2.3 Graph and Tree Builder
When the user requests the generation or the opening of the test

model, the Presentation Manager communicates with the Graph and

Tree Builder, which loads the test model in order to generate the

respective views (i.e. graph and tree). Then, the test model is used by

the Presentation Manager to show the result of the generation.

7.2.4 Element Report Generator
Every time the user requests the generation of the elements

report, the Presentation Manager communicates with the Element

Report Generator, which executes the query in both source files (the

requirement model and test model) in order to generate the Excel

report. Then, the report is saved as an Excel file by using the jxl library.

7.3 The Test Scenario Model Manager
The Test Scenario Model Manager implements the generation and

the visualization of the test scenario model. Figure 7.6 shows the main

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

166

components with a 3-layer architecture of the Test Scenario Model

Manager, which consists of the Presentation Manager, the Test

Scenario Model Generator, Tree Builder, and the Element Report

Generator.

Presentation
Layer

Test Scenario
Model Generator

Test ModelTest Scenario
Model

Logic
Layer

D
a

ta
 L

a
ye

r
Test Scenario Model Manager

Presentation
Manager

File (.xmi)

Tree Builder

Loaded
into

Loaded into

Element Report
Generator

File (.xls)

Artifact Component

Legend

Test Model

External flow

Internal flow

File (.xmi)

Figure 7.6. Test Scenario Model Manager design

7.3.1 Presentation Manager
The Presentation Manager implements only one user interface

related to test model generation. The user interface can select source

and target files, which are saved as persistent files in a specified

directory of the files system. The interface also provides functionalities

to open an existing test scenario model, then the test scenario model is

presented as a visual tree. Additionally, the interface includes the

following buttons:

 Test Scenario Model Generation to request the generation

of the test scenario model by the Test Scenario Model

Generator.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

167

 Report Elements to request a report of the generated

elements as well the requirements model elements used in

the transformation. This report helps to calculate the

metrics presented in Chapter 8.

7.3.2 Test Model Generator
Every time the user requests the generation of the test model, the

Presentation Manager communicates with the Test Scenario Model

Generator, which executes the Java model transformation to generate

the test scenario model. Then, the test scenario model is used by the

Presentation Manager to show the result of this transformation.

7.3.3 Tree Builder
When the user requests the generation or the opening of the test

scenario model, the Presentation Manager communicates with the

Tree Builder which loads the test model to generate the respective tree

view. Then, the test scenario model is used by the Presentation

Manager to show the result of the generation.

7.3.4 Element Report Generator
Every time the user requests the generation of the elements

report, the Presentation Manager communicates with to the Element

Report Generator which executes the query in both source files (the

test model and test scenario model) to generate the Excel report.

Then, the report is saved as an Excel file. Figure 7.7 shows a CoSTest

screenshot with the test scenario model for the Video Club system

using a visual tree.

7.4 The Test-Data Manager
The Test-Data Manager is able to setup a data base by creating,

reading, updating and deleting test data values to concretize the test

cases. A variable may be concretized with values by using (i) the

requirements model, (ii) a manual entry, or (iii) a web-based

generation.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

168

Figure 7.7. Screenshot of a test scenario model example in the CoSTest tool

Figure 7.8 shows the main components with a 3-layer architecture

of the Test-Data Manager, which consists of the (1) Presentation

Manager, (2) the Web-based Generator, (3) the Requirements-based

Generator, and (4) the Database Manager.

Presentation
Layer

Requirements-based
Generator

Lo
gi

c
La

ye
r

D
at

a
La

ye
r

Test-Data Manager

Presentation
Manager

CRUD

Web-based
Generator

Loaded into

Database
Manager

Artifact Component

Legend

Test Model

Database

External flow

Internal flow

Figure 7.8. Test Data Manager design

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

169

7.4.1 Presentation Manager
Since the Presentation Manager implements an interface to

support the CRUD functionalities (i.e. create, read, update and delete)

on the test data, the test model filename is required as input. Then, the

test data is presented as a list of variables with their properties (i.e.

type, upper limit, lower limit, test item, test case, data source, related

pattern data source type and concrete values).

When the user requires to concretize a variable with the values

included in the requirements model, the user must click on the button

“Generate from Model”. Then, the Presentation Manager

communicates this request to the Requirement-based Generator.

When the user requires to concretize a variable with a manual

entry, the user must (1) select the variable from list of variables, (2)

select the “Manual Entry” option from the data source list, (3) select a

pattern previously defined from the patterns list, and (4) click on “+”

button located below the concrete values list. Then, the Presentation

Manager enables the input controls to edit a concrete value for the

selected variable.

Finally, when the user clicks on the save button, the Presentation

Manager communicates the value entered, the pattern, the source

type and the variable to the Database Manager to save the data.

The user interface also provides functionalities to support the

CRUD functionalities (i.e. create, read, update and delete) on regular

expressions (i.e. sequence of characters) that forms a search pattern

for searching data on the web.

When the user requires to concretize a variable with values found

in the Web, the user must (1) select the variable from the list of

variables, (2) select the “Web–based Generation” option from the data

source list, (3) select a pattern previously defined from the patterns

list, and (4) click on “+” button located below the concrete values list,

the Presentation Manager communicates the request to the Web-

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

170

based Generator in order to search for values to concretize on the

Web.

7.4.2 Web-based Generator
When the Presentation Manager communicates a request to the

Web-based Generator, it executes the Java module to search for the

data on the Web by using the related pattern and the org.jsoup.Jsoup

library. Then, the list of values found is passed to the Database

Manager to save the result of the search.

7.4.3 Requirement-based Generator
Every time the user requests the generation of the values from the

Model, the Presentation Manager communicates with the

Requirement-based Generator, which uploads the test model file to

retrieve the values related with each variable and then passes them to

the Database Manager to save the loaded values.

7.4.4 Database Manager
This component is responsible for executing the commands or

queries on the database in order to support the CRUD operations.

Then, this information (i.e. value, pattern, variable with its properties)

is returned to the Presentation Manager in order to refresh the

information displayed on the interface.

The Database Manager is supported by Hibernate

(http://hibernate.org, an Object/Relational Mapping (ORM)

framework.

Figure 7.9 shows a CoSTest screenshot of the data concretization of

the Video Club system.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

171

Figure 7.9. Screenshot for the data concretization in the CoSTest tool

7.5 The CSUT Processor
The CSUT Processor has the responsibility of transforming the UML-

based Conceptual Schema into an executable format by using ALF

language. UML relationships, constraints and classes with attributes

and operations are transformed into ALF scripts. Details of the ALF

Language and its grammar can be found in [82]. Figure 7.10 shows the

main components with a 3-layer architecture of the CSUT Manager,

which consists of the Presentation Manager and the CSUT Manager.

7.5.1 Presentation Manager
The Presentation Manager implements three user interface parts:

the first is Script Editor tab, which is related to the management of the

CSUT scripts (see Figure 7.11), the second the Log Visualizer tab, which

provides the errors found by the parser in the syntax validation of the

ALF scripts (see Figure 7.12), and the last one is the CSUT Elements tab,

which reports the different elements identified in the conceptual

schema (see Figure 7.13).

The user interface for managing ALF scripts can create (i.e. result of

the generation), parse, edit and save the generated scripts.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

172

P
re

se
n

ta
ti

o
n

La

ye
r

CSUT TransformerLo
gi

c
La

ye
r

D
at

a
La

ye
r

CSUT Processor

Script
Editor

Artifact Component

External flowLegend

Log Visualizer

Presentation Manager

Report
Generator

Internal flow

Class B

Class A {
Public id:Integer
@Create A(in id_
:Integer)
{ this.id=id_;}

Association R

CSUT Elements
Report

Parser

Open/
Saved

File (.uml)

CSUT

Files (.alf)

CSUT Manager

Figure 7.10. CSUT Processor design

The user interface can select source and target files, which are

saved as persistent files in a specified directory of the files system. The

interface also provides functionalities to open existing ALF scripts, then

the file is presented as a text file in the Script Editor.

Figure 7.11. Screenshot for editing an executable CSUT in the CoSTest tool

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

173

Figure 7.12. Screenshot for showing the parser results in the CoSTest tool

Figure 7.13. Screenshot for showing the CSUT elements in the CoSTest tool

The Script Editor is implemented by using the JSyntaxPane library.

JSyntaxPane provides resources to handle basic syntax highlighting and

editing of various languages within the Java Swing application. Since

JSyntaxPane does not include syntax highlighting for the ALF Language,

we extended it to allow this. The interface also includes the following

buttons:

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

174

 CSUT Transformation button to request the CSUT

transformation from UML format (.uml) to executable

format into an ALF script (.alf) by using the CSUT

Transformer.

 CSUT Parser button to request the syntax validation of

CSUT Scripts, which are transferred to the Parser Executor.

7.5.2 CSUT Manager
The CSUT manager has three main roles:

1) Read and transform the CSUT written in UML format (.uml) into

an executable CSUT format (ALF script .alf). For this, the

Presentation Manager communicates with to the CSUT

Transformer, which executes the Java model transformation to

generate the ALF scripts. Then, the ALF scripts are used by the

Presentation Manager to show the result of this transformation

in the files list shown in the interface as well as in the Script

Editor Tab. For transformation, we use libraries such as

org.eclipse.uml2.uml, org.eclipse.emf,

java.io.File, and java.io.FileWriter.

2) Perform the execution of the Report Generator to list elements

identified in the conceptual schema during the transformation.

3) Call the Parser in order to check the syntax of the CSUT. Then,

the log generated by the parser is passed to the Log Visualizer

of the Presentation Manager to show the result of the

generation. If the log is empty no errors were found, otherwise

the log reports the errors using the ALF report. Details of the

ALF Language and its grammar can be found in [82].

7.6 The Test Processor
The Test Processor implements the generation, management and

the execution of the test cases. Figure 7.14 shows the main

components of the Test Processor, which consists of the presentation

manager and the test manager, as described below.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

175

P
re

se
n

ta
ti

o
n

La

ye
r

Test Case Generator
Lo

gi
c

La
ye

r
D

at
a

La
ye

r

Test Case
Editor

Artifact Component

External flowLegend

Presentation Manager

Internal flow

Class B

Class A {
Public id:Integer
@Create A(in id_
:Integer)
{ this.id=id_;}

Association R

Report
Generator

Open/
Save

File (.uml)

Test Scenario
Model

File (.xmi)

Test Case
Configurator

Test Interpreter

Test Manager

Files (.alf)

database

File (.xls)

Save

Figure 7.14. Test Processor design

7.6.1 Presentation Manager
The Presentation Manager implements three user interface parts:

the one related to the configuration of test cases and testing process

(Figure 7.15), the second related to the generation and management of

the test suite (Figure 7.16), and the last one related to the presentation

of the testing results (Figure 7.17).

Figure 7.15. Screenshot of the test configuration in the CoSTest tool

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

176

Figure 7.16. Screenshot of a test suite management example in the CoSTest tool

Figure 7.17. Screenshot of a test execution report in the CoSTest tool

The user interface for managing test cases can generate, edit, save

and report all information related to the generated test cases, which

are saved as persistent files in a specified directory of the files system.

For this, the interface implements buttons such as Select File, Select

CSUT, Select Folder, Code Generation, Test Case Concretization, Save

this test case and Export Summary to Excel.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

177

The presentation manager includes the Testing button to request

the execution of test cases selected from the test case list. After the

execution, this module shows the faults (if any) in the Testing Results

Tab (see Figure 7.17), the global verdict of the whole test suite, and the

“Results” Tab that contains the detail of the verdict of all test cases in a

tabular form. This information includes test case identifier, test case

name, scenario ID, verdict, test case type, test case purpose, test

duration. All this information is collected, organized and transmitted to

this component by the Test Manager. Figure 7.17 shows the result of

the execution of a CoSTest test suite example on the Testing Results

Tab, in which one test case has had problems in its execution, so that

the global verdict is Inconclusive.

When the user clicks on the Export Summary to Excel button the

Presentation Manager saves the report shown on the Summary

Generation tab (see Figure 7.18) in an Excel file. This report contains

details of test case types generated in each ALF script.

Figure 7.18. Screenshot of the Summary Generation tab of the CoSTest tool

Note that the table on the “Found Defects” tab (see Figure 7.17)

indicates information about of the test case that fails or ends as

inconclusive, such as test case identifier, the defect mode, the defect

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

178

description in natural language, the fault and the number of the lines

where the fault has been revealed, and the modelling element. This

information assists the modeller to point out the errors and faults.

Figure 7.19 also shows information about an execution log

generated by the execution engine on the “Testing Log” Tab as well as

the coverage report on the “Coverage” Tab. When the user clicks on

Export to Excel the Presentation Manager generates an Excel file with

details of the testing process (i.e. time report, results testing, found

defects, coverage report, log report and CSUT element report) by

taking the information from the different controls and tables on

interfaces.

Figure 7.19. Screenshot of a log and coverage report in the CoSTest tool

7.6.2 Test Manager
The Test Manager has three main roles in the process of executing

test cases: (1) the generation of the test cases (i.e. Test Generator), (2)

the test cases execution, and (2) the collection and organization of the

results to be shown by the Presentation Manager.

The generation of test cases consists of executing the model-to-

text transformation written in Acceleo (see Section 5.4), then these

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

179

abstract test cases are concretized with the values taken from the data

base. Details about the generation are collected, organized and

transmitted to the Presentation Manager in order to generate a report

by calling the Report Generator. Next the Test Manager collects all the

test cases that are selected from the test suite (i.e. List), and requests

its execution by the test interpreter. The individual results provided by

the Test Interpreter are collected, organized and transmitted to the

Presentation Manager.

The Test Interpreter has two main roles: (1) parse the test cases

written in ALF language, and (2) perform the execution of the test

cases specified in ALF scripts, as requested by the Test Manager.

CoSTest test cases can be executed from the command line using

the alf.bat batch file (for Windows). The CSUT and test cases are

compiled to an in-memory representation and executed using the

fUML Reference Implementation. The result is an execution trace

reporting faults (such as when a primitive behaviour implementation

cannot be found during execution). Each assertion defined in the test

case is evaluated by analysing the execution trace. The test verdict

comprises the information on which assertions succeeded and which

failed. When the test verdict is failed, the root causes are analysed in

order to report the associated fault.

After the execution of all test cases, the report generator queries

the coverage in order to obtain the sets of covered and uncovered

elements of both CSUT and test suite respectively and computes

information about coverage results.

7.7 The Mutant Generator
The Mutant Generator implements the computing, generation, and

parsing of mutants for UML class diagrams. Figure 7.20 shows its main

components, which consist of the Presentation Manager, and Mutant

Manager.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

180

Presentation
Layer

Mutant Calculator
Lo

gi
c

La
ye

r
D

at
a

La
ye

r

MutUML

Artifact Component External flow

Legend
Internal flow

Class A {
Public id:Integer
@Create A(in id_
:Integer)
{ this.id=id_;}

Association R

Mutant
Generator

Mutant Manager

File (.xls)

Presentation
Manager

Parser

File (.uml) File (.uml)

Class B
Class A

Figure 7.20. The Mutation UML tool architecture

In the following sections, we describe the responsibilities and the

implementation of each component

7.7.1 Presentation Manager
The Presentation Manager implements the user interface related

for the configuration and generation of mutants.

The interface can select a source CS file for the generation process,

which are saved as uml files in a specified directory of the files system.

The interface also includes two checkboxes for selecting between two

options: (1) apply all mutation operators or select them individually

and (2) generate all calculated mutant or select them individually.

The interface also includes the following buttons:

 Calculate Mutants to request the computation of the valid

first order mutants from CS source by the Mutant

Calculator.

 Generate Mutants to request the generation of the

mutants selected from the previously calculated mutant

list (by default all mutants are selected) by using the

Mutant Generator component.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

181

 Parse Mutants to request the parsing of mutants selected

from the list by using the Parser component.

Export Results to Excel to request a report from the Mutant

Calculator of the calculated valid and non-valid mutants.

7.7.2 Mutant Manager
Every time the user requests the calculation of the first order

mutants, the Presentation Manager communicates with the Mutant

Manager, which executes the Mutant Calculator to read the CS source

and calculate the valid mutants that can be generated by applying the

mutation operators selected by the user. This mutant list is used by the

Presentation Manager to show it on the “Mutant Description Table”

and can be exported as a report by pressing the “Export Report to

Excel” button.

When the user requests the mutant generation, the Mutant

Generator executes the Java code to generate the CS mutants (.uml)

from the CS source file (.uml).

When the user requests mutant parsing, the Presentation Manager

communicates with to the Mutant Manager, which executes the Parser

to transform each selected mutant into an executable format by using

ALF language. The ALF parser then produces an output with the

analysis results of each mutant, which can be classified into valid and

non-valid mutants. The working of the Mutant Generator can be seen

in the partial view of a CS in Figure 7.21.

Five mutation operators have been applied to the CS. Four

operators generate valid FOM (i.e. b) UPA2, c) WAS3, d) WCO3, e)

MCO). However, applying the MAS operator to the WhiteCells

association generates a non-valid FOM because there is a constraint

(i.e. MovieUnique) that is related with the association.

Simply deleting the association would result in a Dangling

constraint, which evidently is not desirable. Therefore, we need to add

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

182

more steps to the operator (going from FOM to HOM). The HOM

should delete the association together with the respective constraint.

This way, the mutant will not be detected by the parser and can

generate a valid mutant for testing.

Figure 7.21. Application of five mutation operators for our CS example

The Mutant Generator had been presented as the MtUML tool

[124] before being integrated into CoSTest. This integration will allow

us to conduct studies evaluating the effectiveness of CoSTest test cases

and facilitate making decisions (i.e. prioritize and select the test cases)

based on analysis and interpretation of the results (see Section 5.5).

7.8 The Batch Testing Processor
The Batch Testing Processor implements the execution of the test

cases for a group of mutants.

Figure 7.22 shows the main components of the Test Processor,

which consists of the presentation manager and the test manager

described below.

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

183

Presentation
Layer

Lo
gi

c
La

ye
r

D
at

a
La

ye
r

Batch Testing Processor

Artifact Component
External flow

Legend
Internal flow

Class B

Class A {
Public id:Integer
@Create A(in id_
:Integer)
{ this.id=id_;}

Association R

Presentation
Manager

File (.uml)

Test Interpreter

Batch Test Manager

Files (.alf)

File (.xls)

Class A

Open/Save

Figure 7.22. Batch Testing Processor design

7.8.1 Presentation Manager
The Presentation Manager implements the user interface (see

Figure 7.23) for test mutants and enables both mutant directories and

test cases to be selected, which are saved as UML and ALF files,

respectively, in a specified directory of the files system.

The interface also includes a checkbox for parsing mutants or not

(if not checked) previous to the testing process.

Additionally, the interface includes the following buttons:

 Mutant Testing to request the execution of the test cases

against the mutants, which is passed to the Batch Test

Manager.

 Results Summarization to request the report with the

results of the testing process, which generates an Excel file

summarizing the defects found in all mutants. For this

purpose, the Presentation Manager reads the Excel file

generated for each mutant and recovers the found defects

only (if any).

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

184

Figure 7.23. Screenshot for Batch Testing of the CoSTest tool

7.8.2 Batch Test Manager
When the user clicks on Mutants Testing the Batch Test Manager

calls the CSUT Manager (see Section 7.5) to transform each mutant

into an executable format (the parser is executed only if the checkbox

is active). Then, the Batch Test Manager executes the test cases

specified in ALF script by executing the Test Interpreter (see Section

7.6). In this option the Excel report is generated for each tested mutant

automatically.

7.9 Summary and Conclusions
In Model-driven development it is very important to provide tools

that support and promote the application of model-driven solutions.

In this chapter we have explained the fundamentals of the

prototype tools that we developed to prove the feasibility of our

approach and to support its validation. We implemented these

prototypes as a standalone desktop application by using Java, ATL and

Acceleo languages integrated into the Eclipse platform, which is one of

the most popular development platforms in the software development

community.

CoSTest focuses on the implementation of the model-driven testing

framework presented in Chapter 5 to validate the correctness and

CHAPTER 7. THE COSTEST TOOL IMPLEMENTATION

185

completeness of requirements of conceptual schemas. For this

purpose, we implemented the transformation rules detailed in Chapter

6. Users (e.g. conceptual modelling researchers, modellers, testers,

students and practitioners) considering or planning to conduct

Conceptual Schema validation using a tool, as well as those interested

in taking a systematic sound snapshot of the conceptual schema

validation practice are the expected users of our tool.

Additionally, the tool implements a component in Java to generate

first order mutants of Conceptual Schemas. This functionality helps to

validate the effectiveness and adequacy of CoSTest test cases (see

Chapter 8).

Further development will extend CoSTest to create a multiplatform

support as the first step towards a tool supporting model-driven

testing at the conceptual schema level.

In the next chapter, different validation and evaluation processes

of the tool support will be presented and discussed.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

187

Chapter 8
VALIDATION AND EVALUATION OF

COSTEST

8. Validation and Evaluation of the CoSTest

Tool
According to the Design-Science Research (DSR) paradigm

proposed by Wieringa [15], the validation of the designed artefacts

produced as a result of the research process is crucial. So, the next step

in our design cycle to develop our research project is the design

validation.

The evaluation of the designed artefacts may rely on several

methodologies available in the knowledge base such as observation

(case studies, field studies, etc.), analysis (static analysis, architecture

analysis, optimization, etc.), experimentation (controlled experiments,

simulation, etc.), testing (functional black box, structural white box,

etc.).

In [125], Shull et al. provide a basis for both understanding and

selecting from the variety of methods applicable to empirical software

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

188

engineering. Following the criteria suggested by these authors, we

selected experimentation as the method of evaluating several features

of the result of our research (i.e. our validation framework and our

prototype tool). An experiment is an investigation of a testable

hypothesis where one or more independent variables are manipulated

to measure their effect on one or more dependent variables. This

methodology has been largely used in software engineering

[126][127][128].

For the validation of our framework, we have performed several

evaluations and validations throughout the development of our

framework as summarized below.

For the validation of the UML-to-ALF transformation of the

conceptual schema, we performed an experiment for the purpose of

validating the effectiveness of CoSTest CSUT processor (Section 8.1.).

For the validation of the two first model-to-model transformations,

we performed a comparative experiment (manual and automatic) for

the purpose of validating them with respect to their syntactic and

semantic correctness (Section 8.2).

For the evaluation of some properties of the mutation operators

implemented in the CoSTest tool, we used a laboratory experiment

(see Section 8.3.1). These mutation operators were used to prioritize

the test cases (see Section 5.5) and to validate the effectiveness of our

validation framework (see Section 8.4). Another laboratory experiment

was performed for evaluating the efficiency and effectiveness in terms

of the percentage of valid and non-equivalent mutants generated by

the tool and the time that can be saved by using it (see Section 8.3.2).

For the validation of CoSTest’s effectiveness, we performed a

comparative experiment [15] of CoSTest test cases for detecting

defects in both first order and high order mutant types. For that we

used conceptual schemas of different sizes and domains (e.g.

information systems, games). Among them is a real CS case that

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

189

conceptualises the Incident Management process in everis, a Spanish

consultancy company. Some other CSs are well-documented cases that

were found in the literature and others were selected because they

contained the relevant CS elements required to inject the faults.

For evaluating CoSTest’s usefulness and ease-of-use, we ran a pilot

experiment prior to contacting real practitioners, and performed an

observational case study [15] using interviews on CoSTest user

perceptions. As a result, the everis testers evaluated the CoSTest tool

as a very useful tool for validating information systems at the

conceptual schema level. They recognise the usefulness of the tool and

that opportune feedback given by our validation tool can support the

quality assurance process of software and facilitate in making decisions

based on analysis and interpretation of the results.

We believe that the results of these studies make the CoSTest

framework strong and attractive to be transferred to industry.

This chapter is structured into two sections. Section 8.1 describes

the experiment to evaluate the UML-to-ALF transformation of the CSs.

Section 8.2 summarizes the experiment to evaluate the transformation

rules used in the model-driven generation of CoSTest test cases.

Section 8.3 describes the two experiments to validate and evaluate the

mutant generation process. Section 8.4 describes a laboratory

experiment to validate the effectiveness of the test cases of our

CoSTest framework in detecting fault types for FOM and HOM sets of

mutants. Section 8.5 describes an observational case study taken from

industry to evaluate user perceptions in the correction process of the

defects found on UML CD-based CS. We describe the design,

procedure, results, conclusions, and lessons learnt. As a result, we

improved the process, and the latest version of the tool is presented in

Chapter 5 and the implementation in Chapter 7. Section 8.6

summarizes the conclusions of the chapter.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

190

8.1 Validating the Effectiveness of CoSTest CSUT

Processor
Model transformations are key elements of Model-driven

Engineering (MDE). They allow querying, synthesizing and transforming

models into other models or into code. However, it is very difficult and

expensive (time and computational complexity) to validate in full the

correctness of the model transformations.

