
Università degli Studi di Siena

Dipartimento di Scienze Matematiche e Informatiche

Dottorato di Ricerca in Informatica,
Logica Matematica e Scienze Cognitive

&

Universidad Politécnica de Valencia

Departamento de Sistemas Informáticos y Computación

Doctorado en Informática

Joint Ph.D. Thesis Siena-UPV

Rule-based Methodologies for the
Specification and Analysis

of Complex Computing Systems

Candidate:

Michele Baggi

Supervisors:

Maŕıa Alpuente

Moreno Falaschi

Author’s e-mails: baggi@unisi.it
mbaggi@dsic.upv.es

Author’s addresses:

Dipartimento di Scienze Matematiche e Informatiche
Università degli Studi di Siena
Pian dei Mantellini, 44
53100 Siena
Italia

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera, s/n
46022 Valencia
España

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know our place for the first time.

The Four Quartets, T. S. Eliot

Noi non smetteremo mai di esplorare
E la fine della nostra ricerca

Sarà arrivare al punto di partenza
E avere conoscenza del nostro posto

Per la prima volta.

Quattro Quartetti, T. S. Eliot

Nunca dejaremos de explorar
Y el fin de todas nuestras exploraciones

Será llegar donde empezamos
Y conocer nuestro lugar

Por vez primera.

Cuatro Cuartetos, T. S. Eliot

Abstract

From the earliest hardware and software days to the internet era, complexity of com-
puter systems has been something computer scientists, engineers, and programmers
have had to deal with. Important fields of research and technology have originated,
developed, or matured as a side-effect of this. In this dissertation, we investigate
on some of the most challenging, current research directions that are related to the
formal specification and verification of complex computer systems.

In this thesis, we focus on distributed systems such as Web systems and biological
systems. In order to provide analysis and verification models and tools for these com-
plex computing systems, we use Domain Specific Languages (DSLs). The first part of
the thesis is devoted to security aspects and related techniques such as software certi-
fication. First, we study access control systems and propose a language for specifying
access control policies that are tightly coupled with knowledge bases that provide
semantic-aware descriptions of the accessed resources or elements. Also, we develop
a novel framework for Code-Carrying Theory, which is a methodology for software
certification to secure delivery of code in a distributed environment. Our framework
is based on a Fold/Unfold transformation system for rewrite theories. The second
part of the thesis focuses on the analysis and verification of Web systems and bio-
logical systems. As for web information retrieval, we propose a language for filtering
information from big data repositories which uses semantic information retrieved from
remote ontologies to refine the filtering process. Also, we study validation methods
to check the consistency of web contents with respect to syntax and semantics prop-
erties. As our last Web research contribution, we propose a language which allows
one to define and automatically check semantic as well as syntactic constraints on
the static content of a Web system. Finally, regarding biological systems, we develop
a logical formalism for modelling and analysis of quantitative aspects of biological
processes, which is based on rewriting logic.

To evaluate the effectiveness of all the proposed methodologies, particular at-
tention has been devoted to the development of prototype systems that have been
implemented by using rule-based languages.

Sommario

Dall’epoca dei primi hardware e software fino ai giorni nostri, la complessità dei sistemi
di calcolo è sempre stato un problema al quale informatici, ingegneri e programmatori
hanno dovuto far fronte. Come risultato di questo sforzo, hanno avuto origine e sono
cresciute importanti aree di ricerca. In questa tesi concentriamo la nostra attenzione
su alcune delle attuali linee di ricerca relative alla specifica formale e alla verifica di
sistemi complessi.

In questa tesi ci siamo focalizzati su sistemi distribuiti quali i sistemi Web e i
sistemi biologici. Al fine di sviluppare modelli e strumenti per l’analisi e la verifica di
questi sistemi di computazione complessi, abbiamo utilizzato linguaggi di specifica.
La prima parte della tesi è dedicata ad aspetti di sicurezza e metodologie affini come
la certificazione del software. Inizialmente abbiamo studiato sistemi per il controllo
degli accessi alle risorse e abbiamo proposto un linguaggio per specificare politiche
di accesso strettamente associate a basi di conoscenza che forniscono una descrizione
semantica delle risorse e degli elementi ai quali si accede. Abbiamo anche sviluppato
una nuova struttura per il Code-Carrying Theory, una metodologia per la certifi-
cazione del software volta a rendere sicuro il trasferimento di codice in un ambiente
distribuito. La nostra struttura si basa su un sistema di trasformazione di teorie di
riscrittura mediante operazioni di Fold/Unfold. La seconda parte della tesi si focalizza
sull’analisi e la verifica di sistemi Web e sistemi biologici. Considerando il problema
del Web Information Retrieval, proponiamo un linguaggio per filtrare informazioni
da documenti di grandi dimensioni che memorizzano dati in formato XML. Al fine
di raffinare il processo di ricerca, il nostro linguaggio è in grado di utilizzare infor-
mazione semantica che può reperire accedendo ad ontologie remote. Ci siamo inoltre
occupati dei metodi di validazione per la verifica della consistenza del contenuto di
sistemi web rispetto a proprietà sintattiche e semantiche date. Il nostro contributo
in questo ambito è la proposta di un linguaggio che permette di definire e verificare
automaticamente proprietà sintattiche e semantiche sul contenuto statico di sistemi
Web. Abbiamo considerato infine i sistemi biologici e abbiamo sviluppato un formal-
ismo, basato sulla logica di riscrittura, per modellare aspetti quantitativi dei processi
biologici.

Per valutare l’efficacia delle metodologie proposte, abbiamo dedicato una partico-
lare attenzione allo sviluppo di sistemi prototipo che sono stati implementati utiliz-
zando linguaggi basati su regole.

Resumen

Desde los oŕıgenes del hardware y el software hasta la época actual, la complejidad
de los sistemas de cálculo ha supuesto un problema al cual informáticos, ingenieros
y programadores han tenido que enfrentarse. Como resultado de este esfuerzo han
surgido y madurado importantes áreas de investigación. En esta disertación abor-
damos algunas de las ĺıneas de investigación actuales relacionada con el análisis y
la verificación de sistemas de computación complejos utilizando métodos formales y
lenguajes de dominio espećıfico.

En esta tesis nos centramos en los sistemas distribuidos, con un especial interés por
los sistemas Web y los sistemas biológicos. La primera parte de la tesis está dedicada
a aspectos de seguridad y técnicas relacionadas, concretamente la certificación del
software. En primer lugar estudiamos sistemas de control de acceso a recursos y pro-
ponemos un lenguaje para especificar poĺıticas de control de acceso que están fuerte-
mente asociadas a bases de conocimiento y que proporcionan una descripción sensible
a la semántica de los recursos o elementos a los que se accede. También hemos desar-
rollado un marco novedoso de trabajo para la Code-Carrying Theory, una metodoloǵıa
para la certificación del software cuyo objetivo es asegurar el env́ıo seguro de código
en un entorno distribuido. Nuestro marco de trabajo está basado en un sistema de
transformación de teoŕıas de reescritura mediante operaciones de plegado/desplegado.
La segunda parte de esta tesis se concentra en el análisis y la verificación de sistemas
Web y sistemas biológicos. Proponemos un lenguaje para el filtrado de información
que permite la recuperación de informaciones en grandes almacenes de datos. Di-
cho lenguaje utiliza información semántica obtenida a partir de ontoloǵıas remotas
para refinar el proceso de filtrado. También estudiamos métodos de validación para
comprobar la consistencia de contenidos web con respecto a propiedades sintácticas
y semánticas. Otra de nuestras contribuciones es la propuesta de un lenguaje que
permite definir y comprobar automáticamente restricciones semánticas y sintácticas
en el contenido estático de un sistema Web. Finalmente, también consideramos los
sistemas biológicos y nos centramos en un formalismo basado en lógica de reescritura
para el modelado y el análisis de aspectos cuantitativos de los procesos biológicos.

Para evaluar la efectividad de todas las metodoloǵıas propuestas, hemos prestado
especial atención al desarrollo de prototipos que se han implementado utilizando
lenguajes basados en reglas.

Resum

Des dels oŕıgens del maquinari i el programari fins a l’època actual, la complexi-
tat dels sistemes de càlcul ha suposat un problema al com informàtics, enginyers i
programadors han hagut d’enfrontar-se. Com a resultat d’aquest esforç han sorgit
i madurat importants àrees d’investigació. En aquesta tesi abordem algunes de les
ĺınies d’investigació actuals relacionada amb l’anàlisi i la verificació de sistemes de
computació complexos utilitzant mètodes formals i llenguatges de domini espećıfic.
Per a proporcionar models i eines per a l’anàlisi i la verificació de sistemes de com-
putació complexos utilitzem llenguatges de domini espećıfic.

En aquesta tesi ens centrem en els sistemes distribüıts, amb un especial interès
pels sistemes Web i els sistemes biològics. La primera part de la tesi està dedi-
cada a aspectes de seguretat i tècniques relacionades, concretament la certificació
del programari. En primer lloc estudiem sistemes de control d’accés a recursos i
proposem un llenguatge per a especificar poĺıtiques de control d’accés que estan fort-
ament associades a bases de coneixement i que proporcionen una descripció sensible
a la semàntica dels recursos o elements als quals s’accedeix. També hem desenvolu-
pat un marc nou de treball per a la Code-Carrying Theory, una metodologia per a
la certificació del programari l’objectiu de la qual és assegurar l’enviament segur de
codi en un entorn distribüıt. El nostre marc de treball està basat en un sistema de
transformació de teories de reescriptura mitjançant operacions de plegat/desplegat.
La segona part d’aquesta tesi es concentra en l’anàlisi i la verificació de sistemes Web
i sistemes biològics. Proposem un llenguatge per al filtrat d’informació que permet la
recuperació d’informacions en grans magatzems de dades. Aquest llenguatge utilitza
informació semàntica obtinguda a partir d’ontologies remotes per a refinar el procés
de filtrat. També estudiem mètodes de validació per a comprovar la consistència de
continguts web pel que fa a propietats sintàctiques i semàntiques. Una altra de les
nostres contribucions és la proposta d’un llenguatge que permet definir i comprovar
automàticament restriccions semàntiques i sintàctiques en el contingut estàtic d’un
sistema Web. Finalment, també considerem els sistemes biològics i ens centrem en
un formalisme basat en lògica de reescriptura per al modelatge i l’anàlisi d’aspectes
quantitatius dels processos biològics.

Per a avaluar l’efectivitat de totes les metodologies proposades, hem prestat es-
pecial atenció al desenvolupament de prototips que s’han implementat utilitzant llen-
guatges basats en regles.

Acknowledgments

Everyone knows that this lines of acknowledgements are the last ones, following a
chronological order, that are commonly written when the thesis is almost finished.
However, they are the first lines that open the PhD thesis after the abstract, and, in
my opinion, this is what points out their relevance.

Before being a formal and official document, this thesis is the compendium of a
three-years-long experience of life that includes work, study, journeys, but also, and
especially, a lot of human relations that have flourished and matured with professors,
colleagues, and new and old friends. All of this, and much more, goes under the
denomination of ”postgraduate studies”. Therefore, it is not hard to imagine that
the list of people I should thank is very long. However, I prefer mentioning here the
people that are strictly related to my work at the University, and allow myself the
pleasure to thank personally all the friends that helped and supported me with their
affection, otherwise this paragraph would become extremely long.

It is useless to say that this thesis would not have been possible without the
encouragement, guidance and support of my supervisors Prof. Moreno Falaschi and
Prof. Maŕıa Alpuente Frasnedo, who deserve my deepest gratitude. An the same way
I am sincerely thankful to Dott. Demis Ballis, with whom I have worked since the
beginning of the PhD, and who always supported my work, both scientifically and
morally, especially in those periods full of doubts and difficulties that so frequently
come in a PhD student experience. I recall with emotion a dialogue between Demis
and I, that took place when I was not already a PhD student. In that occasion he
asked me, for the first time, what I would have thought about starting a PhD under
the supervision of Moreno Falaschi, that he literally described as a good scientific
father. Well, now that I have reached the end of my PhD, I can confirm what he
said. I can even extend his claim by saying that Maŕıa has been for me a good
scientific mother and Demis has been a scientific brother. Hence, let me thank again
my scientific family!!

During my PhD I stayed and worked at the Universities of Siena, of Valencia,
and at the University of Udine as aggregated to the Department of ”Mathematics
and Computer Science”. Therefore, there are three groups of colleagues (and friends)
that I would like to thank. At the University of Siena I am grateful to Annamaria
Pezzotti, Romina D’aurizio, Beate Bruske, Silvia Vecchiato, Filippo DiSanto, and
Daniele Marsibilio for their companionship and familiarity during my stays in Siena.
At the University of Valencia I would like to thank Sonia Santiago, Beatriz Alarcón,

Antonio Bella, Salvador Tamarit, Daniel Romero, Alexei Lescaylle, José Iborra, Marco
Feliú, Raúl Gutiérrez, Santiago Escobar, Mauricio Fernando Alba Castro, and Cesar
Ferri for their always warm welcome. In particular, I would thank Sonia, Bea, Toni,
and Tama for the everyday lunches at La Vella or at the Conservatorio, with a special
thank to Bea for taking care of my correct nutrition. Another special thank to Sonia
for the frequent chats that used to keep us away from working, and that used to
finish with Sonia’s exclamation ”the problem is that I love chatting, and, hence, I do
not work”! Finally, at the University of Udine I am grateful to Donatella Gubiani,
Giuseppina Barbieri, and Fabio Buttussi for their care that made my days at work
more pleasant. A special thank to the afternoon tea offered by Donatella and the
delicious cakes and sweets made by Giuseppina that she liked to take to our office
and share with us.

Out of the academic context, I want to recall here and kindly thank my family:
mum, dad, and Raffaele, who share all my successes, difficulties, joys and pains of my
life with affection and care. A special mention is due to Mons. Luigi Giussani and all
the Italian and Spanish friends of the movement of Communion and Liberation who
helped me in my human growth throughout these years.

Finally, I would like to thank that inexpressible Mystery that we use to call God,
who leads my steps towards the promised fulfillment of every human life, in one way
or another, through all of my days.

Contents

Introduction v
I.0.1 Outline of the thesis. x

1 Preliminaries 1

I A Rule-based Approach to Security Analysis and Certifi-
cation 9

2 Program Transformation for Software Certification 11
2.1 Narrowing in Rewriting Logic . 14
2.2 The Unfolding Operation . 16

2.2.1 Analyzing potential incompleteness 18
2.2.2 Methodology optimization . 20
2.2.3 Incompleteness and Equational Axioms 21
2.2.4 Completeness of the Transformation 22

2.3 Transforming Rewrite Theories . 30
2.3.1 Correctness of the transformation system 33

2.4 Coherence and Consistence . 40
2.5 Securing Transfer of Code . 41
2.6 Implementation . 46

3 Access Control Policy Specification 49
3.1 Policy Specification Language . 51

3.1.1 Policy Evaluation Mechanism 53
3.2 Policy operators: Composition, Delegation,

and Closure . 53
3.3 Checking Domain Properties of Access Control Policies 58
3.4 Implementation . 59

II Analysis and Verification of Distributed and Complex
Systems 61

4 Web Systems Filtering 63
4.1 The Filtering Language . 65
4.2 Filtering is a Tree Embedding Problem 70
4.3 An Approximate Tree Matching Algorithm 71

4.3.1 Data Tree Encoding . 72

ii Contents

4.3.2 Expanded Pattern Tree . 74
4.3.3 Evaluating an unconditional, positive, ground filtering rule . . 75
4.3.4 Evaluating a generic filtering rule 76

4.4 A Lazy Implementation: an Experimental Evaluation 77
4.5 Semantic Filtering via DL Reasoning 80
4.6 The Extended Filtering Language . 81
4.7 An XML Formalization of the Semantic Filtering Language 85

4.7.1 Using DIG to Model and Query Ontologies 85
4.7.2 The Extended DIG Ask Language 86
4.7.3 An XML Syntax for the Filtering Language 88

4.8 The XPhil Filtering System . 91

5 Web Systems Verification 95
5.1 The Web specification language . 96
5.2 Expanding rules with meta-symbols 99
5.3 Verification Methodology . 102

5.3.1 Detecting correctness errors. 102
5.3.2 Detecting completeness errors. 103

5.4 Web Specification Restrictions . 106

6 Biological Systems Modeling and Analysis 115
6.1 Quantitative Pathway Logic . 117

6.1.1 Simulation and analysis of QPL models 120
6.2 Representing QPL models via Discrete Functional Petri Nets 122

6.2.1 Discrete Functional Petri Nets 122
6.2.2 Translating QPL models into DFPNs 124
6.2.3 Model equivalence. 126

6.3 Reachability analysis over DFPNs . 131
6.4 Implementation . 133

Conclusions 137

A Some technicalities 141
A.1 XPhilSchema . 141

Bibliography 145

List of Figures

1.1 Semantics of DL constructs. 4
1.2 Satisfaction of DL axioms and DL assertions. 5

2.1 Rewrite sequence reordering procedure. 27
2.2 Rewrite sequence reordering procedure 2. 38
2.3 Code Carrying Theory Architecture Diagram 43
2.4 Snapshot of the transformation system interface written in Maude. . . 47

3.1 An access control policy for medical record protection 52
3.2 Permit-overrides combinator . 54
3.3 Policy rules of Example 3.11 . 56
3.4 The new authorization policy for D1 implementing a delegation. . . . 57
3.5 Policy closure rules of Definition 3.13 57

4.1 Tree encodings of a filtering rule pattern. 70
4.2 Data tree and data tree index for an XML document 74
4.3 Experiments with laziness . 78
4.4 Experimental evaluation of the Phil System 79
4.5 A knowledge base about wines . 82
4.6 A knowledge base about eating places 82
4.7 DIG fragment of the wine knowledge base 86
4.8 System Architecture . 91
4.9 Screenshot of the XPhil system online. 93

5.1 An XML document and its corresponding encoding as a ground term p. 96
5.2 XML document about academic professors. 111
5.3 Activation graph for the Web specification. 112
5.4 Finite derivation graph for the requirement rep. 112
5.5 Fragment of the maximal derivation tree for the requirement rep. . . . 113

6.1 Fragment of Maude code that represents cell states. 118
6.2 Graphical representation of DFPN of Example 6.11. 125
6.3 DFPN encoding of rules ex1 and ex2. 126
6.4 Cell Illustrator screenshot of the EgfR pathway model. 135

iv List of Figures

Introduction

From the earliest hardware and software days to the internet era, complexity has been
something computer scientists, engineers, and programmers have had to deal with.
Important fields of research and technology have originated, developed, or matured as
a side-effect of this. Some of these fields, such as computational complexity and planar
graphs, address fundamental theories of broad significance. Other directions such as
reduced instruction set architectures, compiler-compilers, and high-level languages,
are more applied. In this thesis, we focus on some directions that are related to the
system’s complexity research from the formal specification and analysis perspective by
means of rule-based methodologies. We consider in particular Web systems, whose
complexity arises due to several factors, such as the large number of hyperlinks,
complex interaction, and the increased use of distributed servers. Modeling can help
to understand these complex systems, and a considerable effort has been devoted to
the specific problem of modelling Web applications. In some cases, new models have
been proposed, while in other cases, existing modelling techniques have been adapted
from other computing domains. Modeling can help designers during the design phases
by formally defining the requirements, providing multiple levels of detail, and giving
support for testing prior to implementation. Support from modelling can also be used
in later phases to support analysis, validation and verification.

Most of the early literature on this field of Web research concentrates on the
process of modelling the design of web applications. Some proposals use reverse
engineering methods to extract models from existing web applications in order to
support their maintenance and evolution, still others provide analysis models applied
to the field of verification and testing of web applications. Among the different possible
analysis models, there are some that focus on modelling the navigational aspects of
web applications, whereas other models concentrate on solving problems related to the
user interaction with the browser in a way that affects the underlying business process.
Still other models support the verification of correctness and completeness properties
of either static or dynamic web page contents. For a survey on modelling methods
for web application verification and testing, we refer to [3]. The validation methods
check the consistency of the web content with respect to syntax and semantics. When
verifying the completeness of a web application, the model should enforce that a
given web page contains some piece of information, that links between web pages
exist, and sometimes even check that the web page exists (broken links). Correctness
implies that the information provided on a web page is valid w.r.t. the application
requirements. Most of the developed approaches (such as [8]), albeit very useful in
their specific domains, share the same limitation: the syntactic as well as semantic
constraints they specify only rely on the data to be checked.

This thesis proposes a method for verifying static web contents for both syntactic

vi Introduction

and semantic properties by using partial rewriting. In our method, web pages are
modeled as the ground terms of a term algebra, and the entire web site is represented
as a set of ground terms. A checking specification is a pair (IN , IM), where IN is the set
of correctness constraints and IM is the set of completeness constraints, all encoded as
partial rewriting rules. Moreover, our method provides ontology reasoning capabilities
which allow us to query a (possibly) remote ontology reasoner in order to check
semantic properties over the data on interest, and to retrieve semantic information
which can be combined with the syntactic one for improving the analysis.

Strictly connected with the verification of organized and semi-structured data,
such as web system contents, is the information retrieval problem for such data. With
the advent of XML [162] as a widely accepted standard for data representation and
exchange, there has been a rapid growth in the amount of XML data available over the
internet, so we can talk of XML Information Retrieval. Arguably, growing attention
has been dedicated to query and filtering languages as a means to efficiently extract
all and only the relevant information from huge data collections. The World Wide
Web Consortium has defined XQuery[164] and XPath[163] as standard languages to
consult and filter information contained in XML documents, nonetheless a plethora of
alternative and worthwhile proposals have been developed independently [45, 119, 64].
Some programming languages supporting XML processing have also been developed,
such as VeriFLog [61] which is a tool originally developed for verification of web
system contents and data inference. Such languages can be used to consult and
query XML documents but provide basically an exact matching engine. Although
the languages mentioned above are very advantageous in many applications, they
may be of limited use when dealing with data filtering in a pure information retrieval
context since they require the user to be aware of the complete XML document
structure, and the results that do not exactly match are not delivered. Therefore, in
this context, a more flexible matching mechanism which can manage the lack as well
as the vagueness of the information is necessary. Such an approximate behavior is not
typically implemented in the standard query languages, and actually only few works
address this issue [14, 153, 148, 144].

In order to approximate the filtering of XML documents, we propose a declarative
language which allows the user to easily select the desired information as well as to
remove noisy, spurious data from a given XML document. While XML documents
are modeled as ground terms of a term algebra, the patterns of the information we
are looking for are modeled as non-ground terms of the same term algebra. An ap-
proximate tree embedding algorithm is proposed to execute filtering queries on XML
documents in order to recognize the information that the user wants to select or to
strike out. Moreover, the filtering process can exploit additional semantic information
which can be retrieved by querying (possibly) remote knowledge bases.

In this context, where the widespread use of web applications provides an easy
way to share and exchange data as well as resources over the Internet, controlling
the user’s ability to exercise access privileges on distributed information is a crucial
issue. In recent years, there has been a considerable attention to distributed access
control, which has rapidly led to the development of several domain specific languages
for the specification of access control policies in such heterogeneous environments:

Introduction vii

among those, it is worth mentioning the standard XML frameworks XACML [125]
and WS-Policy [161]. In the semantic web, resources are annotated with machine-
understandable metadata which can be exploited by intelligent agents in order to infer
semantic information regarding the resources under examination. Therefore, in this
context, application’s security aspects should be aware of the semantic nature of the
entities into play (e.g. resources, subjects). In particular, it would be desirable to be
able to specify access control requirements about resources and subjects in terms of
the rich metadata describing them.

As our contribution to improve web security, we present a rule-based language for
specifying access control policies which allows security administrators to tightly couple
access control rules with knowledge bases that provide semantic-aware description of
subjects and resources. Access control policies are modeled as sets of rewrite rules,
called policy rules, which may contain queries to knowledge bases. Evaluating an
authorization request essentially boils down to rewriting the initial request by using
the policy rules until a decision is reached (e.g. permit, deny, notApplicable). Finally,
our language is also endowed with policy composition and delegation facilities which
are essential aspects of access control in collaborative and distribute environments.

Besides data and resources security, with the advent of the phenomenon of mobile
code, code security has also become an important issue. Mobile code is software trans-
ferred between systems and executed on a local system without explicit installation or
execution by the recipient, even though it is delivered through an insecure network or
from an untrusted source. Important examples of mobile code include Web applets,
actor-based distributed system software [156], and updates to embedded computers.
During delivery, code might be corrupted, or a malicious hacker might change the
code. Potential problems can be summarized as security problems (i.e. unauthorized
access to data or system resources), safety problems (i.e. illegal operations or illegal
access to memory), or functional incorrectness (i.e the delivered code fails to satisfy
a required relation between its input and output). Proof-Carrying Code (PCC) [131]
and Code-Carrying Theory (CCT) [158] are two alternatives among other solutions
to these problems. The basic idea of PCC is that a code consumer does not accept
delivery of new code unless it is accompanied by a formal proof of required safety,
security, or functional properties that can be checked by the code consumer. One
way of doing this is to attach to the code an easily-checkable proof at the code pro-
ducer’s site. Code-Carrying Theory (CCT) is an alternative to PCC with similar
goals and technology, but it is based on the idea of proof-based program synthesis
[127] rather than program verification. The basic idea is that a set of axioms that
define functions are provided by the code producer together with suitable proofs that
the defined functions obey certain requirements. The form of the function-defining
axioms is such that it is easy to extract executable code from them. Thus, all that
has to be transmitted from the producer to the consumer is a theory (a set of axioms
and theorems) and a set of proofs of the theorems. There is no need to transmit
code explicitly. Concerning certification, we provide an implementation of the CCT
methodology that uses a Fold/Unfold transformation framework for rewrite theories,
and that reduces the burden on the code producer. In order to achieve this, first
we investigate the completeness of Fold/Unfold operations in rewriting logic [117], a

viii Introduction

logical formalism where the states of a system are represented as terms of a suitable
algebra and the system behavior is described by means of rewrite rules. Rewriting
logic is efficiently implemented in the high-performance functional language Maude
[59].

Last but not least, we consider biological systems as complex computing systems.
Indeed, the bio-systems are much alike distributed computing systems. Both are
made of a great number of independent, geographically dispersed, mobile comput-
ing agents, that exchange information and proceed by autonomously processing it.
The computational approach to the description, simulation and analysis of biological
system is increasigly receiving attention both by biologists and by computer scien-
tist as soon as these systems have been seen as computing objects. The interactions
among their components is studied within the System Biology field, that seems more
accurate than the classical reductionistic one in describing the behavior of biological
systems. Such investigations fostered the research and usage of many computational
formalisms. Surveys on these formalisms and their use in System Biology can be
found in [38].
The seminal paper [90] showed that biological systems have many aspects in com-
mon with distributed mobile systems. E.g., a metabolic network is made of billions
of components that concurrently interact, in a non-deterministic way and subject to
vicinity constraints, just as (far less) mobile devices exchange data via bluetooth with
others if close enough, or access to resources if within a specific wifi network. This
observation vindicates the usage of process calculi, typically the pi-calculus [123], for
specifying cells, in the ”cells as computation” paradigm [140]. Other calculi have
been put forward later on, among which we only cite a few, which have primitives
to directly represent membranes and compartments, like BioAmbients [139], Brane
Calculi [50], beta-binders [136].

Petri nets [126] naturally represent biochemical reactions, and thus they are largely
used for studying complex biological systems. Actually, they have strong similarities
with the graphical language proposed by the Network Visual Designer and often used
by biologists to describe metabolic networks. The literature has a vast number of
results on both the qualitative as well as the quantitative analysis of the models
based on Petri nets and their stochastic versions (SPN). The SPN have been used to
study genetic regulation networks in [94]; recent work on biochemical networks are in
[53, 111]. Hybrid Functional Petri Nets [4, 118] are a proposal to cope with both the
discrete and the continuous aspects that are typical of biological phenomena.

Recently, formalisms and paradigms with a logic basis ([149, 85]) have been suc-
cessfully used for the specification and study of biological systems. Among the logical
formalisms, Pathway Logic [149, 82] (PL) is a symbolic approach to the modelling
and analysis of qualitative aspects of biological processes that is based on rewriting
logic. The process of application of rewrite rules, from a given initial state, generates
computations. In the case of biological processes, these correspond to pathways. Al-
though Pathway Logic may be very useful to model biological processes and provides
a simple way to express the system dynamics, it only supports qualitative modelling of
the biological events of interests, and it does not provide adequate capabilities to ex-
press inhibitory actions occurring in biological reactions. With the aim of overcoming

Introduction ix

some of the limitations of Pathway Logic, we present an extension called Quanti-
tative Pathway Logic which provides support for quantitative information such as
element concentrations in cell locations, levels of production as well as consumption
of elements occurring in a reaction, reaction threshold, etc. Moreover, our formalism
provides the capability to express inhibitory actions occurring in biological reactions,
which are very common e.g. in regulatory networks. In order to manage the different
aspects of biological systems, we follow and adapt the Pathway Logic approach by
equipping QPL specifications with two equivalent computational models. The former,
based on rewriting logic, allows some kinds of model analysis, while the latter is based
on Petri nets and can be used to perform network analysis.

In order to provide models for performing analysis and verification of the different
considered forms of complex computing systems and the various aspects we focused
on, we made use of Domain Specific Languages (DSLs) [155]. Domain-Specific Mod-
eling (DSM) [104] is a way of designing and developing systems that involves the
systematic use of Domain Specific Languages to represent the various facets of a sys-
tem, in terms of models. Such languages tend to support higher-level abstractions
than general-purpose modelling languages, and are closer to the problem domain than
to the implementation domain. Furthermore, the rules of the domain can be included
into the language as constraints, which disallows the specification of illegal or incor-
rect models. In order to evaluate the effectiveness of all the proposed methodologies,
particular attention has been devoted to the development of prototype systems by
using rule-based languages. The rule-based paradigm for knowledge representation
appears in various forms within computer science. Language issues related to this
paradigm appear in production systems [63], parallel program design (e.g. [52]), de-
fault reasoning within AI [114], logic programming [15], rewriting [100], active and
deductive databases [77], and logics for action and change [143]. There are many
benefits in using rule-based systems instead of conventional development tools. The
most important are gathered below:

• Incremental development and rapid prototyping. The rules can be run and tested
the moment they are added to the system. Unlike traditional programming tools
such as C++ or C, changes to the rules do not require recompilation, re-linking
and re-deploying.

• Understandable units of business practice. Rules in the rule-base are self-
contained chunks of logic, representing single concepts. This helps their read-
ability and understandability.

• No control flow. Unlike a conventional program that usually has a single starting
point and a sequence of execution, there is no control flow in the rule-based
approach. Rules can start to execute from any point in the rule-base.

• Consistency. In comparison to conventional code, incomplete, incorrect, irrele-
vant or redundant rules are much easier to find, since they stick out from the
system.

x Introduction

• Ability to work with incomplete and missing information. In many business
situations, it is not possible to provide complete and verifiable data. Rule-based
systems can deal with such cases of incomplete information.

I.0.1 Outline of the thesis.

The thesis is divided into two parts. The former is devoted to security aspects and
software certification, while the latter presents some results on the analysis and veri-
fication of distributed systems. In Chapter 1, we provide the necessary notation and
preliminary definitions about the term rewriting and the description logic formalisms
that will be used in the document. In Chapter 2, we study the Unfold operation
based on narrowing over rewrite logic theories, and we propose a Fold/Unfold–based
transformation framework for rewrite logic theories that we apply to implement a
Code Carrying Theory (CCT) system. Some results presented in this chapter have
been published in [7]. Chapter 3 presents a domain specific language for modelling ac-
cess control policies which is particularly suitable for managing security in distributed
environments, since it allows one to evaluate authorization requests according to in-
formation retrieved from remote knowledge bases. This work has been published in
[30]. Chapter 4 formalizes a domain specific language for filtering information from
XML data. The filtering process combines knowledge base reasoning with a flexible
pattern-matching engine. The described results have been documented in a number
of publications [24, 26, 23]. In Chapter 5, we consider Web systems and we discuss the
problem of keeping data correct, consistent and complete w.r.t. some requirements
given. We propose a rule-based specification language which allows one to define and
automatically check semantic as well as syntactic constraints over the informative
content of a Web system. The result of this work was published in [6]. Chapter
6 presents a rule-based formalism which allows one to model and analyze biological
processes and reason about quantitative aspects such as element concentration and
reaction rates. The proposed formalism appeared in [29].

1
Preliminaries

In this chapter, we provide the basic notation and terminology about rewriting logic
and description logic, that are used in the thesis.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,≤). We
assume an S-sorted family V = {Vs}s∈S of disjoint variable sets. A variable x ∈ V
of sort s is denoted by x :: s, while by f :: s1 . . . sn 7→ s we represent the type of the
operator f ∈ Σ of arity n. TΣ(V)s and TΣs are the sets of terms and ground terms
of sort s, respectively. We write TΣ(V) and TΣ for the corresponding term algebras.
The set of variables occurring in a term t is denoted by Var(t). We write on for the
list of syntactic objects o1, . . . , on.

Positions are represented by sequences of natural numbers denoting an access path
in a term. The empty sequence Λ denotes the root position. By root(t) we denote
the symbol at position Λ in the term t. Given S ⊆ Σ ∪ V, OS(t) denotes the set
of positions of a term t that are rooted by symbols in S. Positions are ordered by
the prefix ordering: p ≤ q, if ∃w such that p.w = q. Two positions q and p are
not comparable if q 6≤ p and p 6≤ q. t|p denotes the subterm of t at position p, and
t[s]p denotes the result of replacing the subterm t|p by the term s. Let Σ ∪ {�} be
a signature such that � 6∈ Σ. The symbol � is called hole. A context is a term
γ ∈ TΣ∪{�}(V) with zero or more holes �. We write γ[]u to denote that there is a
hole at position u of γ. By notation γ[], we define an arbitrary context (where the
number and the positions of the holes are clarified in situ), while we write γ[t1, . . . tn]
to denote the term obtained by filling the holes appearing in γ[] with terms t1, . . . , tn.
Syntactic equality is represented by ≡.

A substitution σ ≡ {x1/t1, x2/t2, . . .} is a mapping from the set of variables V
into the set of terms TΣ(V) satisfying the following conditions: (i) xi 6= xj , whenever
i 6= j, (ii) xiσ = ti, i = 1, . . . , n and (iii) xσ = x, for all x ∈ V \{x1, . . . , xn}. By ε we
denote the empty substitution. A substitution σ is called ground if for each x/t ∈ σ, t
is a ground term. A substitution θ is more general than a substitution σ, in symbols
θ ≤ σ, if σ = θ ◦ γ for some substitution γ. Given two terms s and t, a unifier for s
and t is a substitution σ such that sσ = tσ. An instance of a term t is defined as tσ,
where σ is a substitution. The identity substitution is denoted by id. The restriction

2 1. Preliminaries

of a substitution σ to a set of variables V is defined as

σ|V (x) =
{
σ(x) if x ∈ V
x otherwise

Term Rewriting and Rewriting Logic. Term Rewriting Systems [20] (TRS for
short) are reduction systems in which rewrite rules apply to terms, and they provide
an adequate computational model for functional languages. Rewriting Logic [117] (RL
for short) is a natural model of computation and an expressive semantic framework
for concurrency, parallelism, communication and interaction, which employs term
rewriting modulo equational theories. It is also a flexible logical framework in which
many different logical formalisms can be both represented and executed. In this
section, we provide a brief overview of this model.

An (order-sorted) equational theory is a pair E ≡ (Σ,∆ ∪ B), where Σ is an
order-sorted signature, ∆ is a collection of equations of the form l = r, l, r ∈ TΣ(V),
l /∈ V, with Var(r) ⊆ Var(l), and B is a collection of equational axioms that express
associativity and commutativity (AC) for some defined symbols of Σ. We assume Σ
is a partition Σ ≡ C] D of symbols c ∈ C, called constructors, and symbols f ∈ D,
called defined symbols, each of which has a fixed arity, where D ≡ {f | f(t) = r ∈ ∆}
and C ≡ Σ−D. Then TC(V) is the set of constructor terms.

The equations in an equational theory E are considered as simplification rules
by using them only in the left to right direction, so for any term t, by repeatedly
applying the equations as simplification rules, we eventually reach a term to which no
further equations apply. The result is called the canonical form of t w.r.t. E. This is
guaranteed by the fact that E is required to be terminating and Church-Rosser [44].
The set of equations in ∆ together with the equational axioms of B in an equational
theory E induce a congruence relation on the set of terms TΣ(V) which is usually
denoted by =E . E is a presentation or axiomatization of =E . In abuse of notation,
we speak of the equational theory E to denote the theory axiomatized by E. Given an
equational theory E, we say that a substitution σ is an E-unifier of two terms t and
t′ if tσ and t′σ are both reduced to the same canonical form modulo the equational
theory (in symbols tσ =E t′σ). For substitutions σ, ρ and a set of variables V , we
define σ|V =E ρ|V if xσ =E xρ for all x ∈ V , and we define σ|V ≤E ρ|V if there
is a substitution η such that ρ|V =E (η ◦ σ)|V . Given two terms t, t′ ∈ TΣ(V), a
set of substitutions CSUE(t, t′) is said to be a complete set of unifiers if (i) each
σ ∈ CSUE(t, t′) is an E-unifier of t and t′, and (ii) for any E-unifier ρ of t and t′,
there is a σ ∈ CSUE(t, t′) such that σ ≤E ρ. For AC theories, a finite complete set
of unifiers does exist [21].

A (order-sorted) rewrite theory is a triple R ≡ (Σ,∆ ∪B,R), where R is a set of
rewrite rules of the form l → r, l, r ∈ TΣ(V), l /∈ V, with Var(r) ⊆ Var(l), and Σ is
the pairwise disjoint union D1] D2] C such that (D1] C,∆ ∪B) is an order-sorted
equational theory, and D2 ≡ {f | f(t) → r ∈ R} is the set of symbols defined by
the rules of R. We omit Σ when no confusion can arise. Throughout this chapter, a
rewrite theory is also called a program.

3

Given a rule l → r, or an equation l = r, terms l and r are called the left-hand
side (or lhs) and the right-hand side (or rhs) of the rule (resp. equation). A rule or
equation are said to be:

(1) Non-erasing, if Var(l) = Var(r).

(2) Sort preserving, if for each substitution σ, we have lσ ∈ TΣ(V)s if and only if
rσ ∈ TΣ(V)s.

(3) Sort decreasing, if for each substitution σ, rσ ∈ TΣ(V)s implies lσ ∈ TΣ(V)s.

(4) Left (or right) linear, if l (resp. r) is linear, i.e., no variable occurs in the term
more than once. It is called linear if both l and r are linear.

A set of equations/rules is said to be non-erasing, or sort decreasing, or sort preserving,
or (left or right) linear, if each equation/rule in it is so.

An equational theory (resp. rewrite theory) is said to be conditional if its equations
(resp. rules) are of the form (l = r if c) (resp. l→ r if c), where c is a term representing
the condition. Moreover, labels may be associated with equations and rules in order
to easily identify them, in the form (label : l = r) or (label : l→ r).

We define the one-step rewrite relation on TΣ(V) as follows: t →R t′ if there is a
position p ∈ OΣ(t), a rule l → r in R, and a substitution σ such that t|p ≡ lσ and
t′ ≡ t[rσ]p. The relation →R/E for rewriting modulo E is defined as =E ◦ →R ◦ =E .
Let →⊆ A×A be a binary relation on a set A. We denote the transitive closure by
→+, the reflexive and transitive closure by →∗, and rewriting up to normal forms by
→!.

Example 1.1 Consider the following rewrite theory (Σ,∆ ∪ B,R) such that C =
{b, c, e}, D1 = {a, d}, D2 = {f}, ∆ = {a = b, d = e}, and R = {f(b, c) → d} where
B contains the commutativity axiom for f . Then we can R/E-rewrite term f(c, a) to
e by means of the following →R/E rewrite sequence f(c, a) =∆ f(c, b) =B f(b, c)→R

d =∆ e.

We say that a rewrite theory R ≡ (Σ,∆ ∪ B,R) is terminating w.r.t. →R/E , if
there exists no infinite rewrite sequence t1 →R/E t2 →R/E . . . A rewrite theory is
confluent w.r.t. →R/E if, for all terms s, t1, t2, such that s →∗R/E t1 and s →∗R/E t2,
there exists a term t s.t. t1 →∗R/E t and t2 →∗R/E t.

Description logic. Description Logics (DLs) are decidable logic formalisms for
representing knowledge of application domains and reasoning about it.

In DL, domains of interest are modeled as knowledge bases (i.e. ontologies) by
means of concepts (classes), individuals (instances of classes) and roles (binary pred-
icates).

In this section, we present the decidable description logic SHOJQD−n underlying
the OWL-DL [165] framework. For a full discussion about OWL and DL formalisms,
we respectively refer to [69] and [19].

4 1. Preliminaries

Let ΣD be a signature containing all the symbols of the considered DL language.
A concept C is defined using the following constructors of ΣD.

C ::= A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (concept negation)

C1 u C2 | (intersection)
C1 t C2 | (union)
∃R.C | (full existential quantification)
∀R.C | (value restriction)
≥n R | (at-least number restriction)
≤n R | (at-most number restriction)

{a1, . . . , an} | (individual set)

where A represents an atomic concept, C1 and C2 are concepts, R is a role, n is a
natural number, and a1, . . . , an are individuals. We use ⊥ (resp., >) to abbreviate
the concept Cu¬C (resp., Ct¬C). Besides, we make use of the role constructor (·)−
to define the inverse of a role R. The inverse of a role R is still a role and is denoted
by R−. Concepts and roles are related to each other using terminological axioms of
the form C1 v C2 (. resp R1 v R2) or C1 ≡ C2 (resp R1 ≡ R2). A TBox is a finite
set of terminological axioms. Given a concept C, a role R, and two individual a and
b, a concept assertion is an expression of the form C(a), while the expression R(a, b)
denotes a role assertion. An ABox is a finite set of concept and role assertions. A
knowledge base K is a pair (TB,AB), where TB is a TBox and AB is an ABox.

From a semantic point of view, concepts are interpreted over finite subsets of a
given domain. Concretely, an interpretation J is a pair (∆J , ·J) consisting of a non-
empty set ∆J , called domain of the interpretation, and an interpretation function ·J
which maps each atomic concept to a subset of ∆J , each role to a subset of ∆J ×∆J ,
and each individual to an element of ∆J . The interpretation function is lifted to the
DL constructs mentioned above in the usual way (see Figure 1.1).

>J = ∆J ,
⊥J = ∅,
(¬C)J = ∆J \ CJ ,
(C1 u C2)J = CJ1 ∩ CJ2 ,
(C1 t C2)J = CJ1 ∪ CJ2 ,
(∃R.C1)J = {a ∈ ∆J | ∃b ∈ ∆J (a, b) ∈ RJ ∧ b ∈ CJ1 },
(∀R.C1)J = {a ∈ ∆J | ∀b ∈ ∆J (a, b) ∈ RJ =⇒ b ∈ CJ1 },
(≥n R)J = {a ∈ ∆J | |{b | (a, b) ∈ RJ }| ≥ n},
(≤n R)J = {a ∈ ∆J | |{b | (a, b) ∈ RJ }| ≤ n},
({a1, . . . , an})J = {aJ1 , . . . , aJn },
(R−)J = {(b, a) ∈ ∆J ×∆J | (a, b) ∈ RJ }

Figure 1.1: Semantics of DL constructs.

5

J |= C1 v C2 ⇐⇒ CJ1 ⊆ CJ2
J |= C1 ≡ C2 ⇐⇒ CJ1 = CJ2
J |= R1 v R2 ⇐⇒ RJ1 ⊆ RJ2
J |= R1 ≡ R2 ⇐⇒ RJ1 = RJ2
J |= C(a) ⇐⇒ aJ ∈ CJ
J |= R(a, b) ⇐⇒ (aJ , bJ) ∈ RJ

Figure 1.2: Satisfaction of DL axioms and DL assertions.

The notion of satisfaction |= of an axiom or assertion α w.r.t. an interpretation
J (in symbols J |= α) is defined in Figure 1.2. An interpretation J is a model of
a knowledge base K = (TB,AB), which is denoted by J |= K, iff J |= α, for each
α ∈ TB ∪AB.

A concept C is satisfiable in a knowledge base K iff there exists a model J of K
such that CJ 6= ∅. A concept C1 is subsumed by a concept C2 in a knowledge base
K (in symbols, K |= C1 v C2) iff for each model J of K, CJ1 ⊆ CJ2 . Subsumption
can be reduced to satisfiability, that is, K |= C1 v C2 iff C1 u ¬C2 is not satisfiable
in K. We assume that concept satisfiability and concept subsumption can be checked
by means of a DL reasoner by invoking the basic reasoning services satisfiable(C) and
subsume(C1, C2), where C, C1 and C2 are concepts. The other reasoning services
considered are listed in Table 1.1.

