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1. Introduction

Let H1 and H2 be real Hilbert spaces and T : H1 → H2 a bounded linear
operator (we denote A∗ by its adjoint) . Let C and Q be nonempty, closed and
convex subsets of H1 and H2, respectively. The split feasibility problem is to
find x ∈ C such that Tx ∈ Q. In order to solve the split feasibility problem
(SFP), Byrne [5] proposed the following iterative algorithm in the framework
of Hilbert spaces: x1 ∈ C and

(1.1) xn+1 = PC(xn − λT ∗(I − PQ)Txn), n ≥ 1,

which is often called the CQ algorithm, where λ > 0, PC and PQ are the
metric projections on C and Q, respectively. It was shown that the sequence
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{xn} converges weakly to a solution of SFP. Since then several iterations have
been invented for solving the SFP (see, for example, [2, 11, 13, 17]).

Let A : H1 → 2H1 and B : H2 → 2H2 be set-valued mappings. Byrne et al.
[6] considered the problem of finding a point z in H1 such that

(1.2) z ∈ A−10 ∩ T−1(B−10),

where the set of null points of A is defined by A−10 = {z ∈ H1 : 0 ∈ Az}. We
know that A−10 is closed and convex. This problem is called the split common
null point problem and includes the spit feasibility problem as special cases;
see also [8].

In 1953, Mann [10] introduced the following iteration process. Let C be
a nonempty , closed and convex subset of a Banach space E. A mapping
T : C → C is called nonexpansive if

(1.3) ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. We denote by F (T ) the fixed point set of T . For an initial
point x1 ∈ C, an iteration process {xn} is defined recursively by

(1.4) xn+1 = αnxn + (1− αn)Txn, n ∈ N,

where {αn} is a sequence in [0,1] and T is a nonexpansive mapping on C.
In 1967, Halpern [7] defined an iteration process as follows: Take x0, x1 ∈ C

arbitrarily and define {xn} recursively by

(1.5) xn+1 = αnx0 + (1− αn)Txn, n ∈ N,

where {αn} is a sequence in [0, 1] and T is a nonexpansive mapping on C.
A mapping f : C → C is said to be a contraction if there exists α ∈ (0, 1)

such that

(1.6) ‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.

In 2000, Moudafi [12] introduced the following algorithm: For x1 ∈ C, define
the sequence {xn} by

(1.7) xn+1 = αnf(xn) + (1− αn)Txn, n ∈ N,

where {αn} ⊂ (0, 1) and T is a nonexpansive mapping. This method is called
the viscosity approximation method.

Let H be a Hilbert space and let F be a strictly convex, reflexive and smooth
Banach space. Let JF be the duality mapping on F . Let C andD be nonempty,
closed and convex subsets of H and F , respectively. Let PC and PD be the
metric projections of H onto C and F onto D, respectively. Let T : H → F be
a bounded linear operator such that T 6= 0 and let T ∗ be the adjoint operator of
T . Suppose that C ∩A−1D 6= ∅. In 2015, Alsulami and Takahashi [2] defined
the following algorithm: For any x1 ∈ H ,

(1.8) xn+1 = βnxn + (1− βn)PC(I − rT ∗JF (T − PDT ))xn, n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞). It was proved that if

(1.9) 0 < a ≤ βn ≤ b < 1 and 0 < r‖T ‖2 < 2
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for some a, b ∈ R, then {xn} converges weakly to z0 ∈ C ∩ T−1D, where
z0 = limn→∞ PC∩T−1Dxn.

They introduced the following Halpern’s type iteration: For any x1 ∈ H ,
(1.10)
xn+1 = βnxn + (1− βn)(αnun + (1− αn)PC(I − rT ∗JF (I − PD)T )xn), n ∈ N,

where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1). It was proved that if

(1.11) 0 < r‖T ‖2 < 2, lim
n→∞

αn = 0,

(1.12)

∞
∑

n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 = C ∩ A−1D, for
some z0 = PC∩A−1Du.

Recently, using the idea of Halpern’s iteration, Alofi et al. [1] proved the
following strong convergence theorem for finding a solution of the split common
null point problem in Banach spaces.

