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ABSTRACT 17 

 18 

Early control of fruit quality requires reliable and rapid determination techniques. 19 

Therefore, the food industry has a growing interest in non-destructive methods such as 20 

spectroscopy. The aim of this study was to evaluate the feasibility of visible and near-21 

infrared (NIR) spectroscopy, in combination with multivariate analysis techniques, to 22 

predict the level and changes of astringency in intact and in the flesh of half cut 23 

persimmon fruits. The fruits were harvested and exposed to different treatments with  24 

95 % CO2 at 20 ºC for 0, 6, 12, 18 and 24 h to obtain samples with different levels of 25 

astringency. A set of 98 fruits was used to develop the predictive models based on their 26 

spectral data and another external set of 42 fruit samples was used to validate the 27 

models. The models were created using the partial least squares regression (PLSR), 28 

support vector machine (SVM) and least squares support vector machine (LS-SVM). In 29 

general, the models with the best performance were those which included standard 30 

normal variate (SNV) in the pre-processing. The best model was the PLSR developed 31 

with SNV along with the first derivative (1-Der) pre-processing, created using the data 32 

obtained at six measurement points of the intact fruits and all wavelengths (R2=0.904 33 

and RPD=3.26). Later, a successive projection algorithm (SPA) was applied to select 34 

the most effective wavelengths (EWs). Using the six points of measurement of the 35 
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intact fruit and SNV together with the direct orthogonal signal correction (DOSC) pre-36 

processing in the NIR spectra, 41 EWs were selected, achieving an R2 of 0.915 and an 37 

RPD of 3.46 for the PLSR model. These results suggest that this technology has 38 

potential for use as a feasible and cost-effective method for the non-destructive 39 

determination of astringency in persimmon fruits. 40 

 41 

Keywords: Diospyros kaki, fruit internal quality, soluble tannins, near-infrared 42 

spectroscopy, chemometrics 43 

 44 

1. INTRODUCTION 45 

Persimmon (Diospyros kaki L.) is a fruit originally from China, but is now cultivated in 46 

warm regions around the world (Ashtiani et al., 2016). The climatic characteristics of 47 

the production are important factors that influence the quality and properties of the 48 

fruits. The main areas where this fruit is cultivated in Spain are Alicante, Andalucía, 49 

Castellón, Extremadura and Valencia, especially in Ribera del Xúquer, which was 50 

granted Protected Designation of Origin (PDO) status by the Spanish government in 51 

1998 (Khanmohammadi et al., 2014). Several cultivars of persimmon are grown in 52 

Spain, such as the astringent type ‘Rojo Brillante’. Persimmon develops an astringent 53 

taste due to the presence of soluble tannins. Tannins are polyphenol compounds with a 54 

high molecular weight and their large hydroxyl phenolic groups cause astringency. As 55 

the fruit ripens, the soluble tannins gradually turn into insoluble tannins, making the 56 

fruit less astringent (Noypitak et al., 2015). However, several postharvest treatments can 57 

be applied to achieve the fast removal of the astringency of the fruits without affecting 58 

the firmness of the pulp (Khademi et al., 2010). Among them, the most widely used 59 

commercial technique is based on exposing the fruits to a high concentration of CO2 60 

(95%–98%). This method promotes anaerobic respiration in the fruit, resulting in an 61 

accumulation of acetaldehyde, which reacts with the soluble tannins. The tannins 62 

become insoluble with the treatment and the astringency is thus eliminated (Matsuo et 63 

al., 1991). If the treatment is too short, it can result in fruits with residual astringency 64 

(Besada et al., 2010), whereas if it is too long, it may lead to loss of fruit quality 65 

(Novillo et al., 2014). Therefore, it is important to investigate non-destructive 66 

techniques to ensure the success of the treatments. 67 

Techniques based on the spectrum analysis, like hyperspectral imaging, have been 68 

widely used for the qualitative and quantitative determination of different properties in 69 



fruit (Lorente et al., 2012). Munera et al. (2017b & 2017a) analysed the astringency and 70 

the internal quality of persimmon using hyperspectral imaging, which has the advantage 71 

of obtaining both spectral and spatial information. However, one of the most common 72 

techniques currently used in food chemistry is near-infrared (NIR) spectroscopy, as it is 73 

non-destructive, inexpensive, rapid and reliable (Nicolaï et al., 2007; Vitale et al., 2013; 74 