Query construct Description
allConcepts() All concepts defined in the ontology
allRoles() All roles defined in the ontology
allIndividuals() All individuals defined in the ontology
satisfiable(C) Is C satisfiable?
subsumes(C1, C2) Does C2 v C1?
disjoint(C1, C2) Does C1 u C2 ≡ ∅?
children(C) All concepts which are children of C
equivalents(C) All concepts which are equivalent to C
instances(C) All individuals which belong to C
instanceOf(a,C) Does a belong to C?
roleFillers(a, R) All individuals b such that R(b,a) holds
related(R) All pairs (a,b) such that R(a,b) holds

Table 1.1: Reasoning services

A DL query is an expression DL(K, r) where K is a knowledge base and r is a
reasoning service. Basically, a DL query, when evaluated, executes a given reasoning
service against a knowledge base and returns a value, which can be either a boolean
constant or a set of values. We call boolean (respectively, non-boolean) DL query, any
DL query whose executions returns a boolean value (respectively, a set of values).

6 1. Preliminaries

Example 1.2 Let H be a knowledge base modeling an healthcare domain. Assume
that H includes the atomic concepts: patient, physician, guardian, admin; and the
role assignedTo, which establishes who are the people designated to take care of a
given patient. Moreover, the ABox of H is populated by the following concept and role
assertions:

patient(CharlieBrown), patient(DavidBowie), patient(CharlieChaplin),
admin(JohnNash), physician(BobMarley), physician(AliceP.Liddell),
guardian(FrankSinatra), assignedTo(AliceP.Liddell, CharlieBrown),
assignedTo(FrankSinatra, CharlieChaplin).

Now, consider the following DL queries Q1, Q2 and Q3:

DL(H, instance(BobMarley, physician u ∃assignedTo.{CharlieBrown}))
DL(H, subsumes(¬physician, admin)),DL(H, instances(guardian t physician)

Q1 and Q2 are boolean DL queries, while Q3 is a non-boolean DL query. More specif-
ically, Q1 asks H whether BobMarley is the designated physician of patient Char-
lieBrown, in this case the execution of Q1 returns false, since CharlieBrown’s desig-
nated physician is AliceP.Liddell. Q2 checks whether concept admin is subsumed by
concept ¬physician, that amounts to saying there are no administrators who are also
physicians. Finally, the evaluation of Q3 computes the set {FrankSinatra,BobMarley,
AliceP.Liddell} representing all the individuals belonging to the union of concepts
guardian and physician.

Our description logic formalism is completely ground, that is, logic formulae do
not contain variables. In particular, variables cannot appear in DL queries, but
sometimes it might be convenient to generalize the notion of DL query by admitting
the use of variables. In this way, DL queries may be (i) easily reused, and (ii) ground
values associated with the considered variables may be computed at run-time. In
light of these considerations, we define the notion of DL query template as follows. A
reasoning service template is defined as a reasoning service that may contain variables
playing the role of placeholders for concepts, roles, and individuals. A DL query
template is an expression DL(K, r) where K is a knowledge base, and r is a reasoning
service template. In the same way, it is sometimes useful to allow DL queries to
contain function calls computing atomic concepts, roles and individuals. We define
functional service template a reasoning service template that may contain functional
calls playing the role of placeholders for atomic concepts, roles, and individuals. A
DL functional query template is an expression DL(K, r) where K is a knowledge base,
and r is a functional service template.

It is worth noting that a DL (functional) query template cannot be executed by a
DL reasoner, since only ground formulae without function calls can be evaluated by
the reasoner. Thus, in order to make a DL (functional) query template executable
using a standard reasoner, we need to made the query ground and to evaluate all the
functions calls before sending the query to the reasoner.

7

Example 1.3 Consider the knowledge base H of Example 1.2 and let ++ denote
the string concatenation operator. The following expression is a DL functional query
template:

DL(H, instances(physician u ∃assignedTo.{X++Y })),

where the individual full name is computed by concatenating the values associated
with variables X and Y . Note that the evaluation of the template depends on the
concrete values assigned to X and Y . For instance, if X was bound to Charlie and
Y was bound to Brown, the result of the evaluation would be {AliceP.Liddell}, while
we would obtain the empty set in the case when X and Y were associated with values
David and Bowie respectively.

A query evaluation function is a mapping eval : ∆ → TΣD
(where ∆ denotes the

set of all possible DL queries) which takes a DL query as input and returns a data
term (typically a boolean value or a list of values belonging to the knowledge base
of interest). Thus, by eval(DL(K, r)), we denote the evaluation of the DL query
DL(K, r), that is, the result of the execution of the reasoning service r against the
knowledge base K.

Example 1.4 Consider the DL queries Q1, Q2 and Q3 of Example 1.2. Then,
eval(Q1) = false, eval(Q2) = true, eval(Q3) = {FrankSinatra,AliceP .Liddell ,
BobMarley}.

8 1. Preliminaries

I
A Rule-based Approach to

Security Analysis and
Certification

2
Program Transformation for

Software Certification

Transforming programs automatically to optimize their efficiency is one of the most
fascinating techniques for rule–based programming languages [68, 160]. One of the
most extensively studied program transformation approaches is the so called fold/ un-
fold transformation system [46, 47, 66] (also known as the rules+strategies approach
[135]). The folding and unfolding transformations were first introduced by Burstall
and Darlington [47] and later introduced in logic programming by Komorowski [109].
The combined effect of unification with rewriting by means of narrowing was first
proposed in [10] and was also achieved in [71, 72, 138] by means of a superposition
procedure for program synthesis. Unlike the case of pure logic or pure functional
programs, where unfolding is correct w.r.t. practically all available semantics, unre-
stricted unfolding using narrowing does not preserve program meaning, even when we
consider the normalization semantics (i.e., the set of normal forms) or the evaluation
semantics (i.e., the set of values) of the program. In [10], some conditions were ascer-
tained which guarantee that an equivalent program w.r.t. the semantics of computed
answers is obtained for functional logic programs.
Fold/Unfold based Program Transformation. Unfolding is essentially the re-
placement of a call by its body, with appropriate substitutions. Folding is the inverse
transformation, i.e., the replacement of some piece of code by an equivalent func-
tion call. For functional programs, folding and unfolding steps involve only pattern
matching. The fold/unfold transformation approach was first adapted to logic pro-
grams by Tamaki and Sato [151] by replacing pattern matching with unification in
the transformation rules. Folding and Unfolding are the essential rules in this pro-
gram transformation approach, but there are other rules which have been usually
considered, such as, instantiation, definition introduction/elimination and abstrac-
tion (sometimes referred with different names).

When performing program transformation we may end up with a final program
which is equal to the initial one, since the folding rule is the inverse of the unfolding
rule. Thus, during the transformation process, we need strategies which guide the
application of the transformation rules and can allow one to derive programs with
improved performance. Some popular transformation strategies which have been pro-

12 2. Program Transformation for Software Certification

posed in the literature are the composition and tupling strategies. The composition
strategy [47] is used to avoid the construction of intermediate data structures that
are produced by some function g and consumed by another function f . For some
class of programs the composition strategy can be applied automatically. The tu-
pling strategy [47, 67] proceeds by grouping calls with common arguments together
so that their results are computed simultaneously. Unfortunately, the tupling strategy
is more involved than the composition strategy and can in general be obtained only
semi-automatically (although for particular classes of programs the tupling strategy
has been completely automated [55, 56]).

A lot of literature has been devoted to proving the correctness of fold/unfold
systems w.r.t. the various semantics proposed for functional programs [47, 110], logic
programs [103, 134, 146, 151], functional logic programs [11], and constraint logic
programs [84]. Quite often, however, transformations may have to be carried out in
contexts in which the function symbols satisfy certain equational axioms. For example,
in rule-based languages such as ASF+SDF [37], Elan [43], OBJ [93], CafeOBJ [76],
and Maude [60], some function symbols may be declared to obey given algebraic laws
(the so-called equational attributes of OBJ, CafeOBJ and Maude), whose effect is
to compute with equivalence classes modulo such axioms while avoiding the risk of
non-termination. Similarly, theorem provers, both general first-order logic ones and
inductive theorem provers, routinely support commonly occurring equational theories
(e.g. associative-commutative theories) for some function symbols. Moreover, several
of the above-mentioned languages and provers have an expressive order-sorted typed
setting with sorts and subsorts (where subsort inclusions form a partial order and are
interpreted semantically as set-theoretic inclusions of the corresponding data sets).
The unfolding transformation has been scarcely studied so far for rewriting logic
theories that may include sorts, rules, equational theories, and algebraic laws (such
as commutativity and associativity).

In this chapter, we first formalize a powerful narrowing-based unfolding transfor-
mation for rewriting logic theories that preserves the rewriting logic semantics of the
original theory. Our technique relies on the fact that rewriting logic also supports the
narrowing mechanism [58] that successfully combines term rewriting and unification
[87] and is efficiently implemented in the functional programming language Maude
[60]. Roughly speaking, unfolding is defined by applying narrowing steps to the right-
hand sides of both rules and equations of the rewrite theory under examination in
order to obtain the unfolded theory. Narrowing allows us to empower the unfold op-
eration by implicitly embedding the instantiation rule (the operation of the Burstall
and Darlington framework [47] that introduces an instance of an existing rule) into
unfolding by means of unification. A related but different unfolding technique for
transforming (canonical) conditionals TRSs, is proposed in [10], where the main goal
is to preserve the semantics of (narrowing) computed answers. Here, a completeness
result is proved for left-linear and L-closed programs, where the closedness notion
compares all calls in the right-hand side of the program rules w.r.t. the left-hand
side of the rules similarly to the closedness notion used in Partial Evaluation [12, 13].
Then, a generalized notion of unfolding is provided, which, in the case of uncon-
ditional programs, keeps the original rule into the transformed program. With this

13

generalized unfolding operation, completeness holds under less demanding conditions.
In this work, we consider possibly non-confluent and non-terminating rewriting logic
theories, and we study the unfolding operation w.r.t. the standard rewriting logic
semantics of ground normal forms. Thus, in our setting, no notion similar to the
L-closedness is needed.

However, there are pathological situations where unfolding may cause incomplete-
ness. Hence, we develop a transformation methodology that is able to determine
whether an unfolding operation would cause incompleteness and overcome this prob-
lem by deriving a set of new rules that are added to the transformed program in order
to preserve the semantics of the original program.

Once we have formalized the unfolding operation, we propose the first fold/unfold
framework in the literature that applies to rewriting logic theories [117] and we prove
its correctness. Our methodology considers the possibility of transforming the equa-
tion set and the rule set of a rewrite theory separately in a way the semantics of ground
reducts is proved to be preserved. The auxiliary transformation rules adopted apart
from fold and unfold are: definition introduction and elimination, and abstraction.
In this approach, the goal of obtaining a correct and efficient program is achieved in
two phases, which may be performed by different actors: the first phase consists in
writing an initial, maybe inefficient, program whose correctness can be easily shown;
the second phase consists in transforming the initial program in order to obtain a
more efficient one. This is done by constructing a sequence of equivalent programs
—called transformation sequence and denoted by R0, . . . ,Rn—where each program
Ri is obtained from the preceding ones R0, . . . ,Ri−1 by using a transformation rule.

A different approach to program transformation is proposed in [54], where a term
rewriting transformation framework is formalized by using templates. In this ap-
proach, programs are expressed as TRSs [107], and are transformed according to a
given program transformation template expressed as a TRS too. Such a template
consists of program schemas for input and output programs and a set of equations
that the input and output programs must validate to guarantee the correctness of the
transformation. A library of templates that matches the structure of the programs is
required, otherwise the transformation cannot be applied.

Software certification. With the advent of the phenomenon of mobile code the
security of software obtained from remote systems has become a critical problem.
Mobile code is software transferred between systems and executed on a local system
without explicit installation or execution by the recipient even though it is delivered
through an insecure network or from an untrusted source. Important examples of mo-
bile code include Web applets, actor-based distributed system software, and updates
to embedded computers. During delivery, code might be corrupted, or a malicious
hacker might change the code. Potential problems can be summarized as security
problems (i.e. unauthorized access to data or system resources), safety problems (i.e.
illegal operations or illegal access to memory), or functional incorrectness (i.e the de-
livered code fails to satisfy a requires relation between its input and output). Hence,
code consumers need assurance that the software is not corrupted or harmful, whether
intentionally or inadvertently. Furthermore, requirements should be satisfied without

14 2. Program Transformation for Software Certification

requiring run-time checks, if possible, in order to avoid performance degradation.
Proof-Carrying Code (PCC) [131] and Code-Carrying Theory (CCT) [157, 158]

are two alternatives among other solutions to these problems. In comparison with
other solutions, these two alternatives can generally provide stronger assurance of
secure delivery of code with all required security properties (e.g. no unauthorized
access to classified data), safety properties (e.g. no out-of-bounds array-indexing), or
functional correctness properties (e.g. an algorithm sorts its input) preserved. The
basic idea of PCC is that a code consumer does not accept delivery of new code
unless it is accompanied by a formal proof of required safety, security, or correctness
properties that can be checked by the code consumer. One way of doing this is to
attach to the code an easily-checkable proof at the code producer’s site. This proof
must be checked by the code consumer and should prove that the code does not
violate predefined requirements. Code-Carrying Theory (CCT), is an alternative to
PCC with similar goals and technology, but it is based on the idea of proof-based
program synthesis rather than program verification. The basic idea is that a set of
axioms that defines functions are provided by the code producer as well as proofs that
the defined functions obey certain requirements. The form of the function-defining
axioms is such that it is easy to extract executable code from them. Thus all that
has to be transmitted from producer to consumer is a theory (a set of axioms and
theorems) and a set of proofs of the theorems. There is no need to transmit code
explicitly.

PCC has been developed and applied primarily as a method for achieving safety,
but in principle it can be used with the other forms of requirements. CCT could also
be used with any of the three forms of requirements, but in this chapter we focus
on applying CCT to functional correctness. In Section 2.5, we show how we can
take advantage of the proposed Fold/Unfold transformation framework to implement
a CCT methodology that reduces the burden on the code producer. In conjunction
with either PCC or CCT, one could employ additional certification techniques, such
as encrypted signatures or check-sums; Devanbu et al. [74] discuss such combinations
as well as the use of ”trusted hardware.”

2.1 Narrowing in Rewriting Logic

Consider the rewrite relation →R/E introduced in Chapter 1. Since E-congruence
classes can be infinite, →R/E-reducibility is undecidable in general. One way to
overcome this problem is to implement R/E-rewriting by a combination of rewriting
using oriented equations (oriented from left to right) and rules [159]. We define the
relation →∆,B on TΣ(V) as follows: t →∆,B t′ if there is a position p ∈ OΣ(t), l = r
in ∆, and a substitution σ such that t|p =B lσ and t′ = t[rσ]p. The relation →R,B is
similarly defined, and we define→R∪∆,B as→R,B ∪ →∆,B . The idea is to implement
→R/E using →R∪∆,B .

The computability of →R∪∆,B as well as its equivalence w.r.t. →R/E are assured
by enforcing some conditions on the considered rewrite theories:

(i) B is non-erasing, and sort preserving.

2.1. Narrowing in Rewriting Logic 15

(ii) B has a finitary and complete unification algorithm, which implies that B-
matching is decidable, and ∆ ∪ B has a complete (but not necessarily finite)
unification algorithm.

(iii) ∆ is sort decreasing, and confluent and terminating modulo B.

(iv) →∆,B is coherent with B, i.e., ∀t1, t2, t3, we have that t1 →+
∆,B t2 and that

t1 =B t3 implies ∃t4, t5 such that t2 →∗∆,B t4, t3 →+
∆,B t5, and t4 =E t5.

(v) →R,B is E-consistent with B, i.e., ∀t1, t2, t3, we have that t1 →R,B t2 and that
t1 =B t3 implies ∃t4 such that t3 →R,B t4, and t2 =E t4.

(vi) →R,B is E-consistent with →∆,B , i.e., ∀t1, t2, t3, we have that t1 →R,B t2 and
that t1 →∗∆,B t3 implies ∃t4, t5 such that t3 →∗∆,B t4, t4 →R,B t5, and t5 =E t2

1.

A term t is called a redex, if there exist a rule l → r, or equation l = r, and a
substitution σ such that t =B lσ. A term t without redexes is called a normal form. A
rewrite theory R is weakly normalizing if every term t has a normal form in R, though
infinite rewrite sequences starting from t may exist. A rewrite theory is sufficiently
complete [96] if enough rules/equations have been specified so that functions of the
theory are fully defined on all relevant data (that is, defined symbols do not appear
in any ground term in normal form).

Narrowing [87] generalizes term rewriting by allowing free variables in terms (as in
logic programming) and by performing unification (at non-variable positions) instead
of matching in order to (non–deterministically) reduce a term. The narrowing relation
for rewriting logic theories is defined as follows [122].

Definition 2.1 (R ∪∆, B-Narrowing) Let R = (Σ,∆ ∪ B,R) be an order-sorted
rewrite theory. The R∪∆, B-narrowing relation on TΣ(V) is defined as t ;σ,p,R∪∆,B t′

if there exist p ∈ OΣ(t), a rule l→ r or equation l = r in R∪∆, and σ ∈ CSUB(t|p, l)
such that t′ = (t[r]p)σ. t ;σ,p,R∪∆,B t′ is also called a R ∪∆, B-narrowing step.

Example 2.2 Consider the rewrite theory of Example 1.1 where we substitute the rule
in R with the following rule f(x, f(y, b)) → d. Then we can perform the narrowing
step f(f(w, z), c) ;σ,Λ,R∪∆,B d, with σ = {x/c, z/b, w/y}, since by the commutativity
of f we have that f(f(w, z), c){z/b, w/y} =B f(x, f(y, b)){x/c}.

When it is clear from the context, we omit (R∪∆, B) from the narrowing relation.
Narrowing derivations are denoted by t0 ;∗σ tn, which is shorthand for the sequence
of narrowing steps t0 ;σ1,p1 . . . ;σn,pn tn with σ = σn ◦ . . . ◦ σ1 (if n = 0 then
σ = id). Completeness of narrowing for several meaningful classes of rewriting logic
theories (e.g. topmost theories, linear theories, etc.) has been studied in [122].

1Properties (iv) and (v) can be achieved by a simple preprocessing of rewrite rules, while property
(vi) is guaranteed by a discipline that prevents the defined function symbols of ∆ to appear within
the lhs’s of the rules in R. For more details see Section 2.4.

16 2. Program Transformation for Software Certification

In rewriting logic implementation such as Maude, defined symbols can be given
the commutativity axiom or both commutativity and associativity, but not the asso-
ciativity alone since unification modulo associativity is infinitary, i.e., infinitely many
unifiers may exist modulo associativity [21].

In what follows, we always consider weakly normalizing and sufficiently complete
rewrite theories. These conditions are essential in order to prove the correctness and
completeness of the unfolding operation w.r.t. the considered semantics (i.e., Theorem
2.12).

2.2 The Unfolding Operation

Let us introduce the Unfolding operation.

Definition 2.3 (Unfolding) Let R = (Σ,∆ ∪ B,R) be a program and let F be an
equation (resp. rule) of the form l = r (resp. l→ r) in R. We obtain a new program
from R by replacing F with the set of equations (resp. rules)

{lσ = r′ | r ;σ,∆,B r′ is a ∆, B narrowing step}

{lσ → r′ | r ;σ,R∪∆,B r′ is a R ∪∆, B narrowing step}

The following example suggests that right linearity must be required for complete-
ness. For the sake of simplicity we omit sort declarations when specifying rewriting
logic theories.

Example 2.4 Consider the following rewrite theory R = (ΣR, ∅, R), where ΣR is the
signature containing all the symbols of R and

1.
2.
3.
4.
5.
6.

R :
f(a, a) → a
f(b, c) → b

a → b
a → c

g(x) → f(x, x)

R′ :
f(a, a) → a
f(b, c) → b

a → b
a → c

g(a) → a

We obtain program R′ = (ΣR, ∅, R′) from R by applying an unfolding step over the
rule 5 in R, through the narrowing step f(x, x) ;x/a a. Let us consider term g(a). In
the original program, g(a) can rewrite to the normal form b by the rewrite sequence:
(i) g(a) →5 f(a, a) →3 f(b, a) →4 f(b, c) →2 b. In the transformed program, such a
rewrite sequence is no longer possible from term g(a), and, hence, the normal form b
is lost.

We consider the standard semantics of rewrite theories given by the following defini-
tion.

Definition 2.5 (Program Semantics) Given a rewrite theory R = (Σ,∆ ∪B,R),
the semantics of R is the set gred(R) = {(t, s) | t ∈ TΣ, t→∗R∪∆,B s}.

2.2. The Unfolding Operation 17

Let us also denote by gnf(R) (⊆ gred(R)) the semantics of ground reducts in
normal form, and by (t, s) ∈ gnf(E) the fact that s is the canonical form of t w.r.t.
the equational theory E = (∆ ∪B).

Since we consider rewrite theories where defined symbols are allowed to be arbi-
trarily nested in left-hand sides of rules, rule unfolding may cause the loss of com-
pleteness for the transformed program w.r.t. the semantics of the original one. Let
us illustrate this problem by means of some examples. Since the equational axioms
for associativity and commutativity do not affect the incompleteness problem that
we want to describe, for the sake of simplicity, in the following examples we consider
defined symbols without any equational axiom. A discussion on equational axioms
and incompleteness is postponed until Section 2.2.3.

Example 2.6 Consider the following rewrite theory R = (ΣR, ∅, R), where ΣR is the
signature containing all the symbols of R and

1.
2.
3.
4.
5.

R :
g1(x) → x
h(x) → 0

h(g1(x)) → 1
f(x) → g1(x)

R′ :
g1(x) → x
h(x) → 0

h(g1(x)) → 1

f(x) → x

We get program R′ = (ΣR, ∅, R′) from R by applying an unfolding step over rule 4
in R, through the narrowing step g1(x) ;ε x. Term h(f(0)) can be rewritten in R to
the normal forms 0 or 1 by means of the rewrite sequences h(f(0)) →4 h(g1(0)) →1

h(0) →2 0, and h(f(0)) →4 h(g1(0)) →3 1, respectively. The only possible rewrite
sequences from h(f(0)) in R′ are h(f(0)) →2 0, and h(f(0)) →5 h(0) →2 0, thus we
miss normal form 1. In fact, symbol g1 is needed for rule 3 to be applied, and function
f provides that occurrence of g1 needed to reach the normal form 1. However, the
unfolding of rule 4 forces the occurrence of symbol g1 to be evaluated, and, hence, that
rewrite sequence is no longer available in R′.

A näıve attempt to identify the rules that are involved in the loss of completeness
might be to look for those rules whose left-hand sides contain an instance of the right-
hand side of the rule that we want to unfold. In Example 2.6, the right-hand side of
rule 4 is embedded in the left-hand side of rule 3. Hence, in order to avoid incom-
pleteness, we could forbid the unfolding operation whenever one such a rule existed
in the program. Unfortunately, as shown by Example 2.7, in general, incompleteness
can be caused by the interference among several rules, which cannot be identified by
using this näıve criterion.

Example 2.7 Consider the following rewrite theory R = (ΣR, ∅, R), where ΣR is the

18 2. Program Transformation for Software Certification

signature containing all the symbols of R and

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

R :
g1(x, 0) → x
g1(x, 1) → x

g1(0, g1(x, y)) → 0
g2(x) → x
h(x, y) → x

h(g2(x), y) → p(x, y)
p(x, y) → x

p(g1(x, y), z) → 1
k(x) → x

k(g2(x)) → 1
f(x, y) → g2(g1(x, y))

R′ :
g1(x, 0) → x
g1(x, 1) → x

g1(0, g1(x, y)) → 0
g2(x) → x
h(x, y) → x

h(g2(x), y) → p(x, y)
p(x, y) → x

p(g1(x, y), z) → 1
k(x) → x

k(g2(x)) → 1

f(x,0) → g2(x)
f(x,1) → g2(x)

f(0,g1(x,y)) → g2(0)
f(x,y) → g1(x,y)

We obtain program R′ = (ΣR, ∅, R′) from R by applying an unfolding step over
rule 11 in R, through the following narrowing steps: (i) g2(g1(x, y)) ;ε g1(x, y),
(ii) g2(g1(x, y)) ;y/0 g2(x), (iii) g2(g1(x, y)) ;y/1 g2(x), and (iv)
g2(g1(x, y)) ;x/0,y/g1(x′,y′) g2(0). The following rewrite sequence can be proved in
R: h(f(0, 1), 0)→11 h(g2(g1(0, 1)), 0)→6 p(g1(0, 1), 0)→8 1. In R′ we cannot reach
the normal form 1 starting from term h(f(0, 1), 0) because rules 6 or 8 cannot be
applied. This is due to the fact that the occurrences of both symbols g2 and g1 is es-
sential for rules 6 and 8 to be applied in order to obtain the normal form 1, while the
unfolding step forces these occurrences to be evaluated. Therefore, in the transformed
program, the rewrite sequence leading to normal form 1 is no longer viable. In this
example, rules 6 and 8 are both involved in the loss of completeness.

The näıve idea outlined above to solve the case in Example 2.6 does not apply to
Example 2.7 because the right-hand side of rule 11 does not appear in the left-hand
side of any rule; however, it is distributed between the left-hand sides of rules 6 and
8.

In the following, we develop a methodology that is able to identify whether an
unfolding operation causes incompleteness, and we overcome this problem by conve-
niently extending the transformed program. More precisely, according to the identified
incompleteness sources, the methodology derives a set of new rules that are added
to the transformed program in order to recover the ground semantics of the original
program.

2.2.1 Analyzing potential incompleteness

Let R = (Σ, E,R) be a program, let Ru : lhsu → rhsu ∈ R be the rule we want
to unfold and let R′ be the program obtained from R by performing the unfolding

2.2. The Unfolding Operation 19

operation.

Step 1) Looking for rules that may be involved in incompleteness.
At the beginning, we look for rules inR whose left-hand side contains a proper subterm
rooted by the root symbol of rhsu. Let {R1, . . . , Rn} be such a set of rules, and for
each lhsi, i ∈ {1, . . . , n}, let p1, . . . , pki

be the positions in lhsi where an occurrence of
the root symbol of rhsu has been found. Then we construct the following set of terms
L = {lhsi[rhsu]pj

| i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}}, where we replace the subterm
rooted at position pj in each lhsi, with the right-hand side rhsu. In order to avoid
interference among the variables of rhsu and the variables of the context lhsi[]pj , we
consider a variable renaming of rhsu with fresh variables.

Finally, for each term lhsi[rhsu]pj , we try to perform just one narrowing step at
the root position using the corresponding rule Ri. In symbols, we try to perform
the following narrowing step: lhsi[rhsu]pj

;σj ,Λ,(Ri∪∆,B) r
′
j . We collect the derived

terms in a set T of triples of the form (lhsi[lhsu]pj
, σj , r

′
j), where the first component

is the lhsi where we replaced the subterm rooted at position pj with the left-hand
side lhsu. We consistently apply to lhsu the same variable renaming applied to rhsu.

Roughly speaking, if the considered narrowing step cannot be done, it follows that
no rewrite step can be performed with rule Ri from any instance of term lhsi[rhsu]pj

,
and, hence, there is no incompleteness. Otherwise, the methodology proceeds to
restore completeness.

Example 2.8 Let us again consider the rules of Example 2.7. Recall that the rule
for unfolding is f(x, y) → g2(g1(x, y)). We first look for rules whose left-hand side
contains a proper subterm rooted with symbol g2, and we find rules 6 and 10. We then
construct the set L that contains terms h(g2(g1(w, z)), y) and k(g2(g1(w, z))), and we
try to perform a narrowing step at the root position from each of these terms by using
rules 6 and 10, respectively.
We can perform the following narrowing steps:
h(g2(g1(w, z)), y) ;σ,Λ,R6 p(g1(w, z), y), where the computed unifier is
σ = {x/g1(w, z), y/y}, and k(g2(g1(w, z))) ;ρ,Λ,R10 1, with ρ = {x/g1(w, z)}. Fi-
nally, we construct the triples
(h(f(w, z), y), {x/g1(w, z), y/y}, p(g1(w, z), y)) and (k(f(w, z)), {x/g1(w, z)}, 1).

Step 2) Restoring Completeness.
For each triple (t1, σ, t2) ∈ T , we add rule t1σ → t2 to R′. This guarantees that the
ground semantics of R is preserved in the new program R′, as stated by Theorem
2.12. In our example, we add rules h(f(w, z), y)→ p(g1(w, z), y) and k(f(w, z))→ 1
to R′.

Algorith 1 shows the backbone of the procedure that implements the methodology
described above. The restoreCompleteness procedure takes the initial program R, the
transformed program R′, and the right-hand side of the unfolded rule as arguments,
and it returns R′ extended with some new rules that are computed as explained
above. The getInvolvedRules call detects the rules in R that contain a proper term

20 2. Program Transformation for Software Certification

whose root symbol is root(rhsu) in their lhs. subst rhsu replaces the subterms rooted
with the function symbol root(rhsu) in the lhs of the rules by term rhsu, and nar-
rowingOneStep tries to perform a narrowing step from the obtained terms by using
the corresponding suspicious rules, obtaining the set of triples {(t1, σ, t2)}. Finally,
for each one of these triples, the prodRules call returns a new rule of the form t1σ → t2
to be added to the program R′.

Algorithm 1 Procedure to check and restore completeness of unfolding
1: procedure restoreCompleteness((Σ, E,R), (Σ, E,R′), rhsu)
2: {R1, . . . , Rn} ← getInvolvedRules(R, rhsu|Λ)
3: L← subst rhsu({lhs1, . . . , lhsn}, rhsu)
4: {(t1, σ, t2)} ← narrowingOneStep(L, {R1, . . . , Rn})
5: {t1σ → t2} ← prodRules({(t1, σ, t2)})
6: return (Σ, E,R′ ∪ {t1σ → t2})
7: end procedure

Example 2.9 Consider again the Example 2.7. The call
restoreCompleteness((ΣR, ∅, R), (ΣR, ∅, R′), g2(g1(x, y))) yields
(ΣR, ∅, R′ ∪ {h(f(w, z), y)→ p(g1(w, z), y), k(f(w, z))→ 1}).

2.2.2 Methodology optimization

In the methodology above, in order to prevent a possible incompleteness problem, we
add a rule of the form t1σ → t2 to the transformed programR′ for each triple (t1, σ, t2)
found at Step 1, even if the transformed program is actually complete. Consider
again the rules of Example 2.7, and term k(f(x, y)). By applying to k(f(x, y)) the
substitution {y/0} computed by the unfolding operation, we can rewrite the obtained
term in the transformed program to the normal form 1, by means of the following
rewrite sequence: k(f(x, 0)) →12 k(g2(x)) →10 1. Hence, the rule k(f(w, z)) → 1
added to the transformed program by the methodology is redundant because rule 10
does not provoke incompleteness.

To refine the methodology, we can add an intermediate step that checks whether
it is really necessary to add a new rule to the program. Let Σu denote the set of
substitutions computed by narrowing during the unfolding operation extended with
the empty substitution. Then, for each triple (t1, σ, t2) ∈ T , we want to check whether
there exists σu ∈ Σu such that t2 is reachable from (t1σ)σu in R′ by rewriting. If that
is the case, there is no reason to add a rule that would be redundant; otherwise, this
is a symptom of incompleteness, and we can proceed as in Step 2.

Example 2.10 Consider again the Example 2.7, and the triples
(h(f(w, z), y), {x/g1(w, z), y/y}, p(g1(w, z), y)) and (k(f(w, z)), {x/g1(w, z)}, 1) com-
puted at Step 1. The set Σu contains the substitutions {ε}, {y/0}, {y/1}, and
{x/0, y/g1(x′, y′)}. Then, we check whether there exists σu ∈ Σu such that
h(f(w, z), y)σu →∗R′ p(g1(w, z), y)), and whether there exists σu ∈ Σu such that

2.2. The Unfolding Operation 21

k(f(w, z))σu →∗R′ 1. The first reachability goal is unsatisfiable, while the second
is satisfied by substitutions {y/0}, {y/1}, and {x/0, y/g1(x′, y′)}.

Hence, the optimized solution is to add only the rule h(f(w, z), y)→ (g1(w, z), y))
to the transformed program.

The reachability problem for rewriting is undecidable in general, but it has been
proved to be decidable for particular classes of rewrite theories [88, 120]. For example,
in [88] reachability is proved to be decidable for right-linear and right-shallow TRSs.
The right-shallow property asks for variables that appear in the right-hand side of
the rules to occur at depth 0 or 1. Hence, the proposed refinement has to pay the
cost of the additional syntactic restrictions of right-linearity and right-shallowness
to be effective. An alternative method to make reachability decidable is presented
in [121], where the original rewrite theory is extended by adding a terminating and
(ground) Church-Rosser set of extra equations powerful enough to collapse infinite
sets of reachable terms into finite sets. Also in this case, several strong conditions are
required on the extended rewrite theory in order to make such an analysis effective.

2.2.3 Incompleteness and Equational Axioms

Up to now, we have explained the incompleteness problem that may arise due to the
unfolding operation, without considering equational axioms which can be associated
with defined symbols. Nevertheless, the unfolding operation uses the R ∪∆, B nar-
rowing relation, which takes into account the equational axioms for associativity and
commutativity. However, the axioms are not an extra source of incompleteness, as
discussed below.

Let us modify the rewrite theory of Example 2.7 by declaring the symbols h, p
and g1 to obey associativity and commutativity. The transformed program will have
a higher number of unfolded rules due to the increased number of unifiers computed
by narrowing modulo the considered axioms, but exactly the same incompleteness
problem arises. The new rules computed by unfolding are:

12.
13.
14.
15.
16.
17.
18.
19.
20.

f(x, 0) → g2(x)
f(0, x) → g2(x)
f(x, 1) → g2(x)
f(1, x) → g2(x)

f(0, g1(x, y)) → g2(0)
f(g1(x, y), 0) → g2(0)
f(g1(0, x), y) → g2(0)
f(y, g1(0, x)) → g2(0)

f(x, y) → g1(x, y)

and allow us to bring back the original semantics for the transformed program. Note
that rules 13, 15, 17, 18, and 19 are needed because f is not associative neither
commutative.

22 2. Program Transformation for Software Certification

2.2.4 Completeness of the Transformation

The main result of this section is Theorem 2.12 which states that the unfolding trans-
formation followed by the restoreCompleteness procedure preserves the ground se-
mantics of a program. Moreover, the equational unfolding preserves the canonical
forms as stated in Theorem 2.11.

Theorem 2.11 Let R = (Σ,∆ ∪B,R) be a program, and let R′ = (Σ,∆′ ∪B,R) be
the program obtained from R by unfolding an equation Eu ∈ ∆. Then, gnf(∆) =B

gnf(∆′).

Theorem 2.12 Let R = (Σ,∆ ∪B,R) be a program, and let R′ = (Σ,∆ ∪B,R′) be
the program obtained from R by the unfolding of a rule Ru ∈ R and the restoreCom-
pleteness procedure. Then, for each term t ∈ TΣ, we have that:

• t→∗R′ s′ ⇒ t→∗R s and s =∆,B s′;

• t→∗R s⇒ t→∗R′ s′ and ∃s′′ s.t. s→∗R s′′, s′ =∆,B s′′.

Basically, Theorem 2.12 states that (i) the ground reducts of the transformed pro-
gram are exactly the same as in the original one (in symbols, gred(R′) ⊆ gred(R)),
and (ii) for each ground reduct s of the original program, there exists s′ in the trans-
formed one such that s can still be reduced to a term that is equivalent to s′. This
asymmetry in the result is due to the nature of unfolding. In fact, the unfolding of
a rule in the initial program forces some symbols that appear in its right-hand side
to be reduced by narrowing, and, hence, a general reduct s obtained by an appli-
cation of that rule may contain those symbols. Therefore, we need to consider the
possibility of some further reduction steps from s in the initial program in order to
reduce those symbols and thereby obtain an equivalent term to the one reachable in
the transformed program.

This result is obtained as a corollary of Lemma 2.18 which states that the ground
normal forms are preserved. The following definitions, propositions and lemmas are
auxiliary.

Definition 2.13 (B-Matching) Let R = (Σ,∆ ∪ B,R) be a rewrite theory. Given
two terms t and s (not just variables), we say that t B-matches s at position p ∈
OΣ(s), if there exists a substitution σ such that tσ =B s|p.

Proposition 2.14 Let R = (Σ,∆∪B,R) be a rewrite theory, let t1, t2 be two terms
such that Var(t1)∩Var(t2) = ∅, and let CSUB(t1, t2) be the complete set of B-unifiers
of t1 and t2. Let also θ be a ground substitution such that t2 B-matches t1θ at position
Λ. Then, there exists a substitution σ ∈ CSUB(t1, t2), such that the restriction of σ
to the variables of t1 is more general than θ.

Proof 2.2.1 From the hypothesis it follows that there exists a substitution ρ such that
t2ρ =B t1θ. Since t1 and t2 do not have shared variables, we can define a substitution
η as the union of θ and ρ, such that η|Var(t1) = θ and η|Var(t2) = ρ. Therefore, η

2.2. The Unfolding Operation 23

is a B-unifier of t1 and t2, that is, t1η =B t2η. From the definition of CSUB, we
know that there exists a substitution σ ∈ CSUB(t1, t2) such that σ ≤B η. Hence,
σ|Var(t1) ≤B η|Var(t1) = θ.

Proposition 2.15 Let R = (Σ,∆∪B,R) be a program, and let R′ = (Σ,∆∪B,R′)
be the program obtained from R by the unfolding of a rule Ru : lhsu → rhsu ∈ R and
the restoreCompleteness procedure. Then, for each term lhsi[rhsu]pj

in L, we have
that if lhsi[rhsu]pj

;σ,Λ,(Ri∪∆,B) t, then lhsi[lhsu]pj
σ → t in R′.

Proof 2.2.2 The proof follows immediately from the described methodology; indeed, if
lhsi[rhsu]pj

;σ,Λ,(Ri∪∆,B) t, then the triple (lhsi[lhsu]pj
, σ, t) belongs to set T . Thus,

at Step 2 we add the rule lhsi[lhsu]pj
σ → t to program R′, which implies the thesis.

Lemma 2.16 Let R = (Σ,∆ ∪ B,R) be a program and R′ = (Σ,∆ ∪ B,R′) the
program obtained from R by the unfolding of a rule Ru : lhsu → rhsu ∈ R and the
restoreCompleteness procedure. Let Ri : lhsi → rhsi, i ∈ {1, . . . , n} be the rules
returned by the getInvolvedRules call of the restoreCompleteness procedure. Let t be
a ground term such that t→Ru,p t

′ →Ri,p′ t
′′ such that p′ < p, and the occurrence of

root(rhsu) at some position pj in lhsi matches with the occurrence of root(rhsu) at
position p in t′. Then, t→∗ t′′′ =∆∪B t′′ in R′.

Proof 2.2.3 From the hypothesis it follows that t|p =B lhsuθ for some grounding
substitution θ, and t|p′ =B lhsi[lhsu]pj

θ. It follows that t′ must be of the form
t[lhsi[rhsu]pj

]p′θ. Moreover, lhsi[rhsu]pj
θ B-matches with lhsi. From the method-

ology described in Section 2.2.1, we know that narrowing computes the complete set
of B-unifiers CSUB(lhsi[rhsu]pj

, lhsi). By Proposition 2.14 it follows that there ex-
ists σ ∈ CSUB(lhsi[rhsu]pj

, lhsi) such that σ is more general than θ (by renam-
ing lhsi[rhsu]pj

with t1 and lhsi with t2). Then, there exists a substitution ρ such
that θ =B σρ. It follows that t[lhsi[rhsu]pj

]p′ ;σ,p′,(Ri∪∆,B) t∗ and t∗ρ =B t′′.
By Proposition 2.15 it follows that t[lhsi[lhsu]pj

]p′σ →∗ t∗ in R′. Hence, t =
t[lhsi[lhsu]pj

]p′θ =B (t[lhsi[lhsu]pj
]p′σ)ρ→∗R′,∆∪B t∗ρ =B t′′.

Since we ask for ∆ to be Church-Rosser and terminating modulo B, the equational
unfolding preserves the canonical forms, as stated in Theorem 2.11.

Proof 2.2.4 (Proof of Theorem 2.11) Let Eu be an equation of the form (lhsu =
rhsu) and let E0, . . . , Ek be the set of equations used to unfold Eu, each one of the
form (li = ri) for i = 0, . . . , k. Let f1, . . . , fn with n ≤ k be the set of symbols
defined by equations E1, . . . , Ek. Also let rhsu ;σj ,∆,B r′j (j ∈ {1, . . . , n}) be the
∆, B-narrowing step such that the result of unfolding Eu using Ej is the equation
Euj : (lhsuσj = r′j). From the definition and the correctness of narrowing, we recall
that:

(1) ∀j ∈ {1, . . . , n} . rhsuσj →Ej r′j

(2) ∀j ∈ {1, . . . , n} there exists position pj ∈ OΣ(rhsu) such that rhsu|pj
σj =B ljσj

24 2. Program Transformation for Software Certification

(3) ∀j ∈ {1, . . . , n} . r′j = (rhsu[rj]pj
)σj

⇒ We want to prove that, given any ground term t, if t →!
∆,B s, then t →!

∆′,B s′

and s =B s′. From t→!
∆,B s, the Church-Rosser property, and the termination

of ∆ modulo B, there exists a rewrite sequence from t to s where the left-most
inner-most redex is reduced at each step. We will prove the result by induction
on the length of this rewrite sequence.
(n = 0.) This case is immediate since t =B s.
(n > 0.) Let us decompose the rewriting sequence from t to s as follows: t →
t1 →! s. On the rewriting sequence from t1 to s we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites to
t1 without using equation Eu, the same step can be performed in ∆′ and the
claim holds. Otherwise, there exists a position p ∈ OΣ(t) and a substitution
θ such that (i) lhsuθ =B t|p, (ii) t|p is the left-most inner-most redex, and
(iii) t1 = t[rhsuθ]p. Note that from (ii) and the sufficient completeness of ∆,
it follows that (iv) θ is a constructor substitution, that is, for each x/t ∈ θ,
t is a constructor term. From (ii) and (iv), it follows that if rhsuθ contains
a redex, it is the left-most inner-most redex in t1 and its position p′ belongs to
OΣ(rhsu). Since rhsu contains at least one occurrence of the symbols f1, . . . , fn,
and ∆ is sufficient complete, rhsuθ contains at least one redex. Let p′ be the
position of the left-most inner-most redex inside t1. Now, consider the following
rewrite step rhsuθ →p′,Ej

rhsu[rj]p′θ, j ∈ {1, . . . , k}, which rewrites the redex
in position p′. The obtained term t2 is t[rhsu[rj]p′θ]p. Since during the unfold
operation, we perform narrowing at each possible position in rhsu, the narrowing
step rhsu ;p′,σj ,Ej∪B r′j can be proven in ∆. By (iv) and the completeness of
narrowing, the substitution computed by narrowing is more general then θ, which
amounts to saying that there exists a substitution ρ such that (v) θ =B σjρ. By
the definition of unfolding, the equation lhsuσj = r′j is one Euj belonging to ∆′.
Finally, from (i) and (v), we can apply the equation Euj to term t, thus obtaining
t[r′jρ]p = t[((rhsu[rj]p′)σj)ρ]p =B t[rhsu[rj]p′θ]p = t2, and the claim follows by
applying the inductive hypothesis to the rewrite sequence from t2 to s.

⇐ We want to prove that, given any ground term t, if t →!
∆′,B s′, then t →!

∆,B s
and s =B s′. We will prove it by induction on the length of the rewriting
sequence in ∆′.
(n = 0.) This case is immediate since t =B s′.
(n > 0.) Let us decompose the rewriting sequence from t to s′ as follows: t →
t1 →! s′. On the rewriting sequence from t1 to s, we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites
to t1 without using one of the equations Euj , the same step can be performed
in ∆ and the claim holds. Otherwise, if one of the equations Euj is used for
the last rewriting step, there exists a substitution θ such that (lhsuσj)θ =B t|p,
and t1 = t[r′jθ]p. By rhsuσj →Ej r′j and the stability of rewriting, we have
that (rhsuσj)θ →Ej r

′
jθ. Therefore, t =B t[lhsu(σjθ)]p →Eu t[rhsu(σjθ)]p =

t[(rhsuσj)θ]p →Ej
t[r′jθ]p = t1, which is a rewrite sequence leading to t1 in ∆.

2.2. The Unfolding Operation 25

Before stating and proving Lemma 2.18 let us recall the necessary definition of
the antecedent of a position in a term.

Definition 2.17 Let R : l→ r be a rule in a given rewrite theory and let t→R t
′ be

a rewrite step that reduces a redex at position p ∈ OΣ∪V(t). According to [142], we
say that a position p′ ∈ OΣ∪V(t) is an antecedent of a position q ∈ OΣ∪V(t′) iff

(i) q is not comparable with p and q = p′, or

(ii) there exists a position o of a variable x in r such that q = p.o.w and p′ = p.u.w
where u is a position of x in l.

Now we are ready to establish that the rule unfolding transformation followed by
the restoreCompleteness procedure preserve the semantics of ground normal forms.

Lemma 2.18 Let R = (Σ,∆∪B,R) be a program, and let R′ = (Σ,∆∪B,R′) be the
program obtained from R by unfolding a rule Ru ∈ R and the restoreCompleteness
procedure. Then, gnf(R) =∆∪B gnf(R′).

