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Abstract

The RAFU (radical functions) method can be used to obtain the uni-
form reconstruction of a continuous function from its values at some
of the points of partitions of a closed interval. In this work we will
prove that we can reconstruct a continuous function from average sam-
ples of these points, from linear combinations of them and from local
average samples given by convolution. A uniform error bound of or-

der O
(

h
3
2 )
)

+ ω (h) with the step size h will be established. If these

data are unknown but approximate values of them are known, uni-
form reconstruction will be also possible. Error estimates of order

O
(

h
3
2

)

+ ω (h) + η with noise level η will be given. The case of a

non-uniform net will be treated. Examples and algorithms will be also
shown.
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1. Introduction

Suppose that the interval [a, b] is partitioned by the n + 1 equally spaced
points a = x0 < x1 < ... < xn = b, such that xi = a + ih, for i = 0, ...,n,
with h = b−a

n
. Consider, for each natural n and k = 1, ..., n− 1 the functions

Fn (xk, x) =
2n+1

√
xk−a+ 2n+1

√
x−xk

2n+1
√
b−xk+

2n+1
√
xk−a

defined in [a, b]. Then, given f ∈ C [a, b], the
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sequence of radical functions (Cn)n defined in [a, b] as

(1.1) Cn(x) = f(x0) +

n
∑

j=2

[f(xj)− f(xj−1)] · Fn (xj−1, x)

converges uniformly to f in [a, b] as n → +∞. We define the RAFU method

on approximation to an arbitrary function f to any approximation procedure
that uses functions Cn defined as (1.1) to approach the function f . As for the
RAFU method, the reader can see [7, 8, 9, 10].

In [8] we proved that the called RAFU linear space is uniformly dense in
C [a, b] by using a S-separation condition due to Blasco-Moltó [3] or its equiv-

alent S
′

-separation condition due to Garrido-Montalvo [13]. Moreover, this
linear space can be used as an example of approximation by series in the work
of Gassó-Hernández-Rojas [14].

The main goal of this work is to use this method to approach a continuous
function f from average samples of the values f(xj), from linear combinations of

f(xj) and f(xj+1) and from local average samples given by
(

χ[−h
2 ,h2 ]

⋆ f
)

(x).

In all these cases we will establish a uniform error bound of order O
(

h
3
2 )
)

+

ω (h). Moreover, if the data f(xj) or linear combinations or average samples or
local average samples are unknown, but approximate values of them are known,
that is to say, for the case of the noise data, we will prove that it is also possible

to obtain the reconstruction of the function f . Error bounds of order O
(

h
3
2

)

+

ω (h) + η, where η is the noise level, will be given. Such problems often occur
in environmental science, mathematical statistics, digital image, mechanics,
numerical analysis and electricity ; we refer to [1, 5, 11, 12, 15, 16, 17] for more
details.

Spline functions have been used to approximate a function f in some of these
practical applications by other authors, H. Behforooz [1, 2], E.J.M. Delhez [11],
F.G. Lang and X.P. Xu [18] and T. Zhanlav and R. Mijiddorj [19]. In these
papers it was necessary to suppose that the function f had several derivatives
and error estimations were not given in some of them.

Given approximate integral values of a function f belongs to H1(a, b), the
usual Sobolev space, over subintervals [xj , xj+1], J. Huang and Y. Chen [16]
studied the problem of reconstructing the function f from these data. In this
work a regularization method was required and the error bound was established
in L2 norm.

In [4] J. Bustamante, R.C. Castillo and A.F. Collar studied a polynomial
approximation of functions from their approximate values at nodes. In this
case a regularization method was also required.

In this paper, with the only condition that f ∈ C [a, b], our purpose will be to
employ the RAFU method to demonstrate that it is possible its reconstruction
in all the mentioned cases. Moreover, the computational methods involved will
be very easy to implement. The paper does not impress with the difficulties
it overcomes. It does not contain complicated calculations or reasonings, but
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we think that the importance of this technique to solve all these problems will
balance the deficiency of difficulties. This approximation method can rather
apply to functions with low smoothness. The uniform stability of this approx-
imation method improves the instability of the interpolation by polynomials;
we refer to [7, 8, 9, 10] for more details.