Theorem 1.1. Let H be a Hilbert space and let F be a uniformly convex and

smooth Banach space. Let JF be the duality mapping on F . Let A and B be

maximal monotone operators of H into 2H and F into 2F
∗

such that A−10 6=
∅ and B−10 6= ∅, respectively. Let Jλ be the resolvent of A for λ > 0 and let

Qµ be the metric resolvent of B for µ > 0. Let T : H → F be a bounded linear

operator such that T 6= 0 and let T ∗ be the adjoint operator of T . Suppose that

A−10 ∩ T−1(B−10) 6= ∅. Let {un} be a sequence in H such that un → u. Let

x1 = x ∈ H and let {xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1 − αn)Jλn
(I − λnT

∗JF (I −Qµn
)T )xn)

(1.13)

for all n ∈ N, where {λn}, {µn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1)
satisfy the following conditions

(1.14) 0 < a ≤ λn‖T ‖
2 ≤ b < 2, 0 < k ≤ µn, 0 < c ≤ βn ≤ d < 1,

(1.15) lim
n→∞

αn = 0 and

∞
∑

n=1

αn = ∞

for some a, b, c, d, k ∈ R. Then {xn} converges strongly to z0 ∈ A−10 ∩
T−1(B−10), where z0 = PA−10∩T−1(B−10)u.

Motivated by the previous works, we introduce a new iterative scheme for
solving the split common null point problem. We then prove the strong con-
vergence theorem under suitable conditions. Finally, we give some numerical
examples for supporting our main results.
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2. Preliminaries and lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. For x, y ∈ H and λ ∈ R, we know from [15] that

(2.1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

(2.2) ‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Furthermore, for x, y, u, v ∈ H ,

(2.3) 2〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2.

The nearest point projection of a nonempty, closed and convex set C is denoted
by PC , that is, ‖x − PCx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is
called the metric projection of H onto C. We know the metric projection PC

is firmly nonexpansive, i.e.,

(2.4) ‖PCx− PCy‖
2 ≤ 〈PCx− PCy, x− y〉

for all x, y ∈ H . Moreover 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C; see [15].

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space
of E. We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a
sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x

and the weak convergence by xn ⇀ x. The modulus δ of convexity of E is
defined by

δ(ǫ) = inf

{

1−
‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ǫ

}

(2.5)

for every ǫ with 0 ≤ ǫ ≤ 2. A Banach space E is said to be uniformly convex
if δ(ǫ) > 0. It is known that a Banach space E is uniformly convex if and only
if for any two sequences {xn} and {yn} in E such that

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = 1 and lim
n→∞

‖xn − yn‖ = 2,(2.6)

limn→∞ ‖xn − yn‖ = 0 holds. A uniformly convex Banach space is strictly
convex and reflexive.

The duality mapping J from E into 2E
∗

is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}(2.7)

for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

(2.8) lim
t→0

‖x+ ty‖ − ‖x‖

t

exists. In this case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J
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is a single-valued bijection and in this case, the inverse mapping J−1 coincides
with the duality mapping J∗ on E∗. For more details, see [14, 16].

Let C be a nonempty, closed and convex subset of a strictly convex and
reflexive Banach space E. Then we know that for any x ∈ E, there exists a
unique element z ∈ C such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting
z = PCx, we call PC the metric projection of E onto C.

Lemma 2.1 ([16]). Let E be a smooth, strictly convex and reflexive Banach

space. Let C be a nonempty, closed and convex subset of E, and let x1 ∈ E and

z ∈ C Then, the following conditions are equivalent:

(1) z = PCx1;

(2) 〈z − y, J(x1 − z)〉 ≥ 0, ∀ y ∈ C.

Let E be a Banach space and let A be a mapping of E into 2E
∗

. The effective
domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax 6= ∅}. A
multi-valued mapping A on E is said to be monotone if 〈x − y, u∗ − v∗〉 ≥ 0
for all x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is
said to be maximal if its graph is not properly contained in the graph of any
other monotone operator on E. The following theorem is due to Browder [4];
see also [14].

Lemma 2.2 ([4]). Let E be a uniformly convex and smooth Banach space and

let J be the duality mapping on E into E∗. Let A be a monotone operator of

E into 2E
∗

. Then A is maximal if and only for any r > 0,

(2.9) R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex and smooth Banach space with a Gâteaux
differentiable norm and let A be a monotone operator of E into 2E

∗

. For all
x ∈ E and r > 0, we consider the following equation

(2.10) 0 ∈ J(xr − x) + rAxr .