López et al., 2013). This technique has been used for the quantitative determination of 75 

several internal properties or compounds (Schmilovitch et al., 2000; Nagle et al., 2010; 76 

Theanjumpol et al., 2013), to determine maturity (Jha et al., 2012) and also to measure 77 

quality indices (Attila & János, 2011; Cortés et al., 2016).  78 

The combination of chemometrics and spectroscopy has been applied in the food 79 

industry, agriculture and horticulture to obtain information from spectra. Support vector 80 

machine (SVM) are learning algorithms used for classification and regression tasks 81 

widely used in the analysis of spectroscopic data (Devos et al., 2009; Fernadez-Pierna et 82 

al., 2012). Chauchard et al. (2004) compared classical linear regression techniques with 83 

least square-support vector machine (LS-SVM) regression to predict the total acidity in 84 

fresh grapes using NIR spectroscopy. LS-SVM in combination with Standard normal 85 

variate (SNV) pre-processing and partial least square regression (PLSR) latent variables 86 

increased the rate of prediction. Nicolaï et al. (2007) predicted sugar content using 87 

PLSR. The covariance, Gaussian and cubic polynomial kernel functions obtained 88 

similar results of about R2=0.87 and Q2=0.84 for all methods, concluding that kernel 89 

PLSR offered no advantages compared to ordinary PLSR. The identification of the 90 

spectral variables (wavelengths) can lead to better classification results and simplify the 91 

chemical interpretation of the results. Calvini et al. (2015) tested sparse principal 92 

component analysis (PCA) together with k-Nearest-Neighbours (k-NN) and sparse PLS 93 

discriminant analysis (PLS-DA) to discriminate between Arabica and Robusta coffee, 94 

and compared the results with the classical approaches based on PCA+kNN and PLS-95 

DA.  96 

Lorente et al. (2015) used NIR spectroscopy (650 to 1700 nm) to detect early invisible 97 

decay lesions in citrus fruit using MSC and SNV pre-processing, different methods to 98 

select the important bands, and linear discriminant analysis (LDA) to classify the fruit 99 

as being either sound or rotten with a rate of correct classification above 90 %. Folch-100 

Fortuny et al. (2016) used N-way-PLS-DA to detect early invisible decay lesions in 101 

citrus fruit, achieving a prediction rate higher than 90 %. Mowat and Poole (1997) 102 

found this technology useful in determining persimmon quality. Ito et al. (1997) and 103 



Noypitak et al. (2015) investigated astringency in the persimmons ‘Nisimura-wase’ and 104 

in ‘Xichu’, respectively. The most common mode used in NIRS is diffuse reflectance, 105 

which acquires the reflected light in the vicinity of the illuminating point and is 106 

preferable for the measurement of intact fruit (Shao et al., 2009; He et al., 2007).  107 

The aim of this study was to evaluate the feasibility of visible and NIR spectroscopy 108 

combined with chemometrics as a non-destructive tool to determine the level of 109 

astringency in persimmons cv. ‘Rojo Brillante’. 110 

 111 

2. Plant material and experimental design 112 

Persimmon cv. ‘Rojo Brillante’ fruits were harvested in L’Alcudia (Valencia, Spain) at 113 

two stages of commercial maturity (M1 and M2) corresponding to late November and 114 

mid-December. The maturity index used to select the fruits was a visual observation of 115 

the external colour of the fruit (Salvador et al., 2007). After each harvest, 70 fruits 116 

without external damage and of homogenous colour were selected (a total of 140 fruits). 117 

In order to characterise the fruit at harvest, the average colour index (CI=100a/Lb, 118 

Hunter parameters) was measured using a colorimeter (CR-300, Konica Minolta Inc, 119 

Tokyo, Japan) and the firmness of the flesh was measured by a universal testing 120 

machine (4301, Instron Engineering Corp., MA, USA) equipped with an 8 mm puncture 121 

probe. The crosshead speed during the firmness test was 10 mm/min. During the test, 122 

the force increased slowly until it decreased abruptly when the flesh broke, and then the 123 

maximum required force (in Newton) was recorded. 124 

The average CI resulted in 18.20 ± 3.32 for M1 and 21.6 ± 4.05 for M2, while firmness 125 

decreased along with maturity at harvest, with mean values being 30.8 N ± 3.5 and 24.4 126 