Validation clarifies the question “Is the transformation right?" by

allowing modellers and designers to test if the transformation behaves

as expected. Intuitively, the validation of a transformation consists of

exercising the transformation to certify that it works for a selected set

of input models and compare the result with the expected outcome

[129], without trying to validate it for the full input space [130].

Although such a certification approach cannot fully prove correctness,

it can be very useful for identifying bugs in a very cost-effective

manner.

In this section we present a laboratory experiment performed as

part of our reseach to demonstrate the effectiveness (i.e. ability to be

successful and produce the intended results) of CoSTest CSUT

Processor using uml-to-alf transformation rules for obtaining ALF-

based CS from UML CD-based CS.

The experiment was an iterative process in which we evaluated the

V0.5 transformation rules, which were evolved until achieving the

stable version V1.0.

8.1.1 Experimental Design
The experiment was performed by the author of this PhD thesis in a

controlled environment using different CSs in an iterative process;

approximately 10 iterations in one year (from June of 2014 to June

2015) with the objective of demonstrating the effectiveness of the

CoSTest CSUT Processor.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

191

Subject CS

Most of the input CSs used in this experiment were small UML/ALF-

based models in the form of ten CSs containing a variety of

characteristics that can be present in UML CD-based CS, including

classes, relations (i.e. association, composite aggregation, and

generalization) and different types of constraints (i.e. pre-condition,

post-condition and body condition). These CS were of different sizes

and domains (e.g. information systems, games). One case was taken

from industry (i.e. IM), while other CSs were found in the literature (i.e.

[131], [132], [133], [134] and [135]). The different CSs were specified

using UML2 and Papyrus 7 tools. Table 8.1 summarizes their

characteristics.

Table 8.1. Elements of the Subject Conceptual Schemas

Element VC MT SG ER OCR SS PA OC DBLP IM

Classes 5 6 11 7 10 9 15 20 17 6

Attributes 19 26 26 36 61 44 43 33 59 29

Derived
Attributes

2 0 6 6 1 1 33 27 21 0

Operations 8 13 19 24 16 32 30 24 32 13

Parameters 27 43 48 75 77 91 82 50 80 51

Associations 4 5 6 8 10 9 19 13 10 4

Derived
Associations

0 0 2 0 0 0 0 0 4 0

Composite
Aggregations

0 0 3 0 0 0 0 1 4 0

Constraints 16 9 19 21 14 12 45 24 44 8

Generalizations 0 0 4 0 3 0 0 10 13 0

A brief description of each CS is as follows:

1) Video Club (VC) CS represents the functionality of a chain of

video stores to manage movies, partners and movie rentals.

2) The Medical Treatment (MT) CS defines part of the CS (of a

Medical Treatment business process) of the fictional Santiago Grisolía

University Hospital, developed by España et al. [131].

7 https://eclipse.org/papyrus/

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

192

3) The Sudoku Game (SG) CS was developed by Tort and Olivé [133]

as an object-oriented CS of the Sudoku Game system. This CS defines

the functionality for managing different users, playing with their

Sudokus and generating new ones.

4) The Expense Report (ER) CS defines the functionality of an

information system to manage the expense report life cycle of a

business. This CS deals with several entities such as departments,

employees, projects and expense types.

5) The Online Conference Review (OCR) CS, which is based on the

description of the CyberChair System [136], defines the functionality of

an information system to deal with members (committee chair and

program committee) of a conference, as well as authors that submit

papers to be evaluated for inclusion in the conference proceedings.

6) The Super Stationery (SS) CS defines the information system of a

company that provides stationery and office material to its clients. This

CS was developed by España et al. [132].

7) The Photography Agency (PA) CS makes use of classes,

associations and constraints but has no generalizations and derived

associations to define the information system that manages

photographers and their photographic reports for distribution to

newspaper publishers.

8) The osCommerce (OC) CS specified by Tort [134] represents all

the essential structural and behavioural knowledge needed to perform

the main user functionalities of the osCommerce system when placing

an order.

9) The Digital Bibliography & Library Project (DBLP) case contains

parts of the conceptual schema of the DBLP system [135], a computer

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

193

science bibliography website8, which deals with persons (authors and

editors) and their publications.

10) The Incident Management (IM) CS defines the functionality of

an information system to solve the incoming incidents (reception,

process, allocation process and resolution process). This CS is a real

case taken from Everis Company 9 , a multinational firm offering

business consulting, as well as development, maintenance and

improvement IT.

Procedure

Figure 8.1 illustrates the i‑th iteration of the experiment. Each

subject CS was transformed from UML to ALF using the CoSTest UML-

to-ALF transformation rules version V0.5. Then, the fUML virtual

machine (executed from CoSTest) was used to parse the CSs.

Figure 8.1. i-th iteration of the experiment applying the CoSTest tool

If the result was incorrect, the transformation rules had to be

adjusted and the process was then re-run. If the result was correct, the

researcher reviewed the generated code for each CS, and compared

8 http://www.informatik.uni-trier.de/~ley/db/
9 www.everis.cm

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

194

the ALF units generated with source elements to evaluate the

completeness of the CS. The last iteration of the experiment was used

to exemplify the CoSTest tool.

8.1.2 Conclusions and Changes on the CoSTest

CSUT Processor
The experiment let us validate the UML-to-ALF transformation

rules of the CoSTest CSUT Processor by verifying the syntactic

correctness and evaluating the completeness of the transformed CS

(100% in syntactic correctness of our generated CSUTs and 100% in

completeness). These results suggest that these translation rules are

effective in generating ALF-based CSUT. However, the behaviour of the

translation may depend on the characteristics of the CS they are

applied to, such as the CS element types (see Section 5.6.1) and

syntactic correctness of the CS.

Some of the main changes applied to the transformation rules were

the restrictions included in the operation and constraint names, for

example, the constructor operation name should begin with “new_”

and the constraint name for a derived association should be

“association_<DerivedAssociationName>_derivation”. Some of the

main changes applied to the CoSTest tool were: (i) include the facility

for visualizing the parser log with syntax defects, (ii) structure a report

containing element type, amount and translated CS elements. All

reports were exemplified using the ten analysed CS.

8.2 Validating the CoSTest Transformation Rules
In this Section, we validate the model-to-model transformations by

means of a comparative experiment between the generated results in

five CS specifications with the expected outcomes. Measuring our

model transformation entails evaluating correctness across the

following two dimensions: (1) Semantic Correctness of transformations

(mapping algorithms) is accomplished if for each simulation sequence

of the source model we find a corresponding simulation sequence in

the target model [137] i.e., the elements generated are equivalent to

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

195

the requirements model from which these elements are mapped. (2)

Syntactic Correctness of the generated elements is achieved if given a

well-formed source model, the target model generated by the

transformation is a well-formed instance of the target metamodel

[138], whether individual values of these elements are appropriate

locally (e.g., for a component) as well as globally (e.g., for all

dependent components). For this purpose, we proposed a set of

metrics to measure the semantic and syntactic correctness of the

proposed transformations as well as each one of the used

transformation rules.

Once the metamodels and transformation rules had been specified

(Chapter 6), and the information to trace the elements added to the

metamodels, the transformation rules were evaluated on the instance

models after each execution of the transformation. These rules can be

evaluated by performing a classic pathfinder or graph traversal

algorithm on the instance models, and checking if the transformation

rules are satisfied at each transformation. This process is as follows:

1. We generate the code that traverses the instance models and

reports the transformation rules used for generating the model

constructors. Since the metamodels of both the source and

target models are available with the transformations, and the

trace information is included in the metamodels in attribute

form that can be checked automatically, the model traverser

code was defined from the transformation rules specification.

This needs to be done only once each time the rule

specification changes. This code was included in our CoSTest

tool (see Chapter 7).

2. We call the model traverser code (i.e. include in the CoSTest

tool) at the end of each execution of the transformation,

supplying to it the source and target model instances with the

trace information. In the case of the RM to TM transformation,

we traverse the input requirements model and evaluate the

transformation rules at each node (i.e. communicative event)

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

196

and precedence relation. For each Communicative Event, the

trace information is checked to find the corresponding Test

Case as well as at precedence level (see the group of rules 1-3

in Section 6.3.1). In the second transformation from TM to TSM

transformation, we traverse the input test model and evaluate

the transformation rules at each test scenario (i.e. path) and

their test cases. For each Test Scenario, the path is checked to

find the corresponding path in the test model. Then, the rest of

the internal elements of each test case generated by the

transformations in the two models are compared with the

expected elements by applying manually the transformation

rules.

3. We check if the generated elements conform to the respective

metamodel (i.e. syntactic correctness), otherwise a syntactic

problem is found. We also verify if the information assigned to

each attribute is well-formed, otherwise the ATL

transformation rule is wrong. Thus, if some element is absent

that should be present, the rule is missing in the ATL

implementation. On the other hand, if a TM element has been

defined for an RM element, and no corresponding

transformation rule is found, then this signals an unnecessary

ATL rule implemented in the model transformation.

Finally, after locating the corresponding assignments, these are

evaluated. If all the rules are satisfied for all the model nodes, then we

can conclude that the transformation has been executed correctly. If

any of the rules are not satisfied, the problem is reported by using the

metrics described in the next Section.

8.2.1 Definition of Basic and Derived Metrics with

Rule Scope
The basic metrics have been defined considering the elements of

the two metamodels of our proposal. The basic metrics with rule scope

are shown in Table 8.2.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

197

Table 8.2. Basic metrics for Semantic and Syntactic Correctness of a Rule

Metric Definition

N_EGj Total number of elements generated by the rule j

Syntactic Correctness reached by a Rule j

N_CEGj Total number of Correct Elements generated by the rule j

Semantic Correctness reached by a Rule j

N_EEj Number of expected elements to be generate by the rule j

The respective derived metrics are listed in Table 8.3. The values of

these metrics are only at the element level, so that they do not

consider the contained elements.

Table 8.3. Derived metrics for Semantic and Syntactic Correctness of a Rule

Metric Definition Formula

SyC_rulej Syntactic Correctness reached by the rule j N_CEGj / N_EGj (1)

SeC_rulej Semantic Correctness reached by the rule j N_EGj / N_EEj (2)

8.2.2 Definition of Basic and Derived Metrics

with Transformation scope
In order to evaluate the correctness of the model transformations

we adapted Yue and Ali’s proposal [139], which involves an MOF-based

framework for defining metrics to measure the quality of models.

As in the metrics with rule scope, we defined metrics to calculate

the syntactic and semantic correctness of the whole transformation by

considering that the result of the execution of a rule depends on the

outcome of other nested rules (e.g. From Tables 6.5-6.7 the Rules 5,

Rules 6 and Rules 7 are containers of Rules 8). To do this, we first

define the following relevant concepts and variables: An AtomicRule is

a rule that does not contain any reference to any rule including self-

references; otherwise it is a CompositeRule, e.g. Rule 6 is an instance

of CompositeRule because its result depends on the outcome of Rule 8.

On the other hand, Rules 3, 4 and 8 are instances of an AtomicRule.

The syntactic correctness of a transformation (SyC_T#) is measured by
the syntactic correctness achieved by the respective rules in the target
model. An ATrule measures the correctness of an atomic rule, while a
Crule measures the correctness of the composite rule, which depends
on both values, the ATrule of its nested rules and its own ATrule value.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

198

If an atomic rule generates a correct element, then its ATRule value is
1; otherwise its value is 0. Since TM has a hierarchical structure (see
Figure 6.3) SyC_T is calculated starting from the most nested level of
the structure (i.e. rules 3, 4 and 8) up to the highest level (i.e. Rule 1).
The syntactic correctness value for Atomic Rules 3, 4 and 8 corresponds
to their ATrule value. Finally, we have defined values Wl, which
denotes the weight (i.e. value range between 0 and 1) assigned for
each element l of the target model, so that it allows differentiating the
impact of each model construct type on the correctness of the
transformation. Notice that the sum of the weights should always be
equal to the number of weighted model elements corresponding to the
same level in the hierarchy. If the user does not assign any weights,
then all weights are automatically assigned to 1. These derived metrics
are as follows:

─ Syntactic Correctness for rule i, which generates the target model
element k (Cruleik). The rule i is formed by the rules j, which
generate the target model elements l (i.e. Parameter=Pr, Service=S,
Trigger=T, Assertion=A, Link=L, Test Case=TC, Precendence=Pr, Test
Model=TM, Test Scenario Model=TSM). The j depends on element
type l, for instance, if l corresponds to the Link element then rule j
can be R_7_1 - R7_5 (see Table 6.7).

𝐶𝑟𝑢𝑙𝑒𝑖𝑘 =
∑ W𝑙 ∗ [ACrule𝑗𝑙 | ATrule𝑗𝑙]#elem_in_k

𝑙=1

#elements_in_𝑘

(1)

─ Average Composite Syntactic Correctness for rule i, which
generates the target model element k. ACrule is equal to an ATrule
at leaves level (i.e. parameter, assertion and precedence).

𝐴𝐶𝑟𝑢𝑙𝑒𝑖𝑘 =
Crule𝑖𝑘 + ATrule𝑖𝑘

2

(2)

Syntactic Correctness of the # Transformation (SyC_T1) corresponds

to ACrule1-TM * 100% value in the first transformation and the

SyC_T2=ACrule9-TSM * 100% in the second transformation

respectively.

For Semantic Correctness (SeC_T#) of a transformation, a similar

pattern as for the metrics on Syntactic Correctness is followed.

However, we only consider one value for semantic correctness of an

SCrule, if the rule is a CompositeRule, we take the composite SCrule

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

199

value; otherwise we take the ATRule value. ATRule is 1 if the rule

generates the expected element; otherwise its value is 0. The metrics

that can be used in both transformations are as follows:

─ Semantic Correctness for rule i, which generates the target model
element k. The rule i is formed by the rules j, which generate the
target model elements l. The j depends on element type l. Crule is
equal to ATrule at leaves level (i.e. parameter, assertion and
precedence).

𝑆𝐶𝑟𝑢𝑙𝑒𝑖𝑘 =
∑ W𝑙 ∗ [𝑆Crule𝑗𝑙 | ATrule𝑗𝑙]#elem_in_k

𝑙=1

#elements_in_𝑘

(3)

─ Semantic Correctness of the # Transformation (SeC_T1)
corresponds to SCrule1-TM * 100% value in the first transformation
and the SeC_T2=Crule9-TSM * 100% in the second transformation
respectively.

Figure 8.2 shows an example of the execution order to calculate

the metrics SyC_T# and SeC_T#.

From this picture we can see the bottom-up process required to

calculate the metrics. For Syntactic Correctness of the first

transformation (SyC_T1) (see Figure 8.2 left side), we started by

calculating the Average Composite Syntactic Correctness for rule 8.1 of

the parameter P1 (ACrule8.1-P1) by using the formula (2) and the

values ATrule8.1-P1 and Crule8.1-P1. Since Parameter P1 is missing in

the transformation output, the atomic value ATrule8.1-P1=0. In

addition, rule 8.1 is at leave level, then the Composite value for rule 8.1

(Crule8.1-P1) is equal ATrule8.1-P1 and therefore the ACrule8.1-P1

value is 0.

In the next level (i.e. Test Item level), we followed a similar process

to calculate the Average Composite Syntactic Correctness for rule 5.2

corresponding to the Trigger T1 (ACrule5.2-T1) by using the formula (2)

and the values ATrule5.2-T1 and Crule5.2-T1.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

200

Figure 8.2. Example of the calculation of the metrics SyC_T1 and SeC_T1

Since Trigger T1 is missing in the transformation output, the values

ATrule5.2-T1=Crule5.2-T1=0. Then, at Test Cases level the Average

Composite Syntactic Correctness for rule 2.1 of the Test Case TC4

(ACrule2.1-TC4) was calculated by using the formula (2) and the values

ATrule2.1-TC4 and Crule2.1-TC4. In this case, the information about of

the test case TC4 was generated correctly, then the ATrule2.1-TC4=1.

The Crule2.1-TC4 value was calculated by using the formula (1) and the

values ACruleik corresponding to the rules applied to the elements

forming the Test Case TC4 (e.g. ACrule7.1-L1, ACrule7.1-L2, ACrule6.1-

S1). In this paper all weights Wl required in the formula (1) are

considered equal to 1. Then, the Crule2.1-TC4=0.83 and ACrule2.1-

TC4=0.92.

In the top level (i.e. Test Model level), the Average Composite

Syntactic Correctness for the rule 1 corresponding to the Test Model

TM1 (ACrule1-TM1) was calculated by using the formula (2) and the

values ATrule1-TM1 and Crule1-TM1. In this case, the information

about of the Test Model TM1 was generated correctly, then the

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

201

ATrule1-TM=1. The Crule1-TM1 value was calculated by using the

formula (1) and the values ACruleik corresponding to the rules applied

to the elements forming the Test Model TM1 (e.g. ACrule3.1-Pr1,

ACrule2.1-TC1, and ACrule2.1-TC2). Then, the Crule1-TM1=0.94 and

SyC_T1=ACrule1-TM1=0.97 are calculated by using the formulas (1)

and (2) respectively. In a similar way, the Syntactic Correctness of the

second transformation (SyC_T2) is calculated by applying the formulas

(1) and (2).

For Semantic Correctness of the first transformation (SeC_T1) (see

Figure 8.2 right side), we started by calculating the Semantic

Correctness for rule 5.2 of the Trigger T1 (SCrule5.2-T1) by using the

formula (3). Since Trigger T1 is missing in the transformation output,

the value SCrule5.2-T1=0. Then, at Test Case level the Semantic

Correctness for the rule 2.1 of the Test Case TC4 (SCrule2.1-TC4) was

calculated by using the formula (3) and the values of the Semantic

Correctness obtained from the rule values nested in the Test Case TC4

(e.g. SCrule7.2-L3, SCrule7.2-L4, SCrule5.2-T1, SCrule6.1-S1, SCrule4.4-

A1), then the SCrule2.1-TC4=0.83. Finally, at Test Model level, the

Semantic Correctness for the rule 1 of the Test Model TM1 (SCrule1-

TM1) was calculated by using the formula (3). Then, the

SeC_T1=SCrule1-TM1=0.92. In a similar way, the Semantic Correctness

of the second transformation (SeC_T2) is calculated by applying the

formula (3).

8.2.3 Experimental Design
This section describes the goal of the validation, experimental

reseach questions, metrics used, and the subject Conceptual Schema

definitions.

Goal/Question/Metric Definition

Following the line related with the Goal/Question/Metric Paradigm

[140], the goal of our study is: to analyse the model-to-model

transformations for the purpose of validating them with respect to

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

202

their syntactic and semantic correctness from the viewpoint of the

researcher.

In order to address this goal, we defined the questions related with

the respective metric to measure the syntactic and semantic

correctness of the M2M transformation of our proposal (see Table 8.4).

Table 8.4. GQM for M2M transformation validation

Goal: Semantic Correctness

Question Derived Metric

ERQ1: What is the semantic correctness extent
of our transformation rules used for generating
test model from a requirements model?

SeC_rulei. Percentage of
Semantic Correctness of the rule
i.

ERQ2: What is the overall semantic correctness
extent of transformation rules used for
generating test model from a requirements
model?

SeC_Tj. Percentage of overall
Semantic Correctness of the
Transformation j.

Goal: Syntactic Correctness

ERQ3: What is the syntactic correctness extent
of test case elements generated by our
transformation rules from a requirements
model?

SyC_rulei. Percentage of
Syntactic Correctness of the
elements generated by the rule i.

ERQ4: What is the overall syntactic correctness
extent of test model elements generated by our
transformation rules from a requirements
model?

SyC_Tj. Percentage of overall
Syntactic Correctness of the
elements generated by the
Transformation j.

Subjects: Conceptual Schemas

To assess the correctness of our proposal M2M transformation, we

selected five CS from the literature, which contained a variety of

characteristics that can be present in UML class diagram-based CS,

including classes, relations (i.e. association, composite aggregation, and

generalization) and different types of constraints (i.e. pre-condition,

post-condition and body condition). These CS were of different sizes

and domains (e.g. information systems, games). Table 8.5 summarizes

the characteristics of these CS. A brief description of each one was

introduced in Section 8.1.1. These CS specifications were first

processed by hand to a requirements model based on Communication

Analysis (see Section 5.2.2) using the GREAT tool modeller [141].

.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

203

Table 8.5. Elements of the CSs

CS Element MT SS SG OC DBLP

Classes 6 9 11 20 17

Attributes 26 44 26 33 59

Derived Attributes 0 1 6 27 21

Operations 13 32 19 24 32

Parameters 43 91 48 48 80

Associations 5 9 6 14 10

Derived Associations 0 0 2 0 4

Composite Aggregations 0 0 3 1 4

Constraints 9 12 19 24 44

Generalizations 0 0 4 10 13

Elements Total 102 198 144 201 271

We carefully reviewed the RM models to ensure that they were

syntactically correct and that the behaviour described in the CS

specification document was the intended one. Then, the two M2M

transformations were executed by using the CoSTest tool (see Chapter

8) in order to generate the test scenarios model from the requirements

model.

Experimental Procedure

Once the metrics, the model transformations and their

transformation rules had been specified and the information needed to

trace the elements had been added to the metamodels, the

transformation rules were evaluated on the model instances after each

execution. These rules can be evaluated by performing a simple depth-

first search on the model instances, and checking whether the

transformation rules have been satisfied at each transformation, as

follows (see Figure 8.3).

1. Execution of the M2M. The first step to analyse the model-to-

model transformations in our proposal is to execute the respective

transformation M2Mi.

2. Traversing the Models. In our tool CoSTest, we have implemented

code to traverse the model instances and reports the

transformation rules used for generating the different model

elements. Since the metamodels of both the source and target

models are available with the transformations, and the trace

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

204

information is included in the metamodels during transformation

in attribute form (i.e. location and trule of the Element

class), this trace information needs to be analysed each time the

rules specification changes.

Figure 8.3. Process to evaluate a M2Mi in our proposal

We call the model traverser at the end of each execution of the

transformation, supplying to it the source and target model

instances with the trace information.

3. Measuring Correctness. We check the generated elements are

well-formed (i.e. syntactic correctness), which would otherwise

indicate that the ATL transformation rule is syntactically incorrect.

Thus, if there are differences between the obtained model and the

expected one (i.e. semantic incorrectness), it could mean: a) there

are unnecessary rules in the M2M that generate additional

elements of the expected ones, or b) there are incomplete rules

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

205

because the elements were not generated as expected. For this

task, the tester uses the set of metrics proposed in the next Section

and measures the correctness of the evaluated M2M.

4. Take a Decision. If the output model is correct, then we can

conclude that the transformation and its rules are correct. In

another case, the transformation rules have to be adjusted and the

evaluation process has to be executed again.

8.2.4 Results and Discussion
This section presents the results of metrics-based validation for

measuring the semantic and syntactic correctness of the model

transformations with their transformation rules implemented in the

CoSTest tool (see Chapter 8). We collected metrics data from a

heterogeneous collection of five requirements model in their two

transformations for generating the test scenario models.

First Transformation

In this section, we summarize and discuss the results obtained for

the selected CSs previously described (see Section 6.3.1), which were

transformed from Requirements Model (RM) to Test Scenario Model

(TSM) using CoSTest (see Chapter 8) to perform the proposed model

transformation.

Automation increases the quality of this transformation, as errors

manually implanted into transformation rules during implementation

are eliminated. We used the most basic level of validation for

transformations, which executes the transformation in one direction

[129]: and given a source (RM) model provided by a designer or

modeller, generate the corresponding target (i.e. test model).

We then checked whether the generated test model conformed to

the test model metamodel and the constraints (see Section 6.3.1).

Tables 8.6-8.7 summarize the different elements of both the RM

and TM models.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

206

Table 8.7 shows the elements of both phases: column G shows the

number of elements generated in the transformation and the column E

to the number of elements expected after the transformation.