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr
where r > 0 are called the metric resolvent of A. In a Hilbert space H , the
metric resolvent Jr of A is simply called the resolvent of A. We also know the
following lemmas:

Lemma 2.3 ([3, 18]). Let {sn} be a sequence of nonnegative real numbers,

let {αn} be a sequence in [0, 1] with
∑

∞

n=1 αn = ∞, let {βn} be a sequence of

nonnegative real numbers with
∑

∞

n=1 βn < ∞ and {γn} be a sequence of real

numbers with lim supn→∞
γn ≤ 0. Suppose that

(2.11) sn+1 = (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.4 ([9]). Let {Γn} be a sequence of real numbers that does not decrease

at infinity in the sense the there exists a subsequence {Γni
} of {Γn} which
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satisfies Γni
< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n>n0

of integers

as follows:

(2.12) τ(n) = max {k ≤ n : Γk < Γk+1} ,

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Main results

In this section, we prove strong convergence theorems for finding a solution
of the split common null point problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a uniformly convex and

smooth Banach space. Let JF be the duality mapping on F . Let f : H → H

be a contraction. Let A and B be maximal monotone operators of H into 2H

and F into 2F
∗

, respectively. Let Jλ be the resolvent of A for λ > 0 and let

Qµ be the metric resolvent of B for µ > 0. Let T : H → F be a bounded linear

operator such that T 6= 0 and let T ∗ be the adjoint operator of T . Suppose that

A−10∩T−1(B−10) 6= ∅. Let x1 ∈ H and let {xn} ⊂ H be a sequence generated

by

xn+1 = αnf(xn) + βnxn + γnJλn
(I − λnT

∗JF (I −Qµn
)T )xn(3.1)

for all n ∈ N, where {µn}, {λn} ⊂ (0,∞), {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and

{γn} ⊂ (0, 1) satisfy the following conditions:

(3.2) 0 < a ≤ λn‖T
2‖ ≤ b < 2, 0 < k ≤ µn, 0 < c ≤ γn ≤ d < 1,

(3.3) lim
n→∞

αn = 0 and

∞
∑

n=1

αn = ∞

for some a, b, c, d, k ∈ R. Then {xn} converges strongly to z0 ∈ A−10 ∩
T−1(B−10), where z0 = PA−10∩T−1(B−10)f(z0).

Proof. Put zn = Jλn
(I − λnT

∗JF (I − Qµn
)T )xn for all n ∈ N and let z ∈

A−10 ∩ T−1(B−10). We have that z = Jλn
z and Tz = Qµn

Tz for all n ∈ N.
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Since Jλn
is nonexpansive, we have

‖zn − z‖2 = ‖Jλn
(I − λnT

∗JF (I −Qµn
)T )xn − Jλn

z‖2

≤ ‖xn − λnT
∗JF (I −Qµn

)T )xn − z‖2

= ‖xn − z‖2 − 2λn〈xn − z, T ∗JF (I −Qµn
)Txn〉

+λ2
n‖T

∗JF (I −Qµn
)Txn‖

2

≤ ‖xn − z‖2 − 2λn〈Txn − Tz, JF (I −Qµn
)Txn〉

+ λ2
n‖T ‖

2‖(I −Qµn
)Txn‖

2

= ‖xn − z‖2 − 2λn〈Txn −Qµn
Txn, JF (I −Qµn

)Txn〉

−2λn〈Qµn
Txn − Tz, JF (I −Qµn

)Txn〉

+ λ2
n‖T ‖

2‖(I −Qµn
)Txn‖

2

= ‖xn − z‖2 − 2λn‖Txn −Qµn
Txn‖

2

−2λn〈Qµn
Txn − Tz, JF (I −Qµn

)Txn〉

+ λ2
n‖T ‖

2‖(I −Qµn
)Txn‖

2

≤ ‖xn − z‖2 − 2λn‖Txn −Qµn
Txn‖

2 + λ2
n‖T ‖

2‖(I −Qµn
)Txn‖

2

= ‖xn − z‖2 + λn(λn‖T ‖
2 − 2)‖(I −Qµn

)Txn‖
2.(3.4)

Since 0 < λn‖T ‖
2 < 2, it follows that ‖zn− z‖ ≤ ‖xn − z‖ for all n ∈ N. So we

obtain

‖xn+1 − z‖ = ‖αnf(xn) + βnxn + γnzn − z‖

≤ αn‖f(xn)− z‖+ βn‖xn − z‖+ γn‖xn − z‖

≤ αnα‖xn − z‖+ αn‖f(z)− z‖+ (1− αn)‖xn − z‖

= (1− αn(1− α))‖xn − z‖+ αn‖f(z)− z‖.(3.5)