Proof 2.2.5 Let Ru be a rule of the form (lhsu → rhsu), and let R1, . . . , Rk be the
set of rules used to unfold rule Ru, each one of the form (li → ri) for i = 1, . . . , k.
Let f1, . . . , fn with n ≤ k the set of symbols defined by rules R1, . . . , Rk. Also let
rhsu ;σj ,R∪∆,B r′j, j ∈ {1, . . . , n}, be the R ∪ ∆, B-narrowing step such that the
result of unfolding Ru using Rj is the rule Ruj : (lhsuσj → r′j). From the definition
and the correctness of narrowing, we recall that:

(1) ∀ j ∈ {1, . . . , n} . rhsuσj →Rj r′j

(2) ∀j ∈ {1, . . . , n} there exists position pj ∈ OΣ(rhsu) such that rhsu|pj
σj =B ljσj

(3) ∀ j ∈ {1, . . . , n} . r′j = (rhsu[rj]pj
)σj

⇒ We want to prove that, given any ground term t, if t→!
R s, then t→!

R′ s
′ and

s =∆∪B s′. We will prove it by induction on the length of the rewrite sequence
in R.
(n = 0.) This case is immediate since t = s.
(n > 0.) Let us decompose the rewrite sequence from t to s as follows: t →
t1 →! s. On the rewrite sequence from t1 to s, we can apply the induction
hypothesis, and we now concentrate on the first rewrite step. If t rewrites to
t1 without using rule Ru, the same step can be performed in R′ and the claim
holds. Otherwise, we want to describe a procedure to reorder an initial fragment
of the rewrite sequence from t to s in such a way it is then trivial to simulate it
in R′ and then use the induction hypothesis on the rest of the sequence.

Consider a ground term w and a subsequent application of rules Ru and Rj
in R as follows. If w|p =B lhsuθ, by applying ({Ru},∆ ∪ B), we obtain a
∆ ∪ B-equivalent term to w[rhsuθ]p, which embeds a ground instance of rhsu.
Therefore, this term contains some occurrences of the symbols f1, . . . , fn. Then,
if we can apply ({Rj},∆∪B) (for some j ∈ {1, . . . , k}) to reduce the redex having

26 2. Program Transformation for Software Certification

one such symbol as its root, we obtain a ∆∪B-equivalent term to w[rhsu[rj]pj
θ]p.

The key point is to note that this subsequent application of rules Ru and Rj in R
can be simulated in R′ by an application of rule Ruj . In fact, since the rewrite
step using Rj occurs at position pj ∈ OΣ(rhsu), it follows that the left hand
side lj of rule Rj unifies with the subterm rhsu|pj

by substitution σj, which
subsumes θ by Proposition 2.14, taking rhsu|pj

as t1 and lj as t2. Therefore,
the narrowing step rhsu ;σj ,pj ,(Rj∪∆,B) r

′
j can be proved in R,∆ ∪ B. By

the definition of unfolding, the rule lhsuσj → r′j is one Ruj belonging to R′.
Finally, by applying (Ruj ,∆) to term w we obtain a ∆ ∪ B-equivalent term to
w[r′jρ]p = w[((rhsu[rj]pj

)σj)ρ]p = w[rhsu[rj]pj
θ]p.

The basic aim of the sequence reordering procedure reorderSeq, whose pseudo-
code is shown in Figure 2.1, is to change the rule application order, thus obtain-
ing an equivalent sequence (in the sense that the same normal form s is reached)
where the application of rule Ru is immediately followed by an application of a
rule Rj. In the procedure, a rewrite sequence is represented as a list of rewrite
steps (R, p) where R is the applied rule and p the position of the reduced redex.
Each rewrite step is intended to be followed by a ∆, B normalization. The pro-
cedure takes the rewrite sequence starting from the rewrite step using rule Ru as
input and returns the reordered rewrite sequence. List s1 contains the reordered
portion of the sequence, which can be easily simulated in R′, while s2 contains
the rest of the sequence (if any). The auxiliary procedure reorder uses two aux-
iliary lists ns and vs. The former contains the sequence of steps that are moved
before (Ru, p), while the latter contains the skipped steps during the reordering
that will keep the same position in the final rewrite sequence. The final sequence
is made up of the ns list, the consecutive steps (Ru, p), (Rj , pj), the skipped
steps in vs, and the rest of the sequence in ts. There is only one particular case
in which the reordering procedure deletes some rewrite steps including the one
using rule Ru, which will be discussed later. Let us explain the eight different
cases of the ordering procedure in the reorder function.

Case (1) is the easiest one because the applied rule is one Rj, which is used to
reduce a redex in rhsuθ having one symbol fi at its root. In this case, the pro-
cedure terminates, returning the reordered sequence ns, (Ru, p), (Rj , pj), vs, ts.
In case (3), a rule that is different from Ru is used to reduce a redex in the
substitution θ. Since the redex belongs to the substitution, this rewrite step is
possible before the application of rule Ru at a position q′, which is the antecedent
of q. Hence, the rewrite step (R, q′) is moved at the end of the ns list and the
procedure follows with the rest of the sequence. Case (8) is analogous because a
rule that is different from Ru is used to reduce a redex that contains the subterm
rhsuθ in the substitution without erasing it. This rewrite step can also be moved
before the application of rule Ru, and, hence, it is put at the end of the ns list.
Note that in this case, the antecedent of q is q itself because q < p. Case (4)
considers a rule that reduces a redex whose root is not in rhsuθ nor in a path
from p to the term root. This is the case of a skippable rewrite step that is moved
at the end of the vs list. Case (6) considers a rewrite step where the reduced

2.2. The Unfolding Operation 27

reorderSeq((Ru, p) : seq) = let (s1, s2) = reorder((Ru, p), [], [], seq)
in merge(s1, s2)

reorder((Ru, p), ns, vs, (R, q) : ts) =
case q of :
q = pj ∈ OΣ(rhsu) and R = Rj , then return ([ns, (Ru, p), (Rj , pj)], [vs, ts])

(2.1)
q /∈ OΣ(rhsu) > p and R = Ru, then let (ns1, ts1) =
reorder((Ru, q), [], [], ts) in reorder((Ru, p), [ns, ns1], vs, ts1) (2.2)

q /∈ OΣ(rhsu) > p, then reorder((Ru, p), [ns, (R, q′)], vs, ts) (2.3)
q � p and q ≯ p, then reorder((Ru, p), ns, [vs, (R, q)], ts) (2.4)
q < p and rhsu|Λ occurs in the lhs of R at non root position
then return ([ns, (Ru, p), (R, q)], [vs, ts]) (2.5)
q < p and f1, . . . , fn do not appear in the resulting term,
then return ([(R, q)], [vs, ts]) (2.6)
q < p and R = Ru, then let (ns1, ts1) = reorder((Ru, p), ns, vs, ts)

in reorder((Ru, q), [ns, ns1], vs, ts1) (2.7)
q < p, then reorder((Ru, p), [ns, (R, q)], vs, ts) (2.8)

where q′ = antecedent of q

Figure 2.1: Rewrite sequence reordering procedure.

28 2. Program Transformation for Software Certification

redex contains term rhsuθ in the substitution but erases it from the term (i.e.,
the variable that matches the subterm containing rhsuθ does not occur in the
rhs of the rule). This rule application makes all the rewrite steps stored in ns
and the one using Ru useless, so they can be deleted from the sequence and the
procedure terminates returning the step (R, q), the skipped steps, and the rest
of the sequence. Case (5) considers a rewrite step where the left-hand side of
the applied rule R matches the root symbol of rhsu at some position p. This
means that rhsuθ is not contained in the matching substitution. We are then
in the hypothesis of Lemma 2.16, which states that the two subsequent rewrite
steps (Ru, p) and (R, q) can be simulated in R′. Hence, the procedure termi-
nates returning the reordered sequence ns, (Ru, p), (R, q), vs, ts. Cases (2) and
(7) consider a rewrite step where the same rule Ru is used to reduce a redex
that is inside θ or that contains the subterm rhsuθ, respectively. The basic idea
is that when another application of Ru is found, we first terminate the reorder-
ing w.r.t. the deeper application of Ru and then we recursively call the reorder
function to reorder the sequence w.r.t. the Ru application that is not as deep. In
fact, in case (2), we suspend the reordering procedure w.r.t. the considered ap-
plication of rule Ru, and we recursively call the function to reorder a fragment
of the rewrite sequence w.r.t. the deeper Ru application. When the recursive
call terminates, we resume the previous call putting the computed list ns1 at the
end of the list ns and following with the computed rest of the sequence ts1.Case
(7) does the reverse, by terminating the current reordering and then recursively
calling the function w.r.t. the Ru application that is not as deep.
Termination. Since we consider programs to be sufficiently complete and the
considered rewrite sequence ends with the normal form s, the occurrences of
symbols f1, . . . , fn have to be reduced before reaching s by using either a rule Rj
as considered in case (2), or a rule that makes them disappear as considered in
case (6). In both cases the reorder procedure terminates.
Correctness. We want to show that all the rewrite steps contained in list s1

(which is then merged with the rest of the sequence s2 in function reorderSeq)
can be trivially simulated in R′. List s1 is the first component of the pair of
lists returned by the reorder function. Considering the termination cases, the
first component can contain either the step (R, q) (case (6)) where R is different
from Ru, or the list ns, (Ru, p), (Rj , pj) (case (1)), or the list ns, (Ru, p), (R, q)
(case (5)). When we apply a rule that is different from Ru it can be trivially
simulated in R′ by applying the same rule. Moreover, recall that a subsequent
application of rules Ru and Rj can be simulated in R′ by an application of rule
Ruj . Finally, the subsequent steps (Ru, p), (R, q) considered by case (5) can be
simulated in R′ by Lemma 2.16. Hence, the correctness holds.
Reduction of the sequence. It is easy to see that s1 is never empty and the
rest of the sequence s2 is strictly shorter that the sequence from t1 to s. Hence,
we can use the inductive hypothesis on s2.

⇐ We want to prove that, given any ground term t, if t→!
R′ s

′ then t→!
R s, and

s =∆∪B s′. We will prove it by induction on the length of the rewriting sequence

2.2. The Unfolding Operation 29

in R′.
(n = 0.) This case is immediate since t = s′.
(n > 0.) Let us decompose the rewriting sequence from t to s′ as follows: t →
t1 →! s′. On the rewriting sequence from t1 to s, we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites to t1
without using one of the rules Ruj , the same step can be performed in R and the
claim holds. Otherwise, if one of the rules Ruj is used for the last rewriting step,
there exists a substitution θ such that (lhsuσj)θ =B t|p, and t1 = t[r′jθ]p. By
rhsuσj →Rj r′j and the stability of rewriting, we have that (rhsuσj)θ →Rj r′jθ.
Therefore, t =B t[lhsu(σjθ)]p →R t[rhsu(σjθ)]p = t1[(rhsuσj)θ]p →Rj t[r′jθ]p =
t1, which is a rewriting sequence leading to t1 in R.

Finally, the main result of the paper immediately follows from the previous Lemma.

Proof 2.2.6 (Proof of Theorem 2.12) The (Corr.) part of the proof is perfectly
equivalent to the (⇐) part of the proof of the Lemma 2.18. For the (Comp.) part,
note that since the program is weakly normalizing, if t →∗R s, there exists at least a
normal form s′′ such that s→∗R s′′, and for Lemma 2.18 t→∗R′ s′ with s′ =∆∪B s′′.

Remark. In order to prove Theorem 2.12, stating that the unfolding operation and
the restoreCompleteness procedure preserve the semantics of ground reducts of the
original program, we had to prove that they preserve the semantics of ground normal
forms (Lemma 2.18). The reader may think that Theorem 2.12 is just a trivial
extension to the semantics of ground reducts, which is mainly based on Lemma 2.18
and that we actually preserve only the semantics of ground normal forms. The fact
is that there are cases of rewrite sequences starting from a ground term t where
an unfolded symbol is not reduced until a normal form is reached, and since in the
transformed program that symbol has been evaluated in advance in the unfolded rules,
a rewrite sequence in the transformed program starting from t cannot reach a reduct
equivalent to one in the rewrite sequence in the original program until the normal
form. However, this is not the general case, as shown in the following example.

Example 2.19 Let us consider the rules of Example 2.7, and let us recall that the re-
storeCompleteness procedure has extended the set of rules R′ with rules
16. h(f(w, z), y) → p(g1(w, z), y) and 17. k(f(w, z)) → 1. Consider the following
rewrite sequence in R: h(f(g2(0), g1(1, 0)), 1) →11 h(g2(g1(g2(0), g1(1, 0))), 1) →6

p(g1(g2(0), g1(1, 0)), 1). The same ground reduct can be reached in R′ by a rewrite
step using rule 16.: h(f(g2(0), g1(1, 0)), 1)→16 p(g1(g2(0), g1(1, 0)), 1). Consider also
the following rewrite sequence in R: f(g2(0), g1(1, 0)) →11 g2(g1(g2(0), g1(1, 0))) →4

g1(g2(0), g1(1, 0)). The same ground reduct can be reached in the transformed program
by a rewrite step using the unfolded rule 15.: f(g2(0), g1(1, 0))→15 g1(g2(0), g1(1, 0)).

In other words, we do not lose generality by considering rewriting up to normal form
in our proof.

30 2. Program Transformation for Software Certification

2.3 Transforming Rewrite Theories

In this section, we present a fold/unfold-based transformation framework by intro-
ducing the transformation rules over rewrite theories and establish the correctness
of the transformation system. We divide the transformation process into two steps.
At the first step, we disregard the rewrite rules and we only transform the set of
equations ∆ of the equational theory modulo the set of equational axioms B (which
are left unchanged). Then, we consider a new rewrite theory which consists of the
transformed equational theory and the original rewrite rules. At the second step, we
transform the rules modulo the new equational theory. This two-step process allows
one to transform the rewrite rules modulo a fixed, already optimized, equational the-
ory, which cannot change during the transformation of the rewrite rules. This fact
results to be particularly helpful in proving the soundness of the whole fold/unfold
framework.

A transformation sequence of length k for a rewrite theory (Σ,∆ ∪ B,R) is a
sequence (R0, . . . ,Ri,Ri+1, . . . ,Rk), k ≥ 0, where each Rj is a rewrite theory, such
that

• R0 = (Σ, E0, R0), with E0 = (∆ ∪B) and R0 = R.

• For each 0 ≤ j < i, Rj+1 = (Σ,∆j+1 ∪ B,R0) is derived from Rj by an
application of a transformation rule on the equation set ∆j .

• For each i ≤ j < k, Rj+1 = (Σ, Ei, Rj+1) is derived from Rj by an application
of a transformation rule on the rule set Rj .

The transformation rules are definition introduction, definition elimination, Folding,
Unfolding, and abstraction, which are defined as follows.2

Definition Introduction. We can obtain program Rk+1 by adding to Rk a set
of new equations (resp. rules), defining a new symbol f called eureka. We consider
equations (resp. rules) of the form f(ti) = ri (resp. f(ti)→ ri), such that:

(1) f is a function symbol which does not occur in the sequence R0, . . . ,Rk and is
declared by f : s1 . . . sn → s [Ax], where s1, . . . , sn, s are sorts declared in R0

and Ax are equational attributes.

(2) ti ∈ TC(V), and Var(ti) = Var(ri), for all i – i.e., the equations/rules are non-
erasing.

(3) Every defined function symbol occurring in ri belongs to R0.

(4) The set of new equations (resp. rules) are left linear, sufficient complete and
non overlapping. For rules we require also right linearity.

2Since the Unfolding operation has been presented and discussed in the previous sections it is not
repeated here.

2.3. Transforming Rewrite Theories 31

In general, the main idea consists of introducing new auxiliary function symbols which
are defined by means of a set of equations/rules whose bodies contain a subset of the
functions that appear in the right-hand side of an equation/rule that appears in R0,
whose definition is intended to be improved by subsequent transformation steps. The
non overlapping property and the left linearity ensure confluence of eurekas, which
is needed to preserve the completeness of the fold operation and will be discussed
later. Right linearity on rules is needed to ensure narrowing completeness [122], and
left linearity is also needed to preserve the right linearity of rules when doing folding.
Consider, for instance, the folding of rule f(x) → g(x) using the (non left linear)
eureka new(x, x) → g(x), which would produce a new rule f(x) → new(x, x) which
is not right-linear.

Note that, once a transformation is applied to a eureka, the obtained equation/rule
is not considered to be a eureka anymore. As we will see later, this is important for
the folding operation, since we can only fold non-eureka equations/rules using eureka
ones.
The non-erasing condition is a standard requirement that avoids the creation of equa-
tions/rules with extra-variables when performing folding steps. Consider, for instance,
the folding of equation f(x) = g(x) using the (erasing) eureka new(x, y) = g(x), which
would produce a new equation f(x) = new(x, y) containing an extra variable in its
right-hand side (thus an illegal equation).

Definition Elimination. Let Rk be the rewrite theory (Σk,∆k ∪ Bk, Rk). We
can obtain program Rk+1 by deleting from program Rk,

• all equations that define the functions f0, . . . , fn, say ∆f , such that f0, . . . , fn
do not occur either in R0 or in (Σk, (∆k \∆f) ∪Bk, Rk).

• all rules that define the functions f0, . . . , fn, say Rf , such that f0, . . . , fn do not
occur either in R0 or in (Σk,∆k ∪Bk, Rk \Rf).

Note that the deletion of the equations/rules that define a function f implies that
no function calls to f are allowed afterwards. However, subsequent transformation
steps (in particular, folding steps) might introduce those deleted functions in the rhs’s
of the equations/rules, thus producing inconsistencies in the resulting programs. To
avoid this, we forbid any folding step after a definition elimination has been performed
(this generally boils down to postpone all elimination steps to the end of the trans-
formation sequence).

Folding. Let F ∈ Rk be an equation (the ”folded equation”) of the form (l = r),
and let F ′ ∈ Rj , 0 ≤ j ≤ k, be an equation (the ”folding equation”) of the form
(l′ = r′), such that r|p =Bk

r′σ for some position p ∈ OΣ(r) and substitution σ.
Note that, since we transform the equations of an equational theory, we consider here
the congruence relation =Bk

modulo the equational axioms Bk (assuming an empty
equation set). This is because we cannot consider a congruence modulo an equational
theory which is being modified. Moreover, the following conditions must be satisfied:

(1) F is not a eureka.

32 2. Program Transformation for Software Certification

(2) F ′ is a eureka.

(3) The substitution σ is sort decreasing, i.e, if x ∈ Vs, then xσ ∈ TΣ(V)s′ such that
s′ ≤ s.

(4) Let l′ = f(tn) and r|p = e and let f(tn) and e have type sf and se, respectively;
then sf ≤ se.

Then, we can obtain program Rk+1 from program Rk by replacing F with the new
equation (l = r[l′σ]p).

Folding can be applied to rules whenever the transformation of the equational
theory has been completed. To fold rules we proceed as follows. Let F ∈ Rk be
a rule (the ”folded rule”) of the form (l → r), and let F ′ ∈ Rj , 0 ≤ j ≤ k, be
a rule (the ”folding rule”) of the form (l′ → r′), such that r|p =Ek

r′σ for some
position p ∈ OΣ(r) and substitution σ, fulfilling conditions (1) - (4) above. Then,
we can obtain program Rk+1 from program Rk by replacing F with the new rule
(l → r[l′σ]p). Note that in this case we use the congruence modulo the equational
theory Ek since it does not change any more after this stage.

The need for conditions (1) and (2) is twofold. These conditions forbid self-folding,
that is, a folding operation with F = F ′, thus a rule with the same left and right-
hand side cannot be produced, which may introduce infinite loops on derivations and
destroy the correctness properties of the transformation system. These conditions
also forbid the folding of a eureka, which is meaningless as illustrated in the following
example.

Example 2.20 Consider the following two rules:

new → f (eureka)
g → f (non-eureka)

Without conditions (1) and (2), a folding of the eureka rule would be possible, ob-
taining the new rule (new → g), which is nothing more than a redefinition of the
symbol new. Since transformation rules aim to optimize the original program with
the support of eurekas, a folding over a eureka is meaningless or even dangerous.

Finally, conditions (3) and (4) ensure the sort compatibility of both the applied sub-
stitutions and the term that is inserted into the folded equation/rule right-hand side.

When presenting the definition introduction operation, we said that eurekas have
to be confluent in order to ensure the completeness of the fold operation. We now
discuss this point by means of an example.

Example 2.21 Consider the following rewrite theory

2.3. Transforming Rewrite Theories 33

R = (ΣR, ∅, R), where ΣR is the signature containing all the symbols of R and

1.
2.
3.
4.
5.
6.
7.
8.

R :
f(a, b) → g(a, b)

f(x, y) → g(x, y)
m(a) → a
m(a) → b
m(b) → a

g(a, x) → a
g(b, x) → b

R′ :

f(a,b) → g(m(a),b)
f(x, y) → g(x, y)
m(a) → a
m(a) → b
m(b) → a

g(a, x) → a
g(b, x) → b

We get program R′ = (ΣR, ∅, R′) from R by applying a fold step to rule 1 using the
eureka rule 4. It is easy to see that in R′ we can reduce term f(a, b) to the normal
forms a or b, while in R we can reach only the normal form a. The point is that
in R, term f(a, b) can reduce only to g(a, b) while the fold operation introduces the
possibility of rewriting to g(b, b) cause the eureka defining m is not confluent. This
leads to a new solution b, thus missing the completeness.

Abstraction. The set of rules presented so far constitutes the core of our transfor-
mation system; however let us mention another useful rule, called abstraction, which
can be simulated in our settings by applying appropriate definition introduction and
folding steps. This rule is usually required to implement tupling, and it consists of
replacing, by a new function, multiple occurrences of the same expression e in the
right-hand side of an equation/rule. For instance, consider the following equation

double sum(x, y) = sum(sum(x, y), sum(x, y))

where e = sum(x, y). The equation can be transformed into the following pair of
equations

double sum(x, y) = ds aux(sum(x, y))
ds aux(z) = sum(z, z)

These equations are generated from the original one by a definition introduction of
the eureka ds aux and then by folding the original equation by means of the newly
generated eureka.

Note that the abstraction rule applies on equations or rules which are not right-
linear, since the same expression e occurs more than once in their rhs. Since we ask
for rules to be right-linear for the completeness of the narrowing relation, we may
think to use the abstraction rule to preprocess rewrite rules in order to try to make
them right-linear.

2.3.1 Correctness of the transformation system

Theorem 2.22 states the main theoretical result for the transformation system based
on the elementary rules introduced so far: definition introduction, definition elimina-
tion, unfolding, folding, and abstraction. The result is strong correctness of a trans-
formation sequence, i.e., the semantics of the ground reducts gred() is preserved
modulo the equational theory as stated by Theorem 2.22.

34 2. Program Transformation for Software Certification

Theorem 2.22 Let (R0, . . . ,Rk), k > 0, be a transformation sequence. Then,
gnf(E0) =B gnf(Ek), and for all t ∈ TΣ0 , if (t, s) ∈ gred(R0) then there exist
s1, s2 such that (t, s1) ∈ gred(Rk), (s, s2) ∈ gred(R0) and s1 =E0 s2. Viceversa, for
all t ∈ TΣ0 , if (t, s) ∈ gred(Rk) then there exist s1, s2 such that (t, s1) ∈ gred(R0),
(s, s2) ∈ gred(Rk) and s1 =E0 s2.

The following example demonstrates that the theorem above cannot be lifted to the
non-ground semantics of reducts.

Example 2.23 Consider the theory R = (ΣR, ∅, R) where

1.
2.
3.
4.
5.

R :
f(0) → 0

f(s(x)) → s(x)
g(x) → f(x)

R′ :
f(0) → 0

f(s(x)) → s(x)

g(0) → 0
g(s(x)) → s(x)

We get the rewrite theory R′ = (ΣR, ∅, R′) from R by applying an unfolding step
over rule 3 in R, through the following narrowing steps: (i) g(x) ;x/0 0, and (ii)
g(x) ;x/s(x′) s(x′). Then, consider the non-ground term g(x). In R, we have a
(one step) derivation from term g(x) to the normal form f(x), whereas in R′ there
is no derivation starting from term g(x). So, the reduct f(x) is not preserved by the
transformation.
The same example also shows that not even a more restricted non-ground seman-
tics, such as the non-ground normal form semantics, is preserved. Nevertheless, in
the reachability context of rewrite theories where confluence or termination are not
required, this semantics is neither reasonable nor useful.

In order to prove Theorem 2.22 we need the following auxiliary propositions and
lemmas. Let us introduce the key ideas for the proof. We first show that the trans-
formation rules presented above preserve the required properties of a rewrite theory.
Then we introduce the notion of virtual transformation sequence. The main idea be-
hind this notion is to consider that the last program in a transformation sequence can
always be obtained (in an ordered way) by anticipating all the definition introduction
steps at the beginning of the sequence and by delaying all the definition elimination
steps at the end of the same sequence. Note that is always possible since no folding is
allowed after a definition elimination. Thus, we assume that no transformation step
changes the signature of the program, i.e., the same set of (new and old) function
symbols is fixed throughout. Lemmas 2.26 and 2.27 prove that equational and rule
folding preserve the canonical forms of the equational theory and the ground normal
forms of the rewrite theory, respectively. Then, Lemma 2.29 combines the results
obtained for the folding and unfolding operations and proves the statement of Theo-
rem 2.22 for one transformation step using folding or unfolding. Theorem 2.30 prove
the correctness of a virtual transformation sequence and the correctness of the entire
transformation sequence follows strait forwardly.

2.3. Transforming Rewrite Theories 35

Proposition 2.24 Let R be a rewrite theory, and let R′ be the rewrite theory that is
obtained from R by means of the application of one transformation rule selected from
introduction, elimination, fold or unfold. Then R′ satisfies all the required restric-
tions.

Proof 2.3.1 It is easy to verify that all the conditions enforced over rewrite theories
are preserved by the transformation rules. Since the set of equational axioms B is
not changed by transformation rules, condition over B are always preserved. The
conditions over coherence and consistence are assured by the preprocessing of the
rewrite theories and the constraints over the sets of defined symbols as explained in
Section 2.4. Right linearity of equations and rules is preserved since the eurekas have
to be linear and the fold operation inserts in the right hand-side a linear instance
of the eureka left hand-side. The sort decreasing property is also preserved by fold
(by conditions (3) and (4) over the fold operation) and unfold (by the narrowing
correctness). The sufficient completeness is preserved by unfold thanks to narrowing
completeness.

Definition 2.25 Given a transformation sequence of the form (R0, . . . ,Rk), we de-
fine a virtual transformation sequence (R′0, . . . ,R′n) as a transformation sequence
satisfying the following:

(1) R′0 = R0∪Rnew, where Rnew contains all the eureka equations and rules intro-
duced in (R0, . . . ,Rk).

(2) The sequence (R′0, . . . ,R′n) is constructed by applying only the rules: unfolding,
folding, and abstraction3, in the same order as in the original transformation
sequence.

(3) If some definition has been eliminated in (R0, . . . ,Rk), then by simply eliminat-
ing the same definitions in R′n we obtain exactly Rk .

The following lemma proves that equational folding preserves the canonical forms.

Lemma 2.26 Let R = (Σ,∆ ∪ B,R) be a rewrite theory, and let R′ = (Σ,∆′ ∪
B,R) be the rewrite theory obtained from R by folding an equation E ∈ ∆. Then,
gnf(∆) =B gnf(∆′).

Proof 2.3.2 Let E be an equation of the form (l = r) while the eureka Ee, used to
fold equation E, be of the form (le = re). From the definition of the fold operation
it follows that r|p =B reσ for some position p ∈ OΣ(r) and the result of the folding
operation of E by Ee is the equation Ef : (l = r[leσ]p). Finally, ∆′ = ∆−{E}∪{Ef}.

⇒ We want to prove that, given any ground term t, if t→!
∆,B s, then t→!

∆′,B s′,
and s =B s′. We will prove it by induction on the length of the rewriting

3In practice, only folding and unfolding rules are considered, since abstraction is recast in terms
of definition introduction and folding.

36 2. Program Transformation for Software Certification

sequence in ∆.
(n = 0.) This case is immediate since t =B s.
(n > 0.) Let us decompose the rewriting sequence from t to s as follows: t →
t1 →! s. On the rewriting sequence from t1 to s, we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites
to t1 without using equation E, the same step can be performed in ∆′ and the
claim holds. Otherwise, if equation E is used for the first step, it means that
(i) t|p′ =B lσ1, and (ii) t1 = t[rσ1]p′ . Then, considering term t and equation
Ef , we note that, by (i), it is possible in ∆′ a rewriting step from t using Ef ,
thus obtaining term t2 = t[r[leσ]pσ1]p′ . Propagating substitution σ1 we obtain
t2 = t[rσ1[leσσ1]p]p′ . Since term le is embedded in t2, a rewriting step using Ee
is also possible and we obtain t3 = t[rσ1[reσσ1]p]p′ . Since r|p =B reσ, we have
that t3 =B t[rσ1[r|pσ1]p]p′ = t[rσ1]p′ = t1, which completes the proof.

⇐ We want to prove that, given any ground term t, if t →!
∆′,B s′, then t →!

∆,B s
and s =B s′. We will prove it by induction on the length of the rewriting
sequence in ∆′.
(n = 0.) This case is immediate since t =B s′.
(n > 0.) Let us decompose the rewriting sequence from t to s′ as follows: t →
t1 →! s′. If t rewrites to t1 without using equation Ef , the same step can
be performed in ∆ and, by applying the induction hypothesis on the rewriting
sequence from t1 to s′, the claim holds. Otherwise, if equation Ef is used for
the first step, note that term t1 will embed an instance of the left-hand side (le)
of equation Ee. If the following rewrite step from t1 in ∆′ uses the equation Ee,
we can show how the considered rewrite steps t→Ef

t1 →Ee
t2 can be simulated

in ∆ by only one rewrite step from t using equation E. While, if the rewrite
step form t1 does not use equation Ee, since ∆′ is confluent modulo B, we can
consider a different rewrite sequence from t to s′ where Ee is used to rewrite t1,
and then use the induction on the length of this new rewrite sequence.
So, let us consider that Ee is used to rewrite t1 in t2 in the rewire sequence
to s′. Then, if t1 = t[r[leσ]pσ1]p′ , t2 will be the term t[r[reσ]pσ1]p′ . Applying
equation E to term t we will obtain term t3 = t[rσ1]p′ . Since r|p =B reσ we
have that t3 =B t[r[reσ]pσ1]p′ = t2. The application of the induction hypothesis
on the rewrite sequence from t2 to s′ completes the proof.

The following Lemma is auxiliary and proves that the rule folding preserves the
semantics of ground normal forms.

Lemma 2.27 R = (Σ,∆∪B,R) be a rewrite theory, and let R′ = (Σ,∆′∪B,R) be the
rewrite theory obtained from R by folding a rule R. Then, gred(R) =∆∪B gred(R′).

Proof 2.3.3 Let R be a rule of the form (l → r) while the eureka Re, used to fold
rule R, be of the form (le → re). From the definition of the fold operation it follows
that r|p =∆∪B reσ for some position p ∈ OΣ(r) and the result of the folding operation
of R by Re is the rule Rf : (l→ r[leσ]p). Finally, R′ = R− {R} ∪ {Rf}.

2.3. Transforming Rewrite Theories 37

⇒ We want to prove that, given any ground term t, if t→!
R s, then t→!

R′ s
′ and

s =∆∪B s′. We will prove it by induction on the length of the rewriting sequence
in R.
(n = 0.) This case is immediate since t =∆∪B s.
(n > 0.) Let us decompose the rewriting sequence from t to s as follows: t →
t1 →! s. On the rewriting sequence from t1 to s,we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites to
t1 without using rule R, the same step can be performed in R′ and the claim
holds. Otherwise, if rule R is used for the first step, it means that (i) t|p′ =B lσ1,
and (ii) t1 =∆∪B t[rσ1]p′ . Then, considering term t and rule Rf , we note that,
by (i), it is possible in R′ a rewriting step from t using Rf , thus obtaining a
term t2 =∆∪B t[r[leσ]pσ1]p′ . Propagating substitution σ1 we obtain t2 =∆∪B
t[rσ1[leσσ1]p]p′ . Since term le is embedded in t2, a rewriting step using Re is
also possible and we obtain t3 =∆∪B t[rσ1[reσσ1]p]p′ . Since r|p =∆∪B reσ, we
have that t3 =∆∪B t[rσ1[r|pσ1]p]p′ = t[rσ1]p′ =∆∪B t1, which completes the
proof.

⇐ We want to prove that, given any ground term t, if t→!
R′ s

′, then t→!
R s and

s =∆∪B s′. We will prove it by induction on the length of the rewriting sequence
in R′.
(n = 0.) This case is immediate since t =∆∪B s′.
(n > 0.) Let us decompose the rewriting sequence form t to s′ as follows: t →
t1 →! s′. On the rewriting sequence from t1 to s, we can apply the induction
hypothesis, and we now concentrate on the first rewriting step. If t rewrites to
t1 without using rule Rf , the same step can be performed in R and the claim
holds. Otherwise, if rule Rf is used for the first step, term t1 will embed a redex
(leσ)ρ. More formally, t1 = t[r[leσ]pρ]p′ . Note that for the required properties
on the rules defining an eureka, Re is the only rule applicable to reduce the
considered redex, and the eureka symbol can not appear anywhere else, so the
incompleteness problems we had with the unfolding operation, cannot occur in
this case. The proof follows in a quite similar (but simplified) way to the first part
of Proof 2.2.5 using a procedure to reorder a fragment of the rewrite sequence
from t1 to s′. The procedure is shown in Figure 2.2. Let p∗ be the absolute
position of redex (leσ)ρ in t1.

The reorde2 procedure is very similar to the reorder procedure of Figure 2.1, but
with some simplifications. Let us explain the seven different cases of the reorder2
function. Case (1) consider the reduction of redex (leσ)ρ by an application of
rule Re. In this case, the procedure terminates, returning the reordered sequence
ns, (Rf , p′), (Re, p∗), vs, ts. In case (3) a rule that is different from Rf is used
to reduce a redex in the substitution σρ. Note that for the restriction imposed
on the left-hand side on an eureka defining rule, there cannot be a redex at
a position that is deeper than p∗, rooted with a symbol of le. Since the redex
belongs to the substitution, this rewrite step is possible before the application of
rule Rf at a position q′, which is the antecedent of q. Hence, the rewrite step
(R′, q′) is moved at the end of the ns list and the procedure follows with the rest

38 2. Program Transformation for Software Certification

reorderSeq((Rf , p′) : seq) = let (s1, s2) = reorder2((Rf , p′), [], [], seq)
in merge(s1, s2)

reorder2((Rf , p′), ns, vs, (R′, q) : ts) =
case q of :
q = p∗, then return ([ns, (Rf , p′), (Re, p∗)], [vs, ts]) (2.9)
q /∈ OΣ(le) > p∗ and R′ = Rf , then let (ns1, ts1) =
reorder2((Rf , q), [], [], ts) in reorder2((Rf , p′), [ns, ns1], vs, ts1) (2.10)

q /∈ OΣ(le) > p∗, then reorder2((Rf , p′), [ns, (R′, q′)], vs, ts) (2.11)
q � p∗ and q ≯ p∗, then reorder2((Rf , p′), ns, [vs, (R′, q)], ts) (2.12)
q < p∗ and (leσ)ρ does not appear in the resulting term,
then return ([(R′, q)], [vs, ts]) (2.13)
q < p∗ and R = Rf , then let (ns1, ts1) = reorder2((Rf , p′), ns, vs, ts)

in reorder2((Rf , q), [ns, ns1], vs, ts1) (2.14)
q < p∗, then reorder2((Rf , p′), [ns, (R′, q)], vs, ts) (2.15)

where q′ = antecedent of q

Figure 2.2: Rewrite sequence reordering procedure 2.

of the sequence. Case (7) is analogous because a rule that is different from Rf is
used to reduce a redex that contains the redex (leσ)ρ in the substitution, without
erasing it. This rewrite step can also be moved before the application of rule
Rf , and, hence, it is put at the end of the ns list. Note that in this case, the
antecedent of q is q itself because q < p∗. Case (4) considers a rule that reduces
a redex whose root is not in (leσ)ρ nor in a path from p∗ to the term root. This
is the case of a skippable rewrite step that is moved at the end of the vs list.
Case (5) considers a rewrite step where the reduced redex contains term (leσ)ρ
in the substitution but erases it from the term (i.e., the variable that matches
the subterm containing (leσ)ρ does not occur in the rhs of the rule). This rule
application makes all the rewrite steps stored in ns, and the one using Rf ,
useless, so they can be deleted from the sequence, and the procedure terminates,
returning the step (R′, q), the skipped steps, and the rest of the sequence. Cases
(2) and (6) consider a rewrite step where the same rule Rf is used to reduce a
redex that is inside σρ or that contains the subterm (leσ)ρ. The basic idea is that
when another application of Rf is found, we first terminate the reordering w.r.t.
the deeper application of Rf and then we recursively call the reorder2 function
to reorder the sequence w.r.t. the Rf application that is not as deep. In fact, in
case (2), we suspend the reordering procedure w.r.t. the considered application of
rule Rf , and we recursively call the function to reorder a fragment of the rewrite
sequence w.r.t. the deeper Rf application. When the recursive call terminates,

2.3. Transforming Rewrite Theories 39

we resume the previous call putting the computed list ns1 at the end of the list
ns and following with the computed rest of the sequence ts1.Case (6) does the
reverse, by terminating the current reordering and then recursively calling the
function w.r.t. the Rf application that is not as deep.
Termination. Since we consider programs to be sufficiently complete and the
considered rewrite sequence ends with the normal form s′, the redex (leσ)ρ has
to be reduced before reaching s′ by using either rule Re as considered in case
(1), or a rule that makes it disappear as considered in case (5). In both cases
the reorder2 procedure terminates.
Correctness. We want to show that all the rewrite steps contained in list s1

(which is then merged with the rest of the sequence s2 in function reorderSeq)
can be trivially simulated in R. List s1 is the first component of the pair of lists
returned by the reorder2 function. Considering the termination cases, the first
component can contain either the step (R′, q) (case (5)) where R′ is different
from Rf , or the list ns, (Rf , p′), (Re, p∗) (case (1)). When we apply a rule that
is different from Rf it can be trivially simulated in R by applying the same rule.
Moreover, we can show that the subsequent application of rules Rf and Re can
be simulated in R by an application of rule R. Hence, the correctness holds.
Reduction of the sequence. It is easy to see that s1 is never empty and the
rest of the sequence s2 is strictly shorter that the sequence from t1 to s′. Hence,
we can use the inductive hypothesis on s2.

Now we can show how the rewrite steps t →Rf∪∆,B t1 →Re∪∆,B t2 can be
simulated in R by only one rewrite step from t using rule R, and this will
conclude the proof.

If t1 =∆∪B t[r[leσ]pρ]p′ , and t2 =∆∪B t[r[reσ]pρ]p′ , by applying rule R to term
t we obtain term t3 =∆∪B t[rρ]p′ . Since r|p =∆∪B reσ we have that t3 =∆∪B
t[r[reσ]pρ]p′ =∆∪B t2.

Lemma 2.28 Let (R0, . . . ,Rk), k > 0, be a virtual transformation sequence. Then,
gnf(E0) =B gnf(Ek), and gnf(R0) =E0 gnf(Rk).

Proof 2.3.4 The proof follows immediately from Lemma 2.26 and Theorem 2.11, and
Lemma 2.27 and Theorem 2.12, since, at each of the first i-th transformation steps
(0 ≤ i ≤ k) a fold or unfold operation is performed over the equations, and at each of
the following k − i transformation steps, a fold or unfold operation is performed over
rules.

Lemma 2.29 Let R,R′ be two rewrite theories such that R′ is obtained from R by
a fold or unfold operation over a rule R. Then, for all t ∈ TΣ, if (t, s) ∈ gred(R)
then there exist s1, s2 such that (t, s1) ∈ gred(R′), (s, s2) ∈ gred(R) and s1 =E s2.
Viceversa, for all t ∈ TΣ, if (t, s) ∈ gred(R′) then there exist s1, s2 such that (t, s1) ∈
gred(R), (s, s2) ∈ gred(R′) and s1 =E s2.

Proof 2.3.5 We will prove it by induction on the length of the rewrite sequence from
t to s in R.

40 2. Program Transformation for Software Certification

(⇒) (n=0) This case is trivial since (t, t) ∈ gred(R) and obviously (t, t) ∈ gred(R′).
(n > 0) Let us decompose the rewriting sequence form t to s as follows: t →
t1 →∗ s. On the rewriting sequence from t1 to s, we can apply the induction
hypothesis, thus obtaining terms s1, s2 such that (t1, s1) ∈ gred(R′), (s, s2) ∈
gred(R) and s1 =E s2. Since R is weakly normalizing, there exists a term
s3 in normal form such that (s2, s3) ∈ gred(R). Therefore, we have a rewrite
sequence from t to a normal form s3 (i.e., t→ t1 →∗ s→∗ s2 →∗ s3), and from
Lemma 2.27 and Theorem 2.12, there exists term s4 in normal form such that
(t, s4) ∈ gred(R′) and s3 =E s4, and the proof is done.

(⇐) It is analogous to the previous direction.

Theorem 2.30 Let (R0, . . . ,Rk), k > 0 be a virtual transformation sequence. Then,
gnf(E0) =B gnf(Ek), and for all t ∈ TΣ0 , if (t, s) ∈ gred(R0) then there exist s1,
s2 such that (t, s1) ∈ gred(Rk), (s, s2) ∈ gred(R0) and s1 =E0 s2. Viceversa, for
all t ∈ TΣ0 , if (t, s) ∈ gred(Rk) then there exist s1, s2 such that (t, s1) ∈ gred(R0),
(s, s2) ∈ gred(Rk) and s1 =E0 s2.

Proof 2.3.6 In order to prove the property we just need to show that we can extend
the property of Lemma 2.29 to three rewrite theories and hence it will hold for a
generic k > 0.
Consider the rewrite theories R0,R1,R2. From Lemma 2.28 we have that gnf(E0) =B

gnf(E1) =B gnf(E2), and gnf(R0) =E0 gnf(R1) =E0 gnf(R2). By Lemma 2.29 we
have that for all t ∈ TΣ0 , if (t, s) ∈ gred(R0) then there exist s1, s2 such that (t, s1) ∈
gred(R1), (s, s2) ∈ gred(R0), and s1 =E0 s2. For the weak normalization there exists
a term s3 in normal form such that (s2, s3) ∈ gred(R0) and then, there also exists
term s4 in normal form such that (s1, s4) ∈ gred(R1) and s3 =E0 s4. Since we have
a derivation form t to normal form s4 in R1, there exists s5 in normal form such that
(t, s5) ∈ gred(R2) and s4 =E0 s5. Summing up we have that (t, s) ∈ gred(R0) and
there exists s5, s4 such that (t, s5) ∈ gred(R2) and (s, s4) ∈ gred(R0).

Finally, since each transformation sequence can be transformed into an equivalent
virtual transformation sequence (following Definition 2.25) which produces the same
output program, the proof of Theorem 2.22 comes directly from Theorem 2.30.

2.4 Coherence and Consistence

We propose here a method to guarantee the coherence of →∆,B with B and the E-
consistence of→R,B with B when the associativity (A) and commutativity (C) axioms
are declared for a defined symbol. The procedure consists of adding some extension
variables to each equation or rule having in the left-hand side a topmost symbol which
is declared with AC, thus obtaining a new set of generalized rules.

For instance, suppose we declare the operator + to be associative and commuta-
tive. Consider now a rule r : x + x → 0, and a term t : a + (a + b). Then →r,B is

2.5. Securing Transfer of Code 41

not AC-coherent since there is no matching between term t and the left-hand side of
r, whereas the AC-equivalent term t′ : (a+ a) + b matches the left-hand side of r by
means of substitution {x/a}. In order to make →r,B AC-coherent we need to add
the extension variable y thus producing the following set of rules:

x+ x→ 0
x+ x+ y → 0 + y.

Now, given any term t with topmost symbol +, t admits a rewriting step with one of
these rules iff for each term t′ which is AC-equivalent to t, t′ admits a rewriting step
too.

In Maude, this generalization does not have to be performed explicitly as a trans-
formation of the specification, because it is achieved implicitly in a built-in, automated
way.

For what concern the→R,B E-consistence with→∆,B , we want to show how this is
guaranteed by the disjointness of the sets of defined symbols D1 and D2 (see Chapter
1) and the fact that symbols in D1 can not appear in the lhs of rewrite rules. Consider
a rewrite theory and (i) a rewrite step t1 →R,B t2 that applies a rule R : l → r and
(ii) t1 →∗∆,B t3. From (i) it follows that there exist substitution θ and position p such
that t1|p =B lθ and t2 =∆,B t1[rθ]p. Since symbols in D1 can nor appear in l, all
possible steps using ∆, B from t1 cannot modify the structure of l embedded in t1,
which will then appear unmodified in t3. Therefore, after the ∆, B reduction steps,
there would exists substitution ρ =∆,B θ such that t3|p =B lρ. This implies that it is
possible a rewrite step t3 →R,B t4 such that t4 =∆∪B t2.