Table 8.6. Elements of the requirements model included in the five examples

Example
Elements

MT SS SG OC DBLP

Start 1 1 1 1 1

End 1 1 1 1 1

Precedence 9 20 10 20 28

Communicative Event 6 11 6 11 16

Event Variant 0 2 3 4 10

And 0 1 0 1 0

Or 0 2 1 1 2

Iteration 1 4 3 4 8

Specialisation 0 0 2 3 8

Textual Requirement 0 0 8 0 18

Aggregation 7 14 13 22 28

Data Field 26 45 20 47 66

Reference Field 5 12 8 19 18

Table 8.7. Elements of the Test Model generated for the five example

Example
Elements

MT SS SG OC DBLP

G E G E G E G E G E

Test Case 6 6 12 12 8 8 13 13 21 21

Precedence 9 9 19 19 11 11 21 21 32 32

Final
Precedence

7 7 14 14 10 10 15 15 29 29

Assertion 7 7 12 12 15 15 14 14 39 39

Service 6 10 21 21 15 15 20 20 26 26

Trigger 2 3 12 12 6 6 6 6 17 17

Link 5 5 9 9 9 15 24 26 19 19

Parameter 49 58 120 120 90 102 155 159 197 197

From these results we can see that the values in bold (e.g. services,

triggers, parameters for MT) represent the elements that differ from

those expected and therefore indicate an error in the transformation

rules related to these elements. For example, for MT services we

expected 10 elements (see rows related to 7.x rules in Table 8.8) but

only 6 elements were generated by the respective transformation

rules.

We added the “Final Precedence” row to report the number of

precedence relations obtained after of adjusting these relations in the

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

207

test model, inspected the MMT result and determined its correctness

by comparing the Test Model elements with the manually derived CS

elements by expert.

For each question related to the correctness goal, we report the

results obtained when applying the respective metrics for each

measurement model (e.g. MT, SS systems). This report was supported

by CoSTest (see Chapter 7).

Table 8.8 shows some of the results of the comparative effort of

the Syntactic and Semantic Correctness achieved for each

transformation rule in the five CS used in this study during the first

transformation.

From these results, we can see that the number of rules (i.e. the

number of rows with data in Table 8.8) required by DBLP is the highest

(i.e. 21 rules for semantic correctness) of the five generated Test

Model, while this is not the case for MT, which only requires 13 rules

for semantic correctness (SeC).

The differences found in each validation phase allowed us to take

corrective actions to adjust our M2M transformation, so that for the

next phase the problems identified in the transformation rules were

fixed.

For example, for the first phase four of six Service classes were

omitted by Rule 7.3. Therefore, in this first phase rule 7.3 achieved 33%

of semantic correctness and 100% of syntactic correctness for the

generated elements. In this phase rule 5.2 was missing, omitting a

Service class, so that the semantic correctness achieved by 5.2 is 0%

and the syntactic correctness value is not required.

Finally, for this first phase (i.e. MT case), the M2M transformation

achieved 100% of syntactic correctness, while the semantic correctness

was 96.30%. Similarly, the values of correctness for the other phases

were calculated.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

208

Table 8.8. Results of SyC_T1 and SeC_T1 for the five cases
Phase

T.
Rule

Test Models

1° – MT (%) 2° – SS (%) 3° – SG (%) 4° – OC (%) 5° –DBLP (%)

SyC

SeC

SyC

SeC

SyC

SeC

SyC

SeC

SyC

SeC

SyC_T
SeC_T

100 96.3 98.3 100 100 98.0 100 99.6 100 100

1 100 100 100 100 100 100 100 100 100 100

2.1 100 6/6
90.7

100 10/10
100

100 5/5
92.5

100 9/9
98.4

100 11/11
100

2.2 - - 100 2/2 100 100 3/3
100

100 4/4
100

100 10/10
100

3.1 100 9/9
100

100 14/14
100

100 5/5
100

100 12/12
100

100 18/18
100

3.2 - - 100 2/2=100 100 3/3
100

100 6/6
100

100 8/8=100

3.3 - - - - - - - - - 4/4=100

3.4 - - 100 1/1
100

100 3/3
100

100 1/1
100

100 2/2
100

3.5 - - 50 2/2=100 - - 100 2/2=100 - -

4.1 - - - - 100 8/8
100

100 100 100 18/18
100

4.2 - - 100 1/1=100 - - - - - -

4.3 100 1/1=100 - - - - - - - -

4.4 100 6/6
100

100 11/11
100

100 7/7
100

100 14/14
100

100 21/21
100

5.1 100 1/1=100 100 1/1=100 100 1/1=100 - - 100 1/1=100

5.2 - 0/1=0 100 2/2=100 100 1/1=100 100 2/2=100 100 5/5=100

5.3 - - 100 1/1 100 - - - - - -

5.4 - - 100 2/2 100 100 3/3
100

100 4/4
100

100 10/10
100

6.1 100 6/6
100

100 9/9=100 100 11/11
100

100 20/20
100

100 22/22
100

7.1 100 1/1
100

100 3/3
100

100 3/3
100

100 3/3
100

100 4/4
100

7.2 100 3/3
100

100 3/3
100

100 5/5
100

100 16/16
100

100 11/11
100

7.3 100 2/6
33.3

100 18/18
100

100 6/6
100

- - 100 6/6
100

7.4 - - - - - 0/6
0

100 4/4
100

100 3/3
100

7.5 - - - - - - - 0/2=0 - -

8.1 100 27/27
100

100 51/51
100

100 35/35
100

100 61/61
100

100 101/101
100

8.2 100 3/3
100

100 3/3
100

100 11/11
100

100 19/19
100

100 10/10
100

8.3 - - - - - 0/6
0

100 4/6
66.7

100 3/3
100

8.4 - - - - - 0/6
0

100 4/6
66.7

100 3/3
100

From these results, we see that transformation rules 5.2, 7.3, 7.4,

7.5, 8.3 and 8.4 (see rows in Table 8.8 achieved less than 100%

semantic correctness in some of the validation phases (see columns in

Table 8.8), while the Syntactic Correctness of the rules achieved a score

of 100% in most phases, except for rule 3.5 in the second phase (i.e. SS

CS).

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

209

We also calculated the semantic and syntactic correctness of all

first M2M transformations based on the partial values of semantic and

syntactic correctness of each transformation rule.

The first row of Table 8.8 shows the values of these metrics (i.e.

SeC_T1 and SyC_T1), so that the syntactic correctness was 100% in 4

out of 5 of the analysed CS. This result was as expected because

syntactic correctness is easier to achieve with the tests performed

while the transformation is implemented.

The semantic correctness varies in each phase (i.e. 96.3%, 100%,

98%, 99.6% and 100%) depending on the number of elements that

matched with the expected elements.

Once we identified the correctness problems (see Figure 8.4) in this

M2M transformation, we reviewed the transformation rules and found

the following explanations:

─ Missing Rules. For rules 5.2, 7.4, 7.5, 8.3 and 8.4 it was necessary to
extend the respective rules by adding the required code.

─ Incorrect Rules. Rules 3.5, 7.3, 8.3 and 8.4 required some
adjustments, e.g. 3.5 was modified by adding “->AND->OR->” in the
Precedence class name it generated. The definition of Rules 7.3, 8.3
and 8.4 was correct, however there was an unreachable code in the
ATL code implemented in CoSTest. We therefore restructured the
code to correct this unreachable code bug.

─ Unnecessary rules. Metrics can also sometimes detect unnecessary
rules in the transformation (e.g. alternative rules that implement
code for Rules 3.5 and 7.3 are not applied in any case, as well as
some helpers) and need to be deleted.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

210

Figure 8.4. Structure of T1 Transformation with the identified problems

Finally, at the end of the evaluation (i.e. in the fifth phase), the

syntactic and semantic correctness achieved by the first two MMTs and

each transformation rule was 100%.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

211

Second Transformation

The goal of this transformation is to obtain a model conformed to

the test scenario metamodel presented in Section 6.2.2.

Table 8.9 shows the different elements of Test Scenario Models for

the five subjects. As in the previous transformation, we included the

columns G (generated elements) and E (expected elements).

Table 8.9. Elements of the Test Scenario Model generated for the five examples

Example
Elements

MT SS SG OC DBLP

G E G E G E G E G E

Test Scenario 1 1 2 2 2 2 3 3 7 7

Test Case 6 6 17 17 14 14 31 31 52 52

Assertion 7 7 15 15 28 28 31 31 85 85

Service 6 10 32 32 30 30 57 57 69 69

Trigger 2 3 16 16 10 10 10 10 38 38

Link 5 5 16 6 18 30 67 73 44 44

Parameter 49 58 188 188 176 200 419 431 487 487

Like the analysis done for Table 8.7, the values in bold represent

the elements that differ from those expected and therefore there is an

error in the transformation rule related to that element. For example,

the error detected in the first phase for MT services is translate to the

second phase, so that we expected 10 service elements (see rows

related to 7’ in Table 8.10) but only 6 elements were generated by the

respective transformation rules

Table 8.10 shows the results of the comparative effort during the

second transformation to measure the syntactic and semantic

correctness achieved for each transformation (i.e. SyC_T and SeC_T

row and SyC and SeC columns respectively) and with each rule

(different rows in Table 8.10) in the five CS used in this study.

Table 8.10 shows the calculation of the metrics, and the rules that

had errors are those that do not have a value of 100% in the respective

metric.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

212

Table 8.10. Results of SyC_T2 and SeC_T2 for the five cases
Phase

T.
Rule

Test Scenario Models

1° – MT (%) 2° – SS (%) 3° – SG (%) 4° – OC (%) 5°– DBLP (%)

SyC SeC SyC SeC SyC SeC SyC SeC SyC SeC

SyC_T
SeC_T

100 90.7 100 100 100 94.6 100 98.6 100 100

T2 T1

9 1 100 100 100 100 100 100 100 100 100 100

10 100 1/1
90.7

100 2/2
100

100 2/2
100

100 3/3
98.6

100 7/7
100

2’ 2.1 100 6/6
90.7

100 10/10
100

100 10/10
92.5

100 9/9
100

100 11/11
100

2.2 - - 100 2/2 100 100 4/4
100

100 4/4
100

100 10/10
100

4’ 4.1 - - - - 100 8/8
100

100 100 100 18/18
100

4.2 - - 100 1/1=100 - - - - - -

4.3 100 1/1=100 - - - - - - - -

4.4 100 6/6
100

100 11/11
100

100 7/7
100

100 14/14
100

100 21/21
100

5’ 5.1 100 1/1
100

100 1/1
100

100 1/1
100

- - 100 1/1
100

5.2 - 0/1
0

100 2/2 100 100 1/1
100

100 2/2
100

100 5/5
100

5.3 - - 100 1/1 100 - - - - - -

5.4 - - 100 2/2 100 100 3/3
100

100 4/4
100

100 10/10
100

6’ 6.1 100 6/6 100 100 9/9 100 100 11/11
100

100 20/20
100

100 22/22
100

7’ 7.1 100 1/1
100

100 3/3 100 100 3/3
100

100 3/3
100

100 4/4
100

7.2 100 3/3
100

100 3/3 100 100 5/5
100

100 16/16
100

100 11/11
100

7.3 100 2/6
33.3

100 18/18
100

100 6/6
100

- - 100 6/6
100

7.4 - - - - - 0/12
0

100 4/4
100

100 3/3
100

7.5 - - - - - - - 0/6=0 - -

8’ 8.1 100 27/27
100

100 51/51
100

100 35/35
100

100 61/61
100

100 101/101
100

8.2 100 3/3
100

100 3/3
100

100 11/11
100

100 19/19
100

100 10/10
100

8.3 - - - - - 0/12
0

100 12/18
66.66

100 3/3
100

8.4 - - - - - 0/12
0

100 1218
66.66

100 3/3
100

Since the second model transformation generates test scenarios,

the problems found in some of the rules in the first transformation are

translated into each scenario generated from these rules. Columns T1

and T2 shows the correspondence of the rules of the transformation T2

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

213

with the rules of the transformation T1. For example, R2' transforms

the elements generated by R2.1 and R2.2 in T1.

For Syntactic Correctness (SyC) the rules in the first transformation

achieved a score of 100% in most of the phases (4/5), except in the

second phase (i.e. SS CS), with a SyC value of 98.3% (see row SyC_T1 of

Table 8.8). In the second transformation the SyC value was 100% for all

phases, suggesting that the impact of the syntactic correctness

problems in the second transformation depends on the defect type

detected in the transformation rule. For example, in the SS subject, the

defective rule R3_5 (i.e. R3_5 does not include the specification “-

>AND->OR->” in its name) and does not affect the generation of the

test scenario.

On the other hand, Semantic Correctness varied in each phase of

the first (i.e. 96.3%, 100%, 98%, 99.6% and 100% in Table 8.8) and

second transformation (i.e. 90.7%, 100%, 94.6%, 98.6%, 100% in Table

8.10), according to the number of elements generated by each

defective rule and the number of test scenarios generated in this

second transformation. For example, in the SG subject the impact on

correctness is greater in the second transformation (i.e. SyC=100% and

SeC=94.64%), because two scenarios were generated using all

elements of the test model, so there are more elements generated

with rules that have anomalies.

Since the purpose of this chapter is to validate the syntactical and

semantical correctness of the M2M transformation, we exercised the

transformation with a set of requirements models derived from CS

specifications found in the literature and then compared the results

with the expected outcomes by using a set of metrics defined to

measure the semantic and syntactic correctness of the proposed M2M

transformation. Both the M2M transformation and the report of the

generated TM elements are supported by the tool.

The M2M transformation validation was performed in several

phases. In this chapter we report the results of the comparative effort

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

214

in five phases, where the Syntactic Correctness (SyC) of the rules in the

first transformation achieved a score of 100% in most phases (4/5),

except in the second phase (i.e. SS CS), with a SyC value of 98.3%. In

the second transformation the SyC value was 100% for all phases,

suggesting that the impact of the syntactic correctness problems on

the second transformation depends on the defect type detected in the

transformation rule. On the other hand, the semantic correctness

varied in each phase of the first (i.e. 96.3%, 100%, 98%, 99.6% and

100%) and second transformation (i.e. 90.7%, 100%, 94.6%, 98.6%,

100%), depending on the number of elements generated by each

defective rule and the number of test scenarios generated in this

second transformation.

Although this validation does not guarantee full correctness of the

M2M transformation, it shows that it has very interesting benefits. In

particular, the defined metrics were useful for identifying bugs (i.e.

incorrect, missing and redundant rules) in the transformation rules in a

cost-effective manner, so these M2M transformations are suitable to

be integrated in our tool support (see Chapter 8). Moreover, the

metrics can measure the correctness of CSs without having to

transform them into any other formalism or to abstract away any of

their features.

8.3 Evaluating the CoSTest Mutant Generator
The empirical assessment of test techniques plays an important

role in software testing research. One common practice is to

instrument faults, either manually or by using mutation operators. The

latter allows the systematic, repeatable seeding of large numbers of

faults, helping to clarify assumptions, support understanding, analysis,

prediction, and decision-support.

In Mutation testing the most critical activity is the adequate design

of mutation operators so that they reflect the typical defects of the

artefact under test. We therefore designed a set of mutation operators

for Conceptual Schemas (CS) based on Unified Modelling Language

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

215

(UML) Class Diagrams (CD). The main potential advantage of mutation

operators is that they describe precisely the mutants they can generate

and thus support a well-defined, fault-injecting process. Figure 8.5

illustrates the definition process of mutation operators.

The research group met for decision‑making with two main

objectives: (i) to focus on evaluating some properties of the mutation

operators for FOM and (ii) to validate the effectiveness of CoSTest

components to automatize mutant generation (i.e. Mutant Generator)

(see Section 7.7 in Chapter 7).

Two experiments were performed using mutation in an iterative

process to evaluate some properties of the mutation operators as well

as the effectiveness and efficiency of the CoSTest Mutant Generator.

8.3.1 Experiment No 1: Evaluating the Mutation

Operators Implemented in CoSTest
The first experiment was an iterative process to evaluate the

mutation operators for FOM implemented in CoSTest.

In this experiment we used the CoSTest tool V0.5 (conception of

the tools), which was evolved until achieving the stable V1.0 version.

The tool generated the first order mutant (FOM), but did not include

the facility for selecting (all or partially) the mutation operators before

calculating and generating the mutants.

Experimental Design

The experiment was performed by the authors (researchers) of

[115], which reports on the use of the tools in a controlled

environment using three types of system: (i) the Super Stationery (SS)

system, (ii) an Expense Report (ER) management system, and lastly, (iii)

the Sudoku Game (SG) system [133], which is more variant-rich than

the other two CS. The source files of the requirements models and

Conceptual Schemas can be found at

https://staq.dsic.upv.es/webstaq/costest.html

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

216

The experiment was run as an iterative process with approximately

3 iterations in three months (from July 2015 to September 2015). The

objective was to evaluate the usefulness of the mutation operators for

FOM. Then, we prepared a renewed version of the tools that included

the emerging improvements.

The experiment was performed in a laboratory environment where

the CS requirements were specified using GREAT tool [141]. Eclipse

Framework tools such as UML2 or Papyrus were used for modelling

conceptual schemas, and Microsoft Excel for managing and analysing

the test results.

Figure 8.5 illustrates the i‑th iteration of the experiment. Each CS

subject was analysed based on FOM that can be generated using

CoSTest version V0.5. It was then used to generate the test cases

according to the requirements model and to execute them against the

mutants.

Finally, the mutation score for mutant and mutation operator,

contribution factor of mutation operator and impact indicator were

computed in order to evaluate some properties of the mutation

operators. The last iteration of the experiment was used to exemplify

the CoSTest tool V1.0 and evaluate some properties of the mutation

operators [93].

Conclusions and changes to the tool

The FOM mutation operators were evaluated in the experiment by

means of the contribution factor, impact indicator and mutation score.

Based on the results obtained by applying mutation testing, 56%

(10/18) of our mutant operators generated a high number of killed

mutants (score mutation=100 %). These results suggest that these

operators generated mutants that are relatively easy to detect by the

provided test suites.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

217

Figure 8.5. i-th iteration of the experiment applying the CoSTest tool

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

218

In the other case 44% (8/18) of the operators related to

characteristics of associations (i.e. multiplicity and aggregation type)

and constraints generated hard-to-detect mutants and their

application would stimulate selection of high quality tests. However,

the behaviour of the mutation operators may depend on the

characteristics of the CS they are applied to, such as the number,

element type and complexity of the constraints.

Some of the main changes applied to the mutation operator list

were the restrictions included in the mutation operator rules to avoid

generating non-valid mutants (see Table A.1 in Appendix A). Some of

the main changes applied to the tool were: (i) include the facility for

selecting the mutation operators before calculating and generating

them, (ii) structure the Excel report containing CSUT elements, testing

log, covered elements, found defects, test case verdicts and (i)

generate a report for each mutant to help identify defects. All the

reports were exemplified using the three analysed CS.

8.3.2 Experiment No 2: Validating the

Effectiveness and Efficiency of Mutant

Generator of CoSTest
The second experiment was an iterative process to evaluate the

effectiveness and efficiency of the CoSTest mutant generator. The V1.0

version generated mutants using the mutation operators but could not

facilitate the summaries of the generated mutants including the

required mutation time nor could it analyse the CS information to help

discard equivalent mutants. The V1.0 version used in this study can

only execute the test cases on one conceptual schema at a time, so it

was not possible to select several conceptual schemas (i.e. mutants) to

test with the selected test cases and report the summarized results of

all of them.

Experimental Design

The experiment was performed by the authors (researchers) of

[124], which reports on the evaluation of the tool in a controlled

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

219

environment using six types of system: (i) the Medical treatment (MT)

system, (ii) the Sudoku Game (SG) system [133], (iii) an Expense Report

(ER) management system, (iv) the Online conference review (OCR)

system, (v) the SuperStationery (SS) system and lastly, (vi) Photography

Agency (PA) system. The source files of requirement models and

Conceptual Schemas can be found at

https://staq.dsic.upv.es/webstaq/costest.html

The experiment was run as an iterative process; approximately 6

iterations were performed in three months (from September 2015 to

November 2015). The objective was to carry out an evaluation of the

CoSTest tool V1.5 with respect to the effectiveness and efficiency in

generating valid First Order Mutants to UML CD-based CS.

In this experiment the CS requirements were specified using GREAT

tool [141], Eclipse Framework tools such as UML2 or Papyrus were

used for modelling conceptual schemas and Microsoft Excel (for

managing both results testing and mutation analysis). Figure 8.6

illustrates the i‑th iteration of the experiment.

The version V1.0 of the CoSTest tool was provided. Each CS was

used to generate the FOM that can be generated using the CoSTest

Mutant Generator. CoSTest was then used to generate the test cases

according to the requirements model and to execute them against the

mutants and report the results. The researcher manually analysed the

mutants that were not killed to determine whether they were

equivalent (i.e. the CS mutant produces the same output as the original

CS as if it had no faults) and register them.

The last iteration of the experiment was used to evaluate CoSTest

V1.2 with respect to its effectiveness and efficiency in generating valid

First Order Mutants to UML CD-based CS [124].

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

220

Figure 8.6. i-th iteration of the experiment applying the CoSTest tool

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

221

Conclusions and changes to CoSTest

The experiment showed the effectiveness and efficiency of CoSTest

in generating FOM [124] and that mutation operators can be

automated avoiding the generation of a high percentage (49.1%) of

non-valid mutants and generating a low percentage (7.2%) of

equivalent mutants.

However, detecting these mutants is costly in terms of the time

and effort of creating, executing and manually inspecting them. We

therefore implemented the restrictions and rules for eliminating them

by performing a static analysis of the CS. As these results show, the

reduction achieved in this analysis of equivalent mutants is about

74.3%, which is equivalent to 2249.24 seconds estimated by KLM, and

the cost of reducing non-valid mutant is 49.1% (48833.4 seconds

estimated by KLM) by using the mutation tool in the six subject CSs

involved in this study.

Therefore, the results of this study suggest that the mutation tool

can help researchers and supports a well-defined, fault-injecting

process to generate a potentially large number of valid and non-

equivalent FOMs, increasing the statistical significance of results

obtained in assessing test case quality.

However, some changes were applied to the tool to (i) include the

report on generated mutants, (ii) add the restrictions to avoid

equivalent mutant generation using WOP2, (iii) report the time

required to generate mutants (iv) include the facility of executing a set

of test cases against a set of mutants and generate an Excel report

containing CSUT name, testing time, final verdict, defect id, defect

mode, found defect and CSUT element for all tested mutant of a CS to

help with information visualization.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

222

8.4 Validating of the Effectiveness of CoSTest’

Test Cases
The following is a description of the comparative experiment to

evaluate the effectiveness of CoSTest test cases.

The experiment was motivated by the need to investigate the

effectiveness of our testing framework; that is, we intended to

compare the effectiveness when they were applied in both first order

mutants and high order mutants to detect faults in eight CS.

The experiment was carried out in 2016 (from January to March)

and was designed according to Wholin et al. [142] as reported by Jurist

and Moreno [127].

8.4.1 Experiment Goal and Questions
The experimental goal according to the Goal/Question/Metric

Template [143] is to analyse the resulting CoSTest test cases for the

purpose of evaluation with respect to their effectiveness in detecting

fault types from the point view of the researchers in the context of

mutants generated for eight CS.

We are interested in determining if the test case effectiveness is

the same for both types of mutants (i.e. FOM and HOM). Therefore, we

pose and study the following experiment research questions (ERQ):

 ERQ1: How significant is the influence of the mutation type in the
effectiveness of CoSTest test cases for detecting faults and fault
types?

And as we are also interested in measuring whether the test case

quality is depending on the type of mutant:

 ERQ2: How adequate are CoSTest test suites for killing both the
First Order Mutants and High Order Mutants of Conceptual
Schemas?

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

223

8.4.2 Variables

Independent Variables

We consider one independent variable (a.k.a. factor [127]):

 Mutant type. Since this study uses mutations for injecting the
artificial faults into a CS, CSs can be classified into two types
according to the number of mutated elements:

o First Order Mutant (FOM) (baseline), which is generated by
applying mutation operators (i.e. rules to modify the
grammar used to capture the syntax of a software artefact
[113]) only once.

o Higher Order Mutant (HOM), which is generated by
applying mutation operators more than once [113].

Dependent Variables

We consider the following dependent variables (a.k.a. response

variables [127]), which are expected to be influenced to some extent

by the independent variable.

 Effectiveness in Detecting Fault. To investigate our ERQ1 we need
to measure the effectiveness of the CoSTest test cases in terms of
the number of faults found and the type (or cause) of the faults
that were found [144] as well as the mutation score, which can be
used to measure the effectiveness of a test suite in terms of its
ability to kill mutants because it is one outcome of the Mutation
Testing process, which indicates the quality of the input test set
[15].

8.4.3 Metrics

Effectiveness

For evaluating the effectiveness of our testing technique, we used

three metrics:

 Rate of Fault Detection (FDR). The metric FDR is the value
calculated by dividing the number of faults detected by the tool by
the total number of faults that are expected to be identified from
the CS mutants.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

224

𝐹𝐷𝑅(𝑇) =
𝐹𝐷(𝑇)

𝐹𝐸

 Rate of Fault Type Detection (FTDR). The metric FTDR is the value
calculated by dividing the number of fault types detected by the
tool by the total number of fault types that are expected to be
identified from the CS mutants.