By induction, we conclude that {xn} is bounded. So are {Txn}, {zn} and {yn}.
Put z0 = PA−10∩T−1(B−10)f(z0). We see that

xn+1 − xn = αn(f(xn)− xn) + γn(zn − xn),(3.6)

which implies that

xn+1 − xn − αn(f(xn)− xn) = γn(zn − xn).(3.7)

It follows that

〈xn+1 − xn − αn(f(xn)− xn), xn − z0〉 = γn〈zn − xn, xn − z0〉

= −γn〈xn − zn, xn − z0〉.(3.8)

From (2.3), we obtain

2〈xn − zn, xn − z0〉 = ‖xn − z0‖
2 + ‖zn − xn‖

2 − ‖zn − z0‖
2

≥ ‖xn − z0‖
2 + ‖zn − xn‖

2 − ‖xn − z0‖
2

= ‖zn − xn‖
2.(3.9)
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From (3.8) and (3.9), we obtain

2〈xn+1 − xn, xn − z0〉 = 2αn〈f(xn)− xn, xn − z0〉 − 2γn〈xn − zn, xn − z0〉

≤ 2αn〈f(xn)− xn, xn − z0〉 − γn‖zn − xn‖
2.(3.10)

Using (2.3) and (3.10), we have
(3.11)
‖xn+1−z0‖

2−‖xn−xn+1‖
2−‖xn−z0‖

2 ≤ 2αn〈f(xn)−xn, xn−z0〉−γn‖zn−xn‖
2.

Putting Γn = ‖xn − z0‖
2 for all n ∈ N, we see that

(3.12) Γn+1 −Γn−‖xn− xn+1‖
2 ≤ 2αn〈f(xn)− xn, xn − z0〉− γn‖zn− xn‖

2.

We note that

‖xn+1 − xn‖ = ‖αnf(xn) + βnxn + γnzn − xn‖

≤ αn‖f(xn)− xn‖+ γn‖zn − xn‖.(3.13)

This shows that

‖xn+1 − xn‖
2 ≤ (αn‖f(xn)− xn‖+ γn‖zn − xn‖)

2

= α2
n‖f(xn)− xn‖

2 + 2αnγn‖f(xn)− xn‖‖zn − xn‖

+ γ2
n‖zn − xn‖

2.(3.14)

Hence by (3.12) and (3.14), we have

Γn+1 − Γn ≤ αn(αn‖f(xn)− xn‖
2 + 2γn‖f(xn)− xn‖‖zn − xn‖)

+ γ2
n‖zn − xn‖

2

+ 2αn〈f(xn)− xn, xn − z0〉 − γn‖zn − xn‖
2

= αn(αn‖f(xn)− xn‖
2 + 2γn‖f(xn)− xn‖‖zn − xn‖)

+ γn(γn − 1)‖zn − xn‖
2

+ 2αn〈f(xn)− z0, xn − z0〉 − 2αn‖xn − z0‖
2.(3.15)

So we obtain

Γn+1 − Γn + γn(1− γn)‖zn − xn‖
2 ≤ αn(αn‖f(xn)− xn‖

2

+ 2γn‖f(xn)− xn‖‖zn − xn‖)

+ 2αn〈f(xn)− z0, xn − z0〉

− 2αn‖xn − z0‖
2.(3.16)

We next split the proof into two cases.
Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn

for all n ≥ N . In this case, limn→∞ Γn exists and then limn→∞(Γn+1−Γn) = 0.
Since limn→∞ αn = 0 and 0 < c ≤ γn ≤ d < 1, by (3.16), we have

lim
n→∞

‖zn − xn‖ = 0.(3.17)

From (3.13) we have

lim
n→∞

‖xn+1 − xn‖ = 0.(3.18)
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We next show that lim supn→∞
〈f(z0)− z0, zn − z0〉 ≤ 0. Put

(3.19) l = lim sup
n→∞

〈f(z0)− z0, zn − z0〉.