Until now the main drawback of the RAFU method on approximation has
been its low accuracy for smooth functions. In Section 2 we will improve
the degree of uniform approximation given in [7] and this is an important
contribution of this work. In fact, the uniform error estimates that RAFU

approximation provides can be better than ω
(

f, π
n+1

)

which is, as far as we

know, the best uniform error bound known until now in order to approximate
continuous functions by algebraic polynomials in [−1, 1] ([6] p. 147). Moreover,
in the case of RAFU approximation, the approximating continuous functions
are always known. In Section 3, as elementary corollaries, we will solve all our
main purposes. By using 4.1.0.0 Mathematica program, we will give in Section
4 some concise algorithms used in this paper. This approximation procedurre
can also be used when the set of the points that define the subdivisions of the
interval [a, b] is not a uniform net. In Section 5 we will study this case.

2. Improvement of the degree of uniform approximation with the

RAFU Method

Maybe, until now the main drawback of the RAFU method on approxima-
tion has been the order of the convergence of the sequence (Cn)n to the function
f . Here, we will improve it by using a subsequence of the sequence (2n+ 1)n
of the index of the roots of the funcions Fn (xk, x) which appear in (1.1).

In this section we will consider partitions Pn = {x0 = a, x1, ..., xn = b} of
[a, b] with xj = a + j · b−a

n
, j = 0,...,n. Moreover, each interval [xk−1, xk] of

length b−a
n

will be divided into three equal parts of length b−a
3n :

[

xk−1, xk−1 +
b−a
3n

]

,
[

xk−1 +
b−a
3n , xk − b−a

3n

]

,
[

xk − b−a
3n , xk

]

Lemma 2.1. For n ≥ 2, it follows that:
1. Let 1 ≤ p ≤ n− 1 be, p integer. Then

∣

∣
2n2+1
√

p
n
− 1
∣

∣ ≤ 1
n
√
n

2.
∣

∣

∣

2n2+1

√

1
3 − 1

∣

∣

∣
≤ 1

n
√
n

3.
∣

∣

∣

2n2+1

√

1
3n − 1

∣

∣

∣
≤ 1

n
√
n

4. Let 1 ≤ p ≤ n− 1 be, p integer. Then
∣

∣
2n2+1

√
n− p− 1

∣

∣ ≤ 1
n
√
n

Lemma 2.2. Let Pn a partition of [a, b]. For each natural n and k = 1, ...,
n− 1, we define in [a, b] the function

Fn,2 (xk, x) =
2n2+1

√
xk − a+ 2n2+1

√
x− xk

2n2+1
√
b− xk + 2n2+1

√
xk − a

Then, it satisfies that 0 ≤ Fn,2 (xk, x) ≤ 1.
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The values of the functions Fn,2 (xk, x), for any k, do not depend on a and

b. In fact, considering x = a+ αx
b−a
n

for an αx, it verifies that

Fn,2 (xk, x) =

2n2+1

√

(

a+ k b−a

n

)

− a+ 2n2+1

√

(

a+ αx
b−a

n

)

−
(

a+ k b−a

n

)

2n2+1

√

(

a+ n b−a

n

)

−
(

a+ k b−a

n

)

+ 2n2+1

√

(

a+ k b−a

n

)

− a
=

=

2n2+1

√

k b−a

n
+ 2n2+1

√

(αx − k) b−a

n

2n2+1

√

(n− k) b−a

n
+ 2n2+1

√

k b−a

n

=
2n2+1

√
k + 2n2+1

√

(αx − k)

2n2+1
√

(n− k) + 2n2+1
√
k

Lemma 2.3. Let Pn be a partition of [a, b] and x ∈
[

xk−1 +
b−a
3n , xk − b−a

3n

]

.
Then, for any k = 1, ..., n− 1, it follows that

1. If x− xk > 0 then
2n2+1

√
1
n
+ 2n2+1

√
1
3n

2 ≤ Fn,2 (xk, x) ≤ 1

2. If x− xk < 0 then 0 ≤ Fn,2 (xk, x) ≤
2n2+1

√
n−1− 2n2+1

√
1
3

2

Moreover, these bounds are valid as x ∈
[

a, x1 − b−a
3n

]

, x ∈
[

xn−1 +
b−a
3n , b

]

and x ∈
(

xj − b−a
3n , xj +

b−a
3n

)

with j 6= k.

Lemma 2.4. Let Pn be a partition of [a, b]. If x ∈
[

xk−1 +
b−a
3n , xk − b−a

3n

]

with k = 1, ..., n − 1, x ∈
[

a, x1 − b−a
3n

]

, x ∈
[

xn−1 +
b−a
3n , b

]

, or x ∈
(

xj − b−a
3n , xj +

b−a
3n

)

where j 6= k then for all n ≥ 2 it follows that

1.