𝐹𝑇𝐷𝑅(𝑇) =
𝐹𝑇𝐷(𝑇)

𝐹𝑇𝐸

 Mutation Score. During execution each CS mutant Mi will be run
against a test case suite T. If the result of running Mi is different
from the result of running CS (without defects) for any test case in
T, then the mutant Mi is said to be “killed”, otherwise it is said to
have “survived”. A CS mutant may survive either because it is
equivalent to the original model (i.e. it is semantically identical to
the original model although syntactically different) or the test set is
inadequate to kill the mutant.
Thus, the adequacy of a test suite T for a given set of M mutants is
quantitatively evaluated with a mutation score (MS). It is measured
as the ratio of the number of killed mutants MK (T) over the total
number of the non-equivalent mutants MT generated for a CS. It is
calculated by:

𝑀𝑆(𝑇) =
𝑀𝑘(𝑇)

𝑀𝑇

8.4.4 Hypotheses
We defined three hypotheses: Table 8.11 shows the null

hypotheses (represented by a 0 in the subscript), which corresponds to

the absence of an impact of the independent variables on the

dependent variables.

Table 8.11. Specification of hypotheses

Null
hypothesis

Statement:
Mutant type does not influence …

H10 (ERQ1) … the effectiveness of the CoSTest test cases in detecting
faults in Conceptual Schemas

H20 (ERQ1) … the effectiveness of the CoSTest test cases in detecting
fault types in Conceptual Schemas

H30 (ERQ2) … the adequacy of the CoSTest test cases

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

225

The alternative hypotheses involve the existence of such an impact

and are the expected result.

8.4.5 Experimental Material

Subject CS

Most of the input CSs used in this experiment were small UML/ALF-

based models. In particular, this experiment took as input eight CSs

containing a variety of characteristics that can be present in UML CD-

based CS, including classes, relations (i.e. association, composite

aggregation, and generalization) and different types of constraints (i.e.

pre-condition, post-condition and body condition). These CS were of

different sizes and domains (e.g. information systems, games). One

case is taken from industrial, others CSs were found in the literature

(i.e. [131], [133] and [132]).

In order to guarantee that our tool is also effectively detecting the

different mutants created using the defined mutation operators (see

Table A.1), we also used CSs artificially created for this purpose (i.e. ER,

OCR, VC, and PA) containing the CS elements required to inject the

faults.

Table 8.12 summarizes the characteristics of these CS. A brief

description of each CS is given in Section 8.1.1:

Table 8.12. Elements of the Subject Conceptual Schemas

Element VC MT SG ER OCR SS PA IM

Classes 5 6 11 7 10 9 15 6

Attributes 19 26 32 42 62 45 85 29

Operations 6 13 19 24 16 32 31 13

Parameters 22 43 48 75 77 91 86 51

Associations 4 5 11 8 10 9 19 4

Constraints 17 9 19 21 14 12 37 8

Generalizations 0 0 4 0 3 0 0 0

Our experiment was carried out under a within-subject design, all

our subjects were exposed to the two treatments of our independent

variable (CS type) [145].

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

226

8.4.6 Procedure
We provide in this section a brief description and justification of

the analysis procedure that we used.

Figure 8.7 summarizes the experimental process, which involved

performing the following seven steps:

1) Choose CS Subjects. The selected subjects are described in Section

8.1.1.

2) Select a Conceptual Schema and generate the test suite. A test

suite T was generated to kill CS mutants for each subject CS by

following Steps 1-7 of Section 5.8, we then analysed the

information on the generated test cases in order to detect

problems in the generation process (e.g. repeated test cases).

3) Execute Test Suites on CS. Each test suite is executed on the

respective CS subject.

We assessed whether an invalid test case required a manual

setting (e.g. concretize variables that require several values

because they should be unique values or adjust a negative test

case so that it can create a valid sequence of events to validate

constraints).

We adjusted the test cases in order to get a successful testing

process with the original CS and registered the invalid test cases.

For example for OCR CS, we required updating the test case

number 19, which validate the precondition “context Submission::

new_submission() pre: Author->size()>0 “ with an invalid state

(test case negative), so we removed the statement that previously

creates an author.

Additionally, we had to concretize different values for the

variable id_member used in the classes PCMember, PCChair and

Author, so that there are no problems with the constraints that

validate unique values.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

227

Figure 8.7. Steps taken in experimental process

4) Generate CS Mutants. As this step was quite computationally

expensive, we used our Mutant Generator (see Section 7.7 in

Chapter 7) for generating first order mutants, in contrast to the

High order mutants, which were generated manually.

In this study, we used all the FOMs generated by the tool for all

CS subjects (see mutation operators of Table A.1 marked with “*”

in Appendix A).

In the other case, since there is no tool to automatically

generate HOMs, and also due to the unmanageably large number

of mutants that would result from including the set of higher order

mutants [17], we tried to generate in each subject CS, 3 mutants

for each mutation operator from Table A.1 (see mutation

operators marked with “**” in the Appendix A). Elements were

randomly selected to apply the mutation, however, some CS

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

228

subjects did not allow random selection due to the limited number

of elements required by some mutation operators (e.g. WAT2,

WGE and MGE).

Therefore, a random selection of elements from CSs combined

with a size of 3 mutants for each mutation operator for HOM

(“**”) from Table A.1 were deemed sufficient (enough variability in

faulty versions do not cover in FOM). Figure 8.8 shows an excerpt

of Video Club CS and the application of five mutation operators of

first order.

A syntax analysis was then performed by using the ALF parser

to ensure that the mutants were valid and could be used in a

testing process.

5) Select and generate an executable CS mutant. Each CS mutant is

transformed into an executable CS (CSUT) by using the respective

CoSTest module (see Step 7 in Section 5.8).

6) Execute Test Suites on CS Mutants. We ran each test case for each

mutant and maintained the test status (i.e.

passing/failing/inconclusive) using our CoSTest tool. Then, we

compared the output of each mutant against the output of the

original version of the CS with no faults.

When the output of the mutant was different to the original CS

output, the test case was labelled as failing and when the outputs

were exactly the same, the test case was tagged as passing.

We then manually examined the FOM with zero kills and

eliminated any that were semantically equivalent to the original CS.

The analysis of survivor mutants in order to identify equivalent

mutants is a prerequisite for calculating a mutation score. An

example of an equivalent mutant is shown in Figure 8.9, in which

the changed operator did not influenced the result of the

assignment.

We used the CoSTest option to export the results (faults and

coverage analysis) of the testing process of the CS subject.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

229

Figure 8.8. Application of five mutation operators on Video Club CS

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

230

Figure 8.9. Excerpt of a Constraint mutated by WCO8 operator

If there are further CS to be studied, steps 2 to 5 are repeated with

the next subject CS.

7) Analysis of Testing Results. We then determined which test case

in the pool detected which mutant and fault.

Next we computed the fault detection ratios of all test suites,

plotted the detection ratio distributions of mutants and faults for

each subject CS. Then, CoSTest effectiveness and adequacy of the

test suite were calculated from the information recorded in this

process.

These results are given in the next Section.

8.4.7 Analysis of Results
This section describes the analysis and interpretation of the results

related to our response variables (e) for ERQ1 and ERQ2.

The Statistical analysis was carried out on the Statistical Package

for Social Sciences (SPSS) V20.0.

Fault Detection Effectiveness

Since the first question (ERQ1) was aimed at evaluating CoSTest’s

Effectiveness at detecting faults, we compared the ratio of fault types

detected per mutant type (i.e. FOM and HOM) in the different CS

subjects. Table 8.13 shows both the number of the fault types detected

in each CS subject by mutant type.

Shapiro-Wilk tests were performed to evaluate the samples

normality. We used this test as our numerical means of assessing

normality because it is more appropriate for small sample sizes (<50

samples).

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

231

Table 8.13. Faults and Fault Types detected by Mutant type

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

232

Effectiveness based on Rate of Fault detection

Since all Sig. values for Shapiro-Wilk tests were 0.219 for FOM and

0.001 for HOM, these variables have a non-normal distribution (<0.05

for HOM) (see Table 8.14).

Table 8.14. Shapiro-Wilk Normality Tests

Mutant Type
Shapiro-Wilk

Statistic df Sig.

RFD
FOM .878 7 .219

HOM .648 7 .001

Given that the variables were non-normally distributed and that we

considered both mutant types as independent groups, the Mann-

Whitney U Test was used to test our first null hypothesis (H10). Figure

8.10 shows the box-plot containing data on the rate of fault detection

per mutant type.

Figure 8.10. Box-plot for Rate of Fault Detection by Mutant Type

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

233

Table 8.15 shows the result of the Mann-Whitney U Test. Regarding

the significance test (i.e 0.001<0.05), we stated that the hypotheses H10

is rejected. In other words, “the rate of Fault Detection is different for

each mutant type”.

Table 8.15. Mann-Whitney U Test for Rate of Fault Detection by Mutant Type

 Rate of Fault Detection

Mann-Whitney U .000

Wilcoxon W 36.000

Z -3.456

Asymp. Sig. (2-tailed) .001

Exact Sig. [2*(1-tailed Sig.)] .000a

a. Not corrected for ties

Effectiveness based on Rate of Fault Type detection

Since all Sig. values for Shapiro-Wilk tests were 0.520 for FOM and

0.0 for HOM, these variables have a non-normal distribution (<0.05 for

HOM) (see Table 8.16).

Table 8.16. Tests of Normality of Shapiro-Wilk

Mutant Type
Shapiro-Wilk

Statistic df Sig.

Rate Fault Type

Detection

FOM .930 8 .520

HOM .418 8 .000

Given that the variables were non-normally distributed and that we

considered both mutant types as independent groups, the Mann-

Whitney U Test was used to test our second null hypothesis (H20).

Figure 8.11 shows the box-plot containing data on the rate of fault

type detection per mutant type.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

234

Figure 8.11. Box-plot for Rate of Fault Type Detection by Mutant Type

Table 8.17 shows the result of the Mann-Whitney U Test. Regarding

the significance test (i.e 0.02<0.05), we stated that the hypotheses H20

is rejected. In other words, “the rate of Fault Type Detection is different

for each mutant type”.

Table 8.17. Mann-Whitney U Test for Rate of Fault Type Detectiona

 Rate Fault Type Detection

Mann-Whitney U 4.500

Wilcoxon W 40.500

Z -3.090

Asymp. Sig. (2-tailed) .002

Exact Sig. [2*(1-tailed Sig.)] .002b

a. Grouping Variable: Mutant Type

b. Not corrected for ties.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

235

Test Suite Adequacy

In ERQ2, we aimed to verify whether the muttion score of CoSTest

test suites was the same for killing the different mutant types. To do

this, we compared the mutation score for HOMs and FOMs in the eight

different CS subjects.

Table 8.18 shows the mutation scores summarized for each CS

subject and mutant type.

Table 8.18. Mutation Score by Mutant type

Element VC MT SG ER OCR SS PA IM

FOM 0.87 0.80 0.75 0.90 0.75 0.82 0.75 0.74

HOM 1.00 1.00 0.89 1.00 0.96 1.00 1.00 1.00

Table 8.19 and Table 8.20 show the detailed mutation scores for

each CS Subject and mutant type (FOM and HOM) respectively.

Figure 8.12 depicts the box-plot of our collected data for mutation

score per mutant type. As the results show, the values of mutation

score gave a better value for HOM than for FOM.

Figure 8.12. Box-plot for Mutation Score by Mutant Type

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

236

Table 8.19. Mutation Score of CoSTest Test Suites for First Order Mutants

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

237

Table 8.20. Mutation Score of CoSTest Test Suites for High Order Mutants

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

238

As in the analysis (ERQ1), Shapiro-Wilk tests were performed for

each mutant type related to the adequacy of the test suites. Since the

value of Sig. was >0.05 (0.100), this variable had a normal distribution.

However, for HOM the Sig. value was 0, which meant this variable did

not have a normal distribution (see Table 8.21). Considering both

mutant types as independent groups, we selected the Mann-Whitney

Test (non-parametric test) to evaluate the hypothesis.

Table 8.21. Shapiro-Wilk Normality Tests

Mutant Type
Shapiro-Wilk

Statistic df Sig.

MUTATION

SCORE

FOM .852 8 .100

HOM .576 8 .000

Table 8.22 shows the result of the Mann-Whitney U Test. The Sig.

value obtained with this test was 0.01<0.05, which meant that we

rejected the null hypothesis H30 and concluded that “The test suite

adequacy (mutation score) is different for different mutant types”.

Table 8.22. Mann-Whitney U Test for Mutation Score by Mutant Typea

 MUTATION SCORE

Mann-Whitney U 1.000

Wilcoxon W 37.000

Z -3.353

Asymp. Sig. (2-tailed) .001

Exact Sig. [2*(1-tailed Sig.)] .000b

a. Grouping Variable: Mutant Type

b. Not corrected for ties.

8.4.8 Discussion
Our main results regarding CoSTest’s effectiveness and the

adequacy of the test suites are the following: mutant type can

influence these two variables, with better effectiveness and test suite

adequacy in high order mutants than in first order mutants. This means

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

239

that test suites generated by CoSTest are effective at killing a large

number of mutants. However, there are fault types that our test suites

cannot detect, as explained below.

The mutants generated by the WAS2 mutation operator (changes

the association type, i.e. normal, composite) and WAS3 mutation

operator (changes the member end multiplicity of an Association, i.e.

-, 0..1-0..1, *-0..1) cannot be killed (mutation score=0) by an

adequate traditional mutation test set.

Also, the fault types Incorrect Constraint and Incorrect

Generalization injected by the mutation operators WCO1, WCO3,

WCO4, WCO5, WCO8 and WGE were hard to detect (mutation score

<0.7). This showed the weakness of test cases in testing some

constraints, such as derivation rules, which needed to be executed in

reverse order when there was a relation between classes that affected

the computed result. For example, they first calculated the total of the

expense report and then the total of the expense report details. This

means these test cases will have to be improved.

Additionally, we found that a lower mutation score for some

mutants related with constraints (WCOx) was because the test suites

only consider coverage at element level and not at constraint level (i.e.

condition branch).

We therefore plan to include test cases with values to make sure

that different conditions (e.g. > vs >=) will be tested. However, the

coverage analysis is important to detect defects when the assertions

assert only return values and not side effects (see Figure 8.13) in which

the coverage analysis is reduced, but all tests still pass.

Figure 8.13. Example of an assertion conditional

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

240

In addition, we found that CoSTest test suites do not test whether

the cardinalities of the association ends meet a certain limit (only

creating links according to the test scenario) thereby leading to missed

faults, such as an Incorrect Association injected by the WAS3 mutation

operator. As well as changing a navigable association to a shared

aggregation or vice versa (WAS2) generates an equivalent mutant

because “aggregation=shared” has no semantic effect in an executable

model using ALF. Thus, another validation technique is required to

validate these elements’ properties (i.e. inspection of the CS).

Finally, one of the strengths of CoSTest test cases is that it can

detect types of defect about misunderstanding requirements (i.e.

Missing and Unnecessary types) that are not normally detected at the

CS level, by generating test cases based on user requirements. In a

previous work [43] we found a tendency to report only defects related

to verification, such as “Wrong” type (e.g. incorrect) rather than

defects related to validation.

8.4.9 Analysis of the Threats to the Validity of

the Results
There are several threats that potentially affect the validity of our

study including threats to internal validity, threats to external validity,

threats to construct validity and threats to conclusion validity.

Threats to internal validity are conditions that can affect the

dependent variables of the experiment without the researcher’s

knowledge. In our study, the selection of mutation operators is the

main threat to internal validity. According to Andrews et al. [111],

when using carefully selected mutation operators and after removing

equivalent mutants, the mutants can provide a good indication of the

fault detection ability of a test suite. Therefore, in order to minimize

this threat we used an automatic process [124] to inject faults

systematically, by avoiding non-valid and equivalent mutants and

optimizing the testing coverage. This tool implements the mutation

operators defined in a previous work [115].

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

241

Threats to external validity are conditions that limit the ability to

generalize the results of our experiments to industrial practice. This

threat is reduced by using seven CS of different sizes (see Subject CS

Section) and domain (e.g. information systems, games). Moreover, a CS

was taken from industry, some well-documented CS were found in the

literature (i.e. [131], [133] and [132]), and others (i.e. ER, OCR, and VC)

were selected because they contained the relevant CS elements

required to inject the faults.

Threats to construct validity refer to the suitability of our

evaluation metrics. We used well-known metrics to measure the

effectiveness (rate of number of faults and number of detected fault

types) [146] and the adequacy of the test suites (mutation score) [147].

We therefore believe there is little threat to the construct validity.

8.4.10 Conclusions and Changes to the Tool
The experiment let us to evaluate empirically the test cases

generated by CoSTest tool V1.1 with respect to its effectiveness in

terms of its fault detection in Conceptual Schemas.

Fault detection effectiveness was measured in terms of rate of

faults detection and their causes (fault type) by the test suites. Test

suite adequacy was measured in terms of the mutation score value.

Our evaluation included the analysis of the variables for mutant types

(FOM and HOM).

This experiment demonstrated that the effectiveness of the

CoSTest test suites was affected by the mutant type and better results

were obtained in detecting faults in HOM. These results suggest that

the CoSTest technique is robust in detecting types of defects that are

not normally detected at the CS level. However, some mutation

operators achieved a value lower than 0.7 in the mutation score. These

results suggest that the test suite should include a test for certain

characteristics of CS elements, such as associations, and improve the

coverage at the constraint level in order to enhance the effectiveness

of the test suites.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

242

Finally, some of the main changes applied to the tool including the

ability to execute in reverse order some constraints, such as derivation

rules, which needed to be executed in reverse order when there was a

relation between classes that affected the computed result. This means

these test cases were improved. We also implemented a report to

track the generated test cases in a way that helps to locate the test

cases and to detect if any are repeated.

8.5 Evaluating CoSTest User Perceptions
The following is a description of two experiments (i.e. pilot and

industrial cases) to evaluate two properties of CoSTest: usefulness and

ease-of-use CoSTest for which we recruited a set of users from both

the university (i.e. pilot test) and industry.

Our main motivation was to validate CoSTest in real‑world

conditions as CoSTest had been conceived and evaluated only in

laboratory experiments. Therefore, we aimed at discovering in a real

world observational case study what kind of practical interpretations

can be obtained from practitioners to identify areas of possible

improvements, to explore general problems detected by the users and

to define generally applicable solution strategies.

8.5.1 Experiment Research Goal
Following the template for goal definition that is suggested in [142], the

goal of this study can be summarized as follows:

Analyze CoSTest
For the purpose of evaluation
With respect to usefulness and ease-of-use
From the point of view of the researchers
In the context of university and industry

8.5.2 Research Methodology
This study is an observational case study of a real-world case

without performing an intervention. As a result of the case study-based

research experience, we are going to collect many types of evidence:

words, statements, documents, etc. that may be replicated in, or

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

243

generalised by similarity to the context of small and medium software

companies where there are UML CD-based conceptual schemas to be

validated. However, the context, time, participants, and problem will

be different. Thus, the evidence will be linked together to support our

conclusions on the user perceptions of CoSTest.

8.5.3 Experiment Context: The everis’ Study Case
The case study company is everis10, a multinational firm offering

business consulting, as well as IT development, maintenance and

improvement in different domains and platforms (e.g. mobile, desktop

embedded, web-based applications). everis is carrying out a project to

improve a service-oriented architecture (SOA) platform for e-

government. Within the public administration sector, everis has wide

experience in projects related to modernization of public procurement

management, education, e-government, health, justice, etc. everis has

developed several electronic services provided by several Spanish

municipal councils to citizens and companies (e.g. marriage registration

application, public pool booking, taxes).

In order to compete on an international scale, everis is constantly

looking for ways to reduce the time to market and increase the quality

of its software products. However, they do not run CS-level tests but

they do use tests of usability, integration, system, regression,

acceptance and unit. In addition, everis uses a manual technique to

generate the test cases from use cases, so that they require new

techniques for systematization and automation of testing throughout

the software and system life-cycle.

By applying the CoSTest validation, it is possible to perform early

testing that facilitates the detection of defects in conceptual schemas

and prevents defects from being transferred to the code, which

contributes to the assurance of the quality of the product and

optimizes the use of resources (e.g. time, budget) required in the

10 http://www.everis.com

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

244

process of software development. everis is thus a real-world

environment in which the CoSTest validation can be applied.

8.5.4 Experiment Reseach Questions
In the following, we formulate two experiment reseach questions

(ERQ) that guided the experiment that was performed in this study and

briefly describe how we plan to gather the data to answer the

question. The overall approach is based on interviews with users and

observing their behaviour while interpreting defects report generated

by CoSTest.

ERQ1. When the subjects are validating a UML CD-based CS with

CoSTest’s reports, what is their impression of its perceived usefulness?

ERQ2. When the subjects are validating a UML CD-based CS with

CoSTest’s reports, what is their impression of its perceived ease-of-use?

To answer these questions, we measure the perceived usefulness

and perceived ease-of-use of the CoSTest tool in the future. Besides

collecting evidence from interviews and observation we plan to assess

the perceived usefulness for everis testers by means of a 7-point Likert

scale questionnaire [148].

8.5.5 Case Selection
For this case study, we took one unit that is part of the everis’ SOA

development platform: the project management office (PMO). We

selected this CS for our case study for two main reasons. First, it

represents a simple, understandable, and realistic scenario that

includes enough elements for the complete application of our

validation framework. Second, a document with a specification of

requirements using communicational analysis was available during the

case study.

A PMO is the department or group of designated people in charge

of defining the best practices and standards for project management in

the portfolio of projects of an organisation or collaborative

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

245

environment. As such, the PMO can use and establish several tools,

depending on the nature of the environment and the type of projects.

In this case study we are focused on the incident management process

of the PMO. Incidents emerge when the eGoveris’ users have problems

using the platform. eGoveris was created to deliver an eGoverment

solution for local councils based on an SOA paradigm.

PMO offers several services to their customers and wants to

improve them, but does not know how. It does not have enough

technical knowledge to accomplish this, so it needs an external

provider. Several companies would interact with the PMO through a

contract procedure defined by the end customer. This implies that a

change in the service provider, according to different context

conditions, influences the value delivered to customers, activities and

service provisioning. If the PMO has technicians with technical

knowledge, it would be the external provider also. Otherwise, it needs

to hire the services of an external provider in order to supply the lack

of technical knowledge. In this case, everis is the external provider who

defines the best way to apply a solution according to the requirements

specified by the PMO. As a result, the PMO is modified to incorporate

the proposed methodology (for turhter details see Appendix B).

8.5.6 Methods of Data Collection
The Technology Acceptance Model, or TAM [149] is one of the

most influential usability questionnaires. According to the TAM, the

primary factors that affect a user’s intention to use a technology are

his/her perceived usefulness and perceived ease-of-use. Actual use of

technologies is affected by the intention to use, which is itself affected

by the perceived usefulness and usability of the technology. A number

of studies support the validity of the TAM and its satisfactory

explanation of end-user system usage [150].

Thus, we used two standard questionnaires widely applied for

evaluating usefulness and ease-of-use in a subjective manner [151].

The method selected to collect data was the interview.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

246

Perceived usefulness

The extent to which a person believes a technology will enhance

job performance [151]. This variable is measured using a 7-point Likert

scale format to obtain users’ perception. We also asked the everis’

stakeholders which improvements are required to improve its

usefulness.

Perceived ease-of-use

The extent to which a person believes that using the technology

will be effortless. The stakeholders’ perceived ease-of-use will be

evaluated by means of a 7‑point Likert scale questionnaire. In addition,

we asked the everis’ stakeholders which improvements are required to

improve ease-of-use.

8.5.7 Experimental Subjects
The subjects that participated in this experiment were:

 A research and developer manager, who has 12 years of

experience in the IT sector and that has led several

innovation projects. This role has a mixture of knowledge

about the SOA platform, development tools, and also of

the results expected by public bodies.

 A junior developer and tester with five years of experience

in testing processes generating test cases in JUnit. She was

willing to validate the Conceptual Schema in some projects

and had little initial knowledge of Communicational

Analysis specification.

8.5.8 Instrumentation
We designed a set of instruments to train the subjects, collected

data from the experimental task and also facilitated the subsequent

data analysis. For the training in the CoSTest tool, we provided digital

and textual material, such as requirements model, conceptual schema

as well as a CoSTest demonstration video.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

247

We noticed that the provision of the demonstration video was a

very good motivation for learning.

For the experimental task we designed a task description document

and templates to collect data about defects identified and corrected by

the subjects.