Then without loss of generality, there exists a subsequence {zni
} of {zn} such

that l = limi→∞〈f(z0)−z0, zni
−z0〉 and {zni

} converges weakly to some point
w ∈ H . Since ‖xn − zn‖ → 0, we also have that {xni

} converges weakly to
w ∈ H . On the other hand, from (3.4) we have

λn(2− λn‖T ‖
2)‖(I −Qµn)Txn‖

2 ≤ ‖xn − zn‖
2 − ‖zn − z‖2

≤ ‖xn − zn‖(‖xn − z‖+ ‖zn − z‖).(3.20)

Then since ‖xn − zn‖ → 0 and 0 < a ≤ λn‖T ‖
2 ≤ b < 2,

(3.21) lim
n→∞

‖Txn −Qµn
Txn‖ = 0.

Since {xni
} converges weakly to w ∈ H and T is bounded and linear, we

also have {Txni
} converges weakly to Tw. Using this and limn→∞ ‖Txn −

Qµn
Txn‖ = 0, we have that Qµni

Txni
⇀ Tw. Since Qµn

is the metric resolvent

of B for µn > 0, we have that
JF (Txn−QµnTxn)

µn
∈ BQµn

Txn for all n ∈ N. By

the monotonicity of B we obtain

0 ≤

〈

u−Qµni
Txni

, v∗ −
JF (Txni

−Qµni
Txni

)

µni

〉

(3.22)

for all (u, v∗) ∈ B. We observe that ‖JF (Txni
− Qµni

Txni
)‖ = ‖Txni

−

Qµni
Txni

‖ → 0 as i → ∞. Since 0 < k ≤ µni
, it follows that 0 ≤ 〈u−Tw, v∗−

0〉 for all (u, v∗) ∈ B. Because B is maximal monotone, we have Tw ∈ B−10.
This implies that w ∈ T−1(B−10). Using zn = Jλn

(xn − λnT
∗JF (Txn −

Qλn
Txn)), we obtain

zn = Jλn
(xn − λnT

∗JF (Txn −Qµn
Txn))(3.23)

⇔ xn − λnT
∗JF (Txn −Qµn

Txn) ∈ zn + λnAz

⇔ xn − zn − λnT
∗JF (Txn −Qµn

Txn) ∈ λnAzn

⇔
1

λn

(xn − zn − λnT
∗JF (Txn −Qµn

Txn)) ∈ Azn.

Since A is monotone, we have that for (u, v) ∈ A,
〈

zn − u,
1

λn

(xn − zn − λnT
∗JF (Txn −Qµn

Txn))− v

〉

≥ 0(3.24)

which implies that
〈

zn − u,
xn − zn

λn

− T ∗JF (Txn −Qµn
Txn))− v

〉

≥ 0.(3.25)

Replacing n by ni, we have
〈

zni
− u,

xni
− zni

λni

− T ∗JF (Txni
−Qµni

Txni
)− v

〉

≥ 0.(3.26)
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Since xni
−zni

→ 0, 0 < a ≤ λni
‖T ‖2, zni

⇀ w and T ∗JF (Txn−Qµni
Txni

) →

0, we get that 〈w − u,−v〉 ≥ 0. Since A is maximal, we have 0 ∈ Aw.
Therefore, w ∈ A−10 ∩ T−1(B−10). Since {zni

} converges weakly to w ∈
A−10 ∩ T−1(B−10), it follows that

(3.27) l = lim
i→∞

〈f(z0)− z0, zni
− z0〉 = 〈f(z0)− z0, w − z0〉 ≤ 0.

On the other hand, we see that

‖xn+1 − z0‖
2 = 〈xn+1 − z0, xn+1 − z0〉

= 〈αnf(xn) + βnxn + γnzn − z0, xn+1 − z0〉

= 〈αn(f(xn)− z0) + βn(xn − z0) + γn(zn − z0), xn+1 − z0〉

= αn〈f(xn)− f(z0) + f(z0)− z0, xn+1 − z0〉

+ βn〈xn − z0, xn+1 − z0〉+ γn〈zn − z0, xn+1 − z0〉

= αn〈f(xn)− f(z0), xn+1 − z0〉+ αn〈f(z0)− z0, xn+1 − z0〉

+ βn〈xn − z0, xn+1 − z0〉+ γn〈zn − z0, xn+1 − z0〉

≤ αnα‖xn − z0‖‖xn+1 − z0‖+ βn‖xn − z0‖‖xn+1 − z0‖

+ γn‖xn − z0‖‖xn+1 − z0‖+ αn〈f(z0)− z0, xn+1 − z0〉

= (αnα+ βn + γn)‖|xn − z0‖‖xn+1 − z0‖

+ αn〈f(z0)− z0, xn+1 − z0〉

≤ (αnα+ 1− αn)
1

2
(‖xn − z0‖

2 + ‖xn+1 − z0‖
2)