2.5 Securing Transfer of Code

Among the many different solutions that have been proposed to tackle the problem
of secure the transfer of code from a code producer to a code consumer, we adhere to
Code Carrying Theory (CCT) [157, 158] —a program synthesis framework stemming
from a pioneering work of Manna and Waldinger [115] in which a theorem proving
approach is taken to synthesize correct code from theorems and proofs induced by user
specifications. As opposed to more traditional certification approaches such as Proof–
Carrying Code [131], where both the code and the certificate are transmitted from the
code producer to the code consumer, in CCT only a certificate is transmitted in the
form of a theory (a set of axioms and theorems) together with a set of proofs of the
theorems; no code needs to be explicitly transmitted. The code consumer would admit
new axioms from the code producer only if the associated proofs actually do prove
the theorems. If this checking succeeds, then the code consumer can apply a code
extractor to the set of function-defining axioms to obtain the executable code. The
form of the function-defining axioms is such that it is easy to extract executable code
from them. By using the proposed system of Fold/Unfold transformations, which can
be applied to a wide class of programs automatically, our CCT methodology greatly
reduces the burden on the code producer.

42 2. Program Transformation for Software Certification

The key idea behind our CCT methodology is as follows. Assuming the code con-
sumer provides the requirements in the form of a rewrite theory, the code producer
can (semi-) automatically obtain an efficient implementation of the specified functions
by applying a sequence of transformation rules. Moreover, having proved the correct-
ness of the transformation system, the code producer can transmit as the required
certificate just a compact representation of the sequence of transformation rules to
the consumer so he does not need to manually construct any other correctness proof.
By applying the transformation rules to the initial requirements, the code consumer
can inexpensively obtain the executable code that can be eventually compiled to a
different target language if needed.

In [157, 158], an implementation of CCT has been presented using ATHENA
[16, 17], which is a tool that provides a language for both ordinary computation
and for logical deduction. To the best of our knowledge, no other implementation
of CCT has been proposed in the related literature. The system presented in [158]
requires manually defining a set of axioms, which are the basis for providing an efficient
implementation of the specified functions; then, a proof of the correctness conditions
required by the consumer is manually constructed using the previously defined axioms.

In this section, we explain how the transformation system presented so far can
be employed to implement our CCT approach. The CCT methodology consists of
several steps, which are illustrated in Figure 2.5, and summarized below.

(1) Defining Requirements (Code Consumer). The code consumer provides the
requirements to the code producer in the form of a rewrite theory, specifying
the functions of interest with a näıve, non-optimized, even redundant piece of
code. The rewrite theory can be written in Maude [59], a high-level specification
language that implements rewriting logic [117].

(2) Defining New Functions (Code Producer). The code producer has to gener-
ate an efficient implementation of the specified functions and a proof that such
an implementation satisfies the required specifications. To this aim, the code
producer uses the fold/unfold-based transformation system presented in Section
2.3 to (semi-)automatically obtain an efficient implementation of the specified
functions. Moreover, some specific strategies such as composition and tupling
can be easily automated (see [11] for more details). Subsequently, rather than
sending the efficient functions as actual code to the consumer, the producer will
send only a certificate consisting of a compact representation of the transforma-
tion rule sequence employed to derive the program. The strong correctness of
the transformation system ensures that the obtained program is correct w.r.t.
the initial consumer specifications, so the code producer does not need to pro-
vide extra proofs.

(3) Code Extraction (Code Consumer). Assuming the transformation infrastruc-
ture is publicly available, once the certificate is received, the code consumer
can apply the transformation sequence, described in the certificate, to the re-
quirements, and the final program can be obtained without the need of other
auxiliary software for the code extraction.

2.5. Securing Transfer of Code 43

Fold/Unfold
Transformation

C
O
D
E

C
O
N
S
U
M
E
R

Requirement
Definition

(Rewrite Theory)

Requirement
Definition

(Rewrite Theory)

C
O
D
E

P
R
O
D
U
C
E
R

Optimized
Code

Optimized
Code

Fold/Unfold
Transformation

Certificate

Code Synthesis

Figure 2.3: Code Carrying Theory Architecture Diagram

Definition 2.32 formalizes the notion of certificate for a transformation sequence.
In order to build a certificate, we need a way to describe a transformation rule, which
is achieved by a transformation rule description.

Definition 2.31 We associate a transformation rule description with each transfor-
mation rule, as follows:

• Definition Introduction Description:
Intro(Operator Declaration, Equation Set)
Intro(Operator Declaration, Rule Set)

• Elimination Description:
Elim(List of function symbols)

• Unfolding Description:
Unfold(Unfolded equation id, Unfold position)
Unfold(Unfolded rule id, Unfold position)

• Folding Description:
Fold(Folding equation id, Folded equation id, Fold position)
Fold(Folding rule id, Folded rule id, Fold position)

Note that rules and equations are referenced by an identification label which can be
systematically generated and assigned to each rule/equation. We assume that the

44 2. Program Transformation for Software Certification

identification label for equations (resp. rewrite rules) is of the form En (resp. Rn),
where n is a progressive number. More specifically, when a transformation rule is
applied to a given rewrite theory and a new equation (resp. rule) is produced, a fresh
identification label En (resp. Rn), is created and associated with the corresponding
rule/equation.

It is also worth noting that rule/equation descriptions can precisely identify terms
to be folded/unfolded by using the standard notation for term positions.

Definition 2.32 (Certificate) Let (R0, . . . ,Rk), k > 0, be a transformation se-
quence. The certificate associated with the transformation sequence (R0, . . . ,Rk) is
the ordered list of transformation rule descriptions (d1, . . . , dk) associated with the
transformation rules r1, . . . , rk s.t. ∀i ∈ {1, . . . , k}, ri is the transformation rule
applied to Ri−1 to obtain Ri.

Let us show some selected examples to illustrate this.

Example 2.33 Let us now consider a simple specification of the Fibonacci function
which uses the usual Peano notation to represent natural numbers. The specification
is modeled by means of the following näıve equational theory.

op fib : Nat -> Nat .
(E1) eq fib(0) = S(0) .
(E2) eq fib(S(0)) = S(0) .
(E3) eq fib(S(S(n))) = fib(S(n)) + fib(n) .

Due to the highly recursive nature of this definition of fib, the evaluation of an
expression like fib(S^50(0)) will compute many calls to the same instances of the
function again and again, and it will expand the original term into a whole binary
tree of additions before collapsing it to a number. The exponential number of repeated
function calls makes the evaluation of fib with the above rule very inefficient. Let
us transform the previous Fibonacci definition into a more efficient one by using the
tupling strategy.
(1) First, we introduce the following eureka which makes use of the Pair data structure

sort Pair .
op 〈 , 〉 : Nat Nat -> Pair .
op aux : Nat -> Pair .

(E4) eq aux(n) = 〈fib(S(n)),fib(n)〉 .

(2) We now unfold the redex fib(S(n)) of equation (E4).

(E5) eq aux(0) = 〈S(0),fib(0)〉 .
(E6) eq aux(S(n)) = 〈fib(S(n)) + fib(n),fib(S(n))〉 .

We unfold once again equation (E5) in order to remove the call to fib.

(E7) eq aux(0) =〈S(0),S(0)〉 .

2.5. Securing Transfer of Code 45

(3) Then, abstraction is applied to equations (E3) and (E6) by means of two new
eurekas

op aux2 : Pair -> Nat .
op aux3 : Pair -> Pair .

(E8) eq aux2(〈x,y〉) = x+y .
(E9) eq aux3(〈x,y〉) = 〈x+y,x〉 .

The second step for the abstraction is the folding of equations (E3) and (E6) by means
of eurekas (E8) and (E9) respectively.

(E10) eq fib(S(S(n))) = aux2(〈fib(S(n)),fib(n)〉) .
(E11) eq aux(S(n)) = aux3(〈fib(S(n)),fib(n)〉) .

(4) Finally, the right-hand sides of both equations are folded using the original defi-
nition of function aux

(E12) eq fib(S(S(n))) = aux2(aux(n)) .
(E13) eq aux(S(n)) = aux3(aux(n)) .

The transformed (linear) definition of the equational theory for fib is as follows.

(E1) eq fib(0) = S(0) .
(E2) eq fib(S(0)) = S(0) .
(E12) eq fib(S(S(n))) = aux2(aux(n)) .
(E7) eq aux(0) = 〈S(0),S(0)〉 .
(E13) eq aux(S(n)) = aux3(aux(n)) .
(E8) eq aux2(〈x,y〉) = x+y .
(E9) eq aux3(〈x,y〉) = 〈x+y,x〉 .

The resulting certificate C is as follows.

C = (Intro((op aux : Nat -> Pair.),
(eq aux(n) = 〈fib(S(n)), fib(n)〉.)), Unfold(E4, [1]),
Unfold(E5, [2]), Intro((op aux2 : Pair -> Nat.),
(eq aux2(〈x, y〉) = x + y.)),
Intro((op aux3 : Pair -> Pair.),
(eq aux3(〈x, y〉) = 〈x + y, x〉)), Fold(E8, E3, Λ),
Fold(E9, E6, Λ), Fold(E4, E10, [1]), Fold(E4, E11, [1])).

Example 2.34 Suppose the code consumer needs a function for computing the sum
of the Fibonacci values of the natural numbers in a list. The type of the list of natural
numbers is predefined in Maude. The consumer specification is a rewrite theory which
consists of the equational theory of Example 2.33 defining the Fibonacci function along
with the following set of rules.

op sum-list : NatList -> Nat .
(R1) rl sum-list(nil)⇒ 0 .
(R2) rl sum-list(x xs)⇒ fib(x) + sum-list(xs) .

46 2. Program Transformation for Software Certification

The equational theory defining the Fibonacci function can be optimized as shown in
Example 2.33. The above rules defining the sum-list function can be transformed in
a more efficient tail-recursive structure by using our fold/unfold framework as follows.
(1) We first introduce the following definition

op sum-list-aux : NatList Nat -> Nat .
(R3) rl sum-list-aux(xs,x)⇒ x + sum-list(xs) .

(2) By applying the unfold operation over the eureka (R3), we obtain the following
new rules

(R4) rl sum-list-aux(nil,x)⇒ x .
(R5) rl sum-list-aux(y ys,x)⇒ x+fib(y)+sum-list(ys) .

(3) Now, by folding rule (R2) and (R5) using the eureka (R3), we obtain the final
tail-recursive program.

(R1) rl sum-list(nil)⇒ 0 .
(R6) rl sum-list(x xs)⇒ sum-list-aux(xs,fib(x)) .
(R4) rl sum-list-aux(nil,x)⇒ x .
(R7) rl sum-list-aux(x xs,y)⇒

sum-list-aux(xs,(fib(x) + y)) .

The certificate C is then as follows.

C = (Intro((op sum-list-aux : NatList Nat -> Nat.),
(rl sum-list-aux(xs, x)⇒ x + sum-list(xs).)),
Unfold(R3, [1.2]), Fold(R3, R5, Λ), Fold(R3, R2, Λ)).

By applying now the certificate to the initial specification, the code consumer can
efficiently obtain the required efficient implementation.

2.6 Implementation

We implemented the transformation framework presented in Section 2.3 in a prototyp-
ical system, which consists of about 500 lines of code, written in Maude. Basically, our
system allows us to perform the elementary transformation rules over a given initial
program. The prototype, named Meta-Maudest, is directly accessible through a Web
service available at [31]. Alternatively, a stand-alone application can be freely down-
loaded from http://users.dimi.uniud.it/∼michele.baggi/cct/. A snapshot of
the online Web service is shown in Figure 2.6. The interface allows one to load and
execute some predefined examples or load and transform user-defined programs. The
transformation sequence appears adjacent to the loaded program and the result of
each transformation rule is shown in the textarea below.

In order to implement the transformation rules, we made use of a useful Maude
property called reflection. Rewriting logic is reflective in a precise mathematical way.

2.6. Implementation 47

In other words, there is a finitely presented rewrite theory U that is universal in the
sense that we can represent in U any finitely presented rewrite theory R (including U
itself) as a meta-term R, any term t, t′ in R as meta-terms t, t′, and any pair (R, t)
as a meta-term 〈R, t〉, in such a way that we have the following equivalence: t→ t′ in
R iff 〈R, t〉 → 〈R, t′〉 in U . Thanks to Maude reflection, our program transformation
methodology has been easily implemented by manipulating the meta-term represen-
tations of rules and equations. In practice, transformation rules presented in Section
2.3 have been implemented as rewrite rules that work and manipulate the meta-term
representation of the rewrite theories we want to transform. On the other hand, by
virtue of our reflective design, our rewrite theory for program transformation is also
available to the level of the CCT infrastructure, which allows us to reuse it in a clear
and principled way.
Since the unfolding operation uses narrowing, we employed the META-E-NARROWING
module, which is part of the Full Maude distribution [152]. The narrowing imple-
mented in Maude is called narrowing with simplification because it combines the nar-
rowing relation with rewriting to normal form (represented by →!) . The combined
relation (;σ,R,∆∪B ;→!

∆∪B) is defined as t ;σ,R,∆∪B ;→!
∆∪B t′′ iff t ;σ,R,∆∪B t′,

t′ →∗∆∪B t′′, and t′′ is a normal form. For further details, please refer to [58].

Figure 2.4: Snapshot of the transformation system interface written in Maude.

48 2. Program Transformation for Software Certification

3
Access Control Policy

Specification

The widespread use of web-based applications provides an easy way to share and
exchange data as well as resources over the Internet. In this context, controlling the
user’s ability to exercise access privileges on distributed information is a crucial issue,
which requires adequate security and privacy support. In recent years, there has
been considerable attention to distributed access control, which has rapidly led to the
development of several domain specific languages for the specification of access control
policies in such heterogeneous environments: among those, it is worth mentioning the
standard XML frameworks XACML [125] and WS-Policy [161].

Term rewriting has been proved successful in formalizing access control to complex
systems. For instance, [34] demonstrates that term rewriting is an adequate formal-
ism to model Access Control Lists as well as Role-based Access Control (RBAC)
policies. Moreover, it shows how properties of the rewrite relation can enforce policy
correctness properties. Also issues regarding policy composition have been investi-
gated within the term rewriting setting. For example, [39] formalizes a higher-order
rewrite theory in which access control policies are combined together by means of
higher-order operators; then, modularity properties of the theory are used to derive
the correctness of the global policy. An alternative methodology for policy composi-
tion is presented in [78]: in this approach, composition is achieved by using rewriting
strategies that combine rewrite rules specifying individual policies in a consistent,
global policy specification.

In the semantic web, resources are annotated with machine-understandable meta-
data which can be exploited by intelligent agents to infer semantic information regard-
ing the resources under examination. Therefore, in this context, application’s security
aspects should depend on the semantic nature of the entities into play (e.g. resources,
subjects). In particular, it would be desirable to be able to specify access control
requirements about resources and subjects in terms of the rich metadata describing
them.

In recent years, some efforts have been made towards the integration of semantic-
aware data into access control languages. For instance, [65] presents an extension of
XACML supporting semantic metadata modeled as RDF statements. In [89, 70, 101]

50 3. Access Control Policy Specification

security ontologies are employed to allow parties to share a common vocabulary for
exchanging security-related information. In particular, [101] describes a decentralized
framework which allows one to reuse and combine distinct policy languages by means
of semantic web technologies. As opposed to our approach, [101] does not define an
access control language for policy specification, rather it supports the integration and
management of existing policy languages. PeerTrust [92] provides a very interesting
mechanism for gaining access to secure information on the web by using semantic
annotations, policies and automated trust negotiation.

Description logic (specifically, ALQ logic) has been used in [167] to represent and
reason about the RBAC model: basically, this approach encodes the RBAC model
into a knowledge base that is expressed by means of DL axioms, then DL formulae
are checked within the knowledge base to verify policy properties (e.g. separation of
duty). Ontologies modeled by means of DL statements have been used in [108] in
order to specify and check a very expressive subset of the XACML language. In this
approach, (a part of) XACML is first mapped to a suitable description logic, then
a DL reasoner is employed for analysis tasks such as policy comparison, verification
and querying. DL ontologies have also been used in [154] and [102] to describe policy
languages for the specification of access restrictions and obligations.

Both term rewriting and description logic provide a declarative framework in which
access control specifications can be defined in a concise and simple manner. Besides,
these formalisms are both equipped with efficient computational models. Despite they
have been extensively used in access control, there exists no attempt to combining
term rewriting and description logic in an integrated framework for access control
purposes. In this chapter, we propose a rule-based, domain specific language that
is well-suited to manage security of semantic web applications. As a matter of fact,
it allows security administrators to tightly couple access control rules with knowl-
edge bases (modeled using Description Logic (DL) [19]) that provide semantic-aware
descriptions of subjects and resources.

The operational mechanism of our language is based on a rewriting-like mechanism
that integrates DL into term rewriting [20]. Specifically, the standard rewrite relation
is equipped with reasoning capabilities which allow us to extract semantic information
from (possibly remote) knowledge bases in order to evaluate authorization requests.
In this setting, access control policies are modeled as sets of rewrite rules, called policy
rules, which may contain queries expressed in an appropriate DL language. Hence,
evaluating an authorization request —specifying the intention of a subject to gain
access to a given resource— boils down to rewriting the initial request by using the
policy rules until a decision is reached (e.g. permit, deny, notApplicable).

Since policy composition is an essential aspect of access control in collaborative
and distribute environments ([39, 78, 108, 42]), our language is also endowed with
policy assembly facilities which allow us to glue together several simpler access control
policies into a more complex one. To this respect, our language is expressive enough to
model all the XACML[125] composition algorithms as well as other conflict-resolution,
closure and delegation criteria.

Finally, it is worth noting that our formal framework is particularly suitable for the
analysis of policy’s domain properties such as cardinality constraints and separation

3.1. Policy Specification Language 51

of duty. As our rewriting mechanism combines term rewriting with description logic,
the analysis of policy specifications can fruitfully exploit both rewriting techniques
and DL reasoning capabilities.

3.1 Policy Specification Language

Let ΣD be the signature defining all the symbols of the Description Logic language
of Chapter 1, that is, DL operators, constants, reasoning service constructs, etc. A
policy signature ΣP is a signature such that ΣD ⊆ ΣP and ΣP is equipped with the
following sorts: Subject ,Action,Object , and Decision. A term t ∈ TΣP

is pure if no
DL query appears in t.

Our specification language considers a very general access control model, in which
policies authorize or prohibit subjects to perform actions over objects. We formalize
subjects, actions and objects as terms of a given term algebra which is built out of a
policy signature. More formally, given a policy signature ΣP , a subject (resp. action,
object, decision) is any pure term in TΣP

whose sort is Subject (resp. Action,Object ,
and Decision).

The policy behavior is specified by means of rules which are basically rewrite rules
whose right-hand sides may contain DL query templates used to extract information
from the knowledge bases of interest. Roughly speaking, a policy rule allows one
to define what is permitted and what is forbidden using a rewriting-like formalism.
Moreover, policy rules can also encode conflict-resolution as well as rule composition
operators which can implicitly enforce a given policy behavior (see Section 3.2).

Definition 3.1 Let ΣP be a policy signature. A policy rule is a rule of the form
λ→ γ[q1, . . . , qn] where λ ∈ TΣP

(V), γ[] is a context in TΣP∪{�}(V), and each qi ∈
TΣD

(V), i = 0, . . . , n is a DL query template such that V ar(γ[q1, . . . , qn]) ⊆ V ar(λ).

Given a policy rule r ≡ f(t1, . . . , tn)→ γ[q1, . . . , qn], f is called defined symbol for r.
Policies are specified by means of sets of policy rules which act over subjects, actions
and objects as formally stated in Definition 3.2.

Definition 3.2 Let ΣP be a policy signature. An access control policy (or simply
policy) is a triple (ΣP , P, auth), where (i) P is a set of policy rules; (ii) auth ∈ ΣP is
a defined symbol for some policy rule in P such that auth :: Subject Action Object 7→
Decision. The symbol auth is called a policy evaluator.

In general, decisions are modeled by means of the constants permit and deny, which
respectively express accessibility and denial of a given resource. Sometimes, it is
also useful to include a constant notApp to formalize policies which do not allow
to derive an explicit decision (that is, policies which are not applicable). This is
particularly convenient when composing policies (see [39, 78]). Moreover, thanks to
term representation, we can formulate decisions which convey much more information
than a simple authorization or prohibition constant. For instance, the starting time
and the duration of a given authorization can be easily encoded into a term, e.g.
permit(Starting-time,Duration) [78].

52 3. Access Control Policy Specification

auth(p(n(X), age(Z)), read, rec(n(Y)))→ (3.1)
case(DL(H, instance(X, patient)) and Z > 16 and X = Y)⇒ permit

case(DL(H, instance(X, (∃assignedTo.{Y } u guardian) t physician))⇒ permit

case(DL(H, instance(X, admin))⇒ deny

auth(p(n(X), age(Z)), write, rec(n(Y)))→ (3.2)
case(DL(K, instance(X, admin))⇒ deny

case(DL(H, instance(X, physician u ∃assignedTo.{Y })))⇒ permit

case(true : Condlist,D : Dlist)→ D (3.3)
case(false : Condlist,D : Dlist)→ case(Condlist,Dlist) (4)

Figure 3.1: An access control policy for medical record protection

The following example, which is inspired by the XACML specification in [125],
shows how to model a policy for the protection of medical records.

Example 3.3 Consider the knowledge base H of Example 1.2 modeling an healthcare
domain, and assume that and, =, > are built-in, infix boolean operators provided
with their usual meanings. Let PH be the set of policy rules of Figure 3.1. Then,
PH ≡ (ΣH , PH , auth), where ΣH is a policy signature containing all the symbols
occurring in PH , is an access control policy formalizing the following plain English
security constraints:

• A person, identified by her name, may read any medical record for which she is
the designated patient provided that she is over 16 years of age.

• A person may read any medical record for which she is the designated guardian
or if she is a physician.

• A physician may write any medical record for which she is the designated physi-
cian.

• An administrator shall not be permitted to read or write medical records.

For the sake of readability, we added some syntactic sugar to rules (1) and (2) of
PH in Figure 3.1. Specifically, the function call case(cond1 : . . . :condn, decision1 : . . .
decisionn) has been expanded as follows: case cond1 ⇒ decision1 . . . case condn ⇒
decisionn. Note that policy rules (3) and (4) of PH defining the case function enforce
a conflict resolution operator which simulates the XACML first-applicable criterion;
that is, only the first condition which is fulfilled derives a decision. Therefore, in this
scenario, a 20 year old administrator who is also a patient would be authorized to
read her medical record, although administrators are in general not allowed to read
any record.

3.2. Policy operators: Composition, Delegation,and Closure 53

3.1.1 Policy Evaluation Mechanism

From Chapter 1, we recall that eval(DL(K, r)) denotes the evaluation of the DL query
DL(K, r), that is, the result of the execution of the reasoning service r against the
knowledge base K.

Definition 3.4 Let (ΣP , P, auth) be an access control policy and t, t′ ∈ TΣP
be two

terms. Then, t d-rewrites to t′ w.r.t. P (in symbols, t →P t′) iff there exist a rule
λ→ γ[q1, . . . , qn] ∈ P , a position u ∈ OΣP

(t), and a substitution σ such that t|u ≡ λσ
and t′ ≡ t[γσ[eval(q1σ), . . . , eval(qnσ)]]u.

When P is clear from the context, we simply write → instead of →P . Transitive
(→+), and transitive and reflexive (→∗) closures of relation →, as well as the notions
of termination and confluence of → are defined in the usual way.

Definition 3.5 Let (ΣP , P, auth) be an access control policy. Let s be a subject, a be
an action, o be an object, and d be a decision in TΣP

. We say that (ΣP , P, auth) derives
the decision d w.r.t. (s, a, o) iff there exists a finite d-rewrite sequence auth(s, a, o)→+

P

d.

Example 3.6 Consider the access control policy PH of Example 3.3. Then PH de-
rives the decision permit w.r.t.
(p(n(AliceP.Liddell), age(35)), write, rec(CharlieBrown)), since
auth(p(n(AliceP.Liddell), age(35)), write, rec(CharlieBrown))→
case(false : true, deny : permit)→+ permit.

The specification language of Section 3.1 allows one to formalize arbitrary access
control policies which may be ambiguous or not completely defined, since the rewrite
relation → might be non-terminating or non-confluent. To avoid such problems, we
assume the access control policies meet the following properties:
Totality. Let P be a policy. P is total iff P derives a decision d for any triple (s, a, o),
where s is a subject, a is an action, and o is an object (that is, there exists a finite
d-rewrite sequence auth(s, a, o)→+ d, for any (s, a, o)).
Consistency. Let P be a policy. P is consistent iff P derives only one decision d for
any triple (s, a, o), where s is a subject, a is an action, and o is an object (that is, if
auth(s, a, o)→+ d1 and auth(s, a, o)→+ d2, then d1 ≡ d2).

It is worth noting that, in rewrite-based access control, it is common practice to
require policies to be total and consistent. Typically, such constraints are enforced by
imposing termination, confluence and sufficient completeness of the rewrite systems
underlying the access control requirements (e.g. [34, 39, 78]).

3.2 Policy operators: Composition, Delegation,
and Closure

Policy Composition. In distributed environments (e.g. collaborating organizations,
large companies made up of several departments, etc.) it is crucial to be able to

54 3. Access Control Policy Specification

po(d : dList)→ if d = permit then permit

else po aux(d, dList)
po aux(x, [])→ x

po aux(x, permit : xs)→ permit

po aux(x, deny : xs)→ po aux(deny, xs)
po aux(x, notApp : xs)→ po aux(x, xs)

Figure 3.2: Permit-overrides combinator

combine policies in order to protect resources from unauthorized access. Besides,
policy composition makes it possible the reuse of security components, which are
known to be well specified, to build more complex (and still safe) policies.

In our framework, policy assembling is achieved through policy rules that compose
access control policies via policy combinators. Basically, policy combinators collect
all the decisions taken by local policies and then yield a global decision following the
conflict-resolution criterion they encode.

Definition 3.7 A policy combinator is a triple (ΣC , C, comb), where ΣC is a policy
signature, C is a set of policy rules, and comb ∈ ΣC is a defined symbol for some
policy rules in C such that comb :: [Decision] 7→ Decision. The symbol comb is
called combination operator.

Roughly speaking, combination operators are applied to lists of decisions which derive
from the evaluations of local access control policies. The result of such an applica-
tion is a single decision corresponding to the evaluation of the composition of the
considered policies.

This notion of policy combinator is rather powerful, since it allows security admin-
istrators to freely define combination criteria according to their needs. Moreover, it
is not difficult to see that policy rules can capture the semantics of all the well known
combinators of the action control language XACML[125], namely, permit-overrides,
deny-overrides, first-applicable, and only-one-applicable. To this respect, Example 3.8
shows how to formalize the permit-overrides operator within our setting.

Example 3.8 The XACML permit-overrides combinator is defined as follows. Let
d1, . . . , dn be a list of decisions which corresponds to the evaluation of n access control
policies. If there exists di, for some i = 1, . . . , n, equals to permit, then, regardless of
the other decisions, the combinator returns permit. Let PO be the set of policy rules of
Figure 3.2, where if cond then exp1 else exp2 is assumed to be a built-in conditional
construct, and symbols [], : are the usual list constructors. Let ΣPO be a policy
signature containing all the symbols occurring in PO. Then, PO ≡ (ΣPO, PO, po) is
a policy combinator with combing operator po that models the behavior of the XACML
permit-overrides combination criterion.

3.2. Policy operators: Composition, Delegation,and Closure 55

Starting from (atomic) access control policies, we can assemble more complex
policies by applying several policy combinators in a hierarchical way. In other words,
access control policies play the roles of basic building blocks which are glued together
by means of policy combinators. Composition of policies is formally defined below.

Definition 3.9 Let (ΣC , C, comb) be a policy combinator, s be a subject, a be an
action, and o be an object. Then a composition of policies for (s, a, o) is a term
comb(t1, . . . , tn) where each ti, i = 1, . . . , n, is either auth(s, a, o), where auth is the
policy evaluator of an access control policy (ΣP , P, auth), or a composition of policies
for (s, a, o).

Basically, evaluating a composition of policies c for a triple (s, a, o) amounts to
executing the access control policies and the policy combinators involved in the com-
position for (s, a, o) by means of the d-rewriting mechanism; that is, we d-rewrite
c until we reach a decision. It is worth noting that we cannot simply d-rewrite c
w.r.t. the union of all the policy rules involved in the composition, since termination
and confluence of the d-rewrite relation are not modular properties. This specifi-
cally implies that the termination (resp. confluence) of local policies and combinators
does not guarantee the termination (resp. confluence) of the global composition. For
instance, it could happen that policy rules defined in distinct local policies P1 and
P2 interfere in the evaluation of the global composition producing a non-terminating
or non-confluent behavior, even if P1 and P2 are total and consistent policies. To
solve this problem, we follow a bottom-up approach which restricts the application of
policy rules in the following way: (i) any authorization request auth(s, a, o) referring
to a local policy P is evaluated using only the policy rules in P; (ii) a combination
of policies comb(t1, . . . , tm) referring to a policy combinator C is evaluated using the
policy rules in C only after the evaluation of terms t1, . . . , tm. Such restricted eval-
uation is formalized in Definition 3.10 using the following auxiliary functions. Let
P ≡ (ΣP , P, auth) be an access control policy, and C ≡ (ΣC , C, comb) be a policy
combinator, then

reduce(auth(s, a, o), P) = d iff auth(s, a, o)→+
P d

reduce(comb(d1, . . . , dn), C) = d iff comb(d1, . . . , dn)→+
C d.

where d, d1, . . . , dn are decisions.

Definition 3.10 Let (ΣC , C, comb) be a policy combinator, s be a subject, a be an
action, and o be an object. Then, a composition of policies comb(t1, . . . , tn) for (s, a, o)
derives the decision d by evaluating the following function

compute(comb(t1, . . . , tn), C) = reduce(comb(d1, . . . , dn), C)
where

di =

reduce(ti, P) if ti ≡ auth(s, a, o)

w.r.t. some (ΣP , P, auth)
compute(ti, C ′) if ti ≡ comb′(t′1, . . . , t′m)

w.r.t. some (ΣC′ , C ′, comb′)

56 3. Access Control Policy Specification

(r1) authD1(p(n(X)), read, rec(n(Z)))→
case(DL(K1, instance(X,nurseD1)) and

DL(K2, instance(Z, patientD1)))⇒ permit

case(true)⇒ deny

(r2) authD2(p(n(X)), read, rec(n(Z))))→
case(DL(K1, instance(X,nurseD2)) and

DL(K2, instance(Z, patientD2)))⇒ permit

case(true)⇒ deny

(r3) authA(p(n(X)), Y, rec(n(Y))))→
case(DL(K3, instance(X, employeeA)) and Y = read and

DL(K2, instance(Z, patientD1 t patientD2)))⇒ permit

case(X = deptChief(depA) and Y = write and
DL(K2, instance(Z, patientD1 t patientD2)))⇒ permit

case(true)⇒ deny

(r4) deptChief(Dep)→ head(DL(K3,∃isChief.{Dep}))

Figure 3.3: Policy rules of Example 3.11

Example 3.11 Consider a healthcare domain consisting of an administrative depart-
ment A, and two surgery departments D1 and D2. Each department X is modeled
as an individual depX . Suppose that nurses working in D1 (resp. D2) are only al-
lowed to read medical data of patients in D1 (resp. D2). Administrative employees
of A are allowed to read medical data of any patient, and the chief of A is allowed
to write medical data of any patient. Access control policies for D1, D2 and A might
be specified by using policy rules of Figure 3.31; specifically, they can be formalized by
D1 ≡ (ΣD1 , {r1}, authD1), D2 ≡ (ΣD2 , {r2}, authD2), and A ≡ (ΣA, {r3, r4}, authA),
respectively.

Now, suppose that Jane is a nurse working in D1 with some administrative duties
in A. If Jane wants to read some medical data about patient CharlieBrown belonging
to D2, policy A will permit it, while policy D2 will not. Since Jane needs to read
such medical data to perform her administrative duties, the permit-override policy
combinator can be used to solve the conflict. In particular, the composition of policies
po(authA(p(n(Jane)), read, rec(n(CharlieBrown))), authD2(p(n(Jane)), read,
rec(n(CharlieBrown)))) derives the decision permit.

Policy Delegation. Authorization systems quite commonly support permission
delegation (see [112, 73]), that is, an identified subject in the authorization sys-

1We assume that K1, K2, and K3 are knowledge bases modeling our distributed healthcare do-
main.

3.2. Policy operators: Composition, Delegation,and Closure 57

(r∗1) authD1(p(n(X)), Y, rec(n(Z)))→
case(DL(K1, instance(X,nurseD1)) and Y = read and

DL(K2, instance(Z, patientD1))⇒ permit

case(X = Patty and Y = write and DL(K2, instance(Z, patientD1))⇒
authA(p(n(deptChief(depA))), write, rec(n(Z)))

case(true)⇒ deny

Figure 3.4: The new authorization policy for D1 implementing a delegation.

clo(s, a, o)→ if (DL(K,∃R.{s})) = [] then NotApp

else combC(applyPol(triples(a, o,DL(K,∃R.{s}))))
applyPol([])→ []

applyPol((s, a, o) : ts)→ authP (s, a, o) : applyPol(ts)
triples(a, o, [])→ []

triples(a, o, x : xs)→ (x, a, o) : triples(a, o, xs)

Figure 3.5: Policy closure rules of Definition 3.13

tem provided with some permissions can delegate (a subset of) its permissions to
another identifiable subject (or group of subjects). In our framework, such fea-
ture can be implemented as follows. Suppose that the subject s1, whose permis-
sions are defined by the access control policy P1 ≡ (Σ1, P1, auth1), wants to del-
egate subjects in the set Sd to perform actions in the set Ad over objects in the
set Od. Permission delegation can be formalized by a policy P containing rules
of the form authP (s, a, o) → case(〈delegation constraint〉) ⇒ auth1(s1, a, o), where
delegation constraint is a condition that allows us to check whether s,a, and o belongs
to the delegation sets Sd, Ad, and Od. To avoid interferences between applications
of rules of P and P1, we assume that every authorization request auth1(s, a, o) is
evaluated using only the policy rules in P1.

Example 3.12 Consider the healthcare domain of Example 3.11. Suppose that the
chief of department A wants to delegate Patty, a nurse working in D1, to write
medical data of patients in D1. We can formalize such a delegation by replacing rule
r1 by the new rule r∗1 shown in Figure 3.4. Roughly speaking, rule r∗1 extends rule
r1 by specifying that Patty will inherit the chief authorization whenever she wants to
write medical data of patients in department D1.

Policy Closure. Policy closure operators allow one to infer decisions for a subject
s by analyzing decisions for subjects that are semantically related to s, (e.g. if an

58 3. Access Control Policy Specification

employee can read a document, then her boss will). In our framework, such operators
can be naturally encoded by exploiting semantic relations conveyed by DL roles. The
basic idea is as follows. Consider a role R connecting two subjects s, s′ by means of the
role assertion R(s, s′), and an access control policy P modeling the access privileges
for s′ w.r.t. an action a and an object o. If P derives the decision d w.r.t. (s′, a, o),
then we infer the same decision d for the subject s. This inference scheme works
fine whenever the role R models a one-to-one semantic relations (i.e. an injective
function). Indeed, when R specifies a one-to-many relation between subjects decision
conflicts may arise, since several distinct decisions might be computed for distinct
subjects s′ which are semantically related to s. In this case, a conflict-resolution
criterion is needed to infer a decision for subject s. More formally, policy closures are
defined as follows.

Definition 3.13 Let K be a knowledge base and R be a role in K,P≡(ΣP , P, authP)
be a policy and C ≡ (ΣC , C, combC) be a policy combinator. A closure of P w.r.t. R
and C, is a policy PC ≡ (ΣPC , PC, clo), where ΣPC is the policy signature, PC is the
set of policy rules of Figure 3.5, and clo ∈ PC is the policy evaluator.

Basically, evaluating clo on a triple (s, a, o) amounts to applying the policy evalua-
tor authP on the triples in the set {(s1, a, o), . . . , (sn, a, o)}, where R(s, si) holds in K
for all i ∈ {1, . . . , n}. This operation leads to a set of decisions {d1, . . . , dn}, which are
combined together according to the chosen combination operator combC . The final
result of this process is a single decision corresponding to the evaluation of the closure
of the policy P w.r.t. R and C. To avoid interferences between applications of rules
of P and C, we assume that every authorization request authP (si, a, o) is evaluated
using only the rules in P, while the combination combC(d1, . . . , dn) is evaluated using
the policy rules in C.

Example 3.14 Consider the access control policy PH specified in Example 3.3 where
only designated physicians can write patient medical records. Assume that the knowl-
edge base H also contains the role supervises, which intuitively specifies that fact that
some physician may supervise multiple (junior) physicians. Now, we would like to
formalize that physicians supervising at least one junior physician can write patient
medical records, even if they are not designated. To this end, it suffices to construct the
closure of policy PH w.r.t. the role supervises and the policy combinator po specified
in Example 3.8.

3.3 Checking Domain Properties of Access Control
Policies

In our framework, Description Logic is employed to model the domains to which a
given access control policy is applied: subjects, actions, objects, as well as relations
connecting such entities can be specified via DL knowledge bases. Therefore, the
structure of the policy domains can be naturally analyzed by means of DL reasoning
services. More specifically, the idea is to formalize properties over the domains of

3.4. Implementation 59

interest by means of policy rules. Then, the d-rewriting mechanism can be applied to
verify the specified properties.

Definition 3.15 Let ΣS be a policy signature. A domain property specification of
properties p1, . . . , pn is a triple (ΣS , S, {p1, . . . , pn}), where S is a set of policy rules,
and p1, . . . , pn are terms in TΣS

such that each pi is an instance of a lhs of some
policy rule in S.

Example 3.16 below shows that domain property specifications are expressive enough
to formulate several well known policy constraints such as separation of duty, cardi-
nality constraints, etc.

Example 3.16 Let H be the knowledge base of Example 1.2 modeling the policy do-
main of the policy specified in Example 3.3. The following properties

• sep of duty. No guardian can be a physician.

• at most 4. A physician can be assigned at most to four patients.

can be specified by the domain property specification
(ΣH, SH, {sep of duty(physician, guardian), at most(4)})
such that SH contains

sep of duty(X,Y)→ DL(H, subsumes(¬X,Y))

at most(X)→ DL(H, subsumes(⊥, (≥X+1 assignedTo
−) u physician)))

and ΣH is a policy signature including all the symbols occurring in SH.

In this context, verifying a domain property p amounts to finding a finite d-rewrite
sequence which reduces p to the boolean value true.

Theorem 3.17 Let S ≡ (ΣS , S, {p1, . . . , pn}) be a domain property specification of
properties p1, . . . , pn . Then, pi holds in S iff pi →+

S true.

The domain properties sep of duty(physician, guardian) and at most(4) of Ex-
ample 3.16 hold in SH, in fact, in the knowledge base H there is no physician who is
also guardian, and no physician is assigned to more than four patients.

3.4 Implementation

The proposed access control language has been implemented in the prototype system
Paul, which is written in the functional language Haskell, and whose source code
is freely available at [27]. The d-rewriting evaluation mechanism is built around the
Haskell’s evaluation engine which is based on lazy, higher order, term rewriting. Ba-
sically, we integrated DL reasoning capabilities into such an engine by using the DIG
interface [35], which is an XML standard for connecting applications to remote DL

60 3. Access Control Policy Specification

reasoners2. The DIG interface is capable of expressing the description logic formal-
ized within the OWL-DL [165] framework (namely, SHOJQD−n logic). Therefore,
our system fully exploits both the efficiency of Haskell and the reasoning power of
SHOJQD−n logic, providing fast evaluations of authorization requests.

To evaluate expressiveness and efficiency of our language, we tested several access
control policy specifications, which are available at Paul’s web site [27]. In particular,
the considered specifications make use of all the XACML combining operators along
with some more complex closure operator, that allows one to infer a decision d for
a given authorization request by analyzing decisions which are semantically related
to d (e.g. if an employee can read a document, then her boss will). Such semantic
relations are extracted from knowledge bases via DL queries.

The rule-based language we proposed is particularly suitable for managing security
in the semantic web, where access control information may be shared across multiple
sites and depends on the semantic descriptions of the resources to be protected. In
fact, the operational engine underlying the language (i.e. d-rewriting) allows us to
collect semantic metadata from distributed knowledge bases, and to use such data
to take decisions w.r.t. the authorization requests under examination. We have also
shown that semantic metadata can be exploited both to infer authorization decisions,
and to specify and check properties related to the considered security domain.

2In our experiments, we have used Pellet [147], an efficient, open-source DL reasoner for the
OWL-DL framework.

II
Analysis and Verification of

Distributed and Complex
Systems

4
Web Systems Filtering

Given the huge amount of date available on the Web, the problem of finding the right
information is not so trivial. Information Retrieval (IR) [116] has a high historical
importance that has received an even higher attention after the advent of the Web.
Actually, after e-mail, using a search engine is today the second activity of Web users,
and several Web users perceive a search engine (typically, Google, Yahoo! or MSN
Search) as the main access to the Web.

Since the adoption of XML [162] as a widely accepted standard for data represen-
tation and exchange has led to a rapid growth in the amount of XML data available
over the internet, we can talk of XML Information Retrieval. Nowadays, large-scale
XML repositories are constantly browsed, queried and modified by internet users,
who typically retrieve a lot of information which is not always possible to absorb in
a pleasant and/or understandable fashion. In order to tame the inherent complexity
of such a massive amount of data, a lot of decision-support systems to manage and
explore XML repositories have been developed.

Arguably, growing attention has been devoted to query and filtering languages
as means to efficiently extract all and only the relevant information from huge data
collections. As a matter of fact, information frequently appears obscure or difficult to
interpret; moreover, most of the time, just a small percentage of the whole amount of
the data received is considered interesting by the user. Therefore, query and filtering
systems represent a valid way to obtain those contents which best fit user’s needs.

The World Wide Web Consortium has defined XQuery[164] and XPath[163] as
standard languages to consult and filter information in XML documents, nonetheless
a plethora of alternative and worthwhile proposals have been developed independently,
e.g. [45, 119, 64]. Basically, they all work by exactly matching a given pattern (or
path expression) representing the information to be searched for against an XML
document. Hence, recognized pattern instances are delivered to the user.

Some programming languages supporting XML processing have also been devel-
oped, such as XCentric [62] which is a logic language, extending Prolog with a richer
form of unification and regular types, designed specifically for XML processing in logic
programming. XCentric is also employed as part of VeriFLog [61] which is a tool for
verification of web sites content and data inference. CDuce and XDuce ([36], [99])
are typed functional programming languages, based on pattern matching, designed to

64 4. Web Systems Filtering

support XML applications. Such languages can be used to consult and query XML
documents but provide basically an exact matching behavior.

Although the languages mentioned above are very advantageous in many applica-
tions, they may be of limited use when dealing with data filtering in a pure information
retrieval context, since (i) they require the user to be aware of the complete XML
document structure, (ii) results that are not fully matched are not delivered, (iii) there
is no result ranking. Therefore, in this context, a more flexible matching mechanism
which can manage the lack as well as the vagueness of the information is necessary.
Such an approximate behavior is not typically implemented in the standard query
languages, and actually only few works address this issue.

For instance, the PIX[14] system is a phrase matching system tailored to XML for
searching a given phrase in an XML document. It implements a rough approximate
matching method which basically allows to ignore some tags included in the document,
while no deletion and renaming of XML items are permitted.

The Flexible XML Search Language XXL [153] is a language designed to query
XML documents using the SQL-style (i.e. ”Select .. From .. Where ..” syntax). XXL
uses regular element path expressions and search conditions over element contents,
but its mail characteristic is the ∼ operator, which can be used for both element
comparison and approximate matching of element names. The evaluation of similarity
conditions of XXL queries is based on a hierarchical ontology for element names. The
result of an XXL query is a ranked list of XML subgraphs based on similarity.

The AQAX [148] system enables fast and accurate approximate answers to com-
plex XML queries, in order to mitigate the increased cost of query evaluation over
large semi-structured data stores. Thus, a user can obtain immediate feedback on the
query prior to its execution, or may even choose to work with the approximate result
if 100% accuracy is not required. The query server relies on the XClusters framework
in order to summarize effectively the XML data and to generate approximate query
answers. If the user desires it, the server can also retrieve the true results of the
query by forwarding to an XML database. The system supports tree-pattern queries
with the child and descendant axes, wildcards, branching path predicates, and value
predicates on numerical, string, and textual element content.

A more flexible approach is followed in ApproxXQL[145, 144], which is an approx-
imate query language which provides a more sophisticated approximate matching
mechanism. It is based on a cost-based query transformation algorithm which allows
one to rename, insert and delete XML items in order to find the best match between
a pattern and a given XML document. However, this language is still rather simple
and does not offer the full expressive power of modern query languages.