Further information about the instrumentation can be found in

Appendix C.

8.5.9 Experimental Procedure
Figure 8.14 presents an overview of the experimental procedure.

Figure 8.14. Experimental Procedure

The session was carried out in a meeting room in the everis’ offices.

A detail of the activities during the session is specified in the following

Table 8.23. The detailed material is included in Appendix C.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

248

Table 8.23. Detail of the Activities

Activity
identification

Description

Training Session

A1.1 Presentation of the activities to be performed during the two
sessions. The objective is to describe the activities that to be
performed during the session.

A1.2 Demographic questionnaire.

A1.3 Training in the use of CoSTest tool.

A1.4 Provide the subjects with textual material specifying the
requirements model, conceptual schema and the task
descriptions.

A1.5 Subjects fill out the template to take notes during the execution
of the tasks.

Experimental Session

A2.1 Provide the subjects with textual material specifying the
requirements model, conceptual schema and the task
descriptions.

A2.2 Subjects fill out the template to take notes during the execution
of the tasks.

A2.3 Subjects fill out the MEM questionnaire.

8.5.10 Pilot Test
In order to verify that all the experimental material was correct and

would not cause problems during the data collection, a pilot test was

run on June 2016 as a Testing course in the University of San Agustín of

Arequipa, Perú. This course consisted of two sessions (Friday and

Monday) of four hours each session.

Objects

In this experiment we used two small UML/ALF conceptual

schemas:

1. A CS of a video club (VC) system, introduced in Chapter 5;

which contains information about the movies and the

partners registered in the system (both of them must be

registered by the salesman (supervisor of the system)

before being able to use all the functionalities. Each movie

is assigned to only one video club. Also, each videoclub

holds its rents.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

249

2. A Photography Agency (PA) system that represents the

functionality of a photography agency that covers the

management of photographers (e.g. application, selection,

promotion) and publishing houses (e.g. subscriptions), as

well as the management of regular reports (they are

provided by photographers and become part of the agency

catalogue, then publishing houses order them) and of

exclusive reports (they are first requested by a publishing

house and then assigned to a photographer); the delivery

of both types of reports and the corresponding invoicing to

publishing houses and payment to photographers are also

within the scope of the case. This case is used to illustrate

Communication Analysis in [21].

Participants

 Software modellers/testers were the population of interest for this

study; in practical settings, they are the designers of conceptual

schemas and often work as testers.

The study does not require expert developers, but the subjects

must have basic knowledge in software development: design of

conceptual schemas, some languages and tools that support software

development, and execution of testing in development projects.

Additionally, we required them to be familiar with Eclipse and UML2.

A total of twenty-five people participated in our pilot experiment.

Three participants were industry practitioners and the others were

Computer Engineering Degree students from the University of San

Agustín of Arequipa, Perú.

All the participants had a good background in modelling in UML,

model-based testing and good testing and programming skills (using

object oriented languages such as Java or C++).

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

250

Tasks

The participants were asked to carry out the tasks of the two

planned sessions (Table 8.23). Both tasks were part of a mandatory

activity (which also contained other tasks) that all students had to

deliver to pass the Testing course.

Prior to carrying out the tasks, the participants were introduced to

CoSTest in the form of two demo videos.

The activity was composed of eight tasks and three questionnairies

(demographic, tasks template and post-task) to evaluate the CoSTest

tool and covered two four-hour sessions (friday and monday). During

this period the students were able to work collaboratively, ask the

teacher questions and search for any kind of information to help in

solving the proposed tasks.

Lessons Learnt

We performed a pilot test in order to test the material

(presentation, requirements specification, conceptual schemas, task

templates, questionnaires, required time, and so on).

The pilot test was performed according to the schedule of the

course and we adapted the material to keep the original objectives. As

a result of our pilot test, several improvements have been added,

mainly consisting of the following:

1. Include a clear description of the requirements for the

installation of the tool because the tool has problems with

a more advanced Java version than version 7.

2. Update the task template to collect data by eliminating the

timing record because the time in each iteration varies

depending on several factors such as the complexity of the

defect type to be corrected and the skills of the subjects in

managing the modelling tool (i.e. UML2 or Papyrus tool).

3. Include an error log in the tool; this suggestion was made

by an industry practitioner.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

251

4. Highlight the failed test cases in red to differentiate them

from those that are passed successfully.

5. Show all defects; this suggestion was not addressed

because the testing process is incremental.

These observations were useful to update the experiment material

and to be able to apply it in a more understable way.

8.5.11 Analysis of the Threats to Validity
There are several threats that potentially affect the validity of our

study including threats to internal validity, threats to external validity,

threats to construct validity and threats to conclusion validity.

Conclusion Validity

Threats to conclusion validity are concerned with issues that affect

the ability to draw valid conclusions about relations between the

treatment and the outcome of an experiment. Threats to the validity of

conclusions are typically due to low statistical power. As the method

used in this research project is purely qualitative, we consider that this

kind of threat does not apply here. As a result, we avoid making any

conclusions from a generalisation made by inference from

observations made during the research. In addition, we address the

“Fishing for a specific result” by two methods (i.e. questionnaires and

interviews) to ensure consistent results.

Internal Validity

Threats to internal validity are conditions that can affect the

dependent variables of the experiment without the researcher’s

knowledge.

In our study, the selection of mutation operators is the main threat

to internal validity. According to Andrews et al. [111], when using

carefully selected mutation operators and after removing equivalent

mutants, the mutants can provide a good indication of the fault

detection ability of a test suite. Therefore, in order to minimize this

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

252

threat, we used a random selection of mutation operators to inject

faults into the selected CS and avoiding non-valid and equivalent

mutants.

Regarding the instrumentation threat, we reduced this threat by

validating the instruments used in the study by means of a pilot test.

Another threat deal with was maturation, which implies that subjects

may react differently as time passes (e.g., due to boredom or

tiredness). To minimize this threat, we selected a set of tasks that

allowed the subjects to finish them in less than two hours. Finally,

social threats were avoided because the tasks were individual and the

subjects were not allowed to talk to each other about the tasks. Also,

since they were not aware of the experimental research goal, this they

did not affect their performance.

External Validity

Threats to external validity are conditions that limit the ability to

generalize the results of our study to industrial practice. This threat is

reduced by using a real case and involving all the engineers of the

company concerned with the analysed CSs rather than using a random

sample. In addition, this threat involves having an experimental setting

that is not representative of industrial practice. To minimize this threat,

we utilized tools that are commonly used in industrial environments

(e.g., UML2 tools, the Eclipse platform).

Construct Validity

This threat focuses on whether the theoretical constructs are

suitably interpreted and measured fore our evaluation metrics. We

increased the reliability of subjective measures by using questionnaires

with scales previously validated in other studies [148].

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

253

8.5.12 Answers to Experiment Research

Questions
To answer the experiment research questions, we established a set

of preliminary hypotheses. Table 8.24 presents the corresponding

hypotheses.

Table 8.24. Specification of hypotheses

Null
hypothesis

Statement:
The application of CoSTest’s report does not influence the

subject …
H10 (ERQ1) … perceived usefulness of CoSTest in detecting faults in

Conceptual Schemas

H20 (ERQ2) … perceived ease-of-use of CoSTest in detecting faults in
Conceptual Schemas

As there were only 2 subjects in the research we did not apply any

statistical test to analyse, interpret the collected data or generalize. We

analysed the responses of each subject for each experiment research

question obtained from the aforementioned instruments containing

the questionnaires filled in by the subjects.

Regarding ERQ1, the results obtained from the questionnaires

show that both subjects agreed that CoSTest was useful for correcting

the defects found in a CS. These positive results were reinforced by the

qualitative feedback obtained during the interviews. All the subjects

considered that CoSTest was useful, since it allowed them to perform

the tasks more effectively; for instance, one subject stated: “The tool

seems very useful, it can help a lot in the creation of test cases and

validation of conceptual schemas”, while the other said: “CoSTest

reduces the possibility of omitting test cases”. The usefulness of the

test cases generation capabilities was also emphasized by some

subjects “Reduces the amount of effort required to produce all test

cases in a systematic way” and “the feedback to localize and correct

the defects is valuable”.

Regarding ERQ2, the results obtained from the questionnaires

show that both subjects think that the correction of defects using

CoSTest is perceived as easy to use. These positive results were

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

254

reinforced by the qualitative feedback obtained during the interviews.

All of the subjects considered that CoSTest was easy to use, since it

allowed them to perform the tasks easily. Most subjects emphasized

the execution method; for instance, one subject stated: “Generating

test cases with CoSTest requires just a few clicks to get them … and the

localization of defects is done in an easier and more direct way”, while

another subject said: “When you execute CoSTest, the process to follow

is quite intuitive”.

8.5.13 Discussion
The subjective perception expressed by the subjects of the study

indicates their willingness to accept and use CoSTest. They perceived

CoSTest to be a useful and easy to use to generate test cases and

correct the defects found in conceptual schemas. Further studies using

CSs of different sizes and domains (e.g. information systems, games)

will be required to generalize these results. However, this

observational case study done in everis has taught us several lessons

regarding putting CoSTest into practice of the and research. We would

like to highlight the following:

Models are vital for the application of our validation

framework

CoSTest is designed for validation of conceptual schemas using a

model as the functional requirements specification. The generation of

test cases is based on a model-driven paradigm. In this context, the

two subjects of the study were highly satisfied with CoSTest level of

automation. This level was achieved thanks to model transformations,

which reduce the complexity of test case generation by automating the

process. This is in line with the benefits of MDE: the reduction of

complexity by means of the automation of labour-intensive and error-

prone tasks [152]. Therefore, the assistance provided by CoSTest

allowed the subjects to perform the validations without deviations, and

this led to a significant increase in usefulness and ease of use

perception. In this context, the everis’ developer/tester said: "Although

CoSTest uses an interesting strategy to validate conceptual schemas,

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

255

the industry needs to adopt the MDD paradigm, particularly the

Communicational Analysis method, which may require time in cases of

low modelling experience". However, they indicate that they do not

want to miss the advantages of CoSTest and are receptive to its use; “I

am interested in investing time in modelling, seeing the benefits it has

in the tests and correction of defects phase”.

In future research studies on the advantages of CoSTest in real

projects is needed to convince more companies like everis to apply

Communication Analysis to take advantage of this requirements

method in their projects.

In order to reduce this barrier and to show the facilities of CoSTest,

we plan to improve our work in two ways. First, we will increase our

repository (https://staq.dsic.upv.es/webstaq/costest.html) containing

examples of conceptual schemas and requirements models that can be

validated by CoSTEst. Secondly, we will incorporate a way to specify

the requirements using a textual specification, so that the use of both

types of specifications can be evaluated and compared.

An open source tool is required for adoption

The subjects participating in this research emphasized developing

open-source and free solutions as a means of allowing free access for

experimentation and reduce the cost of adoption. In addition, they

think that the development of tools based on industry-accepted open

platforms, such as Eclipse, has provided benefits, such as easier

integration. Therefore, we plan to invite more companies to use our

tool and to probe its benefits.

The use of the ALF language is required

Since our validation tool uses ALF as the language to generate test

cases and execute them (see Chapter 5), the testers need to know the

syntaxes and semantics of the ALF language to edit or modify the test

cases involving some complex negative constraints.

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

256

Since the case study used in this research does not require

modifying the generated test cases, this knowledge was not required.

However, it can be varied depending on the complexity of the

formalized stories, according to each testing objective. These

difficulties can be mitigated by enhancing CoSTest with appropriate

assistance for updating/editing its test cases. To do this, we plan to

include a set of guidelines that will free users from having to be ALF

experts, allowing them to create/update test cases following a set of

intuitive steps.

Finally, we observed that as ALF is a script language, it was familiar

to the subjects.

Validation should be extended at code level

The subjects also considered that they would like CoSTest to be

able to generate test cases using other programming languages (e.g.

java, C#) at code level. In this way the model-driven process for

generating test cases can be used for two levels of abstraction: model

and code level. To do this, we plan to include an option that will allow

test cases to be generated for execution in Java language [153] using

JUnit test cases [154]. This result is in line with one of the most widely

recognized benefits of MDD: development of Platform Independent

Models (PIMs) that have a long lifespan and may be ported to multiple

platforms or languages [152].

8.6 Summary and Conclusions
In this chapter we have reported six experiences in order to

evaluate and validate the CoSTest framework. We performed two

comparative laboratory experiments to evaluate the transformation

rules used in CoSTest, generating the test cases and CSUT, two

mutation-based laboratory experiments to evaluate the mutation

operators implemented in the tool. This was done to identify the test

cases that should be prioritized in CoSTest as well as to evaluate the

effectiveness of the CoSTest test cases. A mutation-based laboratory

experiment was used to validate CoSTest effectiveness in killing

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

257

mutants as well as the defects detected in these mutants. The last

evaluation experience included an observational case study to gather

user perceptions on using CoSTest for correction of defects.

Mutated CSs are like virtual laboratories where injected defects can

be detected, and test cases and corrective procedures can be

experimented with before they are used and implemented in the real

system. Experience from applications in other fields than software

engineering indicates that significant benefits can be drawn from

introducing the use of mutation for management decision support.

Mutation-based software engineering laboratories can help focus

experimentation in both industry and academia for this purpose, while

saving effort by avoiding experiments in real-world settings that have

little chances of generating significant new knowledge.

The results of the first two comparative experiments to validate the

model-to-text and the first two model-to-model transformations

helped the researchers to improve the tool support as well as to

identify the transformation rules that should be improved.

The results of the next two mutation-based experiments suggest

that the CoSTest mutant generator is effective and efficiency in

generating first order mutants using the 18 mutation operators defined

for this purpose.

The results of the fifth experiment suggest that most of CoSTest’s

test cases are quite effective (i.e. detection ratio > 70%) in detecting

defects at the CS level. However, some test cases achieved a value

lower than 0.7 in the mutation score. These results suggest that the

test suite should include a test for certain characteristics of CS

elements, such as associations, and improve the coverage at the

constraint level in order to enhance the effectiveness of the test suites.

The results of the observational case study are also encouraging. All

of the subjects agreed, or strongly agreed, about each of the items of

the usefulness scale. We also obtained positive results for perceived

CHAPTER 8. VALIDATION AND EVALUATION OF THE COSTEST TOOL

258

ease-of-use. These subjective results were reinforced by positive

results about the intention of the subjects to use the tool. We believe

that these results were obtained thanks to the use of MDD techniques

(such as metamodeling, model transformations and independent

platform), which reduce the complexity of the four main phases of the

test cases generation process: design, generation, execution and

evaluation.

In contrast to these positive findings, we also found several

challenges that are inherent to CoSTest usage. With the aim of

providing better tool support for model-driven testing, we will address

these challenges in the near future. For instance, as Section 8.5.13

describes, we will incorporate support for a textual specification of

requirements, include a help that enables guided test case edition,

enhance the validation at code level and allow free access to our

validation tool. The main goal of these enhancements is to facilitate

the adoption of CoSTest in the industry.

PART V.

FINAL DISCUSSION

CHAPTER 9. FINAL DISCUSSION

261

Chapter 9
FINAL DISCUSSION

9. Final Discussion
Unlike traditional Software Development in which the software is

the main artefact, the main artefact in MDE is a model (conceptual

schema). Conceptual modelling is an essential activity in the

requirements phase of the software development life cycle, which is

aimed at eliciting, specifying and validating the conceptual schema of

an information system (Chapter 1). The aim of Conceptual Schema

Validation is to check the alignment between the knowledge specified

in the CS and the stakeholder’s expectations.

9.1 Summary of the Contributions of this

Thesis
This thesis has presented a Testing-Based Validation Framework for

Conceptual Schema in a Model-Driven Environment as a contribution

to the challenge of conceptual schema validation. We describe how to

use each framework method and how they are integrated. The

contributions of the thesis consist of the evidence for the achievement

of the research goals, as well as the answers to the established

research questions as described below:

Contribution 1. Establishment of the fundamentals for our validation

framework, which are very important because they establish the

CHAPTER 9. FINAL DISCUSSION

262

requirements and challenges addressed in the thesis (Chapters 3 and

4). This is a knowledge contribution related with the RQ1 (see Section

2.3) and it is based on the existing state of knowledge in both the

problem and solution domains for the research opportunity under

study.

Thus, we have described the fundamentals of conceptual schema

testing in a model-driven environment (Chapter 3). We have explained

the main quality models and validation practices to improve the quality

of conceptual schemas (Chapter 4). In addition, some concepts were

further defined in Chapters 5 and 6, which helped the researchers to

establish the requirements and challenges to be faced in this thesis.

These concepts and challenges are related to the design of the CoSTest

framework methods (Chapters 5 and 6).

Contribution 2. This contribution is very important because provides a

new validation framework to improve the quality of the conceptual

schemas in a model-driven environment (Chapters 5 and 6). This is the

main research contribution of the thesis and it is related with the

RQ2.2 (see Section 2.3).

We show how MDD techniques (such as metamodeling, and model

transformations), improve abstraction, automation and reuse, which

allows us to alleviate the complexity of our validation framework. So

that, our framework supports four phases of the testing process: test

design, test case generation, test case execution and the evaluation of

the results. We described the work involved in designing each phase of

the model-driven testing framework, as well as the decisions made to

obtain the expected results. The design can be summarised as follow:

The test case generation is based on related works and knowledge

from relevant solutions in model management, model-driven

development and testing, such as Communication Analysis (a

communication-oriented business process modelling and requirements

method), model-to-model transformations, the classic pathfinder or

graph traversal algorithm, and the OO‑Method (object-oriented

CHAPTER 9. FINAL DISCUSSION

263

model-driven development method). To generate the executable test

cases and create the testing environment we selected a platform

independent language (i.e. OMG Standard - ALF), that works at the

same semantic level as the rest of the UML-based CS and can be

consistently implemented across a number of tools, promoting the

same sort of interoperability for textual behavioural specification that

the UML standard already does for graphical modelling.

For the test selection and prioritization of test cases, we used

mutation strategies in order to identify the types of defect that can be

detected in the conceptual schemas using our testing strategy, as well

as, the test cases that should be selected and prioritized. To generate

the executable Conceptual Schemas, we applied model-to-test

transformations to generate the ALF execution units and integrate

them into our testing framework.

In order to make the corrective feedback understandable to the

modeller/tester, the report generated by our framework identifies the

defect type and the source of the problems and assists the

modeller/tester to repair them, which was one of the goals of our

proposal.

Contribution 3. Prototype that implements the validation framework

supporting the facilities to test conceptual schemas (Chapter 7). This

contribution is related with the RQ2.1 (see Section 2.3) showing how

the proposed validation framework can be applied in practice and

making ideas tangible to then transfer this proposal to industrial

applications.

We have implemented a supporting tool (CoSTest) for automated

generation of test cases and automated testing of conceptual schemas

(Chapter 7). This tool contains the modules that manage and generate

the executable test cases from requirements. These include a CSUT

processor that transforms a conceptual schema into an executable CS,

a test data-manager to concretize the test case values, and a test

processor that coordinates the execution of the tests and reports the

CHAPTER 9. FINAL DISCUSSION

264

found defects as well the elements covered by the test cases. Tests

written in ALF Language may be automatically executed as many times

as needed. We have also shown that our testing framework has been

extended with the mutant generator in order to be able to deal with

first-order mutant generation and provide the facilities to test them.

Contribution 4. Some experiences in evaluating and validating the

CoSTest tool (Chapter 8). This is a knowledge contribution related to

show how our validation framework works in practice; what are its

limitations and the solution’s effectiveness. This contribution is related

with the RQ3 (see Section 2.2).

We validated the proposed framework in the context of Design

Science Research, which was the framework adopted in this PhD thesis

(Chapter 2). Various laboratory demonstrations were performed for

some methods of CoSTest. We tested all CoSTest methods in a

controlled laboratory environment and evaluated their feasibility

before applying them to empirical tasks.

We validated the transformation rules used in the CoSTest model-

driven strategy to generate the test cases by means of their application

in a comparative experiment with cases taken from the literature and

others selected with the relevant CS elements required to evaluate all

the rules. The results helped the researchers to improve the tool

support and to identify the transformation rules that need to be

improved.

Since our validation framework includes the component to

generate first order mutants of UML CD –based conceptual schemas,

we evaluated some properties of the mutation operators used for

generating mutants and also validated the effectiveness and efficiency

of the mutant generation process. The results were positive in terms of

the percentage of valid and non-equivalent mutants generated by the

tool and the time that can be saved by using it.

CHAPTER 9. FINAL DISCUSSION

265

We also evaluated CoSTest effectiveness by means of its

application in a comparative experiment using mutation with cases

taken from the literature and industrial practice and other cases

selected because they contained the relevant CS elements required to

inject the faults. The results helped the researchers to improve and

extend the tool support as well as to identify the test cases that need

to be improved and prioritized.

Finally, we evaluated the stakeholder’s perceptions by using our

tool support in the correction process of the defects found on UML CD-

based in an industrial case (Chapter 8). The perceptions of the

usefulness and ease-of-use of our tool are very positive and have

provided ideas to be addressed in future work. We have seen that the

main quality goal of conceptual schemas is completeness and that this

may be improved by testing, and that other quality goals such as

correctness, consistency, comprehensibility, confinement and

changeability are also positively influenced. We have also shown that

our testing framework can be used in combination with existing

conceptual schema validation and verification techniques.

In summary, this thesis contributes new knowledge and artefacts

to the software quality field and model-driven development. The

evidence provided by the evaluations and all the validations and tool

developments have pointed us in the right direction to further transfer

this method to industrial applications.

9.2 Thesis Impact

9.2.1 Publications

Book Chapter

1. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

A Model-Level Mutation Tool to Support the Assessment of the

Test Case Quality – Lecture Notes Information Systems.

Publication: Print ISBN 978-3-319-52592-1, volume 22, 2017.

CHAPTER 9. FINAL DISCUSSION

266

Journals

1. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

Model Transformations Rules within a Model-Driven Testing

Environment: Definition and Validation – Submitted to Software

Quality Journal.

2. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

CoSTest: A model-driven framework for validation of conceptual

schemas – Submitted to Systems and Software Journal.

Conference Papers

1. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

Effectiveness Assessment of an Early Testing Technique using

Model-Level Mutants. Evaluation and Assessment in Software

Engineering (EASE 2017). Core Index A. Karlskrona, Sweden, June

16, 2017.

2. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

Mutation Operators for UML Class Diagrams. Advanced

Information Systems Engineering - 28th International Conference

(CAiSE 2016). Core Index: A. Publication: Print ISBN 978-3-319-

39695-8, pp. 325-341. Ljubljana, Slovenia, June 13-17, 2016.

3. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

A Model-level Mutation Tool to Support the Assessment of the

Test Case Quality. 25th International Conference on Information

Systems Development (ISD 2016). Core Index: A. Online ISBN 978-

83-7875-307-0. Katowice, Poland, August 25-27, 2016

4. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

What do we know about the defect types detected in conceptual

models? 9th IEEE International Conference on Research Challenges

in Information Science (RCIS 2015). Core Index: B. Publication:

print ISBN 978-1-4673-6630-4, pp. 88-99. Athens, Greece, May 13-

15, 2015.

http://dblp.uni-trier.de/db/conf/isdevel/isdevel2016.html#GrandaCVP16

CHAPTER 9. FINAL DISCUSSION

267

Workshops Papers

1. Granda, M.F., Condori-Fernández, N., Vos, T. E. J.

Using ALF within the CoSTest process for Validation of UML-based

Conceptual Schemas. 36th International Conference on Conceptual

Modeling (ER2017). Valencia, Spain, November 8, 2017.

2. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

Towards the automated generation of abstract test cases from

requirements models. 1st International Workshop on

Requirements Engineering and Testing (RET 2014). Online ISBN

978-1-4799-6334-8, pp. 39-46. Karlskrona, Sweden, August 26,

2014.

3. Granda, M. F.

An experiment design for validating a test case generation strategy

from requirements models. 4th IEEE International Workshop on

Empirical Requirements Engineering (EmpiRE 2014). Online ISBN

978-1-4799-6337-9, pp. 44-47. Karlskrona, Sweden, August 25,

2014.

Poster and Demo Tool

1. Granda, M.F., Condori-Fernández, N., Vos, T. E. J., Pastor, O.

CoSTest: A tool for Validation of Requirements at Model Level.

25th IEEE International Requirements Engineering Conference. (RE

2017). Lisbon, Portugal, September 7, 2017.

2. Granda, M. F.

Testing-Based Conceptual Schema Validation in a Model-Driven

Environment. I Encuentro de Estudiantes de Doctorado de la

Universitat Politècnica de València, Valencia, Spain, June 12, 2014.