∣

∣

∣

∣

2n2+1
√

1
n
+ 2n2+1

√
1
3n

2 − 1

∣

∣

∣

∣

≤ 1
n
√
n

2.

∣

∣

∣

∣

2n2+1√n−1− 2n2+1
√

1
3

2 − 0

∣

∣

∣

∣

≤ 1
n
√
n

Proofs of Lemmas 2.1, 2.2, 2.3 and 2.4 can be obtained by elementary esti-
mates.

Proposition 2.5. Let Pn be a partition of [a, b] and En the step function
defined by

(2.1) En(x) = k1 · χ[a,x1] +

n−1
∑

p=2

kp · χ(xp−1,xp] + kn · χ(xn−1,b]

Let Cn be the radical function associated to En defined by

(2.2) Cn(x) = k1 +

n
∑

j=2

[kj − kj−1] · Fn,2 (xj−1, x)

Then, for all n ≥ 2 it follows that:

(1) |Cn(x)− En(x)| ≤ 2(Mn−mn)
n
√
n

, x ∈ [a, b] \ ∪n−1
k=1

(

xk − b−a
3n , xk + b−a

3n

)

(2) |Cn(x)− [kj(1− αx) + kj+1αx]| ≤ 2(Mn−mn)

n
√

n
, x ∈

(

xj − b−a

3n
, xj +

b−a

3n

)

,

j = 1,..., n− 1

where Mn and mn are the maximum and the minimum of the kj and αx ∈
(0, 1) is a number which depends upon x.
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Proof. The proof is simlar to the proof given in [7].
Part 1. This part is proved considering three possible cases.
Case 1. Suppose that x ∈

[

xj−1 +
b−a
3n , xj − b−a

3n

]

, j = 2, ...,n− 1 then

|Cn(x) − En(x)| = |Cn(x)− kj | =
∣

∣

∣

∣

∣

Cn(x) −
(

k1 +

j
∑

p=2

[kp − kp−1]

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

j
∑

p=2

[kp − kp−1] [1− Fn,2 (xp, x)] +

n
∑

p=j+1

[kp − kp−1] [0− Fn,2 (xp, x)]

∣

∣

∣

∣

∣

∣

≤

by Lemmas 2.3 and 2.4
∣

∣

∣

∣

∣

∣

j
∑

p=2

[kp − kp−1] ·
1

n
√
n
+

n
∑

p=j+1

[kp − kp−1] · −
1

n
√
n

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

j
∑

p=2

[kp − kp−1] ·
1

n
√
n
+

n
∑

p=j+1

[kp−1 − kp] ·
1

n
√
n

∣

∣

∣

∣

∣

∣

≤

1

n
√
n
|[kj − k1] + [kj − kn]| ≤

2 (Mn −mn)√
n

Case 2. Suppose that x ∈
[

a, x1 − b−a
3n

]

. Then x− xp < 0, p = 1, ..., n− 1
and proceeding as in Case 1 and by using Lemmas 2.3 and 2.4, we obtain

|Cn(x)− En(x)| = |Cn(x) − k1| =

∣

∣

∣

∣

∣

Cn(x)−
(

k1 +

j
∑

p=2

[kp − kp−1]

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

p=2

[kp − kp−1] [0− Fn,2 (xp, x)]

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

p=2

[kp − kp−1] · −
1

n
√
n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

p=2

[kp−1 − kp] ·
1

n
√
n

∣

∣

∣

∣

∣

≤ 2 (Mn −mn)

n
√
n

Case 3. Suppose that x ∈
[

xn−1 +
b−a
3n , b

]

. Then x−xp > 0, p = 1, ..., n− 1
and proceeding as in Case 1, we can put

|Cn(x) − En(x)| = |Cn(x)− kn| =
∣

∣

∣

∣

∣

Cn(x) −
(

k1 +

j
∑

p=2

[kp − kp−1]

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

p=2

[kp − kp−1] [1− Fn,2 (xp, x)]

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∑

p=2

[kp − kp−1] ·
1

n
√
n

∣

∣

∣

∣

∣

≤ 2 (Mn −mn)

n
√
n

taking into account Lemmas 2.3 and 2.4.
Part 2. Suppose that x ∈

(

xj − b−a
3n , xj +

b−a
3n

)

, j = 1,..., n− 1, then
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[kj(1− αx) + kj+1αx]− Cn(x) = [kj + (kj+1 − kj)αx]− Cn(x) =

k1 − k1 +

j
∑

p=2

[kp − kp−1] [1− Fn,2 (xp−1, x)] +

[kj+1 − kj ] [αx − Fn,2 (xj , x)] +
n
∑

p=j+1

[kp+1 − kp] [0− Fn,2 (xp, x)]