In the next sections we present a novel declarative language for approximate filter-
ing of XML documents, which allows the user to easily select the desired information
(positive filtering) as well as to remove noisy, spurious data (negative filtering) from
a given XML document. Our language is easy to use and thus can be employed
even by those users who are typically not used to express themselves using formal
methodologies, since no special expertise is required. Basically, in our approach,
XML documents and filtering queries are encoded as tree-shaped terms of a suitable
term algebra, then an approximate tree embedding algorithm is employed to execute

4.1. The Filtering Language 65

filtering queries on XML documents to recognize the information that the user wants
to select or to strike out. Our approach is inspired by ApproXQL and extends it in
several ways.

• ApproXQL allows to define only ground patterns, while our language provides
pattern variables, which can be used to extract parts of the document on which
we can perform further tests.

• We add regular expressions and built-in functions to model conditional filtering
rules with the aim of refining the approximate search engine.

• Nested filtering queries are allowed, while ApproXQL manages only flat queries.

• ApproXQL does not support negative filtering, while our language does. This
feature allows to introduce the expressive power of negation in the language. As
a matter of fact, within our framework, we can easily formulate rules to answer
queries of the form: “Which people don’t have a homepage?”

Besides, our approach improves a filtering framework presented in [33], which formal-
izes an exact tree embedding algorithm for filtering XML documents.

4.1 The Filtering Language

The filtering language we describe is a declarative, pattern-based language in which we
can specify filtering rules as (possibly conditional) patterns. A filtering rule matches
an XML document if the pattern is somehow “embedded” into the XML document
and fulfills the desired relationships and conditions. Basically, a filtering rule can be
formalized by means of the following syntax:

{count} <filterop> <pat> in <XML doc> where <cond> (<mode>)

which informally says that

1. a pattern pat is searched in a document XML doc;

2. only detected instances of pat which satisfy the given condition cond are ei-
ther extracted (positive filtering) or removed (negative filtering) from XML doc
according to the value of the filtering mode mode. A filtering mode is a label
belonging to the set {P,N}. Positive filtering rules are identified by means of the
filtering mode P, while the negative one are denoted by N. Whenever a filtering
rule does not specify a filtering mode, it has to be considered a positive filtering
rule.

3. count is an optional operator which allows to count the number of pattern
instances detected in the given XML document.

66 4. Web Systems Filtering

Moreover, several filtering operators filterop have been formulated to support
approximate as well as exact matching mechanisms. Finally, note that, when no
condition is specified, the where part of a filtering rule can be omitted.

In the remainder of this section, we present the syntax of each component of a
filtering rule providing a brief explanation of the basic constructs of the language.
Filtering operators. We provide four filtering operators which can model both
exact and approximative filtering w.r.t. a universal as well as existential semantics.

• filterOneBest is an operator that allows one to search for the best approximate
match between a given pattern and an XML document. Approximate matching
has to be intended modulo renaming, insertion and deletion of pattern items.
More precisely, when no exact match is found, either some tag items of the filter-
ing pattern may be renamed or new elements may be inserted/removed in order
to find an approximate match. Any insertion/deletion/renaming operation has
a fixed cost. filterOneBest returns the match with lower cost.

Informally speaking, given a pattern, we try to generate a result for every po-
sition in the document where there is a tag that matches the pattern root.
filterOneBest then selects the position referring to the document subpart
that better matches the pattern. When there is more than one best approxi-
mate match, the operator will only deliver the first one it discovered.

• Since there might be several matches with the same cost deriving from the
application of distinct sequences of insertion, deletion and renaming operations,
the filterAllBest operator returns all the best approximate matches found,
i.e. all the matches of minimum cost.

• filterOneExact is an operator that exactly matches a specified pattern against
an XML document. In case that more than one exact match is detected, this
operator will only deliver the first one it discovered.

“Exactly” means that the labels and the structure of the pattern are preserved
and precisely recognized inside the XML document. In other words, no renam-
ing, insertion and deletion of pattern items are allowed to “adapt” the pattern
to the given document.

• filterAllExact returns all the exact matches found.

Patterns. Patterns of filtering rules are used to describe the information we want to
detect inside a given XML document. A pattern is built by composing the following
syntactical elements.

• Variables (we assume to have a countable infinite set of variables {X,Y,...}).

• Text selectors, that is strings of plain text surrounded by single quotes (e.g.
’Dear friend’). Text selectors will be matched against the textual part of the
XML document.

4.1. The Filtering Language 67

• Tag selectors represent XML tags and are denoted by strings of characters (e.g.
author, book,. . .). Tag selectors can be followed by the occurrence operator
[i], where i∈ N ∪ {last}. Given a sequence of terms (i.e., XML documents)
all rooted by a tag t, t[i] selects the i-th term. The keyword last is used to
select the last element of the sequence.

Example 4.1 Consider the XML document

<books>
<book>’The Lord of the Rings’</book>
<book>’The Wizard of Oz’</book>

</books>

Then,

books(book[2](X))

is a pattern selecting the piece of XML <books><book>’The Wizard of Oz’
</book></books> (as a side effect the matching mechanism will bind variable
X to ’The Wizard of Oz’).

Moreover, tag selectors can be used together with the synonymity operator “$”,
which enables the flexible matching of tag selectors. More precisely, given a
tag selector t, $t allows to match t against any synonym of t which has been
defined by the user. Synonyms of tag t can be seen as alternative items w.r.t.
t, that can be employed in an approximate search.

• The containment operator is represented by brackets “()” and it is used in com-
bination with tag selectors and boolean operators to define boolean-connected
structured patterns. Given a tag selector t and pat1, . . . , patn patterns, the
following syntactical expressions are legal patterns:

– t(pat1, . . . , patn). The comma “,” separator represents the logical con-
junctive operator and allows to build conjunctions of patterns. For in-
stance, the pattern book(title(X),author(Y)) searches for all the books
containing both a title X and an author Y.

– t(pat1| . . . |patn). The “|” separator allows to model boolean disjunctions
of patterns. For example, book(title(X) | author(Y)) selects all the
book instances containing a title X or an author Y.

– t(pat1? . . .?patn). The separator “?” formalizes the boolean xor operator.
One may use this operator to obtain the evidence of the existence of exactly
one of the patterns in the list.

Operators “,” , “|” and “?” are called inner boolean operators. Note that
brackets “()” are also used to specify precedence in boolean-connected patterns
as shown in the following example:

pubs(report(author(X),year(’2007’))|article(author(Y),year(’2007’)))

68 4. Web Systems Filtering

• Several patterns can be connected together at the root level by means of the
outer boolean operators (“and”, “or”, “xor”). Given patterns pat1, . . . , patn,
the syntactical expression op(pat1, . . . , patn), where op ∈ {and, or, xor} is still
a legal pattern.

Although, outer and inner boolean operators behave very similarly, there is
a subtle difference between them. Roughly speaking, when an inner boolean
operator is used, it always refers to a parent node explicitly. For example, in
the pattern h(f(X),g(Y)), the parent node of operator “,” is the tag selector
h, so the patterns f(X) and g(Y) are somehow connected to the parent node
h. When an outer operator is used, the parent node is not specified, and the
boolean-connected patterns are executed independently.

XML documents and nested filtering rules. Filtering rules work on XML doc-
uments. There are three ways to supply an XML document to a filtering rule:

• directly giving the XML code.
For instance, filterOneBest a(X) in <a>b.

• giving the name of a file containing the XML data. In this case, the keyword
file must precede the file name to be loaded. For instance,

filterOneExact a(X) in file ’test.xml’.

• The execution of a filtering rule generates an XML document. Thus, the out-
come of a filtering rule may be employed to feed another filtering rule. Or,
equivalently, the result of an inner rule becomes the source document for an
outer rule. Our language supports nested filtering rules with an arbitrary level
of nesting. As an example, consider

filterOneBest a(X) in
(filterAllBest b(a(X),c())

in file ’test.xml’ where X match [fg]*)

Conditions. The condition is an optional part of the filtering rule, which can be
employed to further refine the search of a given pattern inside an XML document.
Formally, a condition is a sequence c1, c2, . . . , cn, where each ci can be

• a membership test of the form X match RegExp, where X is a variable occurring
in the pattern and RegExp is a regular expression1. If the variable X is bound
to a complex XML subtree (not just a textual node), we build up a string s
concatenating the labels of all the textual nodes in the subtree, traversing it
from left to right, and we subsequently check whether s belongs to the language
denoted by the considered regular expression RegExp.

1Regular languages are represented by means of the usual Unix-like regular expressions syntax
[132].

4.1. The Filtering Language 69

• an equation s=t, where s and t are terms built over a set of primitive operators
and the set of variables occurring in the pattern. Note that terms may be non
linear, that is, they may contain multiple occurrences of the same variable.
Our language supports a number of built-in operators to deal with strings and
numbers (arithmetic operators, string concatenation, equality over numbers and
strings, etc.).

Counting the results. By executing a filtering rule on an XML document doc, we
generate a new XML document containing one or more instances of a given pattern
that are embedded into doc. However, we might be interested only in the number
of embeddings found (e.g. we want to know the number of books written by an
author). To model this feature, our language is equipped with the counting operator
count which takes a filtering rule f and a maximum cost c as arguments. The result
of applying the count operator to f and c is the number of embeddings found by
executing f whose cost does not exceed the value c.
Some examples. The following examples formalize, within our framework, three
queries (namely, query Q3, query Q5, and query Q17) of the XMark benchmark set
[51], which is typically used to evaluate XML filtering and query languages. More
precisely,

Q3: Return the IDs of all open auctions whose current increase is at least twice as
high as the initial increase.

filterAllExact id(Z) in
(filterAllBest $site($open_auctions(open_auction(id(Z),

bidder[1](increase(X)),
bidder[last](increase(Y)))))

in file ’auction.xml’ where 2*X <= Y (P))

Q5: How many sold items cost more than 40?

count 0 (filterAllExact price(X) in
(filterAllBest site($closed_auctions(closed_auction(price(X))))

in file ’auction.xml’ where X >= 40 (P)))

Q17: Which people don’t have a homepage?

filterAllExact site(people(person(name(X)))) in (
filterAllBest site(people(person(name(X),homepage(Y))))
in file ’auction.xml’(N))

Note that we introduced some occurrences of the “$” operator to explicity allow the
flexible matching of some tag selectors.

70 4. Web Systems Filtering

4.2 Filtering is a Tree Embedding Problem

Filtering can be treated as a matching problem over trees. In fact, filtering rule
patterns and XML document can be straightforwardly encoded into tree-shaped terms
of a suitable term algebra. Note that XML tag attributes can be encoded into common
tagged elements and hence translated in the same way (for further information, see
[9]).

On the one hand, a pattern can be interpreted as a tree in the following way:

• each variable and text selector is mapped to a leaf node;

• each tag selector and boolean operator is mapped to an inner node;

• the containment operator is interpreted as the standard tree parent-child rela-
tion.

The tree representing the pattern is called pattern tree. Figure 4.1(a) illustrates the
tree encoding of the pattern h(f(’a’,X)|g(Y?m(’b’))).

On the other hand, XML documents are provided with a tree-like structure in
which plain text elements are mapped to leaf nodes, while tag elements define the in-
ner structure of the tree. Note that XML tag attributes can be considered as common
tagged elements, and hence translated in the same way. Precisely, the following piece
of XML <tag att1="val1" ... attn="valn"> ... </tag> can be first translated
into <tag><att1>val1</att1>...<attn>valn</attn>...</tag>, and next encoded
into a tree as described above. The tree representing the XML document is also called
data tree.

By interpreting patterns and documents as trees, executing a filtering rule boils
down to finding one (or all) the matches (i.e., embeddings) of a given pattern tree into
a data tree. The recognized subtrees are then either selected or removed from the data
tree according to the filtering mode of the rule. Therefore, our filtering mechanism is
inspired by and slightly modifies the unordered path inclusion problem[105]. Roughly

Figure 4.1: Tree encodings of a filtering rule pattern.

4.3. An Approximate Tree Matching Algorithm 71

speaking, the unordered path inclusion of a tree T1 in a tree T2 is defined as an
injective function from T1 to T2 that preserves labels of the nodes and parent-child
relationships (i.e. the structure), but not the order of the siblings. Equivalently, it
can be considered as a particular instance of the Kruskal’s embedding relation[40].
We think that ignoring the order of siblings is favorable or even necessary for filtering
XML data, because the ordering of the XML items may not be known to the user.

Following [145], our methodology discards the injectivity property, which is re-
quired in the path inclusion problem. Although this can imply a possible loss of
precision of the computed results, the efficiency of the matching method is greatly
improved, since the computed non-injective embeddings encompasses several injective
embeddings at the same time. Moreover, while the unordered path inclusion problem
typically searches for exact answers (in a sense that the labels and the structure of
the pattern tree are precisely embedded in the data tree), our goal is to find a match
even when no exact instances of the pattern tree can be recognized inside the data
tree.

To find such approximate results, we use pattern transformations, which minimally
modify the original pattern tree and adapt it to the data tree with the aim of finding
the best match which now might be not precise.

A pattern transformation consists of a sequence of basic transformations. Each
basic transformation has a cost which is represented by a natural number. The total
cost of a sequence of basic transformations is assigned to the matching result of the
transformed pattern tree against the data tree and used to rank the result by increas-
ing cost. We consider the following three types of basic pattern transformations.

Renaming. A label l of a pattern tree inner node can be renamed with a new label l′

provided that l′ is a synonym of l. The synonymity relation might be explicitly
provided by the user or automatically computed by querying a knowledge base.
Renaming is enabled only for tag selectors to which the synonymity operator
“$” is applied.

Deletion. A pattern tree node (corresponding to either a tag selector or a text se-
lector) can be deleted, whenever it is not the pattern tree root.

Insertion. A new tree node (corresponding to a tag selector) can be inserted into the
pattern tree. However, it is not allowed to add a new root or new leaf nodes. In
particular, leaf nodes cannot be inserted, because they represent user-dependent
data which cannot be automatically inferred by the algorithm.

The costs associated with these basic pattern transformations will be denoted re-
spectively as renaming/deletion/insertion cost. In the next section, we describe a
pattern-transformation algorithm which implements the strategy mentioned above.

4.3 An Approximate Tree Matching Algorithm

We start describing a basic procedure for approximate tree matching for ground pat-
terns. Next, we will add all the other components of a filtering rule (variables, condi-

72 4. Web Systems Filtering

tions,. . .). The core algorithm is a slightly modified version of the one proposed by
Schlieder in [144] which not only finds a single best match, but also allows to find all
the best matches of a pattern tree w.r.t. a data tree.

From a theoretical point of view, to evaluate a pattern tree P against a data tree
D, we can follow these steps:

1 Derive from P, every pattern tree P ′ which is obtained by applying a sequence of
basic transformations to P (i.e. we compute the pattern transformation closure
w.r.t. the basic transformations) and compute the corresponding total cost cP′ .

2 Find all the exact matches of P ′ against D, for each P ′ .

3 Group the matches found into embedding sets, where an embedding set is a set
of matches which refer to the same subtree of the data tree.

4 From each embedding set, choose either one match or all the matches with lower
cost cP′ according to the filtering operator applied.

5 Rank the selected matches according to their costs.

Obviously, the brute-force generation of the pattern transformation closure is not
feasible, since it would lead to an infinite set of transformed patterns. Nonetheless, in
the following, we will show a possible way to solve the problem, which exploits smart
representations of data and pattern trees. Basically, all possible node deletions will
be encoded in a single pattern tree, while renamings and insertions will be encoded
into an index modeling the data tree.

4.3.1 Data Tree Encoding

As shown in Section 4.2, an XML document can be represented by means of a data
tree in which leaf nodes represent plain text items and inner nodes represent XML
tags. In the following, given a node u of a data tree D the position (or preorder
number) of u in D is a natural number n ≥ 1 assigned to u by a preorder traversal of
D. The position of the root node is 1.

In order to construct an approximate match of a pattern tree w.r.t. a data tree,
some nodes may need to be inserted into the pattern tree or simply renamed. To avoid
the explicit insertions of nodes into a pattern tree, we use a special encoding of the data
tree which measures the insertion distance between two nodes in a data tree. Formally,
given two nodes u and v of a data tree D such that u is an ancestor of v, the insertion
distance between u and v is the sum of the insertion costs of all nodes along the path
from u to v (excluding u and v). Moreover, information regarding label renaming
of pattern tree nodes is formalized by providing an extensional representation of the
synonymity relation (i.e. any node label is decorated with the list of its possible
synonyms) along with the associated renaming cost.

The encoding is based on an indexing technique that is inspired by the partial index
data structure which has been originally introduced in [145] and then successfully
employed in the language ApproXQL[144]. The data structure is as follows.

4.3. An Approximate Tree Matching Algorithm 73

Given a data tree D, for each node u appearing in D, we define a posting as a
tuple containing the following information:

• pre(u) is the position of u in D;

• dist(u) is the sum of the insertion costs of all ancestors of u in D, which is
computed by means of the insertion distance;

• bound(u) is the position of the rightmost leaf of the subtree of D rooted at u;

• rencost(u) represents the renaming cost of the pattern tree node that matches
u,

• embcost(u) stores the cost of embedding a pattern subtree into the subtree of
D rooted at u. The value is zero if u is the match of a pattern tree leaf.

• embtree(u) stores the pattern subtree embedded into the subtree of D rooted
at u whose cost is embcost(u).

The first three fields are computed when building the data tree of the considered XML
document and they are not influenced by the execution of the matching algorithm.
On the other hand, the last three fields are computed by the matching algorithm and
may change during its execution.

We now define a data tree index 2 which contains an entry for each label occurring
in D. An entry for a label l contains

• a list of all postings referring to nodes in D with label l. Such a list of postings
is sorted by ascending preorder numbers.

• a pair containing a list of all synonyms of label l and the associated renaming
cost;

Figure 4.2 illustrates the data tree Dbook and the corresponding data tree index for a
piece of XML. For the sake of readability, we omitted the postings regarding the leaf
nodes of Dbook. Moreover, we assumed an insertion cost equal to 2 and a renaming
cost equal to 6.

Typically, it is preferable to preserving information rather than removing it.
Therefore, in order to tune up our filtering system, we considered the following rules
of thumb:

• the deletion cost should be two or three times greater than the insertion cost to
allow up to two or three insertion operations before preferring to delete a node;

• the renaming cost should be smaller than the deletion cost.

2For the sake of efficiency, the implementation indeed uses two indexes to encode the data tree:
the former to store the leaf nodes of the data tree (i.e. the plain text elements) and the latter to
store the inner nodes (i.e. the XML tags).

74 4. Web Systems Filtering

 <book>
 <title>
 Manual de zoología fantástica
 </title>
 <authorlist>
 <author>J.L. Borges </author>
 <author>M. Guerrero </author>
 </authorlist>
 <year>1957</year>
 </book>

book

title

author author

year

'Manual de
zoología

fantástica'
'J.L.

Borges'
'M.

Guerrero'

1957

book : [(1,0,10,_,_,_)],([volume,tome,publication],6)
year : [(9,2,10,_,_,_)],([calendar year,fiscal year],6)
authorlist: [(4,2,8,_,_,_)],([],6)
author : [(5,4,6,_,_,_),(7,4,8,_,_)],([poet,novelist],6)
title : [(2,2,3,_,_,_)],([heading],6)
...

author
list

Data Tree Index

1

2 4

5

6

3 7

8

79

10

Figure 4.2: Data tree and data tree index for an XML document

4.3.2 Expanded Pattern Tree

The expanded representation of a pattern tree allows one to explicitly encode all
possible node deletions of a pattern tree node. More precisely, all permitted deletions
of inner pattern tree nodes are represented by transforming the original pattern tree
in the following way.

Every inner pattern tree node (except the root) w which represents a tag selector
or a “,” operator (i.e. boolean conjunction)3 is replaced by a fresh binary “|”-labelled
node wor. The left child of wor refers to w, while the right child represents the fact
that the pattern tree node is removed from the pattern tree. Basically, the fresh
“|”-labelled (i.e. boolean disjunction) nodes inserted play the role of choice points in
which the algorithm is called to decide whether to delete a node. Figure 4.1(b) shows
the expanded version of the pattern tree depicted in Figure 4.1(a). Observe that we
do not have to directly manage leaf deletions, which are hardcoded in the algorithm.
Since leaves cannot be renamed, whenever a leaf node n of a pattern tree does not
match any leaf node of the data tree, the pattern tree is automatically transformed
by deleting n. Besides, the corresponding deletion cost is computed.

Now for every node w of the expanded pattern tree, we define a function delcost(w)

3Actually, in our system, we implemented an equivalent, optimized version of the pattern tree
expansion which only replaces tag selector nodes, while boolean conjunctive nodes are implicitly
managed by the pattern matching mechanism.

4.3. An Approximate Tree Matching Algorithm 75

which computes the total cost of deleting the node w and all its inner descendants.
The returned value is greater than zero only for those right children of “|”-labelled
node representing the deletion of an inner node.

In the following, sometimes an expanded pattern tree is simply called pattern tree.

4.3.3 Evaluating an unconditional, positive, ground filtering
rule

For the sake of simplicity, we first describe how the methodology works on an uncon-
ditional, positive, ground filtering rule, and then we will describe how to implement
the other language features. Basically, the problem amounts to finding one or all
best approximate matches (i.e. also called embeddings) of a ground pattern against
an XML document. We assume to have already generated both the expanded pattern
tree P and the data tree index D representing the data tree.

The evaluation algorithm is based on the dynamic programming principle. The
embedding cost of a subtree of the expanded pattern tree P rooted at a node w is
calculated from

(i) the embedding costs of the subtrees rooted at the children of w;

(ii) the insertion distance between the match of w and the matches of the children
of w.

All matches of pattern tree node labels against data tree node labels are stored in
posting lists. To find the best approximate embedding of P in D, the algorithm uses
operations on postings. Two types of operations are needed.

1. Given a posting list of potential ancestors and a posting list of potential descen-
dants, the algorithm must find all ancestor-descendant pairs with the smallest
embedding cost (vertical axis). Such an operation can be performed basically
using some information stored in the posting list. Given a posting list S, by
Sp, we denote the p-th posting of S. Moreover, S[i,j] represents the sublist of S
containing the postings from position i to position j. If U is a posting repre-
senting a potential ancestor node u and R is a posting list including n potential
descendants of u, recalling that the postings are ordered by preorder numbers,
all the n descendants v1, . . . , vn of the node u must reside in the interval R[j,j+n]

of the posting list R, since pre(u) < pre(vi) ∧ bound(u) ≥ pre(vi). When no
deletions are allowed, the smallest embedding cost of u w.r.t. the descendants
in R is thus calculated using the following formula

embcost(u) = min{embcost(Rk) + dist(Rk) | j ≤ k < j + n}− (4.1)
dist(u) + rencost(u) + cins

4

where cins is the insertion cost of a node. Whenever we also allow deletions,
the smallest embedding cost become the minimum between delcost(u) and the
value computed by the formula (4.1).

4Given a data tree node v, which is represented by the posting Rk, embcost(Rk) (resp., dist(Rk))
stands for embcost(v) (resp., dist(v)).

76 4. Web Systems Filtering

2. Given two posting lists that represent the embeddings of two distinct children
of a pattern tree node w, the algorithm must find all pairs that belong to the
same data node (horizontal axis).

In this case, if w is connected to its children through a boolean conjunction, then
the sum of the embedding costs must be calculated, whereas w is connected to
its children via a boolean disjunction (i.e. “|” or “?” operator), then we must
select the embedding with the cheapest cost.

When evaluating a ground filtering rule, the algorithm visits the pattern tree
nodes in depth-first order. During the traversal, it fetches from the data tree index
the posting lists belonging to the labels of the visited nodes. Arrived at the leftmost
leaf, it joins the posting belonging to this leaf with the posting belonging to the parent
node (vertical axis) and then proceeds the visit. If a node u has two or more children,
then the cheapest combination of matches belonging to u’s children is chosen and
stored in the posting list generated for u (horizontal axis).

The posting lists returned by the algorithm contains the postings representing the
transformed pattern that best matches the data tree along with the embedding cost.

4.3.4 Evaluating a generic filtering rule

As shown in Section 4.1, a filtering rule is a quite complex object which may contain
non ground patterns and filtering conditions. Moreover, according to the filtering
operator and the filtering mode chosen, it can be employed for approximate/exact
matching and to implement positive as well as negative filtering. In the following, we
briefly discuss how to adapt the algorithm presented in the previous section to cope
with such features.
Nonground patterns and filtering conditions. Patterns may contain variables.
Therefore, substitutions that bind such variables to subparts of the data tree must be
computed during the matching process to find the desired embeddings.

We extend the matching algorithm to deal with variables in the following way.
Given a nonground pattern tree P, we consider the pattern P ′ which is obtained
from P by removing all the variables in P. For each node labelled with a variable
we removed, we record its position into a list. Since P ′ is ground, we can apply
the previous tree matching algorithm to find the embeddings of P ′ into the data
tree. Moreover, as we saved the positions of the variables appearing in P, we can
compute the embedding substitutions by analyzing the matched subtrees in the data
tree and hence selecting those parts which correspond to the variable positions. It can
happen that a variable cannot be bound to a subtree, e.g. the algorithm computes
an embedding for P ′ which requires some node deletions involving an ancestor of a
variable node. In this case, such an embedding is simply discarded.

By using this approach, we can thus produce all the possible embedding substitu-
tions for a nonground pattern P by simply analyzing all the embeddings of P ′ in the
data tree. We can then apply such substitutions to filtering conditions to generate
instantiated conditions and subsequently check their satisfiability.

4.4. A Lazy Implementation: an Experimental Evaluation 77

Approximate and Exact Filtering. The algorithm we described is mainly used
for approximate filtering. Nevertheless it can be employed for exact matching. We
just have to look for matches with a null embedding cost, since no insertion, deletion,
or renaming of nodes is allowed in this case. Therefore, to optimize the search one
can think to ignore the basic pattern transformations. Unfortunately, the insertions
are implicitly defined in the matching algorithm, and hence we cannot avoid them.
However, deletions and renamings can be disabled in the following way: (i) to avoid
deletion of nodes, we simply use the original pattern tree instead of using its expanded
representation; (ii) to avoid renaming of nodes, the synonymity relation encoded in
the data tree index is ignored.
Positive and Negative Filtering. As shown in Section 4.1, our language defines
syntax constructs for negative filtering which incorporate the expressive power of
negation into our formalism. To enforce such a behaviour, we just execute the negative
filtering rule as it was a positive one. We then remove all the embeddings found from
the data tree returning the desired filtered outcome. In order to exactly remove all
and only the desired information, we allow only to “filter out” exact matches. In
other words, any negative filtering is always an exact filtering.

Since negative filtering needs a positive filtering execution along with an entire
data tree traversal for removing the embeddings found, it follows that the implemen-
tation of negative filtering is less efficient than the implementation of positive filtering
(see Section 4.4 for further details).

4.4 A Lazy Implementation: an Experimental Eval-
uation

The proposed filtering language has been implemented in the Phil system, which is
freely available at http://www.dimi.uniud.it/demis/phil.html. The implemen-
tation has been written in the lazy functional language Haskell with the aim of show-
ing how laziness can be particularly fruitful in developing such kind of applications.
Lazy functional (and functional logic) languages allow one to somehow “minimize”
the amount of information needed to be processed in order to evaluate expressions.

As we have seen in Section 4.3, our methodology employes a quite sophisticated
data structure whose whole generation may be very time-expensive. Therefore, ex-
ploiting laziness in this context amounts to saying that only the portion of the data
tree index which is strictly necessary to evaluate a filtering rule is generated with a
consequent gain in the overall system performance. Our claim is supported by the
following experiment. We have evaluated a given filtering rule on XML documents of
increasing sizes in two distinct ways.

1. We have forced the whole data tree index generation before executing the rule.

2. We have just “lazily” executed the given filtering rule letting Haskell to produce
the (portion of) the data structure which is needed to process the rule.

78 4. Web Systems Filtering

Document Ex. time: Ex. time:
size (Kb) case 1 (s) case 2 (s)

208 2.459 0.930
560 13.227 3.001

1136 49.212 7,492

Figure 4.3: Experiments with laziness

The results of our experiment are depicted in Figure 4.3 and clearly show how lazi-
ness speeds up the query evaluation by automatically avoiding the construction of
unnecessary data structure (e.g. for a of 1Mb XML document, the evaluation of the
filtering rule in Case 2 is ∼7 times faster than the rule evaluation of Case 1).
Qualitative and Quantitative Analysis. In order to evaluate the usefulness of
our approach in a realistic scenario, we have benchmarked our system by using the
XMark benchmark suite [51]. The suite offers a set of 20 queries, each of which is
intended to challenge a particular primitive of the filtering engine, along with the
XML documents generator xmlgen which can be used to produce the synthetic data
on which running the experiments. By means of our formalism, we are able to express
17 queries out of 20. The remaining three queries cannot be formalized, since they
involve document transformation and computational capabilities which are out of
the scope of a simple filtering language, e.g. lexicographic ordering (query n. 19),
currency conversion (query n. 18), and output formatting (query n. 10).

From a purely quantitative point of view, we tested the system on a Macbook Intel
Core 2 Duo 2Ghz equipped with 2Gb of RAM memory. We defined four filtering rules
encompassing all the language features. Specifically, rule Q1 models a positive nested
filtering rule with regular expressions, rule Q2 is a positive nested filtering rule which
includes applications of the occurrence operator and arithmetic tests, rule Q3 employs

4.4. A Lazy Implementation: an Experimental Evaluation 79

Document Ex. time Ex. time Ex. time Ex. time
size (Kb) Q1 (s) Q2 (s) Q3 (s) Q4 (s)

208 0.985 1.267 1.101 2.183
560 3.046 3.941 3.158 6.812

1136 7.781 8.428 6.647 15.196
3424 43.053 35.248 26.674 65.821
5640 105.358 77.766 54.801 146.839

Figure 4.4: Experimental evaluation of the Phil System

80 4. Web Systems Filtering

the counting operator, and finally rule Q4 is an example of negative filtering. All the
considered rules contain one or more occurrences of the synonymity operator.

Figure 4.4 shows the results obtained by executing the four filtering rules to five
different, randomly generated XML documents which have been synthesized by xmlgen
data generator. We tuned the generator in order to yield XML documents whose
size ranges from 208Kb to almost 6Mb. Execution times of each filtering rule are
computed as the average of three filtering rule’s runs. The preliminary results are quite
encouraging even on experiments that exceed the toy size: all the rules are evaluated
in less than three minutes on a repository whose size is almost 6Mb. Moreover, it is
a matter of few seconds obtaining an answer on a 1Mb XML document. Finally, note
that negative filtering behaves worse than positive filtering. This is mainly due to the
fact that, in the current implementation, negative filtering has to traverse the entire
data tree (which may easily consist of more than 100000 nodes) in order to get rid
of the detected patterns. Therefore, when dealing with large XML documents, the
overhead due to the data tree traversal might be considerably high.

4.5 Semantic Filtering via DL Reasoning

Up to now we have presented a declarative pattern-based language for XML filtering,
which is endowed with an approximate pattern matching mechanism. Phil provides
an efficient, cost-based query transformation algorithm which allows to automatically
rename, insert and delete XML items in order to find the best match between a
pattern and a given XML document. Although our approach provides a great degree
of flexibility in filtering operations, it offers no support for semantic filtering. In fact,
XML data can be equipped with a semantics formalized by a given knowledge base
which enriches data with meanings and properties.

Therefore, it would be interesting to exploit such knowledge base information to
refine the filtering mechanism. In other words, one may be interested in extract-
ing data from an XML repository by querying a knowledge base to which the data
are related. As an example, assume that an XML database containing information
regarding dishes and wines is given along with a knowledge base specifying wine prop-
erties (color, flavor,. . .). One may want to select all the dishes which are best served
with red, structured wines from the database by querying both the database and the
given knowledge base and combining their outcomes.

Combining XML query languages with ontologies is a crucial issue for the growth
of the Semantic Web. In the last years, many approaches have been followed with the
final aim of integrating description logic frameworks into XML query languages. The
work more closely related to ours is DIGXcerpt [79], which presents an extension for
ontology reasoning built on top of the well-known XML query language Xcerpt [45].
Although DIGXcerpt contains a lot of powerful constructs to search and manipulate
XML data, it only allows to perform exact query matching, while our methodology
is able to perform a more flexible matching which ranks the query results w.r.t. their
similarity cost.

[5] describes a logical framework in which XQuery programs are enriched with

4.6. The Extended Filtering Language 81

metadata modeled by using the W3C’s Resource Description Framework (RDF) [166].
Basically, metadata are retrieved from RDF documents and then integrated into
XQuery queries. This approach enables a limited form of data inference from RDF
documents, which does not provide the reasoning capabilities of more complex descrip-
tion logic formalisms like the one formalized within the OWL-DL [165] framework.

Finally, the approach which is discussed in [18] provides a general scheme for
hybrid integration of rule languages with constrained-based languages such as de-
scription logic-based ontologies. The scheme is then particularized to the integration
of Datalog and Xcerpt languages with a generic description logic reasoner. Although
the proposed methodology is highly flexible and can be easily tailored to different
rule languages, it only provides a restricted reasoning support, since only boolean
ontology queries are allowed. On the contrary, in our framework, boolean as well as
non-boolean ontology queries are definable and naturally integrated in the filtering
language.

In the following section, we present an extension of the Phil language which inte-
grates an approximate pattern-matching mechanism with knowledge base reasoning
in order to enable semantic data filtering. Roughly speaking, patterns are searched
in an XML document in an approximate way (that is, modulo renaming, deletion
and insertion of XML items) using additional information which can be retrieved by
querying (possible remote) knowledge bases. Our approach is particularly suitable
to information retrieval, since in this context information may be ambiguous or in-
complete. The integration of approximate pattern matching with knowledge base
reasoning allow to tackle both issues.

4.6 The Extended Filtering Language

The extension to the filtering language Phil is intended to integrate filtering rules with
DL query templates used to infer information from knowledge bases. The way we can
take advantage of such additional information is twofold: (i) we can automatize the
search of the XML tag synonyms employed by the approximate matching engine when
renaming pattern transformations are applied; (ii) we can use boolean DL queries as
filtering conditions to refine pattern detection. Hence, the proposed extension affects
only the pattern specification and the conditions whose new syntax is presented in
what follows.

Figures 4.5–4.6 illustrate the (graph) structure of two knowledge bases over the
domains of wines and eating places respectively, that we use in our running example.
The former knowledge base contains a set of wine names, which are modeled as
individuals. Each wine has color and flavor properties that are formalized by means
of concepts. The latter knowledge base classifies distinct eating places

• by kind, using the concepts Restaurant, Tavern, Farm house, and Pizzeria;

• by price, using the concepts Expensive, Medium, Cheap.

A role is used to determine the geographic location of each eating place instance.

82 4. Web Systems Filtering

Figure 4.5: A knowledge base about wines

Figure 4.6: A knowledge base about eating places

4.6. The Extended Filtering Language 83

In Figures 4.5–4.6, we have used rectangles to denote concepts, while hexagons
denote individuals. Straight, solid lines connecting concepts represent subconcept
relations (e.g. “a tavern is an eating place”). Dashed lines connecting individuals to
concepts define membership relations of individuals w.r.t. concepts (e.g. “Chardonnay
belongs to white wines”). Finally, bold, dashed lines connecting pairs of individuals
formalize roles, that is, binary relations between individuals (“the restaurant called
Al Fungo is located in a town called Gemona”).

Patterns. Patterns of filtering rules are XML data used to describe the information
we want to detect inside a given XML document. A pattern is built by composing
the following syntactical elements.

Variables that play the role of placeholders for unknown pieces of XML code (we
assume to have a countable infinite set of variables at hand {X,Y,...}).

Text selectors that is, strings of plain text surrounded by single quotes (e.g. ’Dear
friend’). Text selectors will be matched against the textual part of the XML
document.

Tag selectors. In Section 4.1 we presented a synonymity operator ”$”, which enables
the flexible matching of tag selectors. Here we transform the concept of syn-
onymity operator allowing tag selectors to be followed by a non-boolean DL
query. More precisely, given a tag selector t, by the syntax t[DL(K, r)] we re-
trieve all the synonyms of the tag selector t by executing the reasoning service r
in the knowledge base K. Such synonyms are then used by the pattern-matching
algorithm to find approximate results.

Example 4.2 Consider the knowledge base of Figure 4.6. The synonyms re-
trieved by the tag selector

places[DL(EatKB, children(Eating place))]

are
{Restaurant,Tavern,Farm house,Pizzeria}.

All the other syntax elements such as the occurrence operator and the boolean
operators are left unchanged as are presented in Section 4.1.

Conditions. Conditions are used to refine the search of a given pattern inside an
XML document. Roughly speaking, whenever an instance of a pattern is detected,
the associated instance of the condition list is evaluated. The detected pattern is then
delivered to the user if and only if the instance of the condition list evaluates to true.

Our language is endowed with constructs for specifying several classes of conditions
such as

Membership tests which allow one to establish whether a given piece of XML is con-
tained in the language denoted by a given regular expression.

84 4. Web Systems Filtering

Functional constraints which allow to perform some computations over the extracted
XML data and then check the results.

Example 4.3 Assume that an XML database modeling a price list is given.
For each entry of the list, the price without VAT, the VAT, and the total price
are defined. Using three variables X, Y, and Z, we can model the functional
constraint X+Y=Z which verifies that, for each entry, the total price is made up
of the price without VAT and the VAT.

Semantic constraints which allow to check semantic properties of XML documents.
Semantic constraints are specified through boolean DL query templates.

Example 4.4 Consider the knowledge base of Figure 4.5, then the following semantic
constraint

DL(WineKB, instance(Y,Red))

evaluates to true if and only if the value bound to variable Y is a red wine (i.e. belongs
to the concept Red).

In the following example, we show a complete filtering rule, which uses several con-
structs of the language we presented.

Example 4.5 Consider the knowledge base of Figure 4.5 and Figure 4.6. Assume
that an XML database containing a list of eating places is given. For each eating
place entry a menu is specified which contains pairs of dishes and suggested wines.

We would like to retrieve all the main courses which are served with red wine for
each eating place in the repository. Since we have different kinds of eating places,
we can retrieve all the possible categories of eating place by using the tag selector of
Example 4.2, and then exploiting our matching engine to search for the approximate
results. Moreover, to check if a wine has red color, we can make use of the semantic
constraint of Example 4.4. Therefore, we might specify the filtering rule

filterAllBest
places[DL(EatKB, children(Eating_place))](

name(Z),
menu(foodwinepair(

dish(type(’main’),name(X)),
wine(Y)

))
)
in file ’Menus.xml’ where DL(WineKB, instance(Y,Red)) (P)

where Z,X,Y are variables which are bound to eating places, main courses, and wines,
respectively.

4.7. An XML Formalization of the Semantic Filtering Language 85

4.7 An XML Formalization of the Semantic Filter-
ing Language

In this Section we present a XML formalization of the extended filtering language
presented in Section 4.6. Some benefits expressing filtering rules in XML are:

• you don’t have to learn a new language;

• you can use your XML editor to edit your filtering rules;

• you can use your XML parser to parse your filtering rules;

• you can check the well-formedness and correctness of your filtering rules pro-
viding an XML Schema definition5;

• you can transform your filtering rules with XSLT.

Before considering the XML syntax of filtering rules, let us introduce a way to
model and query ontologies using an XML formalism.

4.7.1 Using DIG to Model and Query Ontologies

In order to connect the filtering engine and the ontology reasoner we make use of
the DIG interface [35]. The DIG interface is an API for Description Logic systems
which is capable of expressing class and property expressions common to most DLs.
In particular, it can model the well-known description logic formalized within the
OWL-DL [165] framework, which is supported by several ontology reasoners.

The DIG interface is equipped with four XML languages which are employed to
formalize and query ontologies modeling a given application domain. These languages
are (i) the tell language, (ii) the concept language, (iii) the ask language, and (iv) the
response language.6

The DIG concept and tell languages basically contain constructs for describing
and then loading an ontology into a reasoner. Roughly speaking, they allow us to
formalize the structure of an ontology by defining concepts (classes), roles (relations),
individuals (instances of classes), etc. A fragment of the wine knowledge base of
Figure 4.5 encoded using the DIG languages is shown in Figure 4.7.

The DIG ask language provides the notation to formalize statements which are
used to query ontologies loaded into ontology reasoners. The ask language includes
many constructs that can be classified in different categories as shown in Table 4.1.
Roughly speaking, ask statements allows to infer information regarding concepts, roles
and individuals of a given ontology. Ask statements can model boolean as well as
non-boolean ontology queries. More precisely, a boolean (respectively, non-boolean)
ontology query is an ask statement that returns a boolean (respectively, non-boolean)
value.

5The XML Schema defining the extended filtering language is given in Appendix A.1.
6The complete DIG formalization is available at [35].

86 4. Web Systems Filtering

...

<defindividual name="Chardonnay"/>

<instanceof>

<individual name="Chardonnay"/>

<catom name="white"/>

</instanceof>

<defindividual name="Cabernet"/>

<instanceof>

<individual name="Cabernet"/>

<catom name="red"/>

</instanceof>

<instanceof>

<individual name="Chardonnay"/>

<catom name="dry"/>

</instanceof>

...

Figure 4.7: DIG fragment of the wine knowledge base

Example 4.6 Consider the ontologies of Figure 4.5 and Figure 4.6. We define an
ask statement containing the boolean query Q1 and the non-boolean query Q2 as follows
(for the sake of readability, here and throughout the whole paper, we omit namespace
declarations).

<asks xmlns=...>

<children id="Q1">

<catom name="Category"/>

</children>

<instance id="Q2">

<individual name="Ramandolo"/>

<catom name="white"/>

</instance>

</asks>

Q1 allows to retrieve all the concepts which are children of the concept Category
(that is, Cheap, Medium, Expensive), while Q2 checks whether the individual name
Ramandolo is a white wine.

Finally, the DIG response language formalizes the possible response statements
generated after the execution of an ask statement (e.g. boolean values, sets of ontology
elements, error messages,. . .)

4.7.2 The Extended DIG Ask Language

DIG ask statements are basically ground formulae –that is, formulae not containing
variables– of a given description logic. In order to make them more flexible and
suitable for our purposes, we adopted a generalized version of ask statements, by
defining “templates” which

4.7. An XML Formalization of the Semantic Filtering Language 87

Category Ask Constructs
Primitive Concept
Retrieval

<allConceptNames/ >

<allRoleNames/ >
<allIndividuals/ >

Satisfiability <satisfiable>C< /satisfiable>
<subsumes>C1 C2< /subsumes>
<disjoint>C1 C2< /disjoint>

Concept <parents>C< /parents>
Hierarchy

<children>C< /children>
<ancestors>C< /ancestors>
<descendants>C< /descendants>
<equivalents>C< /equivalents>

Role <rparents>R< /rparents>
Hierarchy

<rchildren>R< /rchildren>
<rancestors>R< /rancestors>
<rdescendants>R< /rdescendants>

Individual Queries <instances>C< /instances>
<types>I< /types>
<instance>I C< /instance>
<roleFillers>I R< /roleFillers>
<relatedIndividuals>R
< /relatedIndividuals>
<toldValues>I A< /toldValues>

Table 4.1: DIG Ask Language

(i) can be easily reused in several filtering rules;

(ii) can be instantiated with values computed at run-time.

Therefore, we extend the DIG ask language by

• introducing variables into ask statements. Variables are employed as placehold-
ers for concepts, roles, and individuals. We denote a variable, whose name is
varName, by the syntax var:varName. Ask statements containing variables are
called non-ground ask statements, and implement DL query templates.

Example 4.7 Consider the ontology of Figure 4.5. The following non-ground
ask statement models a boolean query which checks whether (the value assigned
to) the variable Y is a red wine; that is, it is an instance of the concept Red.

88 4. Web Systems Filtering

<asks xmlns=... >

<instance id="RedWine">

<individual name="var:Y"/>

<catom name="Red"/>

</instance>

</asks>

• letting ask statements denote non-boolean queries to reference XML tags of a
given XML document via the tag:self notation. As we will show in Section
4.7.3, a non-boolean ontology query Q is typically bound to an XML tag t. By
using the tag:self construct, we can automatically reference t inside Q without
citing it explicitly.

Example 4.8 Consider the ontology of Figure 4.6. Assume that a given XML
tag t is associated with the following ask statement modeling a non-boolean
query Q.

<asks xmlns=... >

<children id="Syn">

<catom name="tag:self"/>

</children>

</asks>

The query Q retrieves all the concepts which are children of the concept t.

4.7.3 An XML Syntax for the Filtering Language

Basically, a filtering rule can be formalized by means of the following XML syntax:

<rule>
{<count cost="value"/>}
<filter> filterop </filter>
<pattern> XML-pat </pattern>
<document> XML-doc </document>
{<conditions> cond-list </conditions>}
{<mode> mode</mode>}

</rule>

The XML elements represented between braces are optional. The operator count
allows one to count the number of detected pattern instances with similarity cost less
then value in the given XML document. The filterop operators are
filter{One,All}Exact, filter{One,All}Best. XML-doc can be specified by an
URL referring to an XML document, by some XML code, or even by a nested filter-
ing rule, since the execution of a filtering rule generates an XML document, which can
feed another filtering rule. The filtering mode is a label belonging to the set {P,N}.
Whenever a rule does not specify a filtering mode, it has to be considered a positive

4.7. An XML Formalization of the Semantic Filtering Language 89

filtering rule (that is, the mode is P). XML-pat is the information we want to detect
inside a given XML document.