Doctoral Consortium

1. Granda, M. F.

Testing-Based Conceptual Schema Validation in a Model-Driven

Environment. Doctoral Consortium of the 25th International

Conference on Advanced Information Systems Engineering (CAiSE

2013), Valencia, Spain, June 21, 2013.

http://dblp.uni-trier.de/db/conf/re/ret2014.html#GrandaCVP14

CHAPTER 9. FINAL DISCUSSION

268

9.2.2 Academic Project Participation
1. CaaS: Capability as a Service in digital enterprises. European Project

FP7‑ICT 2009‑5. Reference: INFSO‑ICT‑257574. 2013‑2016.

2. IDEO: Innovative services for Digital Enterprises with ORCA

(Servicios Innovadores para Empresas Digitales con ORCA).

Reference: PROMETEOII/2014/039.

9.2.3 Research Stay
Erasmus Stay in the Department of Computer Science, Faculty of

Sciences of VU University, Amsterdam, Netherlands. June - September

2014. Project: An experiment design for validating a test case

generation strategy from requirements models.

9.3 A Work that Opens New Research Lines
The work carried out in the course of this thesis can be extended in

many ways. In this section we suggest several directions for further

research in this area, according to the three dimensions of our

framework and the limitations found in the validation phase.

9.3.1 Domain
Regarding the kind of model to be validated, the conceptual

schemas addressed in this thesis could be extended. In order to be

more expressive, new types of constraints could be considered. Adding

constraints means identifying their representation in ALF language.

However, -as we pointed out in Chapter 5 – not all the possible

constraints can be tested by our method.

The methods described in this thesis could also be applied to other

types of executable models. In the context of UML, for instance, other

model behaviour (such as activity diagrams or statechart diagrams)

could be analysed in terms of the testing method addressed in this

thesis.

CHAPTER 9. FINAL DISCUSSION

269

9.3.2 Quality Goal
Regarding the conceptual schema quality goals some of these could

be improved with our validation framework. In particular, as we stated

in Chapter 3, the meaning of the consistency goal could be extended to

consider not only the structural diagram appearing in the conceptual

schema but also other behavioural diagrams (such as activity diagrams

or statechart diagrams) reasoning over the consistency between the

structural and behavioural parts.

9.3.3 Method
The validation framework should integrate with other verification

methods to allow the validation of more complex and specific elements

such as verifying weak and strong executability of the model

operations [155].

Regarding framework inputs, two concrete research lines could be

addressed:

a) The first line consists of specifying the requirements with other

types of models, for instance, BPM, i* or concept maps or a

textual specification in order to extend the facilities to specify

requirements for our validation framework.

b) The second line consists of providing an automatic translation

into an executable CSUT of other types of conceptual schemas

complaint with UML, such as Integranova models [6] to allow

designers to perform validation on these types of conceptual

schemas.

In addition, we plan to develop and include in our tool a set of

guidelines that will support users in creating/updating test cases

following a set of intuitive steps. We plan to include in the tool an

option that will allow test cases to be generated to be executed in Java

language using JUnit test cases.

Further developments should be performed on the developed

prototypes to make them more stable and usable. Currently, with

CHAPTER 9. FINAL DISCUSSION

270

these tools we consider that it is possible to implement CoSTest in real

world conditions. The open source provision of tools for CoSTest

ensures the future execution of the engineering cycle to bring CoSTest

to industry.

A set of guidelines should be proposed on the use of CoSTest, to

provide useful advice to the conceptual modeler/tester in at least the

most basic situations.

The proposed further work will help to extend our validation

framework and make it more complete. Thus, we could perform a

large-scale empirical study on several industrial subject CS to predict

how the validation framework will improve the performance of

stakeholders in their tasks of testing of conceptual schemas and

evaluate if the use of CoSTest reduces the development costs and

improve the quality of delivered software systems (see especulatives

goals G7 and G8 in Section 2.2).

In summary, given the increasing importance of models in the most

relevant software development methods currently in use, the

validation of the requirements on such models is a research topic that

needs further in-depth study.

REFERENCES

271

REFERENCES
[1] A. Olivé, Conceptual Modeling of Information System. Springer,

2007.

[2] J. Johnson and A. Henderson, Conceptual Models: Core to Good
Design. Morgan & Claypool, 2012.

[3] R. France and B. Rumpe, “Model-driven Development of
Complex Software: A Research Roadmap,” in International
Conference on Software Engineering, 2007, no. 2, pp. 37–54.

[4] M. Staron, “Adopting Model Driven Software Development in
Industry – A Case Study at Two Companies,” Model Driven Eng.
Lang. Syst., pp. 57–72, 2006.

[5] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven
Engineering Practices in Industry,” Proc. 33rd Int. Conf. Softw.
Eng., pp. 633–642, 2011.

[6] O. Pastor and J. C. Molina, Model-Driven Architecture in
Practice. Cambridge: Springer Berlin Heidelberg, 2007.

[7] R. Van Der Straeten and T. Mens, “Challenges in model-driven
software engineering,” in Model Driven Engineering Languages
and Systems - MODELS 2008, 2009, pp. 35–47.

[8] A. Olivé and J. Cabot, “A Research Agenda for Conceptual
Schema- Centric Development,” in Conceptual Modelling in
Information Systems Engineering, 2007, pp. 319–334.

[9] P. Mohagheghi, V. Dehlen, and T. Neple, “Definitions and
approaches to model quality in model-based software
development - A review of literature,” Inf. Softw. Technol., vol.
51, no. 12, pp. 1646–1669, 2009.

[10] J. Krogstie, Model-Based Development and Evolution of

REFERENCES

272

Information Systems: A Quality Approach. 2012.

[11] M. Genero, A. M. Fernández-Saez, H. J. Nelson, and G. Poels, “A
Systematic Literature Review on the Quality of UML Models,” J.
Database Manag., vol. 22, no. September, pp. 46–70, 2011.

[12] I. Sommerville, Software Engineering, 9th edn. Boston: Addison-
Wesley, 2011.

[13] K. El Emam and G. A. Koru, “A replicated survey of IT software
project failures,” IEEE Softw., vol. 25, no. 5, pp. 84–90, 2008.

[14] A. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” vol. 32, no. 4, pp. 725–730,
2008.

[15] R. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. 2014.

[16] Y. Labiche, “The UML Is More Than Boxes and Lines,” in Models
2008, pp. 375–386.

[17] Object Management Group, “OCL : Object Constraint
Language,” 2014.

[18] B. Unhelkar, Verification and Validation for Quality of UML 2.0
Models. WILEY, 2005.

[19] P. Skoković and M. Rakić-Skoković, “Requirements-Based
Testing Process in Practice,” vol. 1, no. 4, pp. 155–161, 2010.

[20] P. Loucopoulos and V. Karakostas, System Requirements
Engineering. McGraw-Hill Publishing Company, 1995.

[21] S. España, A. González, and Ó. Pastor, “Communication Analysis:
A Requirements Engineering Method for Information Systems,”
in 21st International Conference on Advanced Information
Systems Engineering, 2009, vol. 5565, pp. 530–545.

[22] I. S. O. (ISO), ISO Standard 9126: Software Product Quality, vol.
2000. 2001, pp. 1–26.

[23] I. S. O. (ISO), ISO 9000:2000, no. 70. 2001, pp. 1–135.

REFERENCES

273

[24] V. Process, V. Process, and I. Levels, IEEE Standard for Software
Verification and Validation. 2004.

[25] I. S. O. (ISO), ISO Standard 9126: Software Product Quality, vol.
2000. 2001, pp. 1–26.

[26] M. D. Ernst, “Static and dynamic analysis: synergy and duality,”
in WODA 2003 ICSE Workshop on Dynamic Analysis, 2003, pp.
24–27.

[27] M. D. Ernst, “Static and dynamic analysis: synergy and duality,”
in WODA 2003 ICSE Workshop on Dynamic Analysis, 2003, pp.
24–27.

[28] J. M. Wing, “A Specifier’s Introduction to Formal Methods,” IEEE
Comput., vol. 23, no. 9, pp. 8–24, 1990.

[29] IEEE, “IEEE Standard for Software Reviews, IEEE std 1028-1997,”
1997.

[30] D. P. Freedman and G. M. Weinberg, Handbook of
Walkthroughs, Inspections, and Technical Reviews: Evaluating
Programs, Projects, and Products, 3rd ed. New York, USA:
Dorset House Publishing Co., 2000.

[31] A. a. Porter, J. Votta, L.G., and V. R. Basili, “Comparing Detection
Methods for Software Requirements inspections: A Replicated
Experiment,” Empir. Softw. Eng., vol. 3, no. 4, pp. 355–379,
1998.

[32] G. H. Travassos, F. Shull, and J. Carver, “Working with UML: A
Software Design Process Based on Inspections for the Unified
Modeling Language,” Adv. Comput., vol. 54, pp. 35–98, 2001.

[33] M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211,
1976.

[34] C. Rolland and C. Proix, “A Natural Language Approach for
Requirements Engineering,” in The 5th International Conference
on Advanced Information Systems Engineering (CAiSE’93), 1993,
pp. 257–277.

REFERENCES

274

[35] J. A. Gulla, “A general explanation component for conceptual
modeling in CASE environments,” ACM Trans. Inf. Syst., vol. 14,
no. 3, pp. 297–329, 1996.

[36] B. J., D. J., M. B., and W. E., “Making the most of formal
specification through animation, testing and proof,” Sci.
Comput. Program., vol. 29, no. 1–2, pp. 53–78, 1997.

[37] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for
Model-Driven Architecture. Addison Wesley, 2002.

[38] O. J.S. and T. F. A., “Testable Requirements and Specifications,”
2007, pp. 17–40.

[39] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012.

[40] Object Management Group, “Unified Modeling Language
(UML),” 2015.

[41] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1–2,
pp. 31–39, 2008.

[42] IEEE, “IEEE Standard Classification for Software Anomalies,”
2010.

[43] M. F. Granda, N. Condori-fernández, T. E. J. Vos, and O. Pastor,
“What do we know about the Defect Types detected in
Conceptual Models ?,” in IEEE 9th Int. Conference on Research
Challenges in Information Science (RCIS), 2015, pp. 96–107.

[44] A. Van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. 2009.

[45] O. I. Lindland, G. Sindre, and A. Sølvberg, “Understanding
Quality in Conceptual Modeling,” IEEE Softw., vol. 11, no. 2, pp.
42–49, 1994.

[46] C. Lange, C. M. R. V., M. J., L. J. Somers, and D. H. M., “An
empirical investigation in quantifying inconsistency and
incompleteness of UML designs,” in Workshop Consistency

REFERENCES

275

Problems in UML-based Software Development II, 2003, pp. 26–
34.

[47] H. J. Nelson and D. E. Monarchi, “Ensuring the quality of
conceptual representations,” Softw. Qual. J., vol. 15, no. 2, pp.
213–233, 2007.

[48] F. Leung and N. Bolloju, “Analyzing the Quality of Domain
Models Developed by Novice Systems Analysts,” in Proceedings
of the 38th Hawaii International Conference on System Sciences,
2005.

[49] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A
framework for testing UML activities based on fUML,” in
MoDEVVa, 2013, vol. 1069, pp. 1–10.

[50] R. Conradi, P. Mohagheghi, T. Arif, L. C. Hegde, G. A. Bunde, and
A. Pedersen, “Object-oriented reading techniques for inspection
of UML models - An industrial experiment,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 2743, pp. 483–500, 2003.

[51] S. Ali, T. Yue, and Z. I. Malik, “Comprehensively evaluating
conformance error rates of applying aspect state machines,” in
Proceedings of the 11th annual international conference on
Aspect-oriented Software Development - AOSD ’12, 2012, p.
155.

[52] D. Dotan and A. Kirshin, “Debugging and testing behavioral UML
models,” in Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and applications
companion - OOPSLA ’07, 2007, p. 838.

[53] A. Tort and A. Olivé, “An approach to testing conceptual
schemas,” Data Knowl. Eng., vol. 69, no. 6, pp. 598–618, 2010.

[54] T. Dinh-Trong, N. Kawane, S. Ghosh, and R. France, “A tool-
supported approach to testing UML design models,” in 10th
IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’05), 2005.

[55] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based

REFERENCES

276

specification environment for validating UML and OCL,” Sci.
Comput. Program., vol. 69, no. 1–3, pp. 27–34, 2007.

[56] O. Pilskalns, A. Andrews, A. Knight, S. Ghosh, and R. France,
“Testing UML designs,” Inf. Softw. Technol., vol. 49, no. 8, pp.
892–912, Aug. 2007.

[57] B. Berenbach, “The evaluation of large, complex UML analysis
and design models,” in 26th International Conference on
Software Engineering, 2004, no. January 2004, pp. 232–241.

[58] O. I. Lindland and J. Krogstie, “Validating conceptual models by
transformational prototyping,” in 5th International Conference
on Advanced Information Systems, 1993, pp. 213–254.

[59] Ö. Albayrak, “An experiment to observe the impact of UML
diagrams on the effectiveness of software requirements
inspections,” in 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM 2009, 2009, pp.
506–510.

[60] B. Berenbach, “The evaluation of large, complex UML analysis
and design models,” in 26th International Conference on
Software Engineering, 2004, no. January 2004, pp. 232–241.

[61] T. Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B.
Wilkins, “UMLAnT: an Eclipse plugin for animating and testing
UML designs,” in eclipse ’05: Proceedings of the 2005 OOPSLA
workshop on Eclipse technology eXchange, 2005, pp. 120–124.

[62] Y. Zhang, “Test-driven modeling for model-driven
development,” IEEE Softw., vol. 21, no. 5, pp. 80–86, 2004.

[63] A. Teilans, A. Kleins, Y. Merkuryev, and A. Grinbergs, “Design of
UML models and their simulation using ARENA,” WSEAS Trans.
Comput. Res., vol. 3, no. 1, pp. 67–73, 2008.

[64] F. Dignum, T. Kemme, W. Kreuzen, H. Weigand, and R. P. van de
Riet, “Knowledge Base Modelling Based on Linguistics and
Founded in Logic,” Data Knowl. Eng., vol. 2, no. 3, pp. 213–254,
1987.

REFERENCES

277

[65] M. Gogolla, S. Conrad, R. Herzig, and N. Vlachantonis, “A
Development Environment for an Object Specification
Language,” Trans. Knowl. Data Eng., vol. 7, no. 3, pp. 505–508,
1995.

[66] A. Tort and A. Olivé, “CSTL Processor tool, prototype for
automated testing of UML/OCL conceptual schemas,” 2011.
[Online]. Available:
http://www.essi.upc.edu/~atort/cstlprocessor/.

[67] Object Management Group, “Semantics of a Foundational
Subset for Executable UML Models (fUML),” 2012.

[68] A. Queralt and E. Teniente, “Verification and validation of UML
conceptual schemas with OCL constraints,” in ACM Transactions
on Software Engineering and Methodology, 2012, vol. 21, no. 2.

[69] G. Bergmann, A. Hegedus, A. Horvath, I. Rath, Z. Ujhelyi, and D.
Varro, “Implementing efficient model validation in EMF tools,”
in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), 2011, pp. 580–583.

[70] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency,
independence and consequences in UML and OCL models,”
Lect. Notes Comput. Sci., vol. 5668 LNCS, pp. 90–104, 2009.

[71] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Softw. Testing, Verif. Reliab.,
vol. 22, no. 5, pp. 297–312, 2012.

[72] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Proceedings -
International Conference on Quality Software, 2009, pp. 167–
172.

[73] J. J. Gutiérrez, M. J. Escalona, and M. Mejías, “A Model-Driven
approach for functional test case generation,” J. Syst. Softw.,
vol. 109, pp. 214–228, 2015.

[74] C. Denger and M. M. Mora, “Test case derived from
Requirement Specifications,” 2003.

REFERENCES

278

[75] R. Ibrahim, M. Z. Saringat, N. Ibrahim, and N. Ismail, “An
automatic tool for generating test cases from the system’s
requirements,” in 7th IEEE Int. Conference on Comp. and Info.
Technology, 2007, pp. 861–866.

[76] S. Nogueira, A. Sampaio, and A. Mota, “Test generation from
state based use case models,” Form. Asp. Comput., vol. 26, no.
3, pp. 441–490, 2014.

[77] P. Samuel and R. Mall, “A Novel Test Case Design Technique
Using Dynamic Slicing of UML Sequence Diagrams,” E-
Informatica Softw. Eng. J., vol. 2, no. 1, 2008.

[78] E. Yu, “Modelling Strategic Relationships for Process
Reengineering,” University of Toronto, 1995.

[79] D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test
cases,” in Proceedings - International Symposium on Software
Reliability Engineering, ISSRE, 2003, pp. 442–453.

[80] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test Case
Prioritization: an Empirical Study,” in Proceedings of the IEEE
International Conference on Software Maintenance, 1999, p.
179.

[81] J. Cabot, “List of Executable UML tools,” 2011. [Online].
Available: http://modeling-languages.com/list-of-executable-
uml-tools/.

[82] Object Management Group, “Action Language for Foundational
UML (ALF),” 2013.

[83] Model Driven Solutions, “Action Language for UML (Alf) Open
Source Implementation Version 0.5.1,” 2011. [Online].
Available: http://modeldriven.org/alf/.

[84] Project Technology, “Object Action Language Manual.”

[85] Project Technology, “Shlaer-Mellor Action Language,” 1997.

[86] I. Wilkie, A. King, M. Clarke, C. Raistrick, and P. Francis, “UML

REFERENCES

279

ASL Reference Guide,” 2003.

[87] J. Cabot, “History of Executable UML – Action Language: An
OMG Journey,” 2011. [Online]. Available: http://modeling-
languages.com/uml-action-language-omg-journey/.

[88] G. Graw and P. Herrmann, “Transformation and Verification of
Executable UML Models,” Electron. Notes Theor. Comput. Sci.,
vol. 101, pp. 3–24, 2004.

[89] H. H. Hansen, J. Ketema, B. Luttik, M. Mousavi, J. Van de Pol,
and O. Marchi dos Santos, “Automated Verification of
Executable UML Models,” in International Symposia on Formal
Methods for Components and Objects, 2010, pp. 225–250.

[90] Y. Laurent, R. Bendraou, S. Baarir, and M.-P. Gervais,
“Formalization of fUML : An Application to Process Verification,”
in International Conference on Advanced Information Systems
Engineering, 2014, pp. 347–363.

[91] F. Xie, V. Levin, and J. C. Browne, “Model Checking for an
Executable Subset of UML,” in 16th IEEE International
Conference on Automated Software Engineering, 2001.

[92] F. Craciun, S. Motogna, and I. Lazar, “Towards Better Testing of
fUML Models,” in Sixth International Conference on Software
Testing, Verification and Validation, 2013, pp. 485–486.

[93] Q. Lai and A. Carpenter, “Defining and Verifying Behaviour of
Domain Specific Language with fUML Categories and Subject
Descriptors,” in Proceedings of the Fourth Workshop on
Behaviour Modelling - Foundations and Applications, 2012.

[94] Z. Micskei, R. Konnerth, H. Benedek, O. Semeráth, A. Vörös, and
D. Varró, “On Open Source Tools for Behavioral Modeling and
Analysis with fUML and Alf,” in 1st Workshop on Open Source
Software for Model Driven Engineering, 2014, pp. 31–41.

[95] E. Planas, J. Cabot, and C. Gómez, “Lightweight and static
verification of UML executable models,” Comput. Lang. Syst.
Struct., vol. 46, pp. 66–90, 2016.

REFERENCES

280

[96] S. Guermazi, J. Tatibouet, A. Cuccuru, S. Dhouib, S. Gérard, and
E. Seidewitz, “Executable Modeling with fUML and Alf in
Papyrus : Tooling and Experiments,” in 1st International
Workshop on Executable Modeling, 2015, pp. 3–8.

[97] E. Seidewitz and J. Tatibouet, “Tool Paper : Combining Alf and
UML in Modeling Tools – An Example with Papyrus –,” in
OCL@MoDELS, 2015, pp. 105–119.

[98] J. Tatibouët, A. Cuccuru, Sébastien Gérard, and F. Terrier,
“Formalizing Execution Semantics of UML Profiles with fUML
Models,” in International Conference on Model Driven
Engineering Languages and Systems, 2014, pp. 133–148.

[99] T. Mayerhofer, P. Langer, and M. Wimmer, “xMOF : A Semantics
Specification Language for Metamodeling,” in Satellite Events of
MODELS, 2013.

[100] A. Tort, A. Olive, and M.-R. Sancho, “The CSTL Processor: A Tool
for Automated Conceptual Schema Testing,” in 30th
International Conference on Conceptual Modeling, 2011, vol.
6999, pp. 349–352.

[101] A. Tort, A. Olivé, and M.-R. Sancho, “An approach to test-driven
development of conceptual schemas,” Data Knowl. Eng., vol.
70, no. 12, pp. 1088–1111, 2011.

[102] F. Weber, M. Wunram, J. Kemp, M. Pudlatz, and B. Bredehorst,
“Standardisation in knowledge management – towards a
common KM framework in Europe,” in Proceedings of UNICOM
Seminar “Towards Common Approaches & Standards in KM,”
2002.

[103] S. España, “Methodological Integration of Communication
Analysis into a Model-Driven Software Development
Framework,” Universitat Politècnica de València, 2011.

[104] S. España, M. Ruiz, and A. González, “Systematic derivation of
conceptual models from requirements models: A controlled
experiment,” in Proceedings - International Conference on
Research Challenges in Information Science, 2012, no. April.

REFERENCES

281

[105] A. González, M. Ruiz, S. España, and Ó. Pastor, “Message
structures: A modelling technique for information systems
analysis and design1,” in 14th Ibero-American Conference on
Software Engineering and 14th Workshop on Requirements
Engineering, CIbSE 2011, 2011, pp. 407–418.

[106] M. Shahbaz, P. McMinn, and M. Stevenson, “Automated
discovery of valid test strings from the web using dynamic
regular expressions collation and natural language processing,”
in Proceedings - International Conference on Quality Software,
2012, pp. 79–88.

[107] N. Li, F. Li, and J. Offutt, “Better algorithms to minimize the cost
of test paths,” in Proceedings - IEEE 5th International
Conference on Software Testing, Verification and Validation,
ICST 2012, 2012, pp. 280–289.

[108] A. Andrews, R. France, S. Ghosh, and G. Craig, “Test adequacy
criteria for UML design models,” Softw. Test. Verif. Reliab., vol.
13, no. 2, pp. 95–127, 2003.

[109] Object Management Group (OMG), “UML Testing Profile (UTP)
Version 1.2,” 2013.

[110] Object Management Group, “OMG Unified Modeling Language (
OMG UML), SuperStructure,” 2011.

[111] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?,” in Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE
2005., 2005, pp. 402–411.

[112] Y. Jia and M. Harman, “Higher Order Mutation Testing,” Inf.
Softw. Technol., vol. 51, no. 10, pp. 1379–1393, 2009.

[113] Y. Jia and M. Harman, “An Analysis and Survey of the
Development of Mutation Testing,” Softw. Eng. IEEE Trans., vol.
37, no. 5, pp. 1–31, 2011.

[114] H. Do and G. Rothermel, “A controlled experiment assessing
test case prioritization techniques via mutation faults,” in IEEE
International Conference on Software Maintenance, ICSM, 2005,

REFERENCES

282

vol. 2005, pp. 411–420.

[115] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and Ó. Pastor,
“Mutation Operators for UML Class Diagrams,” in CAiSE 2016,
2016.

[116] “Mutation Operators for UML CD-based CS,” 2015. [Online].
Available: https://staq.dsic.upv.es/webstaq/costest/FOMs.html.

[117] “An open-source implementation of the OMG Action Language
for fUML.” [Online]. Available: http://modeldriven.github.io/Alf-
Reference-Implementation/.

[118] T. Massimo, F. Jouault, Z. Saidi, and J. Delatour, “Enabling OCL
and fUML Integration by Transformation,” in European
Conference on Modelling Foundations and Applications, 2016,
vol. 2, pp. 156–172.

[119] E. Seidewitz, “Model execution using the fUML Reference
Implementation,” 2016. [Online]. Available:
https://github.com/ModelDriven/Alf-Reference-
Implementation/wiki/Command-Line-Scripts.

[120] M. Ruiz, “A Model-Driven Framework to Integrate
Communiaction Analysis and OO-Method,” Universitat
Politècnica de València, 2011.

[121] M. F. Granda, N. Condori-Fernandez, T. E. J. Vos, and O. Pastor,
“Towards the automated generation of abstract test cases from
requirements models,” in 1st International Workshop on
Requirements Engineering and Testing, 2014, pp. 39–46.