Since for x ∈
(

xj − b−a
3n , xj +

b−a
3n

)

it follows that 0 < Fn,2 (xj , x) < 1 we
can put αx = Fn,2 (xj , x). So that, from Lemmas 2.3 and 2.4, taking absolute
value and proceeding as in Case 1,

|Cn(x)− [kj(1− αx) + kj+1αx]| ≤
∣

∣

∣

∣

∣

∣

j
∑

p=2

[kp − kp−1] ·
1

n
√
n
+

n
∑

p=j+1

[kp − kp+1] ·
1

n
√
n

∣

∣

∣

∣

∣

∣

=

1

n
√
n
|[kj − k1] + [kj+1 − kn]| ≤

2 (Mn −mn)

n
√
n

�

Theorem 2.6. Let f be a continuous function defined in [a, b]. Then there
exists a sequence of radical functions (Cn)n defined in [a, b] as in (2.2) such
that

|Cn(x)− f(x)| ≤ 2 (M −m)

n
√
n

+ ω

(

b− a

n

)

for all n ≥ 2 and x ∈ [a, b] being M and m the maximum and the minimum of
f in [a, b] respectively and ω

(

b−a
n

)

its modulus of continuty.

Proof. For each n ≥ 2, let Pn be a partition of [a, b], let En be the step function
defined by

En(x) =



















f(a) x ∈ [a, x1]

f(x2) x ∈ (x1, x2]

...

f(b) x ∈ (xn−1, b]

and let Cn be the corresponding radical function defined from En as (2.2).
If x ∈ [a, b] \ ∪n−1

k=1

(

xk − b−a
3n , xk + b−a

3n

)

then,

|Cn(x)− f(x)| = |Cn(x) − En(x) + En(x)− f(x)| ≤
2 (M −m)

n
√
n

+ |En(x)− f(x)| = 2 (M −m)

n
√
n

+ |f(xj)− f(x)| ≤
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2 (M −m)

n
√
n

+ ω

(

b− a

n

)

taking into account that En(x) = f(xj) for some j and Proposition 2.5.

If x ∈ ∪n−1
k=1

(

xk − b−a
3n , xk +

b−a
3n

)

, Proposition 2.5 applies and we can choose
an appropiate index j to obtain

|Cn(x)− f(x)| ≤ |Cn(x) − [f(xj) (1− αx) + f(xj+1)αx]|+

|[f(xj) (1− αx) + f(xj+1)αx]− f(x)| ≤

2 (M −m)

n
√
n

+ |[f(xj) (1− αx) + f(xj+1)αx]− [f(x) (1− αx) + f(x)αx]| ≤

2 (M −m)

n
√
n

+ |f(xj)− f(x)| (1− αx) + |f(xj+1)− f(x)| (1− αx) ≤

2 (M −m)

n
√
n

+ ω

(

b− a

n

)

(1− αx + αx) =
2 (M −m)

n
√
n

+ ω

(

b − a

n

)

�

Remark 2.7. It is well-known (see for instance [6] pp. 147) that if f ∈ C [−1, 1],
then there exist an algebraic polynomial Pn of degree ≤ n such that for all
x ∈ C [−1, 1],

|Pn(x)− f(x)| ≤ ω

(

π

n+ 1

)

As far as we know, this error estimate is the best possible currently known.
By means of Theorem 2.6, we have proved an analogous result by using radical
continuous functions. In case of the interval [−1, 1], the error bound becomes
2(M−m)

n
√
n

+ ω
(

2
n

)

. So, depending on the function, this error estimate can be

better than error bound in algebraic polynomial approximation. Moreover,
RAFU method provides the explicit form of the function which approximate
to the funtion f for each n. However in the case of algebraic polynomials this
does not happen. Therefore, this is an important contribution of this work.

3. Main results

3.1. Uniform reconstruction of f from average samples. The following
corollary provides a sequence uniformly convergent to the original function f

and a uniform error bound. Observe that the uniform error bound is the same
as Theorem 2.6.
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Corollary 3.1. Under the hypothesis of Theorem 2.6, if the data ki of the

step function (2.1) are substituted by ki =
f(xi1)n1+...+f(xip)np

n1+...+np
, x1q ∈ [a, x1] or

xiq ∈ (xi−1, xi], i = 2, ..., n, q = 1, ..., p, n1 + ...+ nq 6= 0 then

|Cn(x)− f(x)| ≤ 2 (M −m)

n
√
n

+ ω

(

b− a

n

)

for all x ∈ [a, b], n ≥ 2 and where Cn(x) is defined as 2.2 but from the new
data ki.