We here limit ourselves to specify the syntax of tag selectors and boolean connec-
tors, since variables and text selectors are as usual.

Tag selectors are XML tags. Tag selectors can contain two attributes which enable
tag flexible matching (i.e. matching modulo tag renaming). The ont attribute specifies
an ontology file name, while the query attribute specifies the file name of an extended
DIG ask statement modeling a non-boolean DL query. More precisely, given a tag
selector t, by the syntax

<t ont="ontName" query="queryName">

we retrieve all the synonyms of the tag selector t by querying the ontology ontName
via the query queryName. As we have seen in Section 4.7.2, the tag selector t can
be referenced inside the query queryName using the tag:self notation. During the
query execution tag:self occurrences are replaced by t.

Example 4.9 Consider the Example 4.2 and let us translate it in the XML format.
Consider Figure 4.6 and the extended ask statement of Example 4.8. Then, the syn-
onyms retrieved by the tag selector

<eating_place ont="EatOnt" query="Syn">

are
{Restaurant,Tavern,Farm house,Pizzeria}.

The occurrence operator is represented here by means of the child attribute. Given
an XML document containing a tag s that has n children labeled by the tag t, the
notation <t child="i"> selects the i-th child labeled with t. The keyword last is
used to select the last element of the sequence.

Boolean connectors define boolean-connected XML patterns. We use <and>, <or>
and <xor> tags to express conjunctions and disjunctions of XML patterns. Boolean
connectors also replace the ”,”, ”|” and ”?” operators.

Conditions. Conditions expressing membership tests and functional constraints are
formalized using a simplified version of RuleML [41].

Example 4.10 Considering the functional condition expressed in Example 4.3, we
can formalize it following the RuleML syntax by means of the following XML code.

<Equal>
<lhs> <Expr>

<Fun> + </Fun>
<Var> X </Var>
<Var> Y </Var>

</Expr>
</lhs>

90 4. Web Systems Filtering

<rhs> <Var> Z </Var> </rhs>
</Equal>

Semantic conditions are formalized by means of the following syntax:

<ontCond ont="ontName" query="queryName">

where ontName is an ontology file name, and queryName represents the file name of an
extended DIG ask statement modeling a boolean DL query template. Note that DIG
ask statements may contain variables. In this case, such variables are instantiated
with values of the detected pattern instances before sending the statements to the
reasoner.

Example 4.11 Consider the ontology of Figure 4.5 and the extended ask statement
of Example 4.2 which models the boolean query RedWine. Therefore, the following
semantic constraint

<ontCond ont="wineOnt" query="RedWine">

expresses the condition of Example 4.4.

Example 4.12 The filtering rule of Example 4.5 can then be translated in the fol-
lowing XML format.

<rule>
<filter>filterAllBest</filter>
<pattern>
<eating_place ont="eatOnt" query="Syn">
<and>
<name> Z </name>
<menu>
<foodwinepair>
<and>
<dish>
<and>
<type>’main’</type>
<name>X</name>
</and>
</dish>
<wine>Y</wine>

</and>
</foodwinepair>
</menu>

</and>
</eating_place>
</pattern>
<document>
<docFile>’Menus.xml’</docFile>

4.8. The XPhil Filtering System 91

Figure 4.8: System Architecture

</document>
<conditionClause>
<ontCond ont="wineOnt" query="redWine"/>
</conditionClause>
<mode>P</mode>

</rule>

4.8 The XPhil Filtering System

The proposed extended filtering language has been implemented in the XPhil system,
which is directly accessible through a Web service available at [25]. Alternatively, a
stand-alone application can be freely downloaded from [25] and executed offline. The
implementation has been written in the Haskell functional language and consists of
about 1,800 lines of code. The sources available at [25] contain the context-free
grammar of our language and some parsers for the filtering language and for XML
documents. There are some modules for the approximate pattern-matching algorithm
and one module to manage the variable associations, one module to interface ontology
reasoners and another one to evaluate syntactic and semantic rule conditions.

XPhil supports ontology reasoning via the DIG API. More precisely, it can be
connected to any ontology reasoner which is equipped with the DIG interface. In our
experiments, we have used XPhil together with Pellet [147], an efficient, open-source
ontology reasoner for the OWL-DL[165] framework.

The implemented system is divided into three parts: the front-end, the core and

92 4. Web Systems Filtering

the ontology reasoner. The core can be in turn divided in a controller, an approximate
matching engine, an ontology interface and a condition evaluator. This architecture
is represented in Figure 4.8. Users may use the front-end to load XML documents,
ontologies and ontology queries, specify and execute the querying rules and view the
results. The core is responsible for the execution of rules by means of the controller
that manages the interaction of the matching engine, the condition evaluator and
the ontology interface. The matching engine is aimed to find the best approximate
matches of the rule pattern against the given XML document, the condition evaluator
deals with the evaluation of rule conditions and the ontology interface allows one to
load and release ontologies in the ontology reasoner and send ontology queries to the
ontology reasoner.

When a rule is executed, the controller locates into the rule the required ontologies
and asks the ontology interface to load such ontologies in the reasoner. Then, the
approximate matching engine is activated to find the best matches of the pattern
against the specified XML document. During the matching phase, whenever a tag
selector associated with an ontology query is processed, the ontology interface is called
to query the appropriate ontology and return the results. Whenever one or more
embeddings of the rule pattern are found in the XML document, the rule conditions
(if any) have to be verified. The only delivered results will be those embeddings whose
condition instances evaluate to true. Membership tests and functional constraints are
managed by the condition evaluator, whereas in order to assess semantic conditions,
the ontology interface need to be called in order to transfer the query to the ontology
reasoner. Finally the controller asks the ontology interface to release all ontologies,
packs the results and sends them to the front-end.

Figure 4.9 provides a snapshot of the graphical user interface of the XPhil online
system. The interface allows one to load and execute some example rules or build
and execute user-defined rules. The interface is divided in six panels whose functions
are briefly explained in the following:

• The Example Rule panel contains some links to load some rule examples.

• The XPhil Rule panel, showing at the beginning the message No Rule Loaded,
contains a text area where users can edit a rule, otherwise it is possible to
load an XML file containing a rule using the Browse button. The Load Rule
button loads the edited or browsed rule into the system and the No Rule Loaded
message will change into Rule Loaded.

• The XML Document panel allows one to search an XML document browsing
the file system using the Browse button and then loading it by means of the
Load Document button.

• The Rule Description panel is usually empty. When an example rule is loaded,
this panel may contain a brief rule explanation in natural language.

• The Ontology panel allows one to load one or more XML files containing an
ontology description specified by means of DIG tell statements. The Browse

4.8. The XPhil Filtering System 93

Figure 4.9: Screenshot of the XPhil system online.

button allows one to browse the file system and the Load Ontology button loads
the specified ontology.

• The Ontology Queries panel allows one to load one or more XML files, containing
extended DIG ask statements modeling boolean ontology queries. The Browse
button allows one to browse the file system and the Load Query button will load
the specified query.

• Finally, the Reset button is used to clean up all the panels while the Execute
button executes the specified rule and the result will be displayed in a new
window.

94 4. Web Systems Filtering

5
Web Systems Verification

The increasing complexity of Web systems has turned their design and construction
into a challenging problem. Moreover, web systems are very often collaborative ap-
plications in which many users freely contribute to update their contents (e.g. wikis,
blogs, social networks,. . .). In this scenario, the task of keeping data correct and
complete is particularly arduous, because of the very poor control over the content
update operations which may easily lead to data inconsistency problems. Systematic,
formal approaches can bring many benefits to Web systems construction, and give
support for automated Web systems verification.

In recent years, several rule-based methodologies for validating the content of
Web systems have been developed. In [61] constraint logic programming is applied to
constrain the static content and the structure of a Web site, while [98] defines type
systems and type checking techniques which are basically natural generalizations of
DTDs and XML Schema definitions for describing and validating the structure of XML
documents. Finally, the framework xlinkit [83] allows one to check the consistency
of distributed, heterogeneous documents as well as to fix the (possibly) inconsistent
information. The specification language is a restricted form of first order logic com-
bined with Xpath expressions [163] where no functions are allowed. With respect to
the correctness of Web applications, a symbolic model-checking approach is formal-
ized in [75] which constructs a finite states model of the system in the model checker
input language, and then checks the considered properties which are expressed in CTL
logic. For a comprehensive survey about the general problem of checking constraints
between multiple documents, we refer to [86, 80, 49]. All the mentioned approaches,
albeit very useful in their specific domains, share the same limitation: the syntactic
as well as semantic constraints they specify only rely on the data to be checked.

In this chapter, we present a rule-based specification language which allows one to
formalize and automatically check semantic as well as syntactic properties over the
static contents of any Web system. The language provides constructs for specifying
two kinds of rules: correctness rules and completeness rules. The former describe
constraints for detecting erroneous information into a given XML repository, while
the latter recognize incomplete/missing information. The language is inspired by the
GVerdi specification language [9, 32] and extends it in the following ways:

(i) Web contents (typically, XML/XHTML data) are frequently coupled with on-

96 5. Web Systems Verification

tologies with the aim of equipping data with semantic information. Our specification
language provides ontology reasoning capabilities which allow us to query a (possibly)
remote ontology reasoner to check semantic properties over the data of interest, and
to retrieve semantic information which may be combined with the syntactic one for
improving the analysis.

(ii) We extend the GVerdi specification language with new rule constructs for the
definition of conjunctions and disjunctions of patterns which can be recognized inside
XML documents. The new constructs increase the expressiveness of the original
language, since they enable the specification of a larger set of semantic as well as
syntactic constraints.

(iii) Along with the specification language, we formulate a novel verification
methodology which automatically checks a specification against the considered Web
contents and discovers incorrect as well as incomplete information.

5.1 The Web specification language

Our specification language allows us to formalize and verify properties over the content
of a Web system.
Web content denotation. Throughout this paper, we assume that the data to be
checked are stored into an XML repository. Let us consider two alphabets T and Tag .
We denote the set T ∗ by Text . An object t ∈ Tag is called tag element, while an
element w ∈ Text is called text element. Since XML documents are provided with a
tree-like structure, they can be straightforwardly translated into ordinary terms of a
given term algebra τ(Text ∪ Tag) as shown in Figure 5.1. Note that XML/XHTML
tag attributes can be considered as common tagged elements, and hence translated
in the same way.

<members> members(
<member status="professor"> member(status(professor),
<name> mario </name> name(mario),
<surname> rossi </surname> surname(rossi)

</member>),
<member status="technician"> member(status(technician),
<name> franca </name> name(franca),
<surname> bianchi </surname> surname(bianchi)

</member>)
</members>)

Figure 5.1: An XML document and its corresponding encoding as a ground term p.

In the following, we will also consider Web templates, which are terms of a non-
ground term algebra, which may contain variables. Web templates are used for spec-
ifying patterns to be recognized in XML repositories. See [9] for more details.

5.1. The Web specification language 97

Web specifications. The language provides constructs for specifying two kinds
of rules: correctness rules and completeness rules. The former describe constraints
for detecting erroneous information into a given XML repository, while the latter
recognize incomplete/missing information. Both kinds of rules may be conditional,
that is, they can be fired if and only if an associated condition holds.

A condition is a finite (possibly empty) sequence c1, . . . , cn, where each ci may
be (i) a membership test w.r.t. a regular language of the form X ∈ rexp1, (ii) an
equation s = t, where s and t are expressions which may contain nested function calls
to be evaluated2, and (iii) a boolean DL functional query template.

Given a substitution σ, which takes an expression and replaces its variables with
ground terms and a condition C ≡ c1, . . . , cn, we say that C holds for σ iff each ciσ
is ground and

• if ci ≡ X ∈ rexp, then Xσ ∈ L(rexp), where L(rexp) is the regular language
described by rexp;

• if ci ≡ (s = t), then the evaluations of sσ and tσ compute the same value.

• if ci ≡ DL(K, r), a boolean DL functional query template, then eval(DL(K, rσ))
returns true3.

Now, we are ready to introduce correctness as well as completeness rules.

Definition 5.1 (Correctness rule) A correctness rule is an expression of the form∧n

i=1
li ⇀ error | C

where each li is a Web template, error is a reserved constant, C is a condition.

Informally, the meaning of a correctness rule l1 ∧ . . . ∧ ln ⇀ error | C is as follows.
Whenever an instance liσ of li for each i ∈ {1, . . . , n} is recognized in some XML
document p, and the rule condition C holds for σ, then XML document p is signaled
as an incorrect document.

Example 5.2 Consider an XML repository containing academic information along
with a knowledge base Univ modeling such a domain. Suppose we want to verify the
following property: if an associate professor has more than three Ph.D. students, then
he cannot teach more than one course. Then a possible correctness rule formalizing
such a property might be

course(cId(X),professor(name(Y)))
∧ course(cId(Z),professor(name(Y))) ⇀ error |

DL(Univ,instanceOf(Y,AssocProfu(≥3hasStd u ∀hasStd.PhDStudent))),
X =/= Z

1Regular languages are denoted by the usual Unix-like regular expression syntax.
2In our framework, equation evaluation is handled by standard rewriting [107].
3We assume that all the function calls appearing in rσ are evaluated before executing the reasoning

service.

98 5. Web Systems Verification

In order to define completeness rules, we need the following auxiliary notion. Given
an expression e, by V ar(e) we denote the set of all the variable appearing in e.

Definition 5.3 (Completeness rule) A completeness rule is an expression of the
form

n∧
i=1

li ⇀
m∨
j=1

rj | C containing ct 〈q〉

where each li, rj are Web templates, C is a condition, containing ct is an optional
clause, where ct is a ground term, q ∈ {A, E}, and

⋃m
j=1 V ar(rj)∪V ar(C) ⊆ V ar(l).

Completeness rules are called universal (resp., existential), whenever q ≡ A (resp.,
q ≡ E).

Intuitively, given an XML repository W , the interpretation of a universal (resp.,
existential) rule l1∧ . . .∧ln ⇀ r1∨ . . .∨rm |containing ct〈A〉 (resp., 〈E〉) w.r.t. W is
as follows: if an instance liσ of li for each i ∈ {1, . . . , n} is recognized in some p ∈W
and the condition C holds for σ, then an instance rjσ of at least one rj , j ∈ {1, . . . ,m}
must be recognized in all (resp. some) XML documents of W containing the ct term.
Roughly speaking, ct provides the “scope” of the quantification and allows us to
compute the part of the XML repository which is checked by the rule; if ct is not
specified the rule is applied to the whole repository.

Example 5.4 Consider again an academic XML repository along with the usual
knowledge base Univ. We want to verify that for each course, given by a full pro-
fessor, at least two exam dates must be provided. A completeness rule formalizing
this property might be

course(cId(X)) ⇀ course(cId(X),examDate(),examDate()) |
DL(Univ,instanceOf(X,∃CourseGivenBy.FullProf))〈E〉

Finally, we define a Web specification as a pair (IN , IM), where IN is a set of correct-
ness rules, IM is a set of completeness rules. Given an XML repository and a Web
specification, diagnoses are carried out by running the Web specification rules against
the XML repository.
Web specifications with meta-symbols. Sometimes, it is particularly fruitful to
consider rules containing Web templates which may subsume several meanings. To
this purpose, completeness and correctness rules may include special meta-symbols
into those Web templates which are associated with non-boolean DL functional query
templates.

Web specification rules containing meta-symbols have to be pre-processed before
being executed on a given XML repository.

The following definition is auxiliary. Let e be a (syntactic) expression of our
language, m be a meta-symbol, v be a symbol. By e[m/v] we denote the expression
e′ obtained from e by replacing each occurrence of m with v.

Basically, we expand each rule r containing meta-symbols as follows:

• for each meta-symbol m appearing in r, we execute the associated ontology
query and we collect the results {v1, . . . , vn};

5.2. Expanding rules with meta-symbols 99

• if m appears in the left-hand side of r, we replace r with the rules r1[m/v1], . . . ,
rn[m/vn].

• if m appears in a disjunct ρ of the right-hand side of r, we replace ρ in r with
ρ[m/v1] ∨ . . . ∨ ρ[m/vn].

A full description of the expansion algorithm can be found in Section 5.2.
For the sake of clarity, let us see an example.

Example 5.5 Consider again an academic XML repository along with the usual
knowledge base Univ. We want to specify that email or post address have to be
specified for each university professor. Assume that the knowledge base Univ contains
(i) the concept contactInfo whose subconcepts are email and address; and (ii) the
concept Professor whose subconcepts are AssociateProf and FullProf.

We might model the considered property using a universal completeness rule con-
taining two meta-symbols (namely, contact and prof).

metasymbol contact: DL(Univ,getChildren("contactInfo"))
metasymbol prof: DL(Univ,getChildren("Professor"))
prof(name(X)) ⇀ prof(name(X),contact())| containing member() <A>

By expanding the considered completeness rule, we generate the following set of
rules without meta-symbols.

AssociateProf(name(X)) ⇀ AssociateProf(name(X),email()) ∨
AssociateProf(name(X),address()) |

containing member() <A>
FullProf(name(X)) ⇀ FullProf(name(X),email()) ∨

FullProf(name(X),address()) |
containing member() <A>

5.2 Expanding rules with meta-symbols

The main idea is that, to evaluate a rule against a Web repository, the hidden in-
formation represented by meta-symbols have to be made explicit. This is achieved
by replacing each meta-symbol, associated with a non-boolean ontology query, with
the query result. The replacing operation is performed in a different way whether a
meta-symbol appears in the left or right hand side of a rule.

In this section we present an algorithm to deal with the expanding operation of a
Web specifications rule. The pseudo code is shown in Algorithm 2. Recall that, if e
is a (syntactic) expression of our language, m is a meta-symbol and v is a symbol, by
e[m/v] we denote the expression e′ obtained from e by replacing each occurrence of
m with v.

100 5. Web Systems Verification

Algorithm 2 An algorithm for translating a specification rule into a set of specifica-
tion rules without meta-symbols.

1: procedure Expansion of meta-symbols(r)
2: Q← {r}
3: NR← empty set
4: while notEmpty(Q) do
5: r ← a rule non deterministically chosen from Q
6: if r contains meta-symbols in its left or right hand side then
7: Er ← empty set
8: t← a meta-symbol that appear in r
9: if t appears in both the left and right hand side of r then

10: Er ← Expansion of a meta-symbol in both sides(t, r)
11: end if
12: if t appears in the right hand side of r then
13: Er ← Expansion of a meta-symbol in the right hand side(t, r)
14: end if
15: if t appears in the left hand side of r then
16: Er ← Expansion of a meta-symbol in the left hand side(t, r)
17: end if
18: for all rule in Er do
19: delete the declaration for meta-symbol t
20: end for
21: Q← Q ∪ Er
22: else
23: NR← NE ∪ {r}
24: end if
25: delete r from Q
26: end while
27: return NR
28: end procedure

Definition 5.6 (Expansion of a meta-symbol in the left hand side) Let
r ≡

∧n
i=1li ⇀ Rhs a specification rule and metasymbol t: DLquery the decla-

ration of a meta symbol appearing in the left hand side. Assume that {s1, . . . , sgt} is
the result of the execution of the DLquery. Then, r is replaced by the following set of
rules derived from the expansion of t.

∧n
i=1li[t/s1] ⇀ Rhs

. . .∧n
i=1li[t/sgt] ⇀ Rhs

If the result set of the execution of the DLquery is empty, the rule r is simply deleted.

Example 5.7 Consider again an academic XML repository along with the usual
knowledge base Univ. We want to verify that each university professor has an home

5.2. Expanding rules with meta-symbols 101

page. Assume that the ontology Univ contains the concept Professor whose sub-
concepts are AssociateProf and FullProf. A completeness rule formalizing this
property might be

metasymbol prof: DL(Univ, getChildren(Professor))
prof(name(X)) ⇀ hpage(name(X)) | <E>

Using the expansion operation just described we can obtain the following set of rules:

AssociateProf(name(X)) ⇀ hpage(name(X)) | <E>
FullProf(name(X)) ⇀ hpage(name(X)) | <E>

Definition 5.8 (Expansion of a meta-symbol in the right hand side) Let
r ≡ Lhs ⇀

∨m
j=1rj | C(containingct)〈q〉 be a completeness specification rule. Assume

that metasymbol t: DLquery is a declaration of a meta-symbol appearing only in
the right hand side and {s1, . . . , sgt} is the result set of the execution of the DLquery.
For each disjunct rj in Rhs a new nrj is built as follows.

nrj =
{

rj [t/s1] ∨ . . . ∨ rj [t/sgt] if t appear in rj
rj otherwise

Then, the rule r is replaced by the rule Lhs ⇀
∨m
j=1nrj | C (containing ct) 〈q〉. If the

result set of the execution of the DLQuery is empty, the rule r is simply deleted.

Example 5.9 Consider the Example 5.5 substituting the meta-symbol prof with a
normal tag member. The rule will become

metasymbol contact: DL(Univ, getChildren(contactInfo))
member(name(X)) ⇀ member(name(X),contact()) | <A>

Expanding this rule we obtain the following new rule

member(name(X)) ⇀ member(name(X),email()) ∨
member(name(X),address()) | <A>

Definition 5.10 (Expansion of a meta-symbol in both sides) Let
r ≡

∧n
i=1li ⇀

∨m
j=1rj | C (containing ct) 〈q〉 be a completeness specification rule.

Assume that metasymbol t: DLquery is a declaration of a meta-symbol appearing
in the left and right hand side and {s1, . . . , sgt} is the result set of the execution of
the DLquery. Then, r is replaced by the following set of rules.

∧n
i=1li[t/s1] ⇀

∨m
j=1rj [t/s1] | C (containing ct) 〈q〉

. . .∧n
i=1li[t/sgt] ⇀

∨m
j=1rj [t/sgt] | C (containing ct) 〈q〉

If the result set of the execution of the DLquery is empty, the rule r is simply deleted.

The expansion rule of Example 5.5 is an example of application of the expansion
of a meta-symbol appearing in the left and right hand side for the meta-symbol prof,
together with the expansion of a meta-symbol in the right hand side for meta-symbol
contact.

102 5. Web Systems Verification

5.3 Verification Methodology

In this section we present a methodology to automatically verify a given XML repos-
itory w.r.t. a Web specification. Without loss of generality, we only consider Web
specifications without meta-symbols, since any Web specification with meta-symbols
can be transformed into an equivalent one without meta-symbols as explained in the
previous section.

We proceed as follows: first we describe the partial rewriting [9] mechanism which
allows us to detect patterns inside XML documents and rewrite them. Then, we will
employ this evaluation mechanism to check correctness and completeness of an XML
repository.

Simulation and partial rewriting. Simulation allows us to recognize the structure
and the labeling of a given Web template into a particular XML document. It can be
formally defined as follows.

Definition 5.11 The simulation relation E⊂ T (Text ∪ Tag ,V) × T (Text ∪ Tag ,V)
in Web templates is the least relation satisfying the rule f(t1, . . . , tm) E g(s1, . . . sn)
iff f ≡ g and ti E sπ(i), for i = 1, . . . m, and some injective function π : {1, . . . m} →
{1, . . . , n}.

W.l.o.g., we disregard quantifiers from Web specification rules.

Definition 5.12 (Partial rewriting) Let s, t ∈ T (Text ∪ Tag ,V). We say that s
partially rewrites to t via rule r ≡

∧n
i=1li ⇀ Rhs | C and substitution σ (in symbols

s ⇀r t) if and only if there exist positions u1, . . . , un in s such that

(i) liσ E s|ui for all i ∈ {1, . . . , n};

(ii) C holds for σ;

(iii) if Rhs ≡
∨m
j=1 rj then t ≡ or(r1σ, . . . , rmσ);

(iv) if Rhs ≡ error then t = error(s, u1, . . . , un).

5.3.1 Detecting correctness errors.

In this subsection, we provide a simple way to detect erroneous or undesirable data
included in an XML repository. Our methodology allows us to precisely locate which
part of an XML document does not fulfill the Web specification. Let us start by
formalizing what does it mean for an XML document to be incorrect w.r.t. a certain
rule.

Definition 5.13 Let W be an XML repository and (IN , IM) be a Web specification.
Given p ∈ W , we say that p is incorrect w.r.t. (IN , IM), if there exists a correctness
rule r ≡ (

∧n
i=1li ⇀ error | C) ∈ IN such that

(i) p partial rewrites to error(p, u1, . . . , un) via r and substitution σ;

5.3. Verification Methodology 103

(ii) C holds for σ.

We say that (
∧n
i=1li)σ is an incorrectness symptom for p and error(p, u1, . . . , un)

represents the correctness error.

To find a correctness error in a document p we need to recognize first the left hand
side

∧n
i=1li of a correctness rule into p by partially rewriting p via

∧n
i=1li. If the

rule condition holds then the faulty document p and an incorrectness symptom are
supplied to the user. Note that the generated term error(p, u1, . . . , un) provides all
the needed information to precisely locate the incorrectness symptom inside p.

5.3.2 Detecting completeness errors.

The verification of an XML repository W w.r.t. a set of completeness rules of a Web
specification needs a more complex analysis. Essentially, the main idea to diagnose
completeness errors is to compute the set of all possible terms that can be derived
from W via the completeness rules of a Web specification (IN , IM) by means of partial
rewriting. These terms can be thought of as requirements to be fulfilled by W (i.e.
terms that must be recognized as part of some XML document in the repository).
Then, we check whether the computed requirements are satisfied by W using simula-
tion and quantification information. In summary, the method works in two steps, as
described below.

• Compute the set of completeness requirements ReqM,W for W w.r.t. IM ;

• Check ReqM,W in W.

We now introduce some semantic foundations we require to formalize the analysis.

Completeness rule semantics. A completeness requirement (or simply require-
ment) is a triple 〈e, q, ct〉, where e and ct are ground terms and q∈{A, E}. A
requirement is called universal whenever q = A, while it is called existential whenever
q = E. Sometimes the components q, ct of a requirement can be left undefined, in
this case we simply omit them and write 〈e, , 〉. Such requirements are called initial
requirements.

Let 〈e, q, ct〉 be a requirement, r ≡ Lhs⇀
∨m

j=1 rj | C containing ctr 〈qr〉 ∈ IM
be a rule such that s ≡ e ⇀r or(h1, . . . , hm). We define the tree Ts associated with
the partial rewriting step s as or(〈h1, qr, ctr〉, . . . , 〈hm, qr, ctr〉).

Definition 5.14 (Production step) Let (IN , IM) be a Web specification and re≡
〈e, q, ct〉 be a requirement. Let s1, . . . , sk be all partial rewriting steps which rewrite e
using the rules in IM . Let Ts1 . . . , Tsk

be the trees associated with the partial rewriting
steps s1, . . . , sk. The production step on re w.r.t. IM builds the tree re(Ts1 , . . . , Tsk

).

Note that, if there is no rule r ∈ IM such that e ⇀r t, we say that re ≡ 〈e, q, ct〉 is
irreducible. Let us now use the production step to define the maximal derivation tree
for a requirement.

104 5. Web Systems Verification

Definition 5.15 (Derivation tree) Given a requirement re and a Web specifica-
tion (IN , IM), a derivation tree for re w.r.t. the set IM , is defined as follows:

• re is a derivation tree for re w.r.t. the set IM ;

• if T is a derivation tree for re w.r.t. the set IM and re′ is a requirement labeling
a leaf of T , then the tree T ′ obtained from T by replacing re′ with the tree
generated by applying a production step on re′ w.r.t. IM , is a derivation tree
for re w.r.t. the set IM .

A maximal derivation tree Tre for re w.r.t. IM is a derivation tree where all leaves
are labeled with an irreducible requirement and the set of requirements labeling Tre
nodes is finite.

It follows that the maximal derivation tree for a requirement re w.r.t. IM contains
all the requirements that can be derived from re w.r.t. IM .

Definition 5.16 Let W be an XML repository, p ∈W , (IN , IM) be a Web specifica-
tion, and Tp be the maximal derivation tree for the initial requirement 〈p, , 〉 w.r.t.
IM . Then the set of completeness requirements ReqM,p, for document p, is the set of
requirements labeling nodes in Tp.
The set of completeness requirements ReqM,W for W w.r.t. IM is the set

⋃
p∈W ReqM,p.

Since the derivable requirements from a requirement re w.r.t. IM could be infi-
nite, a maximal derivation tree for re might not exist. In Section 5.4, we propose
some syntactical restrictions on Web specifications to ensure that the set of derivable
requirements for a requirement re w.r.t. a set of completeness rules is finite and hence
a maximal derivation tree for re exists. Moreover, we provide a way to obtain from
a maximal derivation tree, an equivalent finite structure.

Diagnoses of completeness errors. For each completeness requirement, let us
define a set TEST containing all documents of the considered XML repository, against
which the requirement has to be verified.

Definition 5.17 Let W be an XML repository, (IN , IM) be a Web specification, and
ReqM,W be the set of completeness requirements for W w.r.t. IM . Let ≡ 〈e,q,ct〉 ∈
ReqM,W. The test set w.r.t. 〈e,q,ct〉, is defined as

TEST〈e,q,ct〉 = {p ∈W | ct not equal to → ct E p}

Now we are able to define what does it mean for a completeness requirement to be
not satisfied in an XML repository. We distinguish two cases: the former allows us to
discover whether a universal requirement is not fulfilled by a given XML repository,
while the latter recognizes unsatisfied existential requirements. In both cases, our
analysis provides the missing/incomplete XML documents which are associated with
those requirements.

5.3. Verification Methodology 105

Definition 5.18 (Requirement unsatisfiability) Let W be an XML repository,
(IN , IM) be a Web specification and re≡ 〈e,q,ct〉 be a requirement.

• If re is a universal requirement, then re is not satisfied in W if one of the
following conditions hold:

1. TESTre = ∅;

2. there exists p ∈ TESTre s.t. e 5 p.

• If re is an existential requirement, then re is not satisfied in W if for each
p ∈ TESTre, e 5 p.

Vice versa, a universal requirement re is satisfied whenever it is possible to recog-
nize re inside any XML document of the corresponding test set TESTre. Finally, an
existential requirement re is fulfilled, if it is recognized inside (at least) an XML
document which belongs to the test set TESTre.

The requirements which are not fulfilled can be considered as incompleteness symp-
toms. This allows us not only to locate bugs and inconsistencies w.r.t. a given spec-
ification, but also to easily repair them by comparing incomplete documents to un-
satisfied requirements, since the latter ones provide the missing information which is
needed to complete the erroneous document.

To diagnose completeness errors in W , we can proceed as follows. For each p ∈W ,
(i) we compute the maximal derivation tree Tp for 〈p, , 〉 w.r.t. IM , then (ii) we
traverse Tp computing the test set for each requirement occurring in Tp, and we
check whether the requirements are not satisfied in the sense of Definition 5.18. The
verification process terminates delivering the detected completeness errors.

By using the previous definitions, we formalize the following completeness analysis.

Definition 5.19 (Maximal derivation tree analysis) Let W be an XML repos-
itory, p ∈ W , (IN , IM) be a Web specification, and Tp be the maximal derivation
tree of 〈p, , 〉 w.r.t. IM . The completeness analysis of a maximal derivation tree is
inductively defined on the structure of Tp by the following function:

Verify(or(T1 , . . . ,Tk)) =
{

error(e1, . . . , ek) if ∀i rt(Ti) is not satisfied in W
Verify(Ti) ∀i s.t. rt(Ti) is satisfied in W otherwise

where rt(Ti) = 〈ei, qi, cti〉.

Verify(re(T1 , . . . ,Tk)) = Verify(Ti) ∀i = 1, . . . , k

The term error(e1,. . .,ek) represents a completeness error which means that no
disjunct ei for i ∈ {1, . . . , k} is recognized into the considered document. Roughly
speaking, the execution of Verify(Tp) finds all the completeness errors inside an XML
document p w.r.t. IM . By applying this verification method to all XML documents
in W , we can check the completeness of the whole repository W .

106 5. Web Systems Verification

5.4 Web Specification Restrictions

In this section, we present some restrictions over Web specifications without meta-
symbols, which allow us to ensure that, given a requirement re and a set of complete-
ness rules IM , a maximal derivation tree for re exists.

Let us introduce a more general definition of simulation than the one presented in
previous Section.

Definition 5.20 (Simulation*) The simulation* relation E∗⊂ T (Text ∪ Tag ,V)×
T (Text ∪ Tag ,V) in Web templates is the least relation satisfying the following rules:

• X E∗ t, for each X ∈ V, t ∈ T (Text ∪ Tag ,V);

• f(t1, . . . , tm) E g(s1, . . . sn) iff f ≡ g and ti E sπ(i), for i = 1, . . . m, and some
injective function π : {1, . . . m} → {1, . . . , n}.

Definition 5.21 Let s1, s2 ∈ T (Text ∪Tag ,V). We say that s2 partially matches s1

via substitution σ iff s1σ E∗ s2.

Definition 5.22 (Rule activation) Let r1 ≡
∧n1
i=1l

1
i ⇀

∨m1
j=1r

1
j | C1 〈q〉 (ct1) and

r2 ≡
∧n2
i=1l

2
i ⇀

∨m2
j=1r

2
j | C2 〈q〉(ct2) two completeness rules. We say that r1 activates

r2, if ∃js ∈ {1, . . . ,m1} and substitution σ s.t. for all i ∈ {1, . . . , n2}, l2
i partially

matches r1
js

via σ.

Roughly speaking, the activation between rules r1 and r2 means that a partial
rewrite step from a term t using rule r1, generates another term that enables a partial
rewrite step using rule r2.

Definition 5.23 (Bounded substitution) Let r1, r2 be two completeness rules
such that r1 activates r2 via substitution σ. Then, σ is called bounded substitution
if for each variable x, either xσ ∈ V or xσ ∈ TΣ.

Bounded substitutions ensure that a variable cannot be substituted with a term
containing a variable at a position greater than Λ.

Definition 5.24 ((Non-)Bounded rule activation) Let r1, r2 two completeness
rules such that r1 activates r2 via substitution σ. If σ is a bounded substitution we
say that r1 bounded activates r2, otherwise we say that r1 non-bounded activates r2.

Definition 5.25 (Bounded activated rules) Let I be a set of completeness rules,
we say that I is a set of bounded activated rules if, for each ri , rj in I, if ri activates
rj then this is a bounded activation.

Definition 5.26 (Activation graph) Let (IN , IM) be a Web specification, the ac-
tivation graph of (IN , IM) w.r.t. the completeness rules in IM is a direct labeled graph
(V,E) where

(i.) if r ∈ IM then r ∈ V is a node of the graph;

5.4. Web Specification Restrictions 107

(ii.) if r1, r2 ∈ IM and r1 bounded activates r2, then (r1 7→ r2) ∈ E;

(iii.) if r1, r2 ∈ IM and r1 non-bounded activates r2, then (r1
nb7→ r2) ∈ E.

Roughly speaking the activation graph of a Web specification describes the depen-
dencies among completeness rules. The circularity of such dependencies is critical for
the computation of the maximal derivation trees.

Definition 5.27 (Bounded Specification) A Web specification is bounded if its
activation graph either does not contain cycles or no edge in a cycle (also a self-loop)
is labeled with nb.

Proposition 5.37 relates bounded Web specifications with the existence of a finite
structure equivalent to maximal derivation trees, which is introduced by Definition
5.36. In order to prove Proposition 5.37, we need the following auxiliary definitions
and results.

Definition 5.28 Given a requirement re ≡ 〈e, q, ct〉, the height of the term e,
height(e), is defined as follows.

height(e) =
{

0 if e ≡ X ∈ V or e ≡ c ∈ TΣ

1 + max{height(ti) | i = 1, . . . , n} if e ≡ f(t1, . . . , tn) ∈ TΣ(V)

From now on we use height(re) in place of height(e).

We can lift the notion of height to substitutions in the following way.

Definition 5.29 Given a substitution σ ≡ {X1/t1, . . . , Xn/tn}, the height of σ,
height(σ), is defined as follows.

height(σ) = max{height(ti) | i = 1, . . . , n}

Definition 5.30 (Rewriting chains) Let I be a set of completeness rules, a rewrit-
ing chain is a partial rewrite sequence

t0 ⇀
σ0
r0 t1 ⇀

σ1
r1 t2 ⇀

σ2
r2 . . .

where rj ∈ I, j = 0, 1, 2, . . . and for each ti, i = 1, 2, . . .,

ti ≡ ri−1σi−1

where ri−1 is the right-hand side of the rule ri−1.

Proposition 5.31 Let I be a set of completeness rules and

t0 ⇀
σ0
r0 t1 ⇀

σ1
r1 t2 ⇀

σ2
r2 . . .

a rewriting chain, where rj ∈ I, j = 0, 1, 2, . . . Then, for each ti, i = 1, 2, . . .,

height(ti) ≤ height(ri−1) + height(σi−1)

where ri−1 is the right-hand side of the rule ri−1.

108 5. Web Systems Verification

Proof 5.4.1 It is a direct consequence of Definition 5.28, Definition 5.29 and Defi-
nition 5.30.

Proposition 5.32 Let I be a set of bounded activated completeness rules and

t0 ⇀
σ0
r0 t1 ⇀

σ1
r1 t2 ⇀

σ2
r2 . . .

a rewriting chain, where rj ∈ I, j = 0, 1, 2, . . . Then, for each ti, i = 1, 2, . . .,

height(σi) ≤ height(σi−1)

Proof 5.4.2 Let us focus on the partial rewrite steps

ti−1 ⇀
σi−1
ri−1

ti, ti ⇀
σi
ri

ti+1

for a general i > 0. By Definition 5.30, ti ≡ ri−1σi−1 so that, the partial rewrite step
ti ⇀σi

ri
ti+1 can be given on a vertex in ri−1 or on a vertex belonging to a term in {t |

X/t ∈ σi−1}. In the former case, since the set of rules is bounded activated, we must
have height(σi) = height(σi−1), in the latter, trivially height(σi) ≤ height(σi−1). So
finally we have height(σi) ≤ height(σi−1).

Lemma 5.33 Let I be a set of bounded activated completeness rules and

t0 ⇀
σ0
r0 t1 ⇀

σ1
r1 t2 ⇀

σ2
r2 . . .

a rewriting chain, where rj ∈ I, j = 0, 1, 2, . . . Then, for each ti, i = 1, 2, . . .,

height(ti) ≤ height(ri−1) + height(σ0)

where ri−1 is the right-hand side of the rule ri−1.

Proof 5.4.3 Consider the generic partial rewrite step

ti−1 ⇀
σi−1
ri−1

ti.

By Definition 5.30 we have that ti ≡ ri−1σi−1 and by Proposition 5.31

height(ti) ≤ height(ri−1) + height(σi−1).

Moreover, by Proposition 5.32 and transitivity, height(σi−1) ≤ height(σ0).
Therefore,

height(ti) ≤ height(ri−1) + height(σi−1)
≤ height(ri−1) + height(σ0)

and the claim is proved.

Proposition 5.34 Let I be a set of bounded activated completeness rules. Then, for
each requirement re, the set of requirements derivable from re w.r.t. I is finite.

5.4. Web Specification Restrictions 109

Proof 5.4.4 Let Hre = height(re) and Reqre be the set of all requirements derivable
from re w.r.t. the set I. First, let us show that each requirement in Reqre has a
bounded height. Let re′ ∈ Reqre. If re′ ≡ re then height(re′) = Hre. Otherwise,
there is a finite rewriting chain starting from re leading to re′. Let

HI = max{height(r) | r is a right hand side of a rule in I}

HS = max{height(σ′) | re⇀σ′

r′ t, r
′ ∈ I}.

By Lemma 5.33, there exists r right hand side of a rule in I such that height(re′) ≤
height(r) + height(σ0) ≤ HI +HS.

Thus, for each re′ ∈ Reqre, we get height(re′) ≤ max{Hre, HI + HS}. Since we
have only a finite number of terms whose height is less than or equal to max{Hre, HI+
HS}, Reqre must be finite.

Now, we are ready to prove Proposition 5.35.

Proposition 5.35 Let (IN , IM) be a bounded Web specification. Then, for each re-
quirement re, the set of requirements derivable from re w.r.t. IM is finite.

Proof 5.4.5 Let Reqre be the set of all derivable requirements from re w.r.t. IM . If
a Web specification (IN , IM) is bounded there are two cases to be considered.

• The activation graph of (IN , IM) does not contain cycles, so (IN , IM) is not
recursive. It is trivial to see that the set of derivable requirements using a non-
recursive set of rules is finite.

• The activation graph of (IN , IM) contains cycles but no edge in such cycles is
labeled with nb (i.e. no edge is associated with a non-bound rule activation).
Note that, an infinite set of requirements could be generated only by such cycles.
Let C be a generic cycle in the activation graph and IM |C the set of completeness
rules labeling nodes in C. Note that, IM |C is a set of bounded activated rules.
By Proposition 5.34, for all requirement re, the set of requirement that can be
derived from re by rules in IM |C is finite. It follows immediately that also Reqre
is finite.

Let now introduce a graph structure which is a simple variant of a derivation tree.
For the sake of simplicity we call leaf a graph node with outer degree equals to zero.

Definition 5.36 (Derivation graph) Given a requirement re and a Web specifi-
cation (IN , IM), a derivation graph for re w.r.t. the set IM , is defined as follows:

• re is a derivation graph for re w.r.t. the set IM ;

• let G be a derivation graph for re w.r.t. the set IM and re′ a requirement labeling
a leaf of G. Assume that, a production step from re′ w.r.t. IM generates a tree
re′(T1, . . . , Tk) such that {T1, . . . , Ti} appears already in G and {Ti+1, . . . , Tk}
do not appear anywhere in G, for some i ∈ {0, . . . , k}. We can obtain a graph
G′ from G by:

110 5. Web Systems Verification

– replacing re′ with the tree re′(Ti+1, . . . , Tk);

– for each j ∈ {1, . . . , i}, if Tj appears in G at position uj, adding a back
edge from re′ to the node at position uj.

Then the graph G′ is a derivation graph for re w.r.t. IM .

A finite derivation graph Gre for re w.r.t. IM is a derivation graph where all leaves
are labeled with an irreducible requirement.

Note that, a finite derivation graph is also a maximal derivation graph, since all leaves
are labeled with irreducible requirements. Roughly speaking, a finite derivation graph
is a concise form of a maximal derivation tree since a maximal derivation tree can
contain infinite nodes labeled with the same requirement, while a finite derivation
graph does not contain two nodes labeled with the same requirement since uses back
edges to avoid such repetitions. Hence, a maximal derivation tree and the related
finite derivation graph share the same information.

Proposition 5.37 relates bounded Web specifications with the existence of finite
derivation graphs.

Proposition 5.37 Let (IN , IM) be a bounded Web specification. Then, for each re-
quirement re there exists a finite derivation graph containing all the requirements that
can be derived from re w.r.t. rules in IM .

Proof 5.4.6 Let Reqre be the set of all derivable requirements from re w.r.t. IM .
Since a derivation graph contains only one node for each requirement derivable from
re, the graph could be infinite if and only if Reqre is infinite. Since the Web speci-
fication is bounded, by Proposition 5.35, Reqre is finite, so, the derivation graph for
re is finite.

Given a bounded Web specification (IN , IM) and an XML document p, we can
consider the null requirement rep = 〈p, , 〉 and build the finite derivation graph Gp

for rep w.r.t. IM . Then, deleting form Gp all the back edges we obtain a tree T
containing all the requirements derivable from rep and finally V erify(T) will find all
the completeness errors inside p w.r.t. IM .

For the sake of clarity let us show an example. Consider a Web specification whose
rules are the extended rules of Example 5.5 and the XML document p of Figure 5.2.
The activation graph is very simple, it consists of two nodes, one for each rule, each of
which has a self-loop since the left hand side of each rule is partially matched inside
its right hand side. Since both the activations are bounded, the Web specification is
bounded. The activation graph is shown in Figure 5.3. The maximal derivation tree
that can be constructed starting from the requirement rep = 〈p, , 〉 is infinite and
a small fragment is shown in Figure 5.5. The corresponding finite derivation graph
is shown in Figure 5.4 where the labeling function is the same as the one in Figure
5.5. By applying function V erify over the tree obtained from the derivation graph
of Figure 5.4 by deleting all its back edges, the following errors are thrown:

5.4. Web Specification Restrictions 111

(AssociateProf(name(Mary),email()) ∨ AssociateProf(name(Mary),address())),
(AssociateProf(name(Luck),email()) ∨ AssociateProf(name(Luck),address())).

Summing up, by using bounded specifications, the completeness verification
methodology always terminates. Moreover, the information obtained by the complete-
ness analysis can be exploited to repair the considered Web contents by comparing
incomplete documents to unsatisfied requirements, since the latter ones provide the
missing information which is needed to complete the erroneous document.