[122] O. Pastor, “Diseño y Desarrollo de un Entorno de Producción
Automática de Software basado en el Modelo Orientado a
Objetos,” Universitat Politècnica de València., 1992.

[123] M. Loy, R. Eckstein, D. Wood, J. Elliott, and B. Cole, Java Swing.
O’Reilly Media, 2002.

[124] M. F. Granda and N. Condori-fernández, “A Model-level
Mutation Tool to Support the Assessment of the Test Case
Quality,” in 25TH International Conference on Information

REFERENCES

283

Systems Development (ISD2016 POLAND), 2016.

[125] F. Shull, J. Singer, and D. I. K. Sjøberg, Guide to Advanced
Empirical Software Engineering. 2008.

[126] G. H. Travassos, P. Sérgio, P. G. Mian, A. Cláudio, D. Neto, and J.
Biolchini, “An Environment to Support Large Scale
Experimentation in Software Engineering,” in 13th IEEE
International Conference on Engineering of Complex Computer
Systems, 2008, pp. 193–202.

[127] N. Juristo and A. M. Moreno, Basics of Software Engineering
Experimentation, 1st ed. Springer Publishing Company, 2010.

[128] V. R. Basili, “The role of Experimentation in Software
Engineering Past, Current, and Future,” in Proceedings of the
18th international conference on Software engineering, 1996,
pp. 442–449.

[129] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara, “Verification and
validation of declarative model-to-model transformations
through invariants,” J. Syst. Softw., vol. 83, no. 2, pp. 283–302,
2010.

[130] M. Gogolla and A. Vallecillo, “Tractable model transformation
testing,” Lect. Notes Comput. Sci., vol. 6698 LNCS, pp. 221–235,
2011.

[131] S. España, A. González, Ó. Pastor, and M. Ruiz, “Technical
Report Communication Analysis and the OO-Method : Manual
Derivation of the Conceptual Model the SuperStationery Co. Lab
Demo,” Valencia, 2011.

[132] S. España, A. González, Ó. Pastor, and M. Ruiz, “Integration of
Communication Analysis and the OO-Method: Rules for the
manual derivation of the Conceptual Model,” Valencia, 2011.

[133] A. Tort and A. Olivé, “Case Study: Conceptual Modeling of Basic
Sudoku,” 2006. [Online]. Available:
http://guifre.lsi.upc.edu/Sudoku.pdf.

[134] A. Tort, “A Basic Set of Test Cases for a Fragment of the

REFERENCES

284

osCommerce Conceptual Schema,” UPC, 2009. [Online].
Available: http://hdl.handle.net/2117/6130.

[135] E. Planas and A. Olivé, “The DBLP Case Study,” 2006. [Online].
Available: http://guifre.lsi.upc.edu/DBLP.pdf.

[136] R. Van de Stadt, “CyberChair.” [Online]. Available:
http://www.borbala.com/cyberchair/.

[137] H. Ehrig and C. Ermel, “Semantical correctness and
completeness of model transformations using graph and rule
transformation,” in Lecture Notes in Computer Science, 2008,
vol. 5214 LNCS, pp. 194–210.

[138] A. Kleppe, J. Warmer, and W. Bast, MDA Explained, The Model-
Driven Architecture: Practice and Promise. Addison Wesley,
2003.

[139] T. Yue and S. Ali, “A MOF-based framework for defining metrics
to measure the quality of models,” in Lecture Notes in Computer
Science, vol. 8569 LNCS, 2014, pp. 213–229.

[140] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question
Metric Paradigm,” Encyclopedia of Software Engineering. 1994.

[141] U. Rueda, S. España, and M. Ruiz, “GREAT Process Modeller user
manual,” 2015.

[142] C. Wholin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, vol. 1.
2012.

[143] R. van Solingen and E. Berghout, The Goal/Question/Metric
Method – A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

[144] J. A. Morgan, G. J. Knafl, and W. E. Wong, “Predicting fault
detection effectiveness,” in Proceedings Fourth International
Software Metrics Symposium, 1997, pp. 82–89.

[145] G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental
methods: Between-subject and within-subject design,” J. Econ.

REFERENCES

285

Behav. Organ., vol. 81, no. 1, pp. 1–8, 2012.

[146] T. E. J. Vos, B. Marin, M. J. Escalona, and A. Marchetto, “A
Methodological Framework for Evaluating Software Testing
Techniques and Tools,” 2012 12th Int. Conf. Qual. Softw., pp.
230–239, 2012.

[147] C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, “Mutation Testing of
Protocol Messages Based on Extended TTCN-3,” in 22nd
International Conference on Advanced Information Networking
and Applications, 2008, pp. 667–674.

[148] S. Jamieson, “Likert scales : how to (ab) use them,” Med. Educ.,
vol. 38, pp. 1217–1218, 2004.

[149] Fred Davis, “Perceived Usefulness , Perceived Ease Of Use , And
User Acceptance of Information Technology,” MIS Q., vol. 13,
no. 3, pp. 319–340, 1989.

[150] J. Wu, Y. Chen, and L. Lin, “Empirical evaluation of the revised
end user computing acceptance model,” Comput. Human
Behav., vol. 23, pp. 162–174, 2007.

[151] J. Sauro and J. R. Lewis, Quantifying the User Experience:
Practical Statistics for User Research. 2012.

[152] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernández,
“An Empirical Study of the State of the Practice and Acceptance
of Model-Driven Engineering in four Industrial Cases,” Empir.
Softw. Eng., vol. 18, no. 1, pp. 89–116, 2013.

[153] Eclipse, “Eclipse IDE for Java Developers.” [Online]. Available:
www.eclipse.org.

[154] JUnit, “JUnit framework.” [Online]. Available: junit.org.

[155] E. Planas, J. Cabot, and C. Gómez, “Lightweight verification of
executable models,” in Conceptual Modelling -ER2011, 2011,
pp. 467–475.

APPENDICES

APPENDIX A

289

Appendix A

Mutation Operators for UML CD-based

Conceptual Schemas
This Appendix contains the mutation operators used to mutate the

UML CD-based conceptual schemas during the process of prioritization

(Chapter 5) and evaluation of effectiveness of CoSTest test cases

(Chapter 8). The process to define these mutation operators is

described in [115].

Table A.1. Mutation Operators defined for a UML CD-based CS taken from [115]
Code Mutation Operator rule and relation with other mutation operators

1 UCO1 Adds a redundant constraint to the CD

2 UCO2 Adds an extraneous constraint to the CD

3 UAS1 Adds a redundant association to the CD

4 UAS2 Adds a redundant derived association to the CD. Relation: UCO2

5 UAS3 Adds an extraneous association to the CD

6 UAS4 Adds an extraneous derived association to the CD. Relation: UCO2

7 UGE1 Adds a redundant generalization to the CD

8 UGE2 Adds an extraneous generalization to the CD

9 UCL1 Adds a redundant class to the CD

10 UCL2 Adds an extraneous class to the CD

11 UCL3 Adds a redundant association class to the CD

12 UCL4 Adds an extraneous association class to the CD

13 UAT1 Adds a redundant attribute to a Class

14 UAT2 Adds an extraneous attribute to a Class

15 UOP1 Adds a redundant operation to a Class

16 UOP2 Adds an extraneous operation to a Class

17 UPA1 Adds a redundant parameter to an Operation

18 UPA2* Adds an extraneous Parameter to an Operation

19 WCO1* Changes the constraint by deleting the references to a class Attribute

20 WCO2** Changes the Attribute data type in the constraint. Relation: WPA, WAT3

21 WCO3* Change the constraint by deleting the calls to specific operation.

22 WCO4* Changes an arithmetic operator for another and supports binary operators: +, -
,*,/

23 WCO5* Changes the constraint by adding the conditional operator “not”

24 WCO6* Changes a conditional operator for another and supports operators: or, and

25 WCO7* Changes the constraint by deleting the conditional operator “not”

26 WCO8* Changes a relational operator for another operators: <, <=, >, >=, ==, !=

27 WCO9* Changes a constraint by deleting a unary arithmetic operator (-).

28 WAS1* Interchange the members (memberEnd) of an Association.

29 WAS2* Changes the association type (i.e. normal, composite).

30 WAS3* Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-
0..1)

31 WGE** Changes the Generalization member ends. Relation: MPA, UPA

32 WCL1* Changes visibility kind of the Class (i.e. private)

APPENDIX A

290

33 WCL2 Changes Class by an Association Class

34 WCL3 Changes Association Class for a Class

35 WCL4 Changes the Class feature “isAbstract “ to true.

36 WAT1** Changes the Attribute feature “Is Derived” to true. Relation: UCO2

37 WAT2** Changes the Attribute property “Is Derived” to false. Relation: MCO

38 WAT3** Changes the Attribute data type. Relation: WPA, WCO2

39 WAT4 Changes the Attribute visibility property

40 WOP1 Changes the order of the parameters

41 WOP2* Changes the visibility kind of an operation. Restriction. WOP2 has to be applied
to operations that are not related with any constraints. Relation: MCO

42 WOP3 Changes the data type returned by operation. Relation: WAT3

43 WPA*

Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).
Restriction. WPA has to be applied to parameters that are not related with
attributes in a constructor operation. To reduce mutants only a change is
counted.

44 MCO* Deletes a constraint (i.e. pre-condition, post-condition constraint, body
constraint)

45 MAS*

Deletes an Association. Restriction. MAS has to be applied to associations that
are not related with any constraints. Relation: MCO

46 MGE** Deletes a Generalization relation. Relation: MPA, UPA

47 MCL** Deletes the class (i.e. normal or association class). Relation: MCO, MAT, MOP,
MGE.

48 MAT** Deletes an Attribute. Relation: MPA, MCO

49 MOP** Deletes the operation. Relation: MPA, MCO, WCO3

50 MPA* Deletes a Parameter from an Operation. Restriction. This mutation operator
has to be applied to operations without related constraints. Relation: MCO

APPENDIX B

291

Appendix B

Case Study: The Incident Management System
This appendix describes how we applied our CoSTest validation

framework using the Incident Management case study, which was

carried out in the context of the everis company. Within this private

entity, we put into practice the validation framework that is presented

in Chapter 5: we used CoSTest to generate the test cases, generate

mutants from the conceptual schema that represents the system and

also to execute the test cases against the mutants and evaluate the

results.

Overall, the application of CoSTest in an industrial context was

successful and showed the effectiveness of the model-driven validation

framework described in this thesis.

The remainder of the appendix is structured as follows: Sections

B.1-B.6 show the application of the phases that comprise our validation

framework (i.e. design, generation, prioritization, execution and

evaluation) and Section B.7 outlines some conclusions from the case

study.

B.1 Test Analysis
This Section introduces the requirements of the Incident

Management (IM) System using the Communicational Analysis

instruments (i.e. the event description templates and the event

diagram).

B.1.1 Event Description Templates
The event description templates for the communicative events

using España et al’s notation [21] are described below:

TECH1. Technician Registration

APPENDIX B

292

Description

The technician is described and registered in the system. The PMO

has a technician management tool to record and keep track of all the

technicians.

Contact Requirements

 Primary actor: Technician

 Communication channel: Face to face

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: technician

Table B.1. Communication Structure for TECH1
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

TECHNICIAN =
< id Technician +
 Name
>

g
i

text
text

False
False

USR1. User Registration

Description

The user is described and registered in the system. The PMO has a

user management tool to record and keep track of all the users.

Contact Requirements

 Primary actor: User

 Communication channel: Face to face

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: technician

APPENDIX B

293

Table B.2. Communication Structure for USR1
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

USER =
< id User +
 Name
>

g
i

text
text

False
False

PLAN1. Plan Registration

Description

A set of steps for the incident resolution are registered in the

system as a resolution plan. The PMO has a plan management tool to

record and keep track of all the resolution plans.

Contact Requirements

 Primary actor: Technician

 Communication channel: Face to face

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: Technician

Table B.3. Communication Structure for PLAN1
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

RESOLUTION PLAN =
< id Plan +
 Name+
 Step sequence >

g
i
i

number
text
text

False
False
False

INC1. Incident Registration

Description

The incident is described and registered in the system. The PMO

has an incident management tool to record and keep track of all the

incidents.

Contact Requirements

 Primary actor: User

 Communication channel: phone, face to face

 Temporal restrictions: none

APPENDIX B

294

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.4. Communication Structure for INC1
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

INCIDENT =
< id Incident +
 Request type +
 Component +
 User +
 Contact information +
 Initial Scope
 Subject +
 Description +
 Step sequence +
>

g
i
i
i
i
i
i
i
i

text
text [incident|request]
Text
User
Text
Text
Text
Text
Text

False
False
False
False
False
False
False
False
False

INC2. Incident Priority Assignment

Description

After that, an initial analysis of the incident is done by the PMO

in order to find risks and additional information, and a priority is

assigned.

Contact Requirements

 Primary actor: Phone operator

 Communication channel: Incident management tool

 Temporal restrictions: Phone Operator

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

APPENDIX B

295

Table B.5. Communication Structure for INC2
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

INCIDENT PRIORITY=
<
 State +
 Progress +
 Initial Scope +
 Incident+
>

i
i
i
i

Text
Text
Text
Incident

False
False
False
True

INC3. Register Scope

Description

The incident is analysed and the work is described. The incident

scope is calculated taking into account the incident details and PMO

background.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.6. Communication Structure for INC3
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

INITIAL SCOPE =
< State +
 Progress +
 Estimated Scope +
 Incident
>

i
i
i
i

Text
Text
Text
Incident

False
False
False
True

INC4. Assess PMO Capacity to Solve

Description

After that, the incident estimation is calculated based on the

PMO experience and depending on human non-calculated

estimation. Then the incident is reassigned to the PMO, to the

APPENDIX B

296

municipality or to an external company. The reassignment depends

on the PMO’s capability of solving it and the incident scope.

 Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Face to face

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.7. Communication Structure for INC4
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

EQUIPMENT AVAILABILITY =
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
Text

True
False
False

INC5. Resource Allocation

Description

A technician for the incident is assigned.

Contact Requirements

 Primary actor: PMO Responsible

 Communication channel: incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

APPENDIX B

297

Table B.8. Communication Structure for INC5
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

RESOURCE ALLOCATION=
< id allocation+
 Incident +
 Technician
>

g
i
i

number
Incident
Technician

False
False
False

INC6. Check Plan

Description

A plan for the incident type is checked.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Face to face, incident management
tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.9. Communication Structure for INC6

FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

CHECK PLAN=
< Incident +
 Plan Response
>

i
i

Incident
Text

True
False

INC7. PMO Incident Resolution

Description

If the plan already exists, the resolution proceeds following the

described steps. If there is no plan defined for the given incident

type, no further actions are carried out.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Face to face, incident management
tool, phone

APPENDIX B

298

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.10. Communication Structure for INC7
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

PMO RESOLUTION =
< Incident +
 Step sequence+
 State+
 Progress
>

i
i
i
i

Incident
Text
Text
Text

True
False
False
False

INC8. PMO Resolution Validation

Description

The incident is checked to determine whether or not it has been

solved. If the incident solution solves the incident the incident is solved

and is updated as “Solved”. Else further actions are required and the

incident is updated as “Reallocation pending”.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.11. Communication Structure for INC8
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

PMO RESOLUTION VALIDATION=
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
Text

True
False
False

APPENDIX B

299

INC9. Municipality Assignment Evaluation

Description

Then the incident is reassigned to the municipality. The

reassignment depends on the PMO’s capability of solving it and the

incident scope.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Face to face, Incident management
tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.12. Communication Structure for INC9
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

ASSIGNMENT TO MUNICIPALITY =
< State +
 Progress +
 Incident+
>

i
i
i

Text
Text
Incident

False
False
True

INC10. Municipality Resolution

Description

If the PMO has not enough capacity to solve the incident and the

responsibility belongs to the municipality, then the incident will be

assigned to it. In this case the municipality will solve the incident.

 Contact Requirements

 Primary actor: Municipality Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

APPENDIX B

300

Communicational content requirements

 Support Actor: PMO Responsible

Table B.13. Communication Structure for INC10
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

MUNICIPALITY RESOLUTION=
< Incident +
 Step Sequence+
 State +
 Progress
>

i
i
i
i

Incident
Text
Text
Text

True
False
False
False

INC11. Municipality Resolution Validation

Description

The incident is checked to know if it is solved or not. If the incident

solution solves the incident the incident is solved and it is updated as

“Solved”. Else further actions are required and the incident is updated

as “Reallocation pending”. It is necessary to validate the incident

solution depending on the legal framework and quality standards.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.14. Communication Structure for INC11
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

MUNICIPALITY RESOLUTION
VALIDATION=
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
text

True
False
False

APPENDIX B

301

INC12. Company Assignment Evaluation

Description

In case the incidents are higher than the PMO capacity +

Municipality capacity, then it will reallocate to the external company.

Contact Requirements

 Primary actor: PMO Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.15. Communication Structure for INC12
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

ASSIGNMENT TO COMPANY =
< State +
 Progress +
 Incident+
>

i
i
i

Text
Text
Incident

False
False
True

INC13. Incident and Impact External Company Analysis

Description

The company will provide an impact report with the incident

analysis, implications, possible solutions and time estimation.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

APPENDIX B

302

Table B.16. Communication Structure for INC13
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

EXTERNAL COMPANY ANALYSIS=
< Incident +
 Subject+
 Description+
 Analysis+
 Implications+
 Possible Solutions+
 Time estimation
>

i
i
i
i
i
i
i

Incident
Text
Text
Text
Text
Text
Text

False
False
False
False
False
False
False

INC14. Action Plan Definition

Description

The PMO responsible analyses the impact report with the

technicians. If the incident is a bug, the external company will fix it. If it

becomes an improvement, the decision to carry it out will be taken in

the next steps.

Contact Requirements

 Primary actor: PMO Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.17. Communication Structure for INC14
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

PLAN DEFINITION =
< Incident +
 State +
 Progress >

i
i
i

Incident
Text
Text

True
False
False

INC15. Improvement Evaluation

Description

The PMO’s director and Project leader are involved in the deciding

which option should be used to solve the incident and if a deeper

analysis is needed.

APPENDIX B

303

Contact Requirements

 Primary actor: PMO Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.18. Communication Structure for INC15
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

IMPROVEMENT EVALUATION=
< Incident +
 State +
 Progress
 >

i
i
i

Incident
Text
Text

True
False
False

INC16. Impact Analysis

Description

If the chosen option is a new development, the external company

will make the functional and technical designs, and estimation in time

and cost.

Contact Requirements

 Primary actor: PMO Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.19. Communication Structure for INC16
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

IMPACT ANALYSIS=
< Incident +
 State+
 Progress +
 Time Estimation +
 Cost Estimation
>

i
i
i
i
i

Incident
Text
Text
Text
Text

True
False
False
False
False

APPENDIX B

304

INC17. Functional and Technical Design Documents Revision

Description

The responsible PMO and technicians revise the documents

provided by the external company to check if the requirements are

well specified.

Contact Requirements

 Primary actor: Company Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

Table B.20. Communication Structure for INC17
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

DOCUMENTS REVISION=
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
Text

True
False
False

INC18. Need and Viability Evaluation

Description

The PMO responsible shows the chosen option to the PMO’s

Project Leader and Director. Then it is decided if it is approved or not.

Contact Requirements

 Primary actor: PMO Director

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Responsible

APPENDIX B

305

Table B.21. Communication Structure for INC18
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

VIABILITY EVALUATION=
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
Text

True
False
False

INC19. Company Incident Resolution

Description

Once the improvement or the new development is approved, the

external Company proceeds with the development.

Contact Requirements

 Primary actor: Company Responsible

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.22. Communication Structure for INC19
FIELD OP DOMAIN EXTENDS BUSINESS OBJECT

COMPANY RESOLUTION =
< Incident +
 Step Sequence+
 State+
 Progress
>

i
i
i
i

Incident
Text
Text
Text

True
False
False
False

INC20. Company Resolution Validation

Description

It is necessary to validate the incident solution depending on the

legal framework and quality standards.

Contact Requirements

 Primary actor: PMO technician

 Communication channel: Incident management tool

 Temporal restrictions: none

APPENDIX B

306

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.23. Communication Structure for INC20
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

COMPANY RESOLUTION VALIDATION=
< Incident +
 State+
 Progress
>

i
i
i

Incident
Text
Text

True
False
False

INC21. Incidence Closure

The incident is marked as “Closed” either if it is marked as “solved”

or “Implementation not allowed”.

Contact Requirements

 Primary actor: PMO Technician

 Communication channel: Incident management tool

 Temporal restrictions: none

 Frequency: none

Communicational content requirements

 Support Actor: PMO Technician

Table B.24. Communication Structure for INC21
FIELD OP DOMAIN EXTENDS BUSINESS

OBJECT

INCIDENT CLOSURE=
< Incident +
 State
>

i
i

Incident
Text

True
False

Each Event Specification Template has a Message Structure in the

GREAT tool modeller [141] to define the information that is

communicated in the event. Figure B.1 shows a partial view of the

message structure for the last communicative event “INC20. Company

Resolution Validation”

APPENDIX B

307

Figure B.1. Partial view of the message structure in the GREAT tool [141]

B.1.2 Events Diagram
Figure B.2 presents part of the communicative event diagram (CED)

of the Incident Management (IM) of the PMO business process.

B.2 Test Design
This section describes how we applied our CoSTest validation

framework to generate the Test Model and the Test Scenario Model

using the Incident Management case study.

We divide this section into three main subsections (B.2.1, B.2.2 and

B.2.3), each of which focuses on a specific phase of the framework.

APPENDIX B

308

Figure B.2. Event Diagram using Communication Analysis

APPENDIX B

309

B.2.1 Test Model
This phase of CoSTest involves a model-to-model transformation

that is carried out according to the model-driven strategy implemented

in CoSTest (see Secction 6.3.1). Figure B.3 shows the test model for IM

case study.

Figure B.3. Test Model for IM case study

B.2.2 Test Scenario Model
The model-driven generation for the test scenario model is

implemented in CoSTest using a classic pathfinder or graph traversal

algorithm to traverse from parent root to child node (see Section

6.3.2). The test scenarios are summarized in the following list.