Proof. In the proof of Proposition 2.5 we can put ki =
f(xi1)n1+...+f(xip)np

n1+...+np
,

i = 1, ..., n and the same result holds for M and m. Moreover, if we define the

functions En in Proposition 2.5 from ki =
f(xi1)n1+...+f(xip)np

n1+...+np
, i = 1, ..., n and

we put that f(x) =
f(x)n1+...+f(x)np

n1+...+np
, then we can easily check that Corollary

3.1 is true considering now Cn defined as (2.2) but from ki, i = 1, ..., n. �

Example 3.2. In Figure 1 we show the approximation to the piecewise contin-
uous function f(x) defined by 0.5 if x ∈ [0, 0.39), 0.5x−0.185

0.02 if x ∈ [0.39, 0.41),

1 if x ∈ [0.41, 0.69), −0.5x+0.365
0.02 if x ∈ [0.69, 0.71) and 0.5 if x ∈ [0.71, 1] from

ki =
f(xi1)+...+f(xi15)

15 , i = 1, ..., 200 considering C200(x).

(a) Approximating function and f (b) Approximation error

Figure 1. Uniform reconstruction from average samples.

Remark 3.3. If ni = 1, we have the usual average values.

3.2. Uniform reconstruction of f from approximate values. In [4] J.
Bustamante, R. C. Castillo and A. F. Collar solved this problem by means of
a regularization method. In [7] we studied this case but here we give a uniform
error bound. The reader can compare our error bound with the estimation of
the error shown in [4].

When we do not know the values f(xi) but the data f(xi)+ηi, with |ηi| < η

for a fixed η > 0 are known, then the following result can be useful to obtain
an approximation of the function f .
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Corollary 3.4. Under the hypothesis of Theorem 2.6, if the data ki of the step
function (2.1) are changed for ki = f(xi) + ηi, being |ηi| < η, i = 1,...,n then

|Cn(x) − f(x)| ≤ 2 (M −m+ η)

n
√
n

+ ω

(

b− a

n

)

+ η

for all x ∈ [a, b], n ≥ 2 and where Cn(x) is defined as (2.2) but from the new
data ki.

Proof. With these data ki, i = 1,..., n we can obtain the error bound 2(M−m+η)
n
√
n

in Proposition 2.5. Moreover, if we change f(xi) for ki = f(xi)+ηi, i = 1, ..., n

in the proof of Theorem 2.6 then the new error bound becomes 2(M−m+η)

n
√
n

+

ω
(

b−a
n

)

+ η. �

Example 3.5. Approximation to the piecewise continuous function function
f(x) defined by 4x if x ∈ [0, 0.25), 1 if x ∈ [0.25, 0.5), −0.5x+0.5

0.02 if x ∈ [0.5, 0.75)

and 0.5 if x ∈ [0.71, 1] using the data ki = f(xi)+ηi, i = 1, ..., n, with |ηi| ≤ 1
100

(

ηi =
1

100sin4πxi

)

and considering C180(x) (Figure 2).

(a) Approximating function and f (b) Approximation error

Figure 2. Uniform reconstruction from approximate values.

3.3. Uniform reconstruction of f from local average samples. In many
applications it is more realistic to assume that the available samples are local
average samples near a certain x. We consider the special case in which we
know data of the type

(3.1)
(

χ[−h,h] ⋆ f
)

(x) =

∫ +∞

−∞
χ[−h,h](y)f(x− y)dy =

∫ x+h

x−h

f(z)dz

where ⋆ denotes the convolution of the functions χ[−h,h] and f . Sometimes we
deal with phenomena which involve a function and its integral. For example, in
mechanics, the velocity v(t) and the displacement s(t), or the acceleration a(t)
and the velocity v(t); in statistics, the probability density function and the
cumulative distribution function and in electricity, the current function I(t)
and the charge function q(t) are some real examples about this consideration.
The tasks are to approximate the function f from integral values as (3.1) and
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to give error bounds for this aproximation. There have been only a few research
papers to deal with these problems; see for example, H. Behforooz [1, 2], E.J.M.
Delhez [11], F.G. Lang and X.P. Xu [18] and T. Zhanlav and R. Mijiddorj [19].
In these papers it was necessary to suppose that the function f had several
derivatives and error estimations were not given in some of them.