+ αn〈f(z0)− z0, xn+1 − z0〉

=

(

ααn + 1− αn

2

)

‖xn − z0‖
2

+

(

ααn + 1− αn

2

)

‖xn+1 − z0‖
2

+ αn〈f(z0)− z0, xn+1 − z0〉

=

(

1−
2(1− α)αn

1 + (1− α)αn

)

‖xn − z0‖
2

+

(

2(1− α)αn

1 + (1− α)αn

)(

1

1− α

)

〈f(z0)− z0, xn+1 − z0〉.(3.28)

Also, we have

lim
n→∞

‖zn − xn+1‖ ≤ lim
n→∞

(‖zn − xn‖+ ‖xn+1 − xn‖) = 0.(3.29)

Then

lim sup
n→∞

〈f(z0)− z0, xn+1 − z0〉 ≤ 0.(3.30)

Since
∑

∞

n=1 αn = ∞, by Lemma 2.3 we conclude that xn → z0 as n → ∞.
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Case 2. Suppose that there exists a subsequence {Γni
} of the sequence

{Γni
} such that Γni

≤ Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.(3.31)

Then by Lemma 2.6 we have Γτ(n) < Γτ(n)+1. Thus by (3.16) we have for all
n ∈ N,

γτ(n)(1− γτ(n))‖zτ(n) − xτ(n)‖
2 ≤ α2

τ(n)‖f(xτ(n))− xτ(n)‖
2

+ 2ατ(n)γτ(n)(‖f(xτ(n))− xτ(n)‖

× ‖zτ(n) − xτ(n)‖)

+ 2ατ(n)〈f(xτ(n))− z0, xτ(n) − z0〉

− 2ατ(n)‖xτ(n) − z0‖
2.(3.32)

Using limn→∞ αn = 0 and 0 < c ≤ γn ≤ d < 1, we have

lim
n→∞

‖zτ(n) − xτ(n)‖ = 0.(3.33)

As in the proof of Case 1, we can show that

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0.(3.34)

This gives

lim
n→∞

‖zτ(n) − xτ(n)+1‖ = 0.(3.35)

We next show that lim supn→∞
〈f(z0)− z0, xτ(n)+1 − z0〉 ≤ 0. Put

l = lim sup
n→∞

〈f(z0)− z0, xτ(n)+1 − z0〉.(3.36)

So we have

l = lim sup
n→∞

〈f(z0)− z0, zτ(n) − z0〉.(3.37)

Without loss of generality, there exists a subsequence {zτ(ni)} of {zτ(n)} such
that

l = lim
i→∞

〈f(z0)− z0, zτ(ni) − z0〉(3.38)

and {zτ(ni)} converges weakly to some point w ∈ H . As in the proof of Case

1, we can show that w ∈ A−10 ∩ T−1(B−10). Then it follows that

l = lim
i→∞

〈f(z0)− z0, zτ(ni) − z0〉 = 〈f(z0)− z0, w − z0〉 ≤ 0.(3.39)

As in the proof of Case 1, we also obtain

‖xτ(n)+1 − z0‖
2

≤

(

1−
2(1− α)ατ(n)

1 + (1− α)ατ(n)

)

‖xτ(n) − z0‖
2

+

(

2(1− α)αn

1 + (1− α)αn

)(

1

1− α

)

〈f(z0)− z0, xτ(n)+1 − z0〉.(3.40)
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Since Γτ(n) ≤ Γτ(n)+1,

(

2(1− α)ατ(n)

1 + (1− α)ατ(n)

)

‖xτ(n) − z0‖
2 ≤

(

2(1− α)αn

1 + (1− α)αn

)

×

(

1

1− α

)

〈f(z0)− z0, xτ(n)+1 − z0〉.(3.41)

It is easily seen that
(

2(1−α)ατ(n)

1+(1−α)ατ(n)

)

> 0. Then we have

‖xτ(n) − z0‖
2 ≤

(

1

1− α

)

〈f(z0)− z0, xτ(n)+1 − z0〉.(3.42)

This shows that

lim sup
n→∞

‖xτ(n) − z0‖
2 ≤ 0(3.43)

and hence ‖xτ(n) − z0‖ → 0 as n → ∞. Thus ‖xτ(n)+1 − z0‖ → 0 as n → ∞.
By Lemma 2.6, we obtain

‖xn − z0‖ ≤ ‖xτ(n)+1 − z0‖ → 0(3.44)

as n → ∞. This completes the proof. �

4. Examples and numerical results

In this section, we give examples including its numerical results for support-
ing our main theorem.