<members>
<member>
<ContractProf>
<name>Joe</name>
<email>joe@univ.edu</email>
<teaching>...</teaching>

</ContractProf>
</member>
<member>
<AssociateProf>
<name>Mary</name>
<phone>1234 5678</phone>
<courses>...</courses>

</AssociateProf>
</member>
<member>
<FullProf>
<name>Paul</name>
<address>university St. 3, UniTown</address>
<assistants>
<AssistantProf>...</AssistantProf>
<AssociateProf>
<name>Luck</name>

</AssociateProf>
</assistants>

</FullProf>
</member>

</members>

Figure 5.2: XML document about academic professors.

112 5. Web Systems Verification

1: AssociateProf(name(X)) ⇀ AssociateProf(name(X),email()) ∨
AssociateProf(name(X),address()) |

containing member() <A>
2: FullProf(name(X)) ⇀ FullProf(name(X),email()) ∨

FullProf(name(X),address()) |
containing member() <A>

Figure 5.3: Activation graph for the Web specification.

< p,_,_ >

or or or

1 2 3 4 5 6

Figure 5.4: Finite derivation graph for the requirement rep.

5.4. Web Specification Restrictions 113

< p,_,_ >

or or or

1 2 3 4 5 6

or or or

7 8 9 10 11 12

.

1: 〈 AssociateProf(name(Mary)),email()), A, member() 〉
2: 〈 AssociateProf(name(Mary)),address()), A, member() 〉
3: 〈 FullProf(name(Paul)),email()), A, member() 〉
4: 〈 FullProf(name(Paul)),address()), A, member() 〉
5: 〈 AssociateProf(name(Luck)),email()), A, member() 〉
6: 〈 AssociateProf(name(Luck)),address()), A, member() 〉
7: 〈 AssociateProf(name(Mary)),email()), A, member() 〉
8: 〈 AssociateProf(name(Mary)),address()), A, member() 〉
9: 〈 AssociateProf(name(Mary)),email()), A, member() 〉
10: 〈 AssociateProf(name(Mary)),address()), A, member() 〉
11: 〈 FullProf(name(Paul)),email()), A, member() 〉
12: 〈 FullProf(name(Paul)),address()), A, member() 〉

Figure 5.5: Fragment of the maximal derivation tree for the requirement rep.

114 5. Web Systems Verification

6
Biological Systems Modeling

and Analysis

Biological systems are complex entities whose characteristic aspects derive from intri-
cate interaction schemes among components and whose behavior is thus not a simple
and direct consequence of that of their components. Studying and describing systems
with these characteristics require to overcome a reductionist attitude in favor of a sys-
temic approach that is the basis of Systems Biology, where Computer Science plays
a primary role.

There are many different computational models of biological processes, depending
on the aspects we want to focus on. We can identify two main categories of computa-
tional models: mathematical models based on differential equations to model kinetic
aspects; and symbolic/logical formalisms to module structure, information flow and
processes properties.

Models of process kinetics employ quantitative relations to express the interactions
between different parts of the system. Differential equations represent the processes by
using experimentally derived or inferred information about concentrations and rates
of change of molecules. Since these models require a great amount of detailed quan-
titative information, meeting the great difficulty of obtaining them, many stochastic
variants has been proposed. Analysis of these models by numerical and probabilistic
simulation techniques can then be performed.

The advantage of symbolic/logical models over mathematical ones is that they
allow us to represent complex biological systems in abstract terms and at different
levels of detail, depending on the information available and the questions to be studied.
This formalisms provide the means to represent system states and state changes,
and analysis tools that are based on computational or logical inference. Symbolic
models can be executed in order to simulate the system behavior and properties can
be stated by using the associated logical languages and checked by using tools for
formal analysis. A variety of formalisms initially developed to model and analyze
concurrent computer systems have been employed to develop symbolic models of
biological systems, such as: Petri nets [126], the pi-calculus [123] and its stochastic
variants [137], membrane calculi[48], statecharts [95], rule-based systems including
Rewriting Logic [117] and P-systems [133], and hybrid systems [97].

116 6. Biological Systems Modeling and Analysis

Among the logical formalisms, Pathway Logic [149, 82] (PL) is a symbolic approach
to the modeling and analysis of qualitative aspects of biological processes that is
based on rewriting logic [117]. The process of application of rewrite rules, from a
given initial state, generates computations. In the case of biological processes, these
correspond to pathways. More specifically, a PL model includes the representation
of cellular components (proteins, enzymes, etc.), their locations and their state. It
also includes representations, as rewrite rules, of basic process steps such as metabolic
reactions or intra- and inter- cellular signaling. Execution of the rules allows one to
represent and reason about the system dynamics. PL models can be transformed
into equivalent models based on Petri nets [150]; this allows one to adopt alternative
representations with different expressive capabilities for managing complexity and
analyzing properties of the biological processes under examination.
A recent extension of the Pathway Logic [1] has been proposed to represent and reason
about semiquantitative and probabilistic aspects of biological processes. Basically,
this approach annotates reaction rules with affinity information that can be used to
implement distinct simulation strategies which can also include timing information.
Although this approach improves expressiveness of standard PL, it only handles a
semi-quantitative modeling of biological processes which does not allow us to define
complex reaction rates.

Although Pathway Logic may be very useful to model biological processes and
provides a simple way to express the system dynamics, it has some important limits:
(a) PL only supports qualitative modeling of the biological events of interests. As
a matter of fact, it provides no explicit way to add quantitative information to the
models such as element concentrations in cell locations, levels of production as well as
consumption of elements occurring in a reaction, reaction thresholds, etc. (b) PL does
not provide adequate capabilities to express inhibitory actions occurring in biological
reactions, which are very common e.g. in regulatory networks. Basically, an element
acts as an inhibitor in a reaction if its concentration over a given threshold decreases
the rate of, or prevents, the reaction.

The possibility to specify qualitative relationships amongst the elements compos-
ing the system of interest is particularly useful because the biological data that express
quantitative relationships (e.g. kinetic constants or stochastic parameters) are often
hard to find or measure due to problems related to wet lab techniques. Our approach
grounds on the possibility of choosing amongst various kinds of formalisms that differ
in their expression power: expressive formalisms will be used when the available in-
formation allows us to effectively exploit their characteristics, whereas less expressive
(and less computationally expensive) formalisms will be preferred when the amount
of knowledge is limited. In this chapter we provide an extension of Pathway Logic
called Quantitative Pathway Logic (QPL for short) with the aim of overcoming the
mentioned PL limits and obtaining a more precise modeling approach while keeping
the possibility to compute with and analyze these complex systems. More specifically,
QPL efficiently integrates quantitative data (such as element concentrations, reaction
thresholds, production and consumption rates) into PL models. Besides, it allows one
to model reaction inhibitors.

To manage the different aspects of biological systems, we equipped QPL speci-

6.1. Quantitative Pathway Logic 117

fications with two equivalent computational models following and adapting the PL
approach of [150]. This allows one to adopt different representations with different
expressive capabilities for handling the complexity of the systems under examination.
On the one hand, QPL specifications can be directly formalized and executed by using
the Maude rewriting logic formalism. In this way, both model simulation and model
search can take advantage of quantitative information to yield more accurate results.
On the other hand, QPL models can be translated into an extension of the classical
Petri nets called Discrete Functional Petri Nets (DFPN), which are basically Hybrid
Functional Petri Nets (HFPN) [129] in which only discrete transitions are authorized.
By using this representation our models can be graphically visualized, simulated, and
analyzed by means of well known tools (e.g. Cell Illustrator [128]).

6.1 Quantitative Pathway Logic

A QPL model is a rewrite theory Q = (Σ, E,R) which models biological systems. A
QPL model is naturally divided in two parts: the equational part and the rule part.
The former allows one to represent the cellular states, while the latter specifies the
system dynamics.
The Equational Part. This part corresponds to the equational theory (Σ, E) of the
QPL model Q. It provides sorts and operators useful to model molecular components
and more in general all the entities which are involved in a biological system.

As in the standard PL framework, the main sorts for entities include Chemical,
Protein, Complex, which are all subsorts of sort Thing that specifies a generic entity.
Cellular compartments are identified by sort Location, which provides location names
to each compartment, while Modification is a sort used to classify Post-transactional
protein modifications, which are defined by the operator [-] (e.g. the term [EgfR
- act] represents the epidermal growth factor Egf receptor in an activated state).

Besides that, we provide a special sort QThing which is represented by the pair
(Thing,R+), where R+ specifies the sort for the non-negative real numbers. The sort
QThing is employed to manage entity concentrations. For instance, (Erk, 3.3) might
model the fact that the concentration of the the Mitogen-Activated Protein Kinase
Erk is 3.3 units. We call occurrence to any term of sort QThing. A soup is a set of
occurrences and cellular compartments that is identified by type Soup.

Now, a cell state is represented by a term of the form [cellType | locs], where
cellType specifies the type of cell and locs represents the contents of a cell organized
by cellular compartments (or locations). Each location is modeled by a term of the
form { locName | comp }, where locName is a name that identifies the location (e.g.
CLm may represent the cell membrane location), and comp is a soup in that location.

Figure 6.1 shows a fragment of the Maude functional module that implements the
sorts and operations we presented so far.

Note that the Soup constructor __ is given the equational attributes comm assoc
id:empty, which allow us to get rid of parentheses and disregard the ordering among
the different elements within the list. When the equational part contains axioms for
associativity and commutativity of operators, we talk about AC pattern matching.

118 6. Biological Systems Modeling and Analysis

fmod CELL is
-- sort declaration
sorts Protein Family Composite DNA Chemical Signature Stimulus Thing

QThing Location LocName Cell CellType Soup .
subsorts Protein Family Composite DNA Chemical Signature < Thing .
subsorts Thing QThing Location Cell < Soup .

-- Occurrence item: pair of a Thing (i.e. an entity) and its quantity
op (_,_) : Thing Float -> QThing [ctor] .

-- Generic mixture of entity occurrences
op empty : -> Soup .
op __ : Soup Soup -> Soup [assoc comm id: empty] .

-- Locations in the cell
ops CLo CLm CLi CLc ... : -> LocName .
op {_|_} : LocName Soup -> Location .
ops Cell MuscleCell Fibroblast ... : -> CellType .

-- Cell object type
op [_|_] : CellType Soup -> Cell .
endfm

Figure 6.1: Fragment of Maude code that represents cell states.

6.1. Quantitative Pathway Logic 119

AC pattern matching is a powerful matching mechanism, which we employ to inspect
and extract the partial structure of a term. In particular, we take advantage of it
when describing the system dynamics by means of rewrite rules where we want to
specify only a partial content of cells.
The Rules part. Given a QPL model Q = (Σ, E,R), the rule part is specified via
the set of rewrite rules R, which contains rewrite rules that formalize individual reac-
tion steps. In the case of signal transduction, rewrite rules represent processes such
as activation, phosphorylation, complex formation, or translocation. Basically, as in
PL, QPL rewrite rules transform a cell state into another one via pattern matching
modulo an equational theory. Moreover, this transformation in QPL can take ad-
vantage of the quantitative information associated with the entities into play. In this
context, it is very easy to define promoters (entities that enables a reaction when their
concentration is over a certain threshold), inhibitors (entities that blocks a reaction
when their concentration is over a certain threshold), tests (entities not consumed by
a reaction), and reaction rates modeled via consumption and production functions.
Let us illustrate the modeling capabilities by means of some examples.

Example 6.1 (Promoters and tests) Consider a reaction modeled by the follow-
ing rewrite rule.

ex1 :{CLi | cli (A, a)}{CLm | clm ([B-GDP], b)(D, d)} ⇒
{CLi | cli (A, a/2.0)(C, a/2.0 + b)}
{CLm | clm (D, d)} if a >= 3.5.

The rule states that, if we detect a cell state in which (1) an entity A with concentration
a is inside the cell membrane (location CLi); and (2) entities [B-GDP] (i.e. entity B
bounded to a molecule of Guanosine diphosphate) and D with concentrations b and d

are on the border of the cell membrane (location CLm), then A promotes the reaction
whenever its concentration is greater than or equal 3.5 units and a new cell state is
generated in which Reactants A and [B-GDP] are consumed: the former is consumed
according to the consumption function (a/2.0) and the latter is completely consumed.
Entity C is produced inside the membrane according to the production function a/2.0+
b, while D is a test whose concentration is left unchanged (its presence is necessary
for the reaction to take place but there is no need to consume it).

Note that production functions may depend on concentrations of several reactants.
Instead, we assume that the consumption function of a reactant A must depend only
on the concentration of A. Inhibitory behaviors are easily modeled by means of condi-
tional rules. For this purpose, we first define the auxiliary function
checkInhibitors(s, (i1, t1) . . . (in, tn)) which takes as input a soup s and a list of
occurrences (ij, tj), and it returns true if there does not exist any occurrence (ij, cj)
in s such that cj ≥ tj. Now, an inhibitor ij is an entity located in some compart-
ment s which prevents a reaction to take place whenever its concentration cj is over
a certain threshold tj. This amounts to saying that a set of inhibitors (i1, . . . , in)
can block a reaction iff checkInhibitors(s, (i1, t1) . . . (in, tn)) = false. Therefore,

120 6. Biological Systems Modeling and Analysis

we can model a reaction containing inhibitors i1 and i2 by a rewrite rule of the form
t⇒ t′ if checkInhibitors(s,(i1, t1)(i2, t2)).

Example 6.2 (Inhibitors) Consider a reaction modeled by the following rewrite
rule.

ex2 : {CLi | cli (A, a)} ⇒ {CLi | cli (C, a)} if checkInhibitors(cli, (B, 4.0))

The rule states that, when there exists a cell state in which an entity A with con-
centration a appears inside the cell membrane (location CLi), then the cell state is
transformed by consuming the reactant A completely and produces a units of entity C

provided that there is no inhibitor B with concentration greater than 4.0 inside the cell
membrane (i.e. in the location CLi). Note that B is not consumed by the reaction.

6.1.1 Simulation and analysis of QPL models

Quantitative Pathway Logic models are rewrite theories, hence executable specifica-
tions, since they describe system states and provide rules that specify the way in
which states may change. In other words, we can directly exploit the Maude rewrite
engine to run our models. In particular, Maude supports the forward simulation
which is the first kind of analysis that can be carried out given such an executable
specification. It consists in running the model from a given initial state for a fixed
number of steps or until a steady state has been reached. It is very useful for initial
exploration of the transition graph but not suitable for understanding the dynamics
of systems having infinite behaviors. Maude is also equipped with forward search fa-
cilities, which allow one to perform a breath-first search of all rewrite paths generated
for a given initial state. If the specification is finite, the forward search will find all
possible outcomes from a given initial state. Moreover, the search can be constrained
to find only states satisfying a given property or until a fixed number of rewrite steps
have been performed.

In order to execute both forward simulation and forward search, we need to provide
an initial state. Initial states (called dishes) are encoded in our rewriting setting by
means of terms of the form PD(out cellstate), where cellstate represents a cell
state and out specifies a soup of ligands and other molecular components in the cells
surroundings which may interact with the cell.

Example 6.3 Consider the following dish

PD({(Egf, 2.0)}[HMEC|{CLo|empty}{CLm|(EgfR, 1.0)(PIP2, 3.0)}
{CLi|([Hras− GDP], 4.0)(Src, 5.0)}
{CLc|(Gab1, 5.0)(Grb2, 6.0)(Pi3k, 2.0)(Plcg, 7.0)(Sos1, 1.0)}]).

The dish above contains the cell state of a cell of type HMEC that is made up of three
locations CLo, CLi and CLc. Each location contains a soup of occurrences. Moreover,
the ligand Egf is present in the cell surroundings with concentration 2.0.

6.1. Quantitative Pathway Logic 121

Now, given an initial state and a QPL model, we can analyze the behavior of
the system by means of Maude forward simulation and search capabilities. Let us
illustrate it by means of some examples.

Example 6.4 Assuming that a QPL model for the signal transduction network of the
epidermal growth factor receptor (EgfR) is given, we may run the model starting from
an initial cell state by means of the Maude rewrite command (abbreviated rew), that
is, we may explore the behavior of the specified system for different initial cell states.
For instance, the Maude query

rew [100] PD((Egf,2.0) [HMEC | {CLm | (EgfR,1.0) (PIP2,3.0)}
{CLi | ([Hras-GDP],4.0) (Src,5.0)}])

asks Maude to perform at most 100 rule applications (i.e. rewrite steps) to rewrite
the given initial state and returns the final cell state we reached. It is also possible to
rewrite without specifying an upper bound on the number of rule applications. Since
the model may be non-deterministic (i.e. there might be several computations that start
from the same initial state), Maude selects only one of these computations by means
of a predetermined rewrite strategy. Therefore, the returned cell state may represent
only one of the possible system behaviors.

Maude also provides the frew which allows one to implement user-defined rewrite
strategies. As explained in Example 6.4, the forward simulation explores only one
possible model behavior. In order to analyze all possible model dynamics we may
employ the Maude search feature as shown in the following example.

Example 6.5 Assuming the same QPL model of the previous example, we want to
know whether —starting from a dish containing a given concentration of the ligand
Egf— it is possible to produce the Mitogen-Activated Protein Kinase Erk (as described
in [149]) with a concentration greater than 3.6 units. Such analysis can be modeled
by means of the following Maude forward search query:

search [1]
PD((Egf,2.0) [HMEC | {CLo | empty} {CLm | (EgfR,1.0)(PIP2,3.0)}
{CLi | ([Hras-GDP],4.0)(Src,5.0)}
{CLc | (Gab1,5.0)(Grb2,6.0)(Pi3k,2.0)(Plcg,7.0)(Sos1,1.0)}])
=>+ PD(out:Soup [HMEC|cyto:Soup {CLi|(Erk,k)}]) such that k > 3.6 .

The term before the right arrow denotes the initial state, while the one after the arrow
specifies the pattern of the state we are looking for along with the condition that Erk
has to appear with a concentration higher than 3.6.

Finally, also Maude Model checking can be employed to analyze QPL models.
Model checking enlarges the set of properties which can be investigated. While search
only concerns with properties of individual states, model checking deals with proper-
ties of computations (i.e. pathways). In this context, the model-checker is typically
asked to check the assertion that there is no computation starting from the given
initial state satisfying the property of interest; thus a path can be extracted from a
counterexample, if one is found.

122 6. Biological Systems Modeling and Analysis

Example 6.6 By using Maude modelCheck function we can easily verify whether,
starting from a given initial state istate containing Egf, it is possible to activate
the entity Src with a concentration greater than 4.5 units without having previously
produced the entity Rala-GDP. To this purpose, we define a parametric property en-
tAct(e,n), which is satisfied when the CLi location contains an occurrence of entity
e with a concentration higher than n. The property might be specified as follows
eq PD(out:Soup [HMEC|cyto:Soup {CLi|cli:Soup(e,k)}]) |= entAct(e,n) = k
> n . Now, we can model the desired analysis by means of the following Maude model-
checking query:

red modelCheck(istate,
[]∼(<> entAct([Src-act],4.5) /\

(entAct([Src-act],4.5) |-> entAct(RalaGDP,0.0))))

The query is expressed in linear temporal logic1 (LTL) and consists of a conjunction
of two sub-queries, the former asks for the activation of Src with a concentration of
4.5 units and the latter asks for a sequence of events (expressed by the |-> operator)
where the production of Rala strictly follows the activation of Src.

6.2 Representing QPL models via Discrete Func-
tional Petri Nets

QPL models can be represented by means of Discrete Functional Petri Nets (DFPN)
which are restricted HFPNs [129] still able to model quantitative aspects of a given
system by means of functional discrete transitions. The advantage of this alternative
formalism is twofold. On the one hand, graphical representations are naturally derived
from DFPNs, which allow one to visualize the model of interest and to graphically
interact with it by using common available tools (e.g. Cell Illustrator). On the other
hand, analysis of DFPNs can profit from well-known techniques which have been
already developed for the Petri net settings. In what follows, we formalize DFPNs by
borrowing terminology and notation from [129].

6.2.1 Discrete Functional Petri Nets

Definition 6.7 (Marking) Given a finite set of places P , a marking of P is a
mapping M : P → R+. Given p ∈ P , M(p) is called the mark of p. We denote the
set of all possible markings of P by M. Given two markings M and M ′ of P , we say
that M ≥ M ′ iff for each p ∈ P , M(p) ≥ M ′(p). Moreover, we say that M and M ′

are incomparable if M �M ′ and M ′ �M .

Let M be the set of all markings of the set of places P , we denote the set of all
functions mapping a marking of P into a non-negative real number as FP = {f | f :
M→ R+}. Functions in FP are called update functions.

1Maude supports an extension of LTL called LTLR [22].

6.2. Representing QPL models via Discrete Functional Petri Nets 123

Definition 6.8 (Discrete Functional Petri Nets) A Discrete Functional Petri
Net (DFPN) is a triple P = (P, T,C) where P = {p1, . . . , pn} is a non-empty fi-
nite set of places, T = {t1, . . . , tm} is a non-empty finite set of transitions such that
P ∩ T = ∅, and C is a tuple (PT, TP, a, w, u) defined as follows:

• PT ⊆ P × T and TP ⊆ T × P . Elements in PT (resp. TP) are called in-
put connectors (resp. output connectors). Each connector has a connector
type which is given by a function a : PT ∪ TP → {process, test, inhibitor,
output}. Input connectors whose type is process (resp. inhibitor, test) are
also called process (resp. inhibitor, test) connectors.

• w : PT → R+ is a mapping, called threshold labeling, that assigns non-negative
real numbers to input connectors.

• u : PT ∪ TP → FP is a partial mapping, called update labeling, such that u(c)
is defined iff a(c) ∈ {process, output} (i.e. mapping u assigns update functions
to process and output connectors only).

Connectors in a DFPN are labeled by threshold and update labeling. More specif-
ically, threshold labeling puts non-negative real numbers (i.e. thresholds) on input
connectors (p, t) and are used to fix the minimum threshold on the mark of place
p which is required to enable/disable transition t. Update labeling decorates both
process and output connectors with update functions and is employed to change the
mark of a place p whenever a transition involving p is fired. As we will see in Section
6.3, in order to make backward analysis of DFPNs possible update functions must
fulfill the following conditions: (i) for each output connector (t, p), its update func-
tion can depend only on the marks of those places p′ such that (p′, t) ∈ PT ; (ii) for
each process connector (p, t), its update function can depend only on the mark of p.
Update functions fulfilling conditions (i), and (ii) are said to be well-behaved.

The enablement relation of a transition t in a DPFN depends on the type of the
input connectors (p, t). Basically, an inhibitor connector enables transition t when the
mark of p is under a certain threshold; process and test connectors enable transition
t whenever the mark of p is over the threshold. More formally,

Definition 6.9 Let P = (P, T,C), where C = (PT, TP, a, w, u), be a DFPN. Given
a transition t ∈ T and a marking M ∈M of P , we say that t is enabled in M iff for
each input connector c = (p, t) ∈ PT the following conditions hold:

1. M(p) < w(c) if a(c) = inhibitor.

2. M(p) ≥ w(c) if a(c) 6= inhibitor.

Otherwise transition t is said to be disabled in M . We denote the set of all the
transitions which are enabled in M by E(M).

Now, given a DFPN P, we can define computations over P as follows.

124 6. Biological Systems Modeling and Analysis

Definition 6.10 Let P = (P, T,C), where C = (PT, TP, a, w, u), be a DFPN. Let
M,M ′ ∈ M be two markings of P and t be a transition in T such that t ∈ E(M).
Then, M evolves into M ′ by using t in P (in symbols, P ` M

t7→ M ′) iff M ′ =
DFPN One Step(P,M, t), where DFPN One Step(P,M, t) is a function defined as
follows:

DFPN One Step(P,M, t)
for each (p, t) ∈ PT with a(p, t) = process: M ′(p)←M(p)− u(p, t)(M)
for each (t, p) ∈ TP : M ′(p)←M(p) + u(p, t)(M)
return M ′

A computation in P is a (possibly infinite) sequence P ` M0
t07→ M1

t17→ M2
t27→ . . .

Marking M0 is called initial marking.

Roughly speaking, a marking M can evolve into a marking M ′ by firing an enabled
transition t that produces M ′ from M in the following way: for each process connector
(p, t), the mark M(p) is consumed by applying the update function labeling (p, t); for
each output connector (t, p), the mark M(p) is increased by applying the update
function labeling (t, p); for each inhibitor/test connector (p, t), the mark M(p) is left
unchanged

Transitive (7→+) and transitive and reflexive (7→∗) closures of relation 7→ are de-
fined in the usual way. Note that several transitions can be enabled at the same time
in a DFPN producing non-deterministic computations.

6.2.2 Translating QPL models into DFPNs

Given a QPL model expressed by a rewrite theory Q = (Σ, E,R), we can easily
derive a DFPN having the same model behavior which will be denoted by PQ. Let
us start translating QPL models without entity or cell type variables. Basically, the
translation procedure produces a DFPN transition for each rule r that belongs to R.
Let us see how the translation of a single rule into a transition proceeds.
Let r = (l : t⇒ t′ if c), we define OL(r) = {(e, q, loc) | occurrence (e, q) appears in t
in location loc}, OC(r) = {(e, q, loc) | entity e appears in predicate checkInhibitors
in c associated to location loc}, and OR(r) = {(e, q, loc) | occurrence (e, q) appears
in t′ in the location loc}2. First of all, for each (e, q, loc) ∈ OL(r)∪OR(r)∪OC(r), we
define a place 〈e, loc〉 whose marking M(〈e, loc〉) is represented by the placeholder q.
Intuitively, each place in the resulting DFPN will model a given entity e that belongs
to a compartment loc, while the concentration q provides information regarding the
mark of the place.

Then, we generate the transition l, where l is the label of the rule r under exami-
nation. Transition l is connected to the generated places via input/output connectors
in the following way. For each (e, q, loc) ∈ OL(r) we generate an input connector
con = (〈e, loc〉, l) whose type a(con) depends on the role of the entity e in the original

2As usual locations are identified by their location name.

6.2. Representing QPL models via Discrete Functional Petri Nets 125

Figure 6.2: Graphical representation of DFPN of Example 6.11.

rule r (i.e. is e a process or a test?). For each (e, loc) ∈ OC(r) we generate an input con-
nector con = (〈e, loc〉, l) whose type a(con) = inhibitor. For each (e, q, loc) ∈ OR(r)
if a(〈e, loc〉, l) 6= test we generate an output connector con = (l, 〈e, loc〉) whose type
a(con) = output. Finally, thresholds and update functions are defined according to
the expressions appearing in the rule condition.

Entity variables, which may appear in QPL rules, may range over a finite set of
values (e.g. a class of ligands which may interact with a given receptor). If a rule
contains an entity variable, we translate this rule by using as many transitions as the
number of values the variable may assume. In this case the transition label consists
in the rule label, suffixed with]1,]2, . . . if there are multiple instantiations. Given a
rule r and a triple (e, q, loc) ∈ OL(r) ∪ OR(r) ∪ OC(r) with e entity variable over a
range of values {v1, . . . , vn}, we produce the set of transitions {t1, . . . , tn} labeled with
{l]1, . . . , l]n} where l is the label of rule r. Moreover, we replace (e, q, loc) with the
set of triples {(v1, q, loc), . . . , (vn, q, loc)} and we proceed by creating the necessary
input and output connectors as explained above.

Example 6.11 Consider an entity type A that subsumes entities A1 and A2 and the
following simple rule with entity variable ?Var:A
var : {CLm|clm (?Var:A,a)(B,b)} ⇒ {CLm|clm ([?Var:A-act],a)(B,b)}
which represents the activation of an entity of type A whenever entity B is present.
Then there will be produced two distinct transitions (var]1, var]2) and places
(<A1,CLm>, <A2,CLm>, <[A1-act],CLm>, <[A2-act],CLm>, <B,CLm>) connected
as shown in Figure 6.2. In figure, places are represented by circles, transitions by
rectangles, test edges by dashed arrows and process and output edges by solid arrows.

Note that rule’s variables not representing concentrations or entity type (e.g. cml,
cli, etc.) are not encoded into the net PQ. Such variables have only an auxiliary
purpose in the QPL model. Indeed, they are used to enable pattern matching, which
is an evaluation mechanism not employed in DFPNs, and hence they do not have a
counterpart in the resulting net model.

Figure 6.3 shows a DFPN obtained by the the translation of rules ex1 and ex2 of
Examples 6.1 and 6.2. The complete description of the translation method is shown in
Algorithms 3 and 4. The pseudo-code shown in Algorithm 3 describes the conversion

126 6. Biological Systems Modeling and Analysis

H = (P, T, C)
P = {<A,CLo>, <C,CLo>, <[B-GDP],CLm>, <D,CLm>, <A,CLi>, <B,CLi>, <C,CLi>}
T = {ex1, ex2}
C = {In, Out, a, w, u}
In = {(<A,CLo>,ex1), (<[B-GDP],CLm>,ex1), (<D,CLm>,ex1), (<A,CLi>,ex2),

(<B,CLi>,ex2)}
Out ={(ex1,<C,CLo>), (ex2,<C,CLi>)}

a(c) =

8>><>>:
process if c ∈ {(<A,CLo>,ex1),(<[B-GDP],CLm>,ex1),(<A,CLi>,ex2)}
test if c =(<D,CLm>,ex1)

inhibitor if c =(<B,CLi>,ex2)

output if c ∈ {(ex1,<C,CLo>), (<ex2,C,CLi>)}

w(c) =

3.5 if c =(<A,CLo>,ex1)

4.0 if c =(<B,CLi>,ex2)

u(c) =

8>>>><>>>>:
A CLo q/2.0 if c =(<A,CLo>,ex1)

[B-GDP] CLm q if c =(<[B-GDP],CLm>,ex1)

A CLo q/2.0 + B CLm q if c =(ex1,<C,CLo>)

A CLi q if c =(<A,CLi>,ex2)

A CLi q if c =(ex2,<C,CLi>)

Figure 6.3: DFPN encoding of rules ex1 and ex2.

of a set of rules where entity variables are considered as normal entities. Algorithm
4 modifies the DFPN produced by Algorithm 3 if the synthesized rule would contain
entity variables. More precisely, the DFPN transition corresponding to the considered
rule is replaced by a finite set of new transitions where the variable is replaced by the
values it can assume.

A PL dish, that is an initial state for a QPL model, is naturally encoded into an
initial marking for the resulting DFPN in which we assign a given mark to (some of)
the places 〈e, loc〉 of the net.

6.2.3 Model equivalence.

Given a QPL model Q, the resulting DFPN PQ is equivalent to Q in the sense that
computations are preserved. In other words, any computation over Q is mapped to a
computation over PQ and vice versa. The equivalence holds under certain conditions
on the translation that we need to enforce. Our approach follows and adapts the pro-
posal presented in [150] by Talcott and Dill for establishing the equivalence between
Pathway Logic and standard Petri nets.

Let Q be a QPL model and PQ the DFPN obtained from Q. Let SQ be the set
of all possible (ground) cell states of Q, and MQ be the set of all possible markings
of PQ.

We define a mapping s2m : SQ → MQ which maps a cell state s ∈ SQ into
a marking Ms ∈ MQ such that, for each entity e that appears in a location loc
with concentration q, Ms(〈e, loc〉) = q. We define the inverse mapping of s2m by
m2s : MQ → SQ, and thus we have m2s(s2m(s)) = s for any cell state s ∈ SQ. Since

6.2. Representing QPL models via Discrete Functional Petri Nets 127

Algorithm 3 Conversion of a set of QPL rules without variables.
1: procedure QPL2DFPN(R) . R is a set of QPL rules
2: P = T = PT = TP ← ∅, a,w, u undefined . DFPN initialization
3: for each rule r ∈ R having name rn, left/right-hand side lhs/rhs and con-

ditions cond do
4: T ← T ∪ {rn}
5: for each occurrence (Thing,qexp) appearing in r at location Loc do
6: P ← P ∪ <Thing,Loc>
7: end for
8: for each occurrence (Thing,qexp) appearing in rhs at location Loc do
9: if (Thing, qexp) appears also in lhs then

10: Conn ← {(<Thing,Loc>,rn)}, PT = PT ∪ Conn
11: if (qexp < val) appears in cond then
12: w(Conn) ← val, a(Conn) ← inhibitor
13: else if (qexp > val) appears in cond then
14: w(Conn) ← val, a(Conn) ← test
15: else
16: w(Conn) ← 0, a(Conn) ← test
17: end if
18: end if
19: if (Thing, qexp’) appears also in lhs with qexp 6= qexp’ then
20: Conn ← {(<Thing,Loc>,rn)}, PT ← PT ∪ Conn
21: a(Conn) ← process
22: qexp ← qexp where variable has been replaced by Thing Loc q
23: u(Conn) ← qexp
24: if (qexp > val) appears in cond then
25: w(Conn) ← val
26: else
27: w(Conn) ← 0
28: end if
29: end if
30: if (Thing, qexp) does not appear in lhs then
31: Conn ← {(rn,<Thing,Loc>)}, TP ← TP ∪ Conn
32: a(Conn) ← output
33: qexp ← qexp where variables have been replaced by correct names
34: u(Conn) ← qexp
35: end if
36: end for
37: for each occurrence (Thing,qexp) appearing in lhs at location Loc do
38: if (Thing, qexp’) does not appear also in rhs then
39: Conn ← {(<Thing,Loc>,rn)}, PT ← PT ∪ Conn
40: a(Conn) ← process
41: u(Conn) ← Thing Loc q
42: if (qexp > val) appears in cond then
43: w(Conn) ← val
44: else
45: w(Conn) ← 0
46: end if
47: end if
48: end for
49: end for
50: return H = (P, T, 〈PT, TP, a, w, u〉)
51: end procedure

128 6. Biological Systems Modeling and Analysis

Algorithm 4 Procedure to manage entity variables. We consider an entity variable
?var:Type to appear in rule r, and we consequently modify the DFPN produced by
Algorithm 3 as follows.

1: procedure DFPNModVar(?var:Type,r,H) . H = (P, T, 〈PT, TP, a, w, u〉)
2: Let V be the finite set of values the variable ?var:Type may assume
3: Let t be the petri net transition corresponding to rule r
4: Let (<?var:Type,Loc>) the Petri net place representing entity variable

?var:Type appearing in rule r in location Loc
5: Let C ∈ PT or TP be the connector between place (<?var:Type,Loc>) and

transition t
6: i = 1
7: for each v ∈ V do
8: T ← T ∪ {t#i}
9: P ← P ∪ {(<v,Loc>)}

10: if C is an input connector then
11: NC ← (<v,Loc>,t#i)
12: w(NC) ← w(C)
13: PT ← PT ∪ {NC}
14: else
15: NC ← (t#i, <v,Loc>)
16: TP ← TP ∪ {NC}
17: end if
18: a(NC) ← a(C)
19: u(NC) ← u(C)
20: i ← i+1
21: end for
22: T ← T - {t}
23: P ← P - {(<?var:Type,Loc>)}
24: unset (a(C))
25: unset (w(C))
26: unset (u(C))
27: PT ← PT - C
28: TP ← TP - C
29: return H
30: end procedure

6.2. Representing QPL models via Discrete Functional Petri Nets 129

cell states are terms which can be built upon contexts and holes, we extend s2m to
contexts and holes in such a way that s2m(C[t]) = s2m(t)∪s2m(C). Therefore, given
a place 〈e, loc〉 of PQ, which is obtained from a cell state s = C[t] ∈ SQ, where C is a
context with a hole at location locC , the mark of 〈e, loc〉 w.r.t. the mapping s2m(C[t])
is defined as

s2m(C[t])(〈e, loc〉) =

{
s2m(t)(〈e, loc〉) if loc = locC

s2m(C)(〈e, loc〉) otherwise

In order to guarantee the computational equivalence between QPL models and
their DFPN counterparts, we need to enforce a constraint over the rules of QPL
models. Let us see an example that illustrates some issues related to the model
translation which may arise.

Example 6.12 Consider the two following QPL rules:

r1 : {CLm | (A, a) {CLc | cyto (B, b)}} ⇒ {CLm | (A, a) ([B-act], b) {CLc | cyto}}
r2 : {CLm | clm (A, a) {CLc | cyto (B, b)}} ⇒ {CLm | clm (A, a) ([B-act], b) {CLc | cyto}}

where cyto and clm are “anonymous” variables matching any other component located
in the cytoplasm or cell membrane, respectively.

Consider now the state s = {CLm|(A, 3.3)(C, 4.7){CLc|(B, 0.1)(D, 0.9)}}. The rule
r2 applies to s but r1 does not because it lacks variable clm which enables the pattern
matching between s and the lhs of r1 on the location Clm. On the other hand, r1
and r2 are translated into transitions t1 and t2 that are equal modulo renaming of
the transition labels. In particular, t1 and t2 connect the same places via the same
input/output connectors. Therefore, t1 is enabled whenever t2 is, and vice versa.
Clearly, this fact generates a discrepancy between the computational behaviors of the
QPL model and the corresponding DFPN.

To avoid the situation presented in Example 6.12, we basically forbid rules like r1
from being specified in QPL models.

Definition 6.13 Let Q = (Σ, E,R) be a QPL model. Then Q is well-specified iff for
each rewrite rule r ∈ R, each location Loc appearing in the lhs or rhs of r contains a
variable loc.

Note that the QPL model of Example 6.12 is not well-specified.
Given a DFPN H = (P, T, 〈PT, TP, a, w, u〉) and a transition t ∈ T , we may

denote by Pt the set of places affected by t, that is, the set of places whose marking
is modified when transition t is fired. The set Pt is exactly the set of places p such
that there is a connection (p, t) ∈ PT or a connection (t, p) ∈ TP . The same idea can
be expressed by considering a transition step from a marking M to a marking M ′ by
firing transition t, so that we can decompose M and M ′ w.r.t. transition t as follows:
M = M(Pt) ∪M(P − Pt) and M ′ = M ′(Pt) ∪M(P − Pt). What we want to show
now is a parallelism between rewriting steps in a QPL model and transition steps in
the corresponding DFPN.

130 6. Biological Systems Modeling and Analysis

Let r2t be a function that maps each rule r ∈ R into the corresponding transition
r2t(r) of PQ. Then, the following result holds:

Proposition 6.14 (Rule2Transition) Let Q = (Σ, E,R) be a well-specified QPL
model, r ∈ R a rule and s a state. Then,

s
r→ s′ ⇔ s2m(s)

r2t(r)7−→ s2m(s′)

Proof 6.2.1 (⇒)
The state s rewrites to s′ via rule r iff s = C[σ(lhs)], σ(cond) holds, and s′ =
C[σ(rhs)]. It follows immediately that s2m(s) = s2m(C) ∪ s2m(σ(lhs)), where
s2m(σ(lhs)) corresponds to a marking over Pr2t(r) and s2m(C) corresponds to a mark-
ing over P − Pr2t(r). Moreover, since the conversion algorithm maps rule conditions
in the threshold function of DFPNs, and Q is well-specified, if σ(cond) holds, then
s2m satisfies the conditions stated in Definition 6.9, and, hence, transition r2t(r) is
enabled by marking s2m(s). Finally, firing transition t will modify only the marking
s2m(σ(lhs)) in s2m(σ(rhs)), so the whole marking would be s2m(C)∪s2m(σ(rhs)) =
s2m(s′).
(⇐)
Since marking s2m(s) enables transition r2t(r), the conditions stated in Definition 6.9
are satisfied by marking s2m(s), and moreover we can decompose s2m(s) in a marking
M1 over Pr2t(r) and a marking M2 over P −Pr2t(r). For the conversion of QPL rules
into transitions, the state m2s(M1) should be a term that E-matches with lhs, that
is, m2s(M1) = σ(lhs). Therefore, m2s(M1 ∪M2) should be a term C[σ(lhs)]. Since
M1∪M2 = s2m(s) we have that s = C[σ(lhs)]. Since marking s2m(s) enables r2t(r),
substitution σ must satisfy condition cond, and, hence, s enables a rewriting step via
rule r that produces term C[σ(rhs)]. Note that, the marking s2m(s′) should be the
union of marking M2, which is left unmodified, and a marking M ′1 over Pr2t(r). For the
conversion algorithm, the state m2s(M ′1) should be the term σ(rhs), so m2s(M ′1∪M2)
should be the term C[σ(rhs)], but M ′1 ∪M2 = s2m(s′), and, hence, s′ = C[σ(rhs)].

The equivalence result between the two computational models is stated by the fol-
lowing theorem.

Theorem 6.15 Let Q = (Σ, E,R) be a well-specified QPL model and PQ be the
DFPN obtained from Q. Then, the following result hold:

Q ` s0
r1→ s1 . . .

rk→ sk ⇔ PQ ` s2m(s0)
r2t(r1)7−→ s2m(s1) . . .

r2t(rk)7−→ s2m(sk)

where si ∈ SQ, rj ∈ R

Proof. By induction on the computation length k. The base case with k = 0 is trivial
since the initial marking is s2m(s0), while the inductive step is given by application
of Proposition 6.14.

6.3. Reachability analysis over DFPNs 131

6.3 Reachability analysis over DFPNs

Given a DFPN description of a QPL model, we can perform some kinds of analysis.
First, we can perform a topological analysis of the net by disregarding the quantitative
information, in order to find pathways of interest, that are sets of transitions that could
be possibly enabled in a computation starting from a set of initial places and reaching
a set of goals. Then, once obtained a pathway of interest, we can refine the analysis
by exploiting the quantitative information by performing a reachability analysis over
the subnet.
Reachability analysis. Let us first introduce the backward reachability problem
over DFPNs. Given a DFPN H, and a set of goal markings Mg over H, we want to
find the set of all incomparable minimal markings M over H, such that the behavior
of the net starting from any marking M ∈M may eventually reach a marking M ′ ≥
Mg ∈Mg. The set M is said to be:

• incomparable, that means, for each pair of markings M , M ′ ∈ M, M and M ′

are incomparable;

• minimal, which means that for each marking M ≤ M ′ ∈ M, there is no
computation through the net, that starts from M , and leads to a marking
M ′′ ≥Mg ∈Mg;

Algorithm 5 An algorithm for backward reachability over DFPNs
1: procedure BackwardReach(H,Mg) .Mg is a set of goal markings for a

DFPN H
2: M←Mg

3: M′ ← ∅
4: while M 6=M′ do
5: M′ ←M
6: M← BReach One Step(H,M′)
7: end while
8: return M
9: end procedure

10: procedure BReach One Step(H,Mg)
11: calculate the set of minimal incomparable markings M such that for each

M ∈M, M 7→M ′ ≥Mg where Mg ∈Mg

12: return M.
13: end procedure

This can be performed by using the backward state reachability analysis over
well structured transition systems presented in [2]. A sketch of the algorithm for
backward reachability over DFPNs (valid for Petri nets too) is presented in pseudo
code in Algorithm 5. The basic step in the backward reachability analysis, which
is described by procedure BReachOneStep, takes a set of goal markings Mg and
computes the set of all possible minimal incomparable markings Monestep such that

132 6. Biological Systems Modeling and Analysis

for each M ∈ Monestep, M
t7→ M ′ ≥ Mg ∈ Mg by firing a certain transition t

once. By applying many times the basic step, we eventually reach a stable set of
incomparable minimal markings M, as described by procedure BackwardReach. As
shown in [2], the well-structurness of Petri nets (and DFPNs too) w.r.t. the ordering
≤ ensures the termination of the procedure.
Suppose that there are not inhibitor connectors in the considered DFPN subnet, and
for each process and output connector its update function is a constant value. When
using this constrained DFPNs, the backward reachability procedure is very simple
and allows us to compute the set of minimal incomparable markings M.

When more complex update functions are considered, we may obtain a set of
sufficient but not minimal markings. More precisely, when the update function is
not a constant value but it is expressed as a function of the marking we are looking
for, that is, the update value depend on the mark (still unknown) of places, we are
not able to derive minimal markings, but we may approximate them. We developed
two possible methods to approximate a minimal marking. The first one has a higher
convergence speed but the approximation obtainable is quite coarse. The second one
has a slow convergence speed but the approximation is finer and sometimes reaches
the optimum. Let us describe them with an example.

Example 6.16 Consider a simple DFPN H = ({P1, P2}, {t}, {{c1}, {c2}, w, u}),
where c1 = (P1, t), c2 = (t, P2), w(c1) = 2.0, u(c1) = P1/3, u(c2) = P1/2. Let
us denote the marking as a pair (P1, P2) and assume our goal Mg is (0.0, 4.0), which
asks for at least 4 tokens in place P2.
Method 1. The first method calculates the minimal marking needed to reach the goal
by executing the transition only once. In the example, if we consider the production
rate of c2 (i.e. u(c2)), we obtain marking (8.0, 0.0), since (8.0, 0.0) t7→ (8/3, 4.0) ≥
(0.0, 4.0). Note that, since this method considers one execution for each transition, it
may disregard the consumption rate associated to input arcs (u(c1) in the example).
Method 2. The second method employes transitions threshold as the minimum num-
ber of tokens to let a transition fire and gets closer to the final goal allowing more
than one transition firings. In our example, at the first step we set P1’s value to the
transition threshold (i.e. 2.0). If t fires with 2 tokens in P1, it will produce only one
token in P2, so that there should be other 3 tokens in P2 to reach the goal. Hence we
get marking (2.0, 3.0). In fact (2.0, 3.0) t7→ (2/3, 4.0) ≥ (0.0, 4.0). Now the marking
(2.0, 3.0) becomes our new goal. At the second step, if we consider the consumption
rate of c1, we obtain for P1 a minimum value of 6. If t fires with 6 tokens in P1, it
will produce 3 tokens in P2 which is the exact quantity specified in the goal. Hence we
get the final marking (6.0, 0.0), since (6.0, 0.0) t7→ (2.0, 3.0). In this case, the marking
(6.0, 0.0) is really the minimal marking to reach the goal (0.0, 4.0).