Here, with Corollary 3.6, RAFU method solves easily the problem of the
reconstruction of the function from the integral values and provides a uniform
error bound for this reconstruction with the only condition that f ∈ C [a, b].

On the other hand, let △ be a subdivision of the interval [a, b] with grids
a = x0 < x1 < ... < xn = b whose mesh size is denoted by h = max1≤i≤nhi,
hi = xi − xi−1, 1 ≤ i ≤ n and Mi(f) = 1

hi

∫ xi

xi−1
f(x)dx. In practice, due

to the measurement error, the exact values Mi(f) are unknown but we know
approximate average values ui, 1 ≤ i ≤ n such that |ui −Mi(f)| < δ where δ is
a positive constant describing the level of error of the data. In [16] J. Huang and
Y. Chen proposed a regularization method for solving the problem (P): given
the approximate values ui, 1 ≤ i ≤ n satisfying the previous condition how
does one reconstruct the original function f efficiently? They established the
rigorous error estimates in L2 norm for functions f ∈ H1 (a, b) where H1 (a, b)
is the usual Sobolev space consisting of all L2 (a, b)-integrable functions whose
1-order weak derivative are also L2 (a, b)-integrable. For f ∈ H1 (a, b). They
solved this problem in terms of the Tikhonov regularization method.

In this work, by means of Corollaries 3.4 and 3.6, we establish another
solution of problem (P) in the uniform norm for all f ∈ C [a, b]. Note that
H1 (a, b) is continuously embedded in C [a, b]. Our solution does not need
regularization. See Algorithm 4.2 and Figure 5.

Corollary 3.6. With the hypothesis of Theorem 2.6, if the data ki of the step

function (2.1) are defined by ki =

∫ x̃i+h

x̃i−h
f(z)dz

2h , with [x̃1 − h, x̃1 + h] ⊆ [a, x1]
or [x̃i − h, x̃i + h] ⊆ (xi−1, xi], i = 2, ..., n, then

|Cn(x)− f(x)| ≤ 2 (M −m)

n
√
n

+ ω

(

b− a

n

)

for all x ∈ [a, b], n ≥ 2 and where Cn(x) is defined as (2.2) but from the new
data ki.

Proof. We can put that
∫ x̃i+h

x̃i−h
f(z)dz = f(zi)2h for some value zi ∈ [x̃i − h, x̃i + h]

by the integral properties because f is continuous. Then, ki = f(zi) for all i
and we finish with the same proof of Theorem 2.6. �

Example 3.7. Consider the special case given by x̃i =
xi−1+xi

2 , i = 1, ..., n and

h = b−a
n

to approximate the continuous function f(x) defined by |sin8πx| if x ∈

[0, 0.5) and x− 0.5 if x ∈ [0.5, 1] from local average samples ki =

∫ x̃i+h

x̃i−h
f(z)dz

2h ,
i = 1, ..., 180 with C144(x) (Figure 3).
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(a) Approximating function and f (b) Approximation error

Figure 3. Uniform reconstruction from local average samples.

3.4. Uniform reconstruction of f from linear combinations.

Corollary 3.8. Under the hypothesis of Theorem 2.6, if the values ki of the

step function (2.1) are defined by ki =
f(x̃i)−f(x̃i−1)

x̃i−x̃i−1
· (x′

i − x̃i−1)+f(x̃i−1) with

x′
1 ∈ [x̃0, x̃1] ⊆ [a, x1] or x′

i ∈ [x̃i−1, x̃i] ⊆ (xi−1, xi], i = 2, ..., n, then

|Cn(x)− f(x)| ≤ 2 (M −m)

n
√
n

+ ω

(

b− a

n

)

for all x ∈ [a, b], n ≥ 2 and where Cn(x) is defined as (2.2) but from the new
data ki.

Proof. Since f ∈ C [a, b], there exists a point x′′
i in each interval [x̃i−1, x̃i] such

that ki = f(x′′
i ) for all i = 1, ..., n. Then, this proof becomes the proof of

Theorem 2.6. �

Example 3.9. Consider the special case in which x̃i = xi for all i to ap-
proximate the piecewise continuous function f(x) defined by sin4πx if x ∈
[0, 1

20 ) ∪ [ 15 ,
3
10 )∪ [ 9

20 ,
1
2 ), sin

π
5 if x ∈ [ 1

20 ,
1
5 ), sin

2π
5 if x ∈ [ 3

10 ,
9
20 ) and |sin4πx|

if x ∈ [ 12 , 1] from the data ki = f(xi)−f(xi−1)
xi−xi−1

· (x′
i − xi−1) + f(xi−1) and the

values x′
i =

xi−i+xi

2 by using C150(x) (Figure 4).