APPENDIX B

310

1. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:NEW

_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DESIGN_D

OCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT_RESOLUTION:SOLVED_

BY_COMPANY:INCIDENCE_CLOSURE
2. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:CRITICAL:UNALLOCATED_IN_MUNICIPALITY:NOT_ASSIGNED_TO_COM

PANY:INCIDENCE_CLOSURE
3. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AN

D_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDEN

T_RESOLUTION:SOLVED_BY_COMPANY:INCIDENCE_CLOSURE
4. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND

_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT

_RESOLUTION:SOLVED_BY_COMPANY:INCIDENCE_CLOSURE
5. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:SOLVED_BY_PMO:INCIDENCE_CLOSURE
6. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DE

SIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT_RESOLUTION:S

OLVED_BY_COMPANY:INCIDENCE_CLOSURE
7. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:SOLVED_BY_MUNICIPALITY:INCIDENCE_CLOSURE
8. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:NOT_ASSIGNED_TO_COM

PANY:INCIDENCE_CLOSURE
9. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:INCIDENT:COMPAN

Y_INCIDENT_RESOLUTION:SOLVED_BY_COMPANY:INCIDENCE_CLOSURE

APPENDIX B

311

10. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN
CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:IMP

ROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMPANY:IN

CIDENCE_CLOSURE
11. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:NEW

_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DESIGN_D

OCUMENTS_REVISION:NOT_ALLOWED:INCIDENCE_CLOSURE
12. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:NEW

_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DESIGN_D

OCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT_RESOLUTION:UNSOLVE

D_BY_COMPANY:INCIDENCE_CLOSURE
13. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:NOT_ASSIGNED_TO_COMPANY:INCIDENCE_CLOSURE
14. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMPANY:IN

CIDENCE_CLOSURE
15. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:

SOLVED_BY_COMPANY:INCIDENCE_CLOSURE
16. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AN

D_TECHNICAL_DESIGN_DOCUMENTS_REVISION:NOT_ALLOWED:INCIDENCE_CL

OSURE
17. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AN

D_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDEN

T_RESOLUTION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
18. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:SOLVED_BY_PMO:INCIDENCE_CLOSURE
19. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

APPENDIX B

312

_ANALYSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTION

AL_AND_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_IN

CIDENT_RESOLUTION:SOLVED_BY_COMPANY:INCIDENCE_CLOSURE
20. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:SOLVED_BY_MUNICIPALITY:IN

CIDENCE_CLOSURE
21. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

NOT_ASSIGNED_TO_COMPANY:INCIDENCE_CLOSURE
22. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMPANY:INC

IDENCE_CLOSURE
23. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:S

OLVED_BY_COMPANY:INCIDENCE_CLOSURE
24. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND

_TECHNICAL_DESIGN_DOCUMENTS_REVISION:NOT_ALLOWED:INCIDENCE_CLO

SURE
25. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND

_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT

_RESOLUTION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
26. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:NOT_ASSIGNED_

TO_COMPANY:INCIDENCE_CLOSURE
27. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:INCIDENT:

COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMPANY:INCIDENCE_CLOSUR

E
28. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

APPENDIX B

313

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMP

ANY:INCIDENCE_CLOSURE
29. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DE

SIGN_DOCUMENTS_REVISION:NOT_ALLOWED:INCIDENCE_CLOSURE
30. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTIONAL_AND_TECHNICAL_DE

SIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_INCIDENT_RESOLUTION:U

NSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
31. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:INCIDENT:COMPAN

Y_INCIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
32. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:IMP

ROVE:NOT_ALLOWED:INCIDENCE_CLOSURE
33. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPALITY:MUNICIPALITY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:ASSIGNED_TO_COMPANY

:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEMENT:IMP

ROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:

INCIDENCE_CLOSURE
34. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:

INCIDENCE_CLOSURE
35. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:IMPROVE:NOT_ALLOWED:INCIDENCE_CLOSURE
36. USER_REGISTRATION:INCIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSI

GMENT:NOT_CRITICAL:PMO_IS_NOT_ABLE:UNALLOCATED_IN_MUNICIPALITY

:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANAL

YSIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:

UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE

APPENDIX B

314

37. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO
N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:NOT_ASSIGNED_TO_COMPANY:INCIDENCE_CLOSURE
38. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:SOLVED_BY_COMPA

NY:INCIDENCE_CLOSURE
39. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLU

TION:SOLVED_BY_COMPANY:INCIDENCE_CLOSURE
40. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTION

AL_AND_TECHNICAL_DESIGN_DOCUMENTS_REVISION:NOT_ALLOWED:INCIDEN

CE_CLOSURE
41. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:IMPROVEMENT:NEW_DEVELOPMENT:IMPACT_ANALYSIS:FUNCTION

AL_AND_TECHNICAL_DESIGN_DOCUMENTS_REVISION:APPROVAL:COMPANY_IN

CIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
42. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:I

NCIDENCE_CLOSURE
43. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:IMPROVE:NOT_ALLOWED:INCIDENCE_CLOSURE
44. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:ALLOCATED_IN_MUNICIPAL

ITY:MUNICIPALITY_INCIDENT_RESOLUTION:UNSOLVED_BY_MUNICIPALITY:

ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALY

SIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:U

NSOLVED_BY_COMPANY:INCIDENCE_CLOSURE
45. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:INCIDENT:

COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOS

URE

APPENDIX B

315

46. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN
CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:IMPROVE:NOT_ALLOWED:INCIDENCE_CLOSURE
47. PLAN_REGISTRATION:TECHNICIAN_REGISTRATION:USER_REGISTRATION:IN

CIDENT_REGISTRATION:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:P

MO_IS_ABLE:RESOURCE_ALLOCATION:EXISTS_PLAN:PMO_INCIDENT_RESOLU

TION:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIPALITY:ASSIGNED_TO_C

OMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY_ANALYSIS:IMPROVEME

NT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_CO

MPANY:INCIDENCE_CLOSURE
48. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:INCIDENT:COMPANY_INCIDENT_RESOLUTION:UNSOLVED_BY_COM

PANY:INCIDENCE_CLOSURE
49. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:IMPROVEMENT:IMPROVE:NOT_ALLOWED:INCIDENCE_CLOSURE
50. TECHNICIAN_REGISTRATION:USER_REGISTRATION:INCIDENT_REGISTRATIO

N:INCIDENT_PRIORITY_ASSIGMENT:NOT_CRITICAL:PMO_IS_ABLE:RESOURC

E_ALLOCATION:NOT_EXISTS:UNSOLVED_BY_PMO:UNALLOCATED_IN_MUNICIP

ALITY:ASSIGNED_TO_COMPANY:INCIDENT_AND_IMPACT_EXTERNAL_COMPANY

_ANALYSIS:IMPROVEMENT:IMPROVE:APPROVAL:COMPANY_INCIDENT_RESOLU

TION:UNSOLVED_BY_COMPANY:INCIDENCE_CLOSURE

B.2.3 Test Data
For specification of test values, data was extracted from Test

Model and stored in a data base (see Section 5.3.1).

Table B.25 shows the test values for Incident Manager case study.

These values are the example values passed to the test model from the

requirements model.

B.3 Test Case Generation
As one can observe in the list of test scenarios (Section B.2.2), the

test cases are grouped into 50 possible test scenarios, all of which were

defined from the requirements model shown in Figure B.2.

APPENDIX B

316

Table B.25. Values for variables of test model for Incident Management

Test case Test Item Variable Data
Type

Concrete
Values

USER_REGISTRATION USER id_user number 100

USER_REGISTRATION USER name text Pepe Pérez

TECHNICIAN_
REGISTRATION

TECHNICIAN id_technician number 200

TECHNICIAN_
REGISTRATION

TECHNICIAN name text Juan Valverde

PLAN_REGISTRATION RESOLUTION_
PLAN

id_plan number 200

PLAN_REGISTRATION RESOLUTION_
PLAN

name text Enable activity
register

PLAN_REGISTRATION RESOLUTION_
PLAN

step_sequence text 1- Log in as
administrator
2- Select option
“Enable
activity”

INCIDENT_
REGISTRATION

INCIDENT id_incident number 501

INCIDENT_
REGISTRATION

INCIDENT request_type text Request

INCIDENT_
REGISTRATION

INCIDENT component text Activities

INCIDENT_
REGISTRATION

INCIDENT contact_
information

text RRHH secretary

INCIDENT_
REGISTRATION

INCIDENT Initial_scope text no critical

INCIDENT_
REGISTRATION

INCIDENT subject text Enable activity

INCIDENT_
REGISTRATION

INCIDENT Description text Activity cannot
be created

INCIDENT_
REGISTRATION

INCIDENT step_sequence text 1- Log in as
administrator
2- Select option
“Enable
activity”

INCIDENT_PRIORITY_
ASSIGMENT

Initial_scope state text Pending Review

INCIDENT_PRIORITY_
ASSIGMENT

Initial_scope progress text INCIDENT
PRIORITY
ASSIGMENT

INCIDENT_PRIORITY_
ASSIGMENT

Initial_scope progress text Bug

NOT_CRITICAL Estimated_
scope

State text Incident
Revision

NOT_CRITICAL Estimated_
scope

progress text REGISTER
SCOPE

NOT_CRITICAL Estimated_
scope

Estimated_scop
e

text NOT CRITICAL

CRITICAL Estimated_
scope

State text Incident
Revision

CRITICAL Estimated_ progress text REGISTER

APPENDIX B

317

scope SCOPE

CRITICAL Estimated_
scope

Estimated_scop
e

text CRITICAL

PMO_IS_ABLE progress State text PMO IS ABLE

PMO_IS_ABLE progress progress text ASSESS PMO
CAPACITY TO
SOLVE

PMO_IS_NOT_ABLE progress state text PMO IS NOT
ABLE

PMO_IS_NOT_ABLE progress progress text ASSESS PMO
CAPACITY TO
SOLVE

RESOURCE_ALLOCATI
ON

RESOURCE_ALL
OCATION

id_allocation text 500

EXISTS_PLAN plan_response plan_response text EXISTS_PLAN

NOT_EXISTS plan_response plan_response text NOT EXISTS

UNSOLVED_BY_PMO progress state text UNSOLVED BY
PMO

UNSOLVED_BY_PMO progress Progress text PMO_RESOLUTI
ON

SOLVER_BY_PMO progress state text SOLVED BY
PMO

SOLVER_BY_PMO progress progress text PMO
RESOLUTION

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

id_analysis Number 800

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

subject text analysis of
company XYZ

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

description text analysis of
incident

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

analysis text This is a
software
improvement

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

implications text Access to the
database must
be checked

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

posible_solutio
ns

text Login as
Administrator

INCIDENT_AND_
IMPACT_EXTERNAL_
COMPANY_ANALYSIS

EXTERNAL_
COMPANY_
ANALYSIS

time_estimatio
n

text 2 days

IMPROVEMENT progress state text IMPROVEMENT

IMPROVEMENT progress progress text ACTION PLAN
DEFINITION

INCIDENT progress state text INCIDENT

INCIDENT progress progress text ACTION PLAN
DEFINITION

NEW_DEVELOPMENT progress state text NEW
DEVELOPMENT

APPENDIX B

318

NEW_DEVELOPMENT progress progress text IMPROVEMENT
EVALUATION

IMPROVE progress state text IMPROVE

IMPROVE progress progress text IMPROVEMENT
EVALUATION

IMPACT_ANALYSIS cost_estimation state text Solution
analysis

IMPACT_ANALYSIS cost_estimation progress text None

IMPACT_ANALYSIS cost_estimation time_estimatio
n

text 1 week

IMPACT_ANALYSIS cost_estimation cost_estimation text 500.00

PMO_INCIDENT_
RESOLUTION

step_sequence state text PMO

PMO_INCIDENT_
RESOLUTION

step_sequence progress text none

PMO_INCIDENT_
RESOLUTION

step_sequence step_sequence text PMO resolution

ALLOCATED_IN_
MUNICIPALITY

progress state text ALLOCATED IN
MUNICIPALITY

ALLOCATED_IN_
MUNICIPALITY

progress progress text MUNICIPALITY
ASSIGNMENT
EVALUATION

UNALLOCATED_IN_
MUNICIPALITY

progress state text UNALLOCATED
IN
MUNICIPALITY

UNALLOCATED_IN_
MUNICIPALITY

progress progress text MUNICIPALITY
ASSIGNMENT
EVALUATION

MUNICIPALITY_
INCIDENT_
RESOLUTION

step_sequence state text Municipality
resolution

MUNICIPALITY_
INCIDENT_
RESOLUTION

step_sequence progress text Municipality

MUNICIPALITY_
INCIDENT_
RESOLUTION

step_sequence step_sequence text Login as
Administrator

UNSOLVED_BY_
MUNICIPALITY

progress state text UNSOLVED BY
MUNICIPALITY

UNSOLVED_BY_
MUNICIPALITY

progress progress text MUNICIPALITY
RESOLUTION
VALIDATION

SOLVED_BY_
MUNICIPALITY

progress state text SOLVED BY
MUNICIPALITY

SOLVED_BY_
MUNICIPALITY

progress progress text MUNICIPALITY
RESOLUTION
VALIDATION

ASSIGNED_TO_
COMPANY

progress state text ASSIGNED TO
COMPANY

ASSIGNED_TO_
COMPANY

progress progress text COMPANY
ASSIGNMENT
EVALUATION

NOT_ASSIGNED_TO_ progress state text NOT ASSIGNED

APPENDIX B

319

COMPANY TO COMPANY

NOT_ASSIGNED_TO_
COMPANY

progress progress text COMPANY
ASSIGNMENT
EVALUATION

FUNCTIONAL_AND_
TECHNICAL_DESIGN_
DOCUMENTS_
REVISION

progress state text DOCUMENTS
REVISION

FUNCTIONAL_AND_
TECHNICAL_DESIGN_
DOCUMENTS_
REVISION

progress progress text FUNCTIONAL
AND
TECHNICAL
DESIGN
DOCUMENTS
REVISION

APPROVAL progress state text APPROVAL

APPROVAL progress progress text NEED AND
VIABILITY
EVALUATION

NOT_ALLOWED progress state text NOT ALLOWED

NOT_ALLOWED progress progress text NEED AND
VIABILITY
EVALUATION

COMPANY_INCIDENT
_RESOLUTION

step_sequence state text company
resolution

COMPANY_INCIDENT
_RESOLUTION

step_sequence progress text Progress

COMPANY_INCIDENT
_RESOLUTION

step_sequence step_sequence text Select the new
option

SOLVED_BY_
COMPANY

progress state text SOLVED BY
COMPANY

SOLVED_BY_
COMPANY

progress progress text COMPANY
RESOLUTION
VALIDATION

UNSOLVED_BY_
COMPANY

progress state text UNSOLVED BY
COMPANY

UNSOLVED_BY_
COMPANY

progress progress text COMPANY
RESOLUTION
VALIDATION

INCIDENCE_CLOSURE state state text CLOSED

In order to illustrate the test case generation phase of the case

study, we selected all test cases to be generated (see Section 5.4.3),

which include some negative conditions such as out of range values,

based on variable partitions that can be derived from CS information,

constraint violations, minimum cardinality violation, and, unique value

violation for class variables.

APPENDIX B

320

The result of this phase is 115 different test cases to test the 50

test scenarios. For instance, test scenario number 2 with test case

number 51 belongs to the set of test items shown in Figure B.4.

These test items represent the report of a critical incident that is

not solved by the PMO and is not assigned to either the municipality or

a company, therefore its final status is closed.

Figure B.4. Test cases of the test scenario #2

B.4 Mutant Generation
This step was performed automatically by means of the CoSTest

Mutant Generator (see Sections 5.5 and 7.7). Figure B.5. shows an

excerpt of the UML class diagram used as CS for IM case study as an

example of the result obtained in the mutation step. Table B.26 shows

eight mutants that were generated from the IM conceptual schema

after applying the mutant generation process to the case study.

APPENDIX B

321

Figure B.5. Excerpt of the Conceptual Schema for Incident Management System

APPENDIX B

322

Table B.26. List of First Order Mutants generated for the case study

No
.

Mutation
Operator

Mutation
Operator
Rule Mutated elements

1 MAS_2
Deletes an
Association user_incident

2 MCO_5
Deletes a
constraint)

context INCIDENTset_estimated_scope()
precondition pt_estimated_scope=="NOT CRITICAL" ||
pt_estimated_scope=="CRITICAL"

3 MPA_4

Deletes a
Parameter
from a Class
Operation) p_thisINCIDENT(set_cost_estimation-INCIDENT)

4 UPA2_2

Adds a
Parameter to
a Class
Operation) set_initial_scope-INCIDENT

5 WAS1_1

Changes the
member
ends) incident_external_company_analysis

6 WCL1_2

Changes
Class visibility
property) EXTERNAL_COMPANY_ANALYSIS

7 WCO5_6

Changes the
12 operator
(==) with (!=))

context INCIDENTset_progress()
precondition pt_state=="PMO IS ABLE" || pt_state=="PMO
IS NOT ABLE" || pt_state=="UNALLOCATED IN
MUNICIPALITY" || pt_state=="ALLOCATED IN
MUNICIPALITY" || pt_state=="IMPROVEMENT" ||
pt_state=="NEW DEVELOPMENT" || pt_state=="APPROVAL"
|| pt_state=="NOT ALLOWED" || pt_state=="IMPROVE" ||
pt_state=="INCIDENT" || pt_state=="NOT ASSIGNED TO
COMPANY" || pt_state=="ASSIGNED TO COMPANY" ||
pt_state=="SOLVED BY PMO" || pt_state=="UNSOLVED BY
PMO" || pt_state=="SOLVED BY MUNICIPALITY" ||
pt_state=="UNSOLVED BY MUNICIPALITY" ||
pt_state=="SOLVED BY COMPANY" ||
pt_state=="UNSOLVED BY COMPANY" ||
pt_state=="DOCUMENTS REVISION"

8 WOP2_7

Changes the
operation
visibility
property) set_state-INCIDENT

APPENDIX B

323

B.5 Test Execution
This phase of our approach is automatic; we only had to select the

mutated CSs and then run the test cases against them. We divide this

section into two main subsections (B.5.1 and B.5.2), each of which

focuses on a specific tasks of the framework.

B.5.1 Generation of the Executable Conceptual

Schema Under Test
This step was performed automatically by means of the UML2ALF

transformation implemented in the CSUT Processor that is provided by

CoSTest (see Section 6.3.6). As an example of the result obtained in the

Executable Conceptual Schema Generation step, Figure B.5 shows the

UML CD-based CS for Incident Management System and the Figures

B.6-B.16 show the ALF units that were generated after applying the

UML2ALF transformation to mutated IM case study.

Figure B.6. ALF unit for PMO class

Figure B.7. ALF unit for Incident_external_company association

APPENDIX B

324

Figure B.8. ALF unit for EXTERNAL_COMPANY_ANALYSYS class

Figure B.9. ALF unit for incident_resource_allocation association

Figure B.10. ALF unit for technician_resource_allocation association

APPENDIX B

325

Figure B.11. ALF unit for INCIDENT class

APPENDIX B

326

Figure B.12. ALF unit for RESOLUTION_PLAN class

Figure B.13. ALF Unit for RESOURCE_ALLOCATION class

Figure B.14. ALF unit for TECHNICIAN class

Figure B.15. ALF unit for USER class

APPENDIX B

327

Figure B.16. ALF unit for user_incident association

B.5.2 Generation of the Execution Trace
The testing execution phase of the mutants was performed by

means of the Test Processor, which is integrated in CoSTest (see

Section 7.6). As an example of the execution trace, Figure B.17 shows

the execution trace of the test cases against the MAS_2 mutant.

Figure B.17. Example of Execution Trace for the MAS_2 mutant

From these results, we can see that test cases numbers 2, 4 and 7

are negative test cases to validate constraints; therefore, the expected

result is an error in postcondition because the constraints are violated

in order to test their existence as we can see in Figure B.17. The result

for test case number 8 shows that line 22 produces the fault property

Access Expression Feature Resolution, and then the testing process is

stopped.

--------Test Case :001--
--------Test Case :002--------
Error in PostCondition 'context RESOLUTION_PLAN::new_resolution_plan()
post: RESOLUTION_PLAN->isUnique e(e.id_plan)'
--------Test Case :003--------
--------Test Case :004--------
Error in PostCondition 'context TECHNICIAN::new_technician()
post: TECHNICIAN->isUnique e(e.id_technician)'
--------Test Case :005--------
--------Test Case :006--------
--------Test Case :007--------
Error in PostCondition 'context INCIDENT::new_incident()
post: INCIDENT->isUnique e(e.id_incident)'
--------Test Case :008--------
Constraint violations:
 propertyAccessExpressionFeatureResolution in C:\Users\PC-
Mafer\workspace\COSTest\ExecutableTestCases\UML-ALF\PMO\/PMO_TS_001_TC_008.alf
at line 22, column 62

APPENDIX B

328

B.6 Test Evaluation
This phase of our approach is automatic; therefore, we did not

have to perform any work at this point. The result of the test

evaluation phase was (1) a defect report that provides feedback to the

tester of the CS and also (2) a coverage report comparing the elements

included in the conceptual schema and those executed in the test

cases. Table B.27 shows the veridicts for each CS mutant, the found

defects and the CS elements affected by the defect

Table B.27. Testing results for the mutants of Table B.26

CSUT Final Veridict Found Defects Localized Element

MAS_2 Failed
Missing or private
Association Association=user_incident;

MCO_5 Failed
Missing
Constraint

contextincident::set_plan_respon
se()pre:pt_plan_response=='exist
splan'

MPA_4 Inconclusive

Incorrect
Parameter Data
Type

Class=INCIDENT;
Operation=set_cost_estimation()

WAS1_1 Failed
Missing or private
Association

Association=incident_external_co
mpany_analysis;

WCL1_2 Inconclusive
Missing Class (or
private)

Class=EXTERNAL_COMPANY_
ANALYSIS; Operation=new
EXTERNAL_COMPANY_ANALY
SIS()

WCO5_6 Failed
Missing
Constraint

contextincident::set_progress()pr
e:pt_state=='improve'

WOP2_7 Failed
Missing Operation
(or private)

Class=INCIDENT;
Operation=set_state()

An example of a CoSTest report is shown in Figure B.18, in which

seven of the eight test cases were successfully passed in the testing

process.

The eighth test case returns the verdict Fail. Then, the execution

trace is analysed by using the information shown in Figure B.17 and the

defect missing (or private) Association is reported.

APPENDIX B

329

Figure B.18. Defect report obtained in the testing process for MAS_2 CS

Thus, Figure B.19 shows the coverage report generated for the

MAS_2 CS mutant by comparing the elements included in the

conceptual schema and those executed in the test cases.

Figure B.19. Coverage report obtained in the testing process for MAS_2 CS

APPENDIX B

330

B.7 Conclusions
This appendix presents a case study that exemplifies the CoSTest

framework described in this thesis. To this end, the appendix applies

the validation framework to eight CS mutants, which represent the

conceptual schema for the Incident Manager System that was defined

for the everis company. The application of the approach to an

industrial case study allowed us to identify some of CoSTest’s

limitations (such as highlighting the failed test cases in red). However,

it also allowed us to be optimistic since CoSTest successfully supported

the design, execution, and evaluation of the test cases for detecting

defects in the mutants generated from the CS of the case study.

APPENDIX C

331

Appendix C

Supplementary Material on the Evaluation Study
This appendix includes material that was used during the

evaluation study that is presented in Chapter 8. First, the appendix

presents several instruments that were employed during the execution

phase of the study. These instruments are the characterization form,

the CoSTest tool installation guide, the guideline with the task

template, and the interview questions, which are given in Sections C.1,

C.2, C.3 and C.4, respectively.

C1. Characterization Form
This section presents the characterization form. As Section 8.5.9

describes, the characterization form is divided in two parts. The first

part requests demographic data, such as gender, age, and work status.

This part of the form is shown in Figure C.1. The second part includes

twenty-two questions concerning the subjects’ level of experience of

the topics covered by the study (e.g. modelling activities and testing).

This part of the form is shown in Figures C.2 - C.4.

Figure C.1. Characterization form: Demographic data

APPENDIX C

332

Figure C.2. Characterization form: Experience (1)

APPENDIX C

333

Figure C.3. Characterization form: Experience (2)

APPENDIX C

334

Figure C.4. Characterization form: Experience (3)

C2. CoSTest Tool Installation Guide
The CoSTest tool can be downloaded as a compressed bundle

(*.zip/*.rar) from: https://staq.dsic.upv.es/webstaq/costest/costest.zip

APPENDIX C

335

The execution requirements are:

• Microsoft Windows operative system; Windows 7 or superior is

suggested

• JRE (Java Runtime Environment); version 7 is suggested.

To execute the tool, you need to:

• Uncompress the .rar bundle to the desired location: e.g.

c:\CoSTest\

• Launch the database client; e.g. c:\CoSTest\runServer.bat

• Launch the tool; e.g. c:\CoSTest\costest.bat

To use with a concrete case, you need to:

• Copy the requirements model file (e.g.

VideoClub.cametamodel) into to ReqModels folder (e.g.

c:\CoSTest\ReqModels\)

• Copy the conceptual schema file (e.g. Video_Club_mutant.uml)

into to ConceptualSchemas folder (e.g.

c:\CoSTest\ConceptualSchemas\) Modelling Tool

The Eclipse framework with UML2 or Papyrus tools can be

downloaded from:

– www.eclipse.org

To execute Eclipse and select the CoSTest folder (e.g. c:\CoSTest) as

workspace.

In Eclipse, to create New Java project “ConceptualSchemas”

To open the tree view of the conceptual schema (e.g.

VideoClub_mutant.uml)

– Double click on the filename from left list (e.g.

VideoClub_mutant.uml)

To open the graphical view of the conceptual schema

APPENDIX C

336

– Double click on the filename from left list (e.g.

VideoClub_mutant.umlclass)

To create the graphical view (if it does not exist)

– Click with right button on UML diagram (e.g.

VideoClub_mutant.uml) and select the option “Initialize Class Diagram”

– To select the parent folder “ConceptualSchemas” and enter the

filename e.g. “VideoClub_mutant.umlclass”

– Click on button Finish to generate the graphical view.

C3. Guideline with Task Template for VideoClub

Case
This section presents the guideline with the tasks template for the

VideoClub case (see Figures C.5 and C.6).

C4. User Acceptance Form
This section presents the user acceptance form. As Section 8.5.6

describes, we developed the user acceptance form following the Post-

study System Usability Questionnaire [151], which suggests measuring

perceived usefulness and perceived ease-of-use by means of two scales

of 7-point Likert items, ranging from “strongly agree" (1) to “neutral"

(4) to “strongly disagree" (7). The first of these two scales, which

evaluates perceived usefulness, is graphically depicted in Figure C.7.

The second scale, which evaluates perceived ease-of-use, is graphically

depicted in Figure C.8.

APPENDIX C

337

Figure C.5. Guideline for VideoClub case (1)

APPENDIX C

338

Figure C.6. Guideline for VideoClub case (2)

Figure C.7. User Acceptance Form: Perceived Usefulness

APPENDIX C

339

Figure C.8. User Acceptance Form: Perceived Ease-of-Use

shown in Figure 5.22