Example 4.1. Let H = R. For x ∈ R, we define G : R → R by

G(x) =

{

ωx if x ≥ 0,
+∞ otherwise.

Let F : R → R be defined by F (x) = ω|x| − ln(1 + ω|x|).

Choose x1 = 2, ω = 1, αn = 1
2n+1 , βn = n

2n+1 , γn = n
2n+1 for all n ∈ N.

Let f(x) = x
2 and Tx = x . We aim to find the minimizers of F and G. Using

algorithm (3.1), we have the following numerical results:

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 356



Convergence theorems for finding the split common null point

n xn | xn+1 − xn |
1 1.471404251 5.2859547 × 10−1

2 1.265727840 7.8045565 × 10−1

3 0.527004926 7.8045565 × 10−1

4 0.250611252 1.3092799 × 10−1

5 0.160205803 7.9460312 × 10−2

6 0.114183169 5.3450423 × 10−2

7 0.083166153 3.7671482 × 10−2

8 0.061057394 2.7173989 × 10−2

9 0.045012810 1.9840027 × 10−2

10 0.033265124 1.4579710 × 10−2

11 0.024621382 1.0752746 × 10−2

12 0.018243176 7.9469695 × 10−3

...
...

...
50 0.000000260 1.1017075 × 10−7

Table 1 Numerical results of Example 4.1 for iteration process (3.1)
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Figure 1: Convergence behavior of {xn} in Table 1.
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Figure 2: Error plots for all sequences {xn} in Table 1.

Example 4.2. Let H = R
3. For x ∈ R

3, define G : R3 → R by G(x) =
‖Lx− y‖2, where

L =





1 2 2
3 0 1
2 1 −1



, y =





2
−3
1



 and F : R
3 → R by F (x) = 5‖x‖2 +

(15, 6,−7)x+ 10.
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Let T =





1 0 1
0 −1 2
1 2 3



 . Find x ∈ R
3 such that x is a minimizer of F and Tx

also is a minimizer of G.

Choose x1=





1
−1
−1



, αn = 1
2n+1 , βn = n

2n+1 , γn = n
2n+1 for all n ∈ N and

let f(x) = x
2 . Using algorithm (3.1), we have the following numerical results:

n xn ‖xn+1 − xn‖
1 (0.1527,-0.6014,0.8512) 20.745517681470 ×10−1

2 (-0.5968,-0.6646,-0.0706) 11.896884171498 ×10−1

3 (-0.8523,-0.5312,0.7977) 9.149067074771 ×10−1

4 (-1.1354,-0.6011,0.3222) 5.577239966457 ×10−1

5 (-1.2027,-0.5415,0.7430) 4.302752764182 ×10−1

6 (-1.3156,-0.5838,0.4941) 2.766128927383 ×10−1

7 (-1.3323,-0.5554,0.7039) 2.124210254520 ×10−1

8 (-1.3822,-0.5792,0.5747) 1.406007674047 ×10−1

9 (-1.3869,-0.5656,0.6815) 1.078492388367 ×10−1

10 (-1.4115,-0.5788,0.6150) 7.214423578793 ×10−2

11 (-1.4139,-0.5724,0.6703) 5.574083184995 ×10−2

12 (-1.4273,-0.5798,0.6365) 3.720017649222 ×10−2

13 (-1.4295,-0.5769,0.6655) 2.926886211227 ×10−2

14 (-1.4375,-0.5811,0.6485) 1.930348053252 ×10−2

15 (-1.4397,-0.5800.0.6640) 1.568794063595 ×10−2

...
...

...
100 (-1.4790,-0.5913,0.6743) 8.809288634531 ×10−5

Table 2 Numerical results of Example 4.2 for iteration process (3.1)

0 10 20 30 40 50 60 70 80 90 100
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0
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1

Number of iterations

X
n

Figure 3: Convergence behavior of {xn} in Table 2 .
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Figure 4: Error plots for all sequences {xn} in Table 2 .

From Table 2, we see that





−1.5
−0.6
0.7



 is a minimizer of F such that T





−1.5
−0.6
0.7





=





−0.8
2

−0.6



 is a minimizer of G.
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