(a) Approximating function and f (b) Approximation error

Figure 4. Uniform reconstruction from linear combinations.
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4. Algorithms

We show three algorithms by using the 4.1.0.0 Mathematica program.

Algorithm 4.1. Uniform reconstruction from average samples.

f [x−] := AsExample 3.2;
a = 0; b = 1; n = 3000; h = b−a

n
; v = n

15 ;
t = Table[a+ 15 · h · i, {i, 0, v}]; d = Table[f [a+ j · h], {j, 0, n− 1}];

For[i = 1, i++, Di =
∑15

m=1 dm+15∗(i−1)

15 ];

k = Table[
∑15

m=1 dm+15∗(i−1)

15 , {i, 1, v}];tt = Length[t]; kk = Length[k];

For[i = 2, i ≤ kk, i++,Mi =
(ki−ki−1)· 2n2+1

√
ti−t1

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

For[i = 2, i ≤ kk, i++, Ni =
(ki−ki−1)

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

g[x−] = k1 +
∑

kk

i=2

(

Mi +Ni · 2n2+1
√

Abs[x− ti] · Sign (x− ti)
)

;

Plot[{f [x], g[x]}, {x, t1, ttt}]
Plot[Abs[f [x]− g[x]], {x, t1, ttt}]

Corollary 3.4 can be used together with Corollaries 3.1, 3.6 or 3.8. For
instance, in Algorithm 4.2, we use Corollaries 3.4 and 3.6 to reconstruct uni-
formly an irregular function f from approximate integral values (Figure 5).
Here, Random denotes a random number with uniform distribution on [−1, 1]
and 0.01 is the considered relative error level of the data. RAFU method pro-
vides this easy solution to the Problem (P) suggested by J. Huang and Y. Chen
in [16].

(a) Approximating function and f (b) Approximation error

Figure 5. Uniform reconstruction from approximate inte-
gral values.

Algorithm 4.2. Uniform approximation from approximate integral values.

f [x−] := If [0 ≤ x < 0.25, x, If [0.25 ≤ x < 0.5,−x+ 0.5, If [0.5 ≤ x <

0.75, x− 0, 5, If [0.75 ≤ x ≤ 1,−x+ 1]]]];
a = 0; b = 1; n = 100; h = b−a

n
; hh = b−a

2·n ;
t = Table[a+ j · h, {j, 0, n}];
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k = Table[
N [Integrate[f [x],{x,a+j·h+a+(j+1)·h

2 −hh,
a+j·h+a+(j+1)·h

2 +hh}]]
2·hh

·(1 + 0.01 · Random[Real, {−1, 1}]), {j, 0, n− 1}];
tt = Length[t]; kk = Length[k];

For[i = 2, i ≤ kk, i++,Mi =
(ki−ki−1)· 2n2+1

√
ti−t1

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

For[i = 2, i ≤ kk, i++, Ni =
(ki−ki−1)

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

g[x−] = k1 +
∑

kk

i=2

(

Mi +Ni · 2n2+1
√

Abs[x− ti] · Sign (x− ti)
)

;

Plot[{f [x], g[x]}, {x, t1, ttt}]
Plot[Abs[f [x]− g[x]], {x, t1, ttt}]

Algorithm 4.3. Uniform approximation from linear combinations.

f [x−] := AsExample 3.9;
a = 0; b = 1; n = 150; h = b−a

n
;

t = Table[a+ j · h, {j, 0, n}];
k = Table[ f [a+(j+1)·h]−f [a+j·h]

h
· h
2 + f [a+ j · h], {j, 0, n− 1}];

tt = Length[t]; kk = Length[k];

For[i = 2, i ≤ kk, i++,Mi =
(ki−ki−1)· 2n2+1

√
ti−t1

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

For[i = 2, i ≤ kk, i++, Ni =
(ki−ki−1)

2n2+1
√
ttt−ti+

2n2+1
√
ti−t1

];

g[x−] = k1 +
∑

kk

i=2

(

Mi +Ni · 2n2+1
√

Abs[x− ti] · Sign (x− ti)
)

;

Plot[{f [x], g[x]}, {x, t1, ttt}]
Plot[Abs[f [x]− g[x]], {x, t1, ttt}]

5. Uniform reconstruction of f from a non-uniform net

From now on, we will consider partitions Pn = {x0 = a, x1, ..., xs = b} of
[a, b] with non-uniformly spaced data.