In order to implement the presented methods we require update functions to be
well-behaved. Note that, when a transition threshold is set to 0.0, the second method
of analysis cannot be applied, since adopting the threshold value as the number of
tokens for a certain place will not let the transition fire at all. So that, only in this
case, we allow the user to provide a minimal incremental step 0 < ε � 1 to let the

6.4. Implementation 133

analysis proceed. It is clearly possible to combine the two methods during analysis, in
order to get a compromise between convergence speed and accuracy. When inhibitor
connectors are allowed in Petri nets, the reachability problem becomes much more
difficult when even not decidable. In [141], the reachability problem for Petri nets with
only one inhibitor connector is shown to be decidable, while the modeling capability
of a Petri net with more than one inhibitor connector is shown to be equivalent to
that of Turing machines in [124]. Hence, when the considered DFPN subnet contains
inhibitor connectors we only provide the topological analysis.

Algoritm 6 shows in pseudo-code the backward reachability analysis procedure
for DSPNs without inhibitor connectors. To manage complex update functions, we
have implemented the second method explained above. The procedure takes three
arguments: a DFPN, a set of goal markings and a positive value ε� 1. Starting from
Mg the algorithm computes a sequence of set of markingsMg =M0,M1, . . . ,Mn+1

such that for all i ∈ {0, . . . , n}, Mi+1 = BReach One Step(H,Mi) and Mn =
Mn+1. The set Mn is the final result. At each step i, the set Mi is stored in queue
Q1 and Mi+1 is constructed by using the auxiliary marking M ′ and then stored in
queue Q2. The core point of the algorithm is the construction of the new marking
M ′ starting from the previous one M , by updating the marks of all input and output
places of the considered transition.

Let t be the considered transition. We start updating places p connected by a test
connector c = (p, t), setting their mark to the threshold of connector c or the value
ε if the threshold is zero. Then we update places p that are connected by a process
connector c = (p, t). If c’s update function is a constant value, then we just add its
value to the mark of the place, while if it is a complex update function we use it to
calculate the new mark of the place p. Since the update function is well-behaved, the
new mark for p depends only on its previous mark. Finally, we update all places p
connected by an output connector c = (t, p) by using c’s update function and marking
M ′ where we have already updated the marks of all input places of transition t. Again,
since the update functions are well behaved, the marks of output places only depend
on the marks of input ones.

6.4 Implementation

We implemented the framework presented so far in a prototypical system written
in Maude, which is publicly available along with some examples at [28]. Basically,
our system extends the Pathway Logic data structures and mechanisms to cope with
quantitative information. Our system allows one to specify and analyze Quantitative
Pathway Logic models by means of Maude language features. In particular, it is
possible to exploit Maude built-in operators to easily express queries to simulate,
search and model-check the models under examination. We tested the prototype on
several small/medium size biological systems achieving rather promising results. In
the future, we plan to provide a thorough experimental evaluation on real-size case
studies assisted by the biologists of our group.

The prototype is also equipped with a model translator which allows one to au-

134 6. Biological Systems Modeling and Analysis

Algorithm 6 Algorithm for backward reachability over DFPNs without inhibitor
connectors.

1: procedure BackwardReach(H,Mg, ε) . H = (P, T, 〈PT, TP, a, w, u〉)
2: .Mg is a set of goal markings over H
3: Q1 ← ∅
4: Q2 ←Mg

5: while Q1 6= Q2 do
6: Q1 ← Q2

7: for each M ∈ Q2 do . This for loop implements the procedure
BReach One Step

8: M ′ ← empty marking
9: for each place px such that M(px) 6= 0 do

10: M ′ ←M (*)
11: for each transition t s.t. (t, px) ∈ TP do
12: for each test connector (p, t) ∈ PT do
13: set M ′(p)← max{w(p, t); ε}
14: end for
15: for each process connector (p, t) ∈ PT do
16: if u(p, t) is constant then
17: set M ′(p)← max{w(p, t);u(p, t) +M ′(p)}
18: else
19: set M ′(p)← max{w(p, t); ε;u(p, t)−1(M ′(p))}
20: end if
21: end for
22: for each output connector (t, p) ∈ TP do
23: set M ′(p)← max{0;M ′(p)− u(t, p)(M ′)}
24: end for
25: end for
26: if M ′ has been changed from (*) then
27: for each M ′′ ∈ Q2 s.t. M ′ < M ′′ do
28: Q2 ← Q2 − {M ′′}
29: end for
30: if @M ′′ ∈ Q2 s.t. M ′ ≥M ′′ then
31: Q2 ← Q2 ∪ {M ′}
32: end if
33: end if
34: end for
35: end for
36: end while
37: return Q1

38: end procedure

6.4. Implementation 135

Figure 6.4: Cell Illustrator screenshot of the EgfR pathway model.

tomatically derive the corresponding DFPN from the given QPL model. On the
net representation, we can apply well-known Petri net analysis methodologies such
as topological analysis for relevant subnet detection, backward/forward reachabil-
ity analysis, etc. Moreover, we provide the possibility to export DFPN descriptions
in the Cell System Markup Language (CSML) [130], an XML format for modeling
biopathways which covers widely used data formats, e.g. CellML[113], SBML[91].

Then, CSML representations of DFPNs can be imported in Cell Illustrator [128],
which is a software tool by means of which we can visualize and graphically interact
with the DFPN models. In Figure 6.4, a screenshot of the Cell Illustrator application
with a small fragment of the EgfR pathway model is shown. Here, discrete transi-
tions are identified by solid rectangles, while continuous places are represented by
double circles. Dashed arrows and solid arrows stand for process connectors and test
connectors, respectively; finally, labels identify thresholds and update functions.

The QPL formalism we proposed is the first step towards the development of a
general Pathway Logic formalism for the full specification of hybrid models (specifying
both discrete and continuous components) and their stochastic counterparts.

136 6. Biological Systems Modeling and Analysis

Conclusions

The success of key human activities ranging from everyday services to research and
business relies on the use of ever more sophisticated, feature-rich and complex com-
puter systems. In this thesis, we focused on some directions that are related to the
system’s complexity research, and we proposed some effective solutions. We addressed
different problems related to the specification and analysis of complex systems by us-
ing formal methods. More precisely, we studied several aspects of the problem with
the aim to provide some formal model of the problem itself in order to support formal
analysis and verification. In order to achieve this goal, we made use of rule-based
formalisms, such as rewriting logic, as a basis to develop domain-specific languages
that support modelling, verification and testing. The main application areas that we
considered are distributed systems such as Web systems and biological systems.

The distributed character of the considered systems, which provides an easy way
to share and exchange data and resources over the Internet, suggested us the study
of security aspects such as the access control problem and the software certification
for secure the delivery of code. The first part of this thesis has been devoted to this
area. In Chapter 2, we have presented a study on the Unfold operation in rewrit-
ing logic, based on narrowing, and provided general conditions that guarantee that
the meaning of the program is not modified by the transformation. Then, we pro-
posed the first Fold/Unfold-based program transformation framework for rewriting
logic which opens up new applications to program optimization, program synthesis,
program specialization and theorem proving for first-order typed rule-based languages
such as ASF+SDF, Elan, OBJ, CafeOBJ, and Maude that may include sorts, rules,
equations and algebraic laws. The core transformation rules are Fold, Unfold, def-
inition introduction, definition elimination, and abstraction. The correctness of the
program transformation framework guarantees that the transformed program is equiv-
alent to the initial one in the sense that it preserves the standard semantics of ground
reducts. We have shown that our methodology can be effectively applied to Code-
Carrying Theory and may significantly simplify the code producer task. Actually, by
applying a built-in strategy such as composition, tupling, etc. the code producer can
(semi-)automatically obtain the final improved program. Thanks to the fact that our
transformation methodology relies on narrowing, this can be done by adapting the
narrowing-based transformation strategies of [11]. Moreover, as an outcome of the
transformation process, a compact representation of the sequence of applied transfor-
mation rules is delivered as a certificate to the code consumer. The code consumer
needs only to apply the certificate to the initial requirements in order to obtain the
desired program. This checking can be completely automated. Of course, for the
methodology to pay off completely in practice, the transformation system could be
instrumented to also provide an estimation of the achieved optimization. Such an

138 Conclusions

extension can be investigated in future work.
In Chapter 3, we showed how domain specific languages play a key role in ac-

cess control. On the one hand, they allow security administrators to formally specify
precise policy behaviors, and on the other hand, formal methods can be applied to
give support to both analysis and verification of access control policies. We proposed
a novel rule-based language which is particularly suitable for managing security in
distributed applications, where access control information may be shared across mul-
tiple sites. In fact, the operational engine underlying the language allows us to collect
relevant data from distributed knowledge bases by means of DL queries, and to em-
ploy such data to take decisions w.r.t. the authorization requests under examination.
Moreover, our formalism can be used to safely build global policies by means of
rule-based combining operators. We have also shown how our formalism supports
powerful policy analysis methodologies which take advantage of both rewriting and
reasoning capabilities. On the practical side, we implemented the theoretical frame-
work into a prototypical tool which we used to experimentally evaluate the proposed
approach. Trust is another important topic in access control that should be consid-
ered. PeerTrust [92] provides a very interesting mechanism for gaining access to secure
information on the web by using semantic annotations, policies and automated trust
negotiation. A future work direction is endowing our formalism with constructs to
manage trust negotiations. Moreover, narrowing-based analyses in the style of [106]
can be integrated in our framework to potentiate its verification capabilities. Hope-
fully, this might be the base for developing policy repair and optimization techniques.

The second part of the thesis focuses on other important problems concerning the
analysis and verification of data in distributed Web systems, and attempts to exploit
the knowledge and expertise we acquired on distributed systems to model and analyze
biological systems.

The growing complexity of the World Wide Web demands for tools which are able
to tame the so-called information overload. To this respect, filtering and query lan-
guages allow one to extract relevant and meaningful information within the enormous
amount of data available on the Web. In Chapter 4, we firstly presented a declar-
ative XML filtering language which has several advantages w.r.t. other approaches.
It is inspired by the approximate pattern-based query language ApproXQL [145] and
extends it by introducing a number of new syntax constructs which provide a much
more expressive framework (e.g. negative filtering, pattern variables, nested queries,
conditional filtering, etc.). Secondly, we endowed our filtering language with the ca-
pability to search XML patterns into XML documents w.r.t. semantic criteria. The
filtering process is guided by an approximate pattern-matching engine which queries
an ontology reasoner to infer semantic information regarding the XML data. Se-
mantic information can be employed to automatize the search of XML tag synonyms
used by the matching mechanism when renaming transformations are needed, and
to model semantic properties of the data to be extracted. Finally, we implemented
the language in the prototype XPhil by using the lazy functional language Haskell,
and pointed out the inborn benefits of laziness by means of a thorough experimental
evaluation.

In Chapter 5, we faced the verification problem of the static content of Web sys-

Conclusions 139

tems and we developed a rule-based specification language, inspired by GVerdi [9, 32],
that allows us to formalize and automatically check semantic and syntactic properties
over Web system contents. The properties that can be specified within our framework
are correctness and completeness. Correctness implies that the information provided
on a web page is valid w.r.t. the application requirements, while completeness requires
web pages to contain some piece of information. We extended the GVerdi language
expressiveness by adding new constructs for defining conjunctive as well as disjunctive
Web patterns. Moreover, we exploited ontology reasoning capabilities to retrieve se-
mantic information which is useful to refine the verification process. The verification
methodology is based on partial rewriting and consists in executing the specification
rules against the considered web contents in such a way incorrect or missing informa-
tion can be identified. We also defined some syntactic restrictions to our specification
rules in order to ensure the termination of the verification methodology.

The last contribution of this thesis focuses on the application of formal method-
ologies to the study of biological systems. We concentrate our focus on a logical
formalism called Pathway Logic (PL), first proposed in [81]. PL provides a frame-
work for discrete modelling of biological systems, which does not consider quantita-
tive information. In Chapter 6 we proposed the Quantitative Pathway Logic (QPL)
formalism that endows PL with a full handling of quantitative information. QPL effi-
ciently integrates quantitative data (such as substances concentration, reaction rates
of substances production and consumption) into PL models. Moreover, it allows one
to model inhibitors, that is, substances that decreases the rate of, or prevents, a
chemical reaction. QPL models can be directly simulated by using rewriting logic or
can be translated into Discrete Functional Petri Nets (DPFN) which are a subclass of
Hybrid Functional Petri Nets (HFPN). By using the latter representation, our models
can be graphically visualized and simulated by means of well known tools (e.g. Cell
Illustrator [128]). Also, it is possible to exploit the DFPN representation in order to
perform an approximated rechability analysis [57]. The extension we proposed aims at
defining hybrid models (specifying both discrete and continuous components), which
on the one hand can take advantage of the expressiveness of HFPNs (or Hybrid Au-
tomata), on the other hand guarantee sufficient analysis and verification capabilities.
For analysis and verification purposes, it is possible to evaluate the construction of
(possibly stochastic) hybrid automata. Moreover, by combining the hybrid extension
to the PL probabilistic model, we can obtain a novel calculus called Hybrid Proba-
bilistic Pathway Logic (HPPL) which might be particularly fruitful for the modelling
and analysis of complex systems.

140 Conclusions

A
Some technicalities

A.1 XPhilSchema

This appendix contains the XML code representing the XML Schema of the XML
formalization of the semantic filtering language, presented in Section 4.6

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:dig="http://dl-web.man.ac.uk/dig/2003/02"
elementFormDefault="qualified">

<import namespace="http://dl-web.man.ac.uk/dig/2003/02"
schemaLocation="dig.xsd"/>

<element name="rule" type="ruleType"/>

<complexType name="ruleType">
<sequence>
<element name="count" minOccurs="0">
<complexType>
<attribute name="cost" type="nonNegativeInteger" use="required"/>

</complexType>
</element>
<element name="filter" type="filterType"/>
<element name="pattern" type="string"/>
<element name="document" type="docType"/>
<element name="conditionClause" type="cond" minOccurs="0"/>
<element name="mode" type="ruleMode" default="P" minOccurs="0"/>
</sequence>

</complexType>

<simpleType name="filterType">
<restriction base="string">
<enumeration value="filterOneBest"/>

142 A. Some technicalities

<enumeration value="filterAllBest"/>
<enumeration value="filterOneExact"/>
<enumeration value="filterAllExact"/>

</restriction>
</simpleType>

<complexType name="docType">
<choice>
<element name="nestRule" type="ruleType"/>
<element name="xmlFile" type="string"/>
<element name="docFile" type="anyURI"/>

</choice>
</complexType>

<complexType name="cond">
<choice maxOccurs="unbounded">
<element name="reCond" type="matchPredicate"/>
<element name="opCond" type="relation"/>
<element name="ontCond" type="dig:asks"/>

</choice>
</complexType>

<simpleType name="ruleMode">
<restriction base="string">
<pattern value="P|N"/>

</restriction>
</simpleType>

<simpleType name="Variable">
<restriction base="string">
<pattern value="[A-Z]"/>

</restriction>
</simpleType>

<simpleType name="BoolOperator">
<restriction base="string">
<enumeration value="lt"/>
<enumeration value="gt"/>
<enumeration value="leq"/>
<enumeration value="geq"/>

</restriction>
</simpleType>

<simpleType name="NumOperator">
<restriction base="string">

A.1. XPhilSchema 143

<enumeration value="+"/>
<enumeration value="++"/>
<enumeration value="-"/>
<enumeration value="*"/>
<enumeration value="/"/>

</restriction>
</simpleType>

<complexType name="relation">
<choice>
<element name="Equal" type="eq"/>
<element name="NotEqual" type="eq"/>
<element name="Predicate" type="predicate"/>

</choice>
</complexType>

<complexType name="predicate">
<sequence>
<element name="Rel" type="BoolOperator"/>
<element name="lhs" type="genericExpr"/>
<element name="rhs" type="genericExpr"/>

</sequence>
</complexType>

<complexType name="matchPredicate">
<sequence>
<element name="Predicate" type="matchPred"/>

</sequence>
</complexType>

<complexType name="matchPred">
<complexContent>
<restriction base="predicate">
<sequence>
<element name="Rel" fixed="match"/>
<element name="lhs">
<complexType>

<sequence>
<element name="Var" type="Variable"/>

</sequence>
</complexType>

</element>
<element name="rhs">
<complexType>
<sequence>

144 A. Some technicalities

<element name="Data" type="string"/>
</sequence>

</complexType>
</element>

</sequence>
</restriction>

</complexContent>
</complexType>

<complexType name="eq">
<sequence>
<element name="lhs" type="genericExpr"/>
<element name="rhs" type="genericExpr"/>

</sequence>
</complexType>

<complexType name="genericExpr">
<choice>
<element name="Expr" type="expr"/>
<element name="Var" type="Variable"/>
<element name="Data" type="string"/>

</choice>
</complexType>

<complexType name="expr">
<sequence>
<element name="Fun" type="NumOperator"/>
<choice minOccurs="2" maxOccurs="2">

<element name="Var" type="Variable"/>
<element name="Data" type="string"/>
<element name="Expr" type="expr"/>

</choice>
</sequence>

</complexType>

</schema>

Bibliography

[1] A. Abate, Y. Bai, N. Sznajder, C. Talcott, and A. Tiwari. Quantitative and
Probabilistic Modeling in Pathway Logic. In IEEE Xplore, editor, Proc. of
the 7th IEEE International Conference on BioInformatics and BioEngineering,
pages 922–929, 2007.

[2] P.A. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay. Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation, 160(1-
2):109–127, 2000.

[3] M.H. Alalfi, J. R. Cordy, and T. R. Dean. Modelling methods for web appli-
cation verification and testing: state of the art. Software Testing, Verification
and Reliability, 19(4):265–296, 2009.

[4] H. Alla and R. David. Continuous and Hybrid Petri Nets. Journal of Circuits,
Systems and Computers, 8(1):159–188, 1998.

[5] J.M. Almendros. A RDF Query Language Based on Logic Programming. Elec-
tronic Notes in Theoretical Computer Science, 200(3):67–85, 2008.

[6] M. Alpuente, M. Baggi, D. Ballis, and M. Falaschi. Semantic Verification of
Web System Contents. In Advances in Conceptual Modeling – Challenges and
Opportunities, volume 5232 of LNCS, pages 437–446. Springer-Verlag, 2008.

[7] M. Alpuente, M. Baggi, D. Ballis, and M. Falaschi. A Fold/Unfold Transfor-
mation Framework for Rewrite Theories extended to CCT. In ACM, editor, In
Proc. of ACM SIGPLAN 2010 Workshop on Partial Evaluation and Program
Manipulation (PEPM’10), pages 43–52, New York, NY, USA, 2010.

[8] M. Alpuente, D. Ballis, and M. Falaschi. Rule-based Verification of Web Sites. In
1st Int’l Symposium on Leveraging Applications of Formal Methods (ISoLA’04),
pages 81—88, 2004.

[9] M. Alpuente, D. Ballis, and M. Falaschi. Automated Verification of Web Sites
Using Partial Rewriting. Software Tools for Technology Transfer, 8:565–585,
2006.

[10] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding
with conditional narrowing. In 6th International Joint Conference on Algebraic
and Logic Programming, pages 1–15. Springer-Verlag, 1997.

[11] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + strategies for
transforming lazy functional logic programs. Theoretical Computer Science,
311(1-3):479–525, 2004.

146 Bibliography

[12] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional
Logic Programs. ACM Transactions on Programming Languages and Systems
(TOPLAS ’98), 20(4):768–844, 1998.

[13] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional and
Logic Program Specialization. ACM Computing Surveys, 30(3es):9–es, Septem-
ber 1998.

[14] S. Amer-Yahia, M. F. Fernández, D. Srivastava, and Y. Xu. Phrase Matching
in XML. In Proc. of 29th International Conference on Very Large Data Bases
(VLDB’03), pages 177–188, 2003.

[15] K. Apt and R. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19/20:9–71, 1994.

[16] K. Arkoudas. Denotational proof languages. PhD thesis, Massachusetts Institute
of Technology, 2000. Supervisor-Shivers, Olin.

[17] K. Arkoudas. An Athena tutorial, 2005. Available at:
http://www.cag.csail.mit.edu/~kostas/dpls/athena/athenaTutorial.pdf.

[18] U. Assmann, J. Henriksson, and J. Maluszynski. Combining Safe Rules and
Ontologies by Interfacing of Reasoners. In Principles and Practice of Semantic
Web Reasoning, volume 4187 of Lecture Notes in Computer Science. Springer-
Verlag, 2006.

[19] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Scheider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[20] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[21] F. Baader and W. Snyder. Handbook of Automated Reasoning, chapter Unifica-
tion Theory. Elsevier and MIT Press, 2001.

[22] K. Bae and J. Meseguer. The Linear Temporal Logic of Rewriting Maude
Model Checker. In Proc. of 8th International Workshop on Rewriting Logic and
its Applications (WRLA ’10), 2010. To appear.

[23] M. Baggi. An Ontology-based System for Semantic Filtering of XML Data.
Electronic Notes in Theoretical Computer Science, 235:19–33, 2009.

[24] M. Baggi and D. Ballis. PHIL: A Lazy Implementation of a Language for
Approximate Filtering of XML Documents. Electronic Notes in Theoretical
Computer Science, 216:93–109, 2008.

[25] M. Baggi, D. Ballis, and M. Falaschi. XPhil: the extended filtering language.
Available at http://users.dimi.uniud.it/~michele.baggi/xphil.html,
2008.

Bibliography 147

[26] M. Baggi, D. Ballis, and M. Falaschi. XML Semantic Filtering via Ontology
Reasoning. Internet and Web Applications and Services, International Confer-
ence on, pages 482–487, 2008.

[27] M. Baggi, D. Ballis, and M. Falaschi. Paul - the Pol-
icy Specification and Analysis Language. Available at:
http://users.dimi.uniud.it/~michele.baggi/paul/, 2009.

[28] M. Baggi, D. Ballis, and M. Falaschi. The QPL System. Available at
http://users.dimi.uniud.it/~michele.baggi/qpl/, 2009.

[29] M. Baggi, D. Ballis, and M. Falaschi. Quantitative Pathway Logic for Compu-
tational Biology. In Pierpaolo Degano and Roberto Gorrieri, editors, Computa-
tional Methods in Systems Biology, volume 5688 of Lecture Notes in Computer
Science, pages 68–82. Springer Berlin. Heidelberg, 2009.

[30] M. Baggi, D. Ballis, and M. Falaschi. An access control language based on term
rewriting and description logic. In In Proc. of the 19th Workshop on Functional
and (Constraint) Logic Programming (WFLP’10), Madrid (Spain), 2010.

[31] M. Baggi and P. Lopez. Meta Maudest: Program Transformation for RWL.
Available at: http://users.dsic.upv.es/grupos/elp/maudest/, 2010.

[32] D. Ballis and J. Garćıa Vivó. A Rule-based System for Web Site Verification.
In Proc. of the 1st International Workshop on Automated Specification and
Verification of Web Sites (WWV’05), Valencia (Spain), 2005, volume 157(2).
Electronic Notes in Theoretical Computer Science, Elsevier, 2005.

[33] D. Ballis and D. Romero. Filtering of XML Documents. In Proc. of 2nd
Int’l Workshop on Automated Specification and Verification of Web Systems
(WWV’06), Paphos (Cyprus), pages 19–28, Washington, DC, USA, 2006. IEEE
Computer Society Press.

[34] S. Barker and M. Fernández. Term Rewriting for Access Control. In Proc. of
the 20th Annual IFIP WG 11.3 Conference on Data and Applications Security
(DBSec ’06), volume 4127 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2006.

[35] S. Bechhofer. DIG 2.0: The DIG Description Logic Interface. Available at
http://dig.cs.manchester.ac.uk/, 2006.

[36] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In Proc. of 8th ACM SIGPLAN International Conference on
Functional Programming, (ICFP’03), pages 51–63, 2003.

[37] J.A. Bergstra, J Heering, and P. Klint. Algebraic Specification. ACM Press,
1989.

148 Bibliography

[38] M. Bernardo, P. Degano, and G. Zavattaro, editors. Proc. of the 8th Interna-
tional School on Formal Methods for the Design of Computer, Communication
and Software Systems: Computational Systems Biology, volume 5016 of Lecture
Notes in Computer Science, 2008.

[39] C. Bertolissi and M. Fernández. A Rewriting Framework for the Composition of
Access Control Policies. In Proc. of the 10th Int’l ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (PPDP ’08), pages 217–
225. ACM, 2008.

[40] M. Bezem. TeReSe, Term Rewriting Systems, chapter Mathematical back-
ground (Appendix A). Cambridge University Press, 2003.

[41] H. Boley. The Rule Markup Language: RDF-XML Data Model, XML Schema
Hierarchy, and XSL Transformations. In Proc. of 14th International Confer-
ence on Applications of Prolog, (INAP’01), volume 2543 of Lecture Notes in
Computer Science, pages 5–22, 2001.

[42] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An Algebra for
Composing Access Control Policies. ACM Transactions on Information and
System Security, 5(1):1–35, 2002.

[43] P. Borovanský, C. Kirchner, H. Kirchner, and P. E. Moreau. ELAN from a
rewriting logic point of view. Theoretical Computer Science, 285:155–185, 2002.

[44] A. Bouhoula, J.P. Jouannaud, and J. Meseguer. Specification and Proof in
Membership Equational Logic. Theoretical Computer Science, 236(1-2):35–132,
2000.

[45] F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In Web, Web-Services, and Database Systems,
volume 2593 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[46] R. M. Burstall and J. Darlington. Some transformations for developing recursive
programs. SIGPLAN Not., 10(6):465–472, 1975.

[47] R.M. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of ACM, 24(1):44–67, 1977.

[48] N. Busi. Expressiveness issues in brane calculi: A survey. Electronic Notes in
Theoretical Computer Science, 209:107–124, 2008.

[49] L. Capra, W. Emmerich, A. Finkelstein, and C. Nentwich. XLINKIT: a Con-
sistency Checking and Smart Link Generation Service. ACM Transactions on
Internet Technology, 2(2):151–185, 2002.

[50] L. Cardelli. Brane Calculi - Interactions of biological membranes. In Proc. of
Computational Methods in System Biology (CMSB ’04), volume 3082 of Lecture
Notes in Computer Science, pages 257–278. Springer Berlin, Heidelberg, 2005.

Bibliography 149

[51] Centrum voor Wiskunde en Informatica. XMark – an XML Benchmark Project,
2001. Available at: http://monetdb.cwi.nl/xml/.

[52] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Boston, MA, USA, 1988.

[53] C. Chaouiya, E. Remy, and D. Thieffry. Petri net modelling of biological regu-
latory networks. Journal of Discrete Algorithms, 6(2):165–177, 2008.

[54] Y. Chiba, T. Aoto, and Y. Toyama. Program Transformation by Templates
Based on Term Rewriting. In Procs. of the 7th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, (PPDP
’05), pages 59–69, New York, NY, USA, 2005. ACM.

[55] W. Chin. Towards an Automated Tupling Strategy. In Procs. of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, (PEPM ’93), pages 119–132. ACM, 1993.

[56] W. Chin, A. Goh, and S. Khoo. Effective Optimisation of Multiple Traversals in
Lazy Languages. In Proc. of Partial Evaluation and Semantics-Based Program
Manipulation, San Antonio, Texas, USA (Technical Report BRICS-NS-99-1),
pages 119–130. University of Aarhus, DK, 1999.

[57] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
In Proc. of the 19th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL ’92), pages 343–354, New York, NY, USA, 1992.
ACM Press.

[58] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. Unification and Narrowing in Maude 2.4. In Ralf
Treinen, editor, Procs. of 20th International Conference on Rewriting Tech-
niques and Applications, (RTA ’09), Braśılia, Brazil, volume 5595 of Lecture
Notes in Computer Science, pages 380–390. Springer-Verlag, 2009.

[59] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor, Rewrit-
ing Techniques and Applications (RTA ’03), volume 2706 of Lecture Notes in
Computer Science, pages 76–87. Springer-Verlag, 2003.

[60] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[61] J. Coelho and M. Florido. VeriFLog: A Constraint Logic Programming Ap-
proach to Verification of Website Content. In APWeb International Workshops,
pages 148–156, 2006.

150 Bibliography

[62] J. Coelho and M. Florido. XCentric: logic programming for XML processing.
In Proc. of 9th ACM International Workshop on Web Information and Data
Management, (WIDM’07), pages 1–8, 2007.

[63] T.A. Cooper and N. Wogrin. Rule-based Programming with OPS5. Morgan
Kaufmann, 1988.

[64] A. Cortesi, A. Dovier, E. Quintarelli, and L. Tanca. Operational and Ab-
stract Semantics of a Graphical Query Language. Theoretical Computer Science,
275:521–560, 2002.

[65] E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P. Samarati. Extend-
ing Policy Languages to the Semantic Web. In 4th International Conference on
Web Engineering (ICWE’04), volume 3140 of Lecture Notes in Computer Sci-
ence, pages 330–343. Springer, 2004.

[66] J. Darlington. A semantic approach to automatic program improvement. PhD
thesis, Department of Machine Intelligence, Edimburgh University, Edimburgh,
U.K., 1972.

[67] J. Darlington. Program Transformation. In J. Darlington, P. Henderson, and
D.A. Turner, editors, Functional Programming and its Applications, pages 193–
215. Cambridge University Press, 1982.

[68] O. De Moore and G. Sittampalam. Generic Program Transformation. In Ad-
vanced Functional Programming, pages 116–149, 1998.

[69] M. Dean and G. Schreiber. OWL Web Ontology Language Reference — W3C
recommendation, 2004. Available at: http://www.w3.org/TR/owl-ref/.

[70] G. Denker, L. Kagal, T. W. Finin, M. Paolucci, and K. P. Sycara. Security for
DAML Web Services: Annotation and Matchmaking. In International Semantic
Web Conference, volume 2870 of Lecture Notes in Computer Science, pages 335–
350. Springer, 2003.

[71] N. Dershowitz. Computing with Rewrite Systems. Information and Control,
64(2-3):122–157, 1985.

[72] N. Dershowitz and U. Reddy. Deductive and Inductive Synthesis of Equational
Programs. Journal of Symbolic Computation, 15:467–494, 1993.

[73] J. DeTreville. Binder, a Logic-Based Security Language. In Proc. of the 2002
IEEE Symposium on Security and Privacy, pages 105–113. IEEE Computer
Society, 2002.

[74] P.T. Devanbu, P. W-L. Fong, and Stubblebine S.G. Techniques for trusted
software engineering. In Proc. of the 20th International Conference on Software
Engineering (ICSE ’98), pages 126–135. IEEE Computer Society, 1998.

Bibliography 151

[75] E. Di Sciascio, F. M. Donini, M. Mongiello, and G. Piscitelli. Web Applica-
tions Design and Maintenance Using Symbolic Model Checking. In Proc. 7th
European Conf. on Software Maintenance and Reengineering, page 63. IEEE
Computer Society, 2003.

[76] R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST Series
in Computing. World Scientific, AMAST Series, 1998.

[77] K.R. Dittrich, S. Gatziu, and A. Geppert. The active database management
system manifesto: A rulebase of ADBMS features. In Timos Sellis, editor, Rules
in Database Systems, volume 985 of Lecture Notes in Computer Science, pages
1–17. Springer Berlin, Heidelberg, 1995.

[78] D. J. Dougherty, C. Kirchner, H. Kirchner, and A. S. De Oliveira. Modular
Access Control Via Strategic Rewriting. In Proc of the 12th European Sympo-
sium on Research in Computer Security (ESORICS ’07), volume 4734 of Lecture
Notes in Computer Science, pages 578–593. Springer, 2007.

[79] W. Drabent and A. Wilk. Extending XML Query Language Xcerpt by Ontology
Queries. In Proc. of the IEEE/WIC/ACM International Conference on Web
Intelligence (WI’07), pages 447–451. IEEE Computer Society Press, 2007.

[80] S. M. Easterbrook, B. Nuseibeh, and A. Russo. Leveraging Inconsistency in
Software Development. IEEE Computer, 33(4):24–29, 2000.

[81] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez.
Pathway Logic: Symbolic Analysis of Biological Signaling. In Proceedings of
the Pacific Symposium on Biocomputing, pages 400–412, 2002.

[82] S. Eker, K. Laderoute, P. Lincoln, and C. Talcott. Pathway Logic: executable
models of biological networks. Electronic Notes in Theoretical Computer Sci-
ence, 71, 2002.

[83] E. Ellmer, W. Emmerich, A. Finkelstein, and C. Nentwich. Flexible Consistency
Checking. ACM Transactions on Software Engineering, 12(1):28–63, 2003.

[84] S. Etalle and M. Gabbrielli. Modular Transformations of CLP Programs. In
L. Sterling, editor, 26th International Conference on Logic Programming. MIT
Press, 1995.

[85] F. Fages and S. Soliman. Formal Cell Biology in Biocham. In M. Bernardo,
P. Degano, and G. Zavattaro, editors, Proc. of the 8th International School on
Formal Methods for the Design of Computer, Communication and Software Sys-
tems: Computational Systems Biology, volume 5016 of Lecture Notes in Com-
puter Science, pages 54–80, 2008.

[86] W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs.
J. ACM, 49(3):368–406, 2002.

152 Bibliography

[87] M. Fay. First Order Unification in an Equational Theory. In Procs. of 4th
International Conference on Automated Deduction, pages 161–167, 1979.

[88] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over
Term Rewriting Systems. Research Report RR-4970, INRIA, 2003.

[89] T. W. Finin and A. Joshi. Agents, Turst, and Information Access on the Se-
mantic Web. SIGMOD Record, 31(4):30–35, 2002.

[90] W. Fontana and L. W. Buss. Boundaries and Barriers, chapter The barrier
of objects: from dynamical system to bounded organizations, pages 56–116.
Addison-Wesley, 1996.

[91] R. Gauges, U. Rost, S. Sahle, and K. Wegner. A model diagram layout extension
for SBML. Bioinformatics, 22(15):1879–1885, 2006.

[92] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett. No
Registration Needed: How to Use Declarative Policies and Negotiation to Access
Sensitive Resources on the Semantic Web. In The Semantic Web: Research and
Applications, First European Semantic Web Symposium (ESWS’04), volume
3053 of LNCS, pages 342–356. Springer, 2004.

[93] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud. In-
troducing OBJ. In Software Engineering with OBJ: Algebraic Specification in
Action, pages 3–167. Kluwer, 2000.

[94] P. Goss and J. Peccoud. Quantitative modelling of stochastic systems in molec-
ular biology by using stochastic Petri nets. In Proc. of the National Academy
of Science USA, pages 6750–6755, 1998.

[95] D. Harel, Y. Setty, S. Efroni, N. Swerdlin, and I.R. Cohen. Concurrency in
biological modeling: Behavior, execution and visualization. Electronic Notes in
Theoretical Computer Science, 194(3):119–131, 2008.

[96] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In U. Furbach and N. Shankar,
editors, Third International Joint Conference on Automated Reasoning, volume
4130 of Lecture Notes in Computer Science, pages 151–155. Springer, 2006.

[97] T. A. Henzinger. The theory of hybrid automata. Logic in Computer Science,
Symposium on, 0:278, 1996.

[98] H. Hosoya and B. Pierce. Regular Expressions Pattern Matching for XML. In
Proc. of 25th ACM SIGPLAN-SIGACT Int’l Symp. POPL, pages 67–80. ACM,
2001.

[99] H. Hosoya and B. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology, 3(2):117–148, 2003.

Bibliography 153

[100] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. Journal of ACM, 27(4):797–821, 1980.

[101] L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner. Using Semantic Web
Technologies for Policy Management on the Web. In 21st national conference
on Artificial Intelligence (AAAI’06). AAAI Press, 2006.

[102] L. Kagal, T. W. Finin, and A. Joshi. A Policy Based Approach to Security for
the Semantic Web. In International Semantic Web Conference, volume 2870 of
Lecture Notes in Computer Science, pages 402–418. Springer, 2003.

[103] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Un-
fold/Fold Logic Programming Transformation. In Future Generation Computer
Systems, pages 413–422. ICOT, 1988.

[104] S. Kelly and J.P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press, 2008.

[105] P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. Ph.d. thesis, University of Helsinki (Finland), 1992.

[106] C. Kirchner, H. Kirchner, and A. S. De Oliveira. Analysis of Rewrite-Based
Access Control Policies. Electronic Notes in Theoretical Computer Science,
234:55–75, 2009.

[107] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume I, pages
1–112. Oxford University Press, 1992.

[108] V. Kolovski, J. Hendler, and B. Parsia. Analyzing Web Access Control Policies.
In Proc. of the 16th Int’l Conference on World Wide Web (WWW ’07), pages
677–686. ACM, 2007.

[109] H.J. Komorowski. Partial Evaluation as a Means for Inferencing Data Struc-
tures in an Applicative Language: A Theory and Implementation in the Case
of Prolog. In Proc. of 9th ACM Symposium on Principles of Programming
Languages, pages 255–267, 1982.

[110] L. Kott. Unfold/fold program transformation. In M. Nivat and J.C. Reynolds,
editors, Algebraic methods in semantics, chapter 12, pages 411–434. Cambridge
University Press, 1985.

[111] C. Li, S. Miyano, and H. Matsuno. Petri net Based Descriptions for Systematic
Understanding of Biological Pathways. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E98-A(11):3166–3174,
2006.

[112] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based ap-
proach to distributed authorization. ACM Transactions on Information and
System Security, 6(1):128–171, 2003.

154 Bibliography

[113] C.M.M. Lloyd, J.R.R. Lawson, P.J.J. Hunter, and P.F.F. Nielsen. The CellML
Model Repository. Bioinformatics, 2008.

[114] W. Lukaszewicz. Non-Monotonic Reasoning: Formalization of Commonsense
Reasoning. Ellis Horwood, New York, 1990.

[115] Z. Manna and R.J. Waldinger. Toward automatic program synthesis. Commu-
nication of the ACM, 14(3):151–165, 1971.

[116] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[117] N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

[118] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano.
Biopathways representation and simulation on hybrid functional Petri net. In
Silico Biology, 3:32, 2003.

[119] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. Theory and Practice of Logic Programming, 2004.

[120] R. Mayr and M. Rusinowitch. Reachability is Decidible for Ground AC Rewrite
Systems. In Proc. of the 3rd INFINITY Workshop, pages 53–64, 1998.

[121] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational Abstractions. The-
oretical Computer Science, 403(2-3):239–264, 2008.

[122] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and
its application to verification of cryptographic protocols. Higher Order Symbolic
Computation, 20(1-2):123–160, 2007.

[123] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, New York, NY, USA, 1999.

[124] M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

[125] T. Moses. eXtensible Access Control Markup Language (XACML) v2.0. Tech-
nical report, OASIS, 2005.

[126] T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,
77(4):541–580, 1989.

[127] D.R. Musser. Automated theorem proving for analysis and synthesis. Current
trends in hardware verification and automated theorem proving, pages 440–464,
1989.

[128] M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. Genomic Object Net: A
platform for modelling and simulating biopathways. Applied Bioinformatics,
2:181–184, 2004.

Bibliography 155

[129] M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. A versatile petri net based ar-
chitecture for modeling and simulation of complex biological processes. Genome
Inform, 15(1):180–197, 2004.

[130] M. Nagasaki, A. Saito, C. Li, E. Jeong, and S. Miyano. Systematic reconstruc-
tion of transpath data into cell system markup language. BMC Systems Biology,
2(1), 2008.

[131] G.C. Necula. Proof-Carrying Code. In Procs. of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, (POPL ’97),
pages 106–119, New York, NY, USA, 1997. ACM.

[132] The Open Group. Unix Regular Expressions. Available at:
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html.

[133] G. Paun. Membrane Computing: An Introduction. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2002.

[134] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations
and Techniques. Journal of Logic Programming, 19,20:261–320, 1994.

[135] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs. ACM Computing Surveys, 28(2):360–414, 1996.

[136] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Proc. of
Computational Methods in System Biology (CMSB ’04), volume 3082 of Lecture
Notes in Computer Science, pages 20–33. Springer Berlin, Heidelberg, 2005.

[137] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 80(1):25–31, 2001.

[138] U. S. Reddy. Rewriting Techniques for Program Synthesis. In Proc. of Rewrit-
ing Techniques and Applications, (RTA’89), volume 355 of Lecture Notes in
Computer Science, pages 388–403. Springer, 1989.

[139] A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambi-
ents: an abstraction for biological compartments. Theoretical Computer Sci-
ence, 325(1):141–167, 2004.

[140] A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature,
419(6905):343, 2002.

[141] K. Reinhardt. Reachability in petri nets with inhibitor arcs. Electronic Notes
in Theoretical Computer Science, 223:239–264, 2008.

[142] P. Réty. Improving Basic Narrowing Techniques and Commutation Properties.
In Rewriting Techniques and Applications, volume 256 of LNCS, pages 228–241,
1987.

156 Bibliography

[143] E. Sandewall. Features and Fluents, volume 1. Oxford University Press, New
York, NY, USA, 1994.

[144] T. Schlieder. ApproXQL:Design and Implementation of an Approximate Pat-
tern Matching Language for XML. Technical Report B 01-02, Freie Universität
Berlin, 2001.

[145] T. Schlieder and H. Meuss. Querying and Ranking XML documents. Jour-
nal of the American Society for Information Science and Technology JASIST,
53(6):489–503, 2002.

[146] H. Seki. Unfold/fold Transformation of General Logic Programs for the Well-
Founded Semantics. Journal of Logic Programming, 16(1&2):5–23, 1993.

[147] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: a
Practical OWL-DL Reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[148] J. Spiegel, E. D. Pontikakis, S. Budalakoti, and N. Polyzotis. AQAX: A System
for Approximate XML Query Answers. In Proc. of the 32nd International Con-
ference on Very Large Data Bases (VLDB’06), Seoul, Korea, pages 1159–1162.
ACM Press, 2006.

[149] C. Talcott. Pathway Logic. Formal Methods for Computational Systems Biology,
5016:21–53, 2008.

[150] C. Talcott and D.L. Dill. Multiple Representations of Biological Processes.
Transactions on Computational Systems Biology, 2006.

[151] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In
Procs. of the 2nd International Conference on Logic Programming, (ICLP ’84),
pages 127–139, 1984.

[152] The Maude Team. Full Maude, 2009. Available at:
http://www.lcc.uma.es/~duran/FullMaude/.

[153] M. Theobald, R. Schenkel, and G. Weikum. TopX and XXL at INEX 2005.
In Initiative for the Evaluation of XML Retrieval (INEX’05), pages 282–295.
IEEE Computer Society, 2005.

[154] A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and J. S.
Aitken. KAoS Policy Management for Semantic Web Services. IEEE Intelligent
Systems, 19(4):32–41, 2004.

[155] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: an anno-
tated bibliography. SIGPLAN Not., 35(6):26–36, 2000.

[156] C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. SIGPLAN Not., 36(12):20–34, 2001.

Bibliography 157

[157] A. Vargun. Code-Carrying Theory. PhD thesis, Rensselaer Polytechnic Insti-
tute, Troy, NY, USA, 2006. Adviser-D.R., Musser.

[158] A. Vargun and D.R. Musser. Code-Carrying Theory. In ACM Symposium on
Applied Computing, pages 376–383, New York, NY, USA, 2008. ACM.

[159] P. Viry. Rewriting: An Effective Model of Concurrency. In Procs. of the
6th International Conference on Parallel Architectures and Languages Europe,
(PARLE ’94), pages 648–660, London, UK, 1994. Springer-Verlag.

[160] E. Visser. A Survey of Strategies in Program Transformation Systems. Elec-
tronic Notes in Theoretical Computer Science, 57(2), 2001.

[161] W3C. Web Services Policy 1.2 - framework (WS-Policy), 2006. Available at:
http://www.w3.org/Submission/WS-Policy/.

[162] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0, second edition, 1999. Available at: http://www.w3.org/.

[163] World Wide Web Consortium (W3C). XML Path Language (XPath), 1999.
Available at: http://www.w3.org/.

[164] World Wide Web Consortium (W3C). XQuery: A Query Language for XML,
2001. Available at: http://www.w3.org/.

[165] World Wide Web Consortium (W3C). OWL Web Ontology Language Guide,
2004. Available at: http://www.w3.org/.

[166] World Wide Web Consortium (W3C). RDF Vocabulary Description Language
1.0: RDF Schema, 2004. Available at: http://www.w3.org/.

[167] C. Zhao, N. Heilili, S. Liu, and Z. Lin. Representation and Reasoning on RBAC:
A Description Logic Approach. In Proc. of the 2nd Int’l Colloquium on The-
oretical Aspects of Computing (ICTAC ’05), volume 3722 of Lecture Notes in
Computer Science, pages 381–393. Springer, 2005.