Lemma 5.1. Let K be a positive integer. Then, for n ≥ 2 it verifies that
∣

∣

∣

2n2+1
√
nK − 1

∣

∣

∣
≤ 2K−1

n
√
n

and
∣

∣

∣

2n2+1

√

1
nK − 1

∣

∣

∣
≤ K

n
√
n

Proof. By induction on K. Case K = 1 can be obtained by elementary esti-
mates. Then, we finishes taking into account that

∣

∣

∣

2n2+1
√
n±K − 1

∣

∣

∣
=
∣

∣

∣

2n2+1
√
n±K − 2n2+1

√
n±1 +

2n2+1
√
n±1 − 1

∣

∣

∣

�

Lemma 5.2. Let Pn = {a = x0, x1, ..., xs = b} be a partition of [a, b] with
δ (s) = min1≤j≤s |xj − xj−1|. Then, for any k = 1, ..., s − 1 and x ∈ [a, b] \
(

xk − δ(s)
3 , xk + δ(s)

3

)

it follows that:

(1) 2n2+1

√

δ(s)
b−a

1+ 2n2+1
√

1
3

2 ≤ Fn,2 (xk, x) ≤ 1 if x− xk > 0

(2) 0 ≤ Fn,2 (xk, x) ≤
2n2+1

√

b−a
δ(s)

− 2n2+1
√

1
3

2 if x− xk < 0
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The proof can be obtained by elementary estimates.

Lemma 5.3. Let K ≥ 2 be a positive integer such that 3(b−a)
nK ≤ δ (s). Then,

for all n ≥ 2, it verifies that

(1)

∣

∣

∣

∣

1− 2n2+1

√

δ(s)
b−a

1+ 2n2+1
√

1
3

2

∣

∣

∣

∣

≤ K
n
√
n

(2)

∣

∣

∣

∣

∣

2n2+1
√

b−a
δ(s)

− 2n2+1
√

1
3

2 − 0

∣

∣

∣

∣

∣

≤ 2K−1

n
√
n

The proof can be obtained easily from Lemmas 2.1 and 5.1.

Proposition 5.4. Let Ps = {a = x0, x1, ..., xs = b} be a partition of [a, b] and
let Es be a step function defined in [a, b] by

Es(x) = k1 · χ[x0, x1] +

s
∑

i=2

ki · χ(xi−1, xi], ki real numbers

If 3(b−a)
nK ≤ δ (s), being δ (s) = min1≤j≤s |xj − xj−1|and K ≥ 2 a positive

integer, then for all n ≥ 2 it follows that:

(1) |Cn(x)− Es(x)| ≤ 2K(Ms−ms)
n
√
n

if x ∈ [a, b] \ ∪s−1
j=1

(

xj − δ(s)
3 , xj +

δ(s)
3

)

(2) |Cn(x)− [kj(1− αx) + kj+1αx]| ≤ 2K(Ms−ms)
n
√
n

if j = 1, ..., s − 1 and

x ∈
(

xj − δ(s)
3 , xj +

δ(s)
3

)

.

where Ms and ms are the maximum and the minimum of the kj, αx ∈ (0, 1) is a
number which depends only on x and (Cn)n is the sequence of radical functions
associated to Es defined as in (2.2).

Proof. It is analogous to the proof of Proposition 2.5 but now we use Lemmas
5.1, 5.2 and 5.3. �

Theorem 5.5. Let Pn = {a = x0, x1, ..., xsn = b} be a partition of [a, b] with
δ (sn) = min1≤j≤sn |xj − xj−1| and ∆(sn) = max1≤j≤sn |xj − xj−1| such that
3(b−a)
nK ≤ δ (sn) ≤ ∆(sn) ≤ h being h = b−a

n
and K ≥ 2 a positive integer. Let

f be a continuous function defined in [a, b]. Then there exists a sequence (Cn)n
defined in [a, b] as in (2.2) such that

|Cn(x)− f(x)| ≤ 2K (M −m)

n
√
n

+ ω

(

b− a

n

)

for all n ≥ 2 and x ∈ [a, b], being M , m and ω
(

b−a
n

)

as usual.

Proof. Similiar to the proof of Proposition 2.5. Here Proposition 5.4 applies.
�

In the same way the results in Section 3 have been obtained from Theorem
2.6, similar results to Section 3 can be derived from Theorem 5.5 for the case
of non-uniform net and this is another important contribution of this work.
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