N ± 4.9 for M1 and M2, respectively. 127 

In order to obtain different levels of astringency, the fruits in each maturity stage were 128 

divided into five homogeneous lots. The fruit was then exposed to CO2 treatments in 129 

closed containers (95 % CO2 at 20 ºC and 90 % RH) for 0, 6, 12, 18 and 24 h. 130 

Spectroscopic measurements of the intact fruits and the flesh of half cut fruits were 131 

acquired in the 8 h after each treatment with CO2. Figure 1 shows the location of the 132 

selected points for the measurements. 133 

 134 
Figure 1. Selected points for the spectroscopic measurements in: a) intact fruit; and b) 135 

the flesh of half cut fruit 136 
 137 



The degree of astringency of each fruit was determined as follows. A flesh sample of 138 

each fruit was frozen at −20 ºC and the soluble tannin content was analysed using the 139 

Folin-Denis method (Taira, 1995). The results were expressed as relative soluble 140 

tannins by fresh weight. Prior to this process, each fruit was cut in half and pressed onto 141 

10x10 cm filter paper soaked in a solution of 5 % FeCl3, which resulted in an 142 

impression whose quantity and intensity gave information about the content of soluble 143 

tannins and their distribution (Matsuo & Ito, 1982). This method of tannin printing is an 144 

alternative technique to the Folin-Denis method used in industry in random fruits to 145 

determine the level of astringency in fruit lots. 146 

 147 

3. Visible and near-infrared spectra collection 148 

The spectra were alternately collected in reflectance mode using a multi-channel 149 

spectrometer platform (AVS-DESKTOP-USB2, Avantes BV, The Netherlands) 150 

equipped with two detectors (Fig. 2). The first detector (AvaSpec-ULS2048 StarLine, 151 

Avantes BV, The Netherlands) included a 50 mm entrance slit and a 600 lines/mm 152 

diffraction grating covering the working visible and near-infrared (VNIR) range from 153 

650 nm to 1050 nm with a spectral FWHM (full width at half maximum) resolution of 154 

1.15 nm. The spectral sampling interval was 0.255 nm. The second detector (AvaSpec-155 

NIR256-1.7 NIRLine, Avantes BV, The Netherlands) was equipped with a 256-pixel 156 

non-cooled InGaAs (Indium Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu 157 

Photonics K.K., Japan), a 100 mm entrance slit and a 200 lines/mm diffraction grating 158 

covering the working NIR range from 1000 nm to 1700 nm with a spectral FWHM 159 

resolution of 12 nm. The spectral sampling interval was 3.535 nm. A stabilised 10 W 160 

tungsten halogen light source (AvaLight-HAL-S, Avantes BV, The Netherlands) was 161 

used. The probe tip was designed to provide reflectance measurements at a 45º angle so 162 

as to minimise the specular reflectance of the fruit surface.  163 

Calibration was performed using a 99 % white reflective reference tile (WS-2, Avantes 164 

BV, The Netherlands) so that the maximum reflectance of the reference measured over 165 

the entire spectral range was 90 % of the value of saturation. Before taking the spectral 166 

measurements, the temperature of the persimmons was stabilised at 24 ºC. 167 

Measurements were performed at the six different points on the surface of the intact 168 

persimmon and the flesh of half cut fruit (Fig. 1), and mean values of the spectra for 169 

both types of measurements were used for the analysis. A personal computer equipped 170 

with commercial software (AvaSoft version 7.2, Avantes, Inc.) was used to control both 171 



detectors and to acquire and pre-process the spectra. The integration time was set at 172 

90 ms for the detector sensitive in the VNIR and 700 ms for the detector sensitive in the 173 

NIR region. For both detectors, each spectrum was obtained as the average of five scans 174 

in order to reduce the detector’s thermal noise (Nicolaï et al., 2007). The mean 175 

reflectance measurements of each sample (S) were then converted to relative reflectance 176 

(R) values with respect to the white reference using dark reflectance (D) values and the 177 

reflectance values of the white reference (W), as shown in (1):  178 ܴ = ௌି஽ௐି஽     (1) 179 

The dark spectrum was obtained by switching off the light source and covering the 180 

whole tip of the reflectance probe. 181 

 182 

Figure 2. A labelled picture of the spectrometer 183 
 184 

4. Statistical analysis 185 

Spectral data and the tannin reference values were organised into matrices, where the 186 

rows represented the samples (the total of 140 persimmons) and the columns 187 

represented the variables. The X-variables, or predictors, were the wavelengths of the 188 

VNIR and NIR spectra for each persimmon. The Y-variable, or response, in the last 189 

column, represented the measured tannin value associated with each sample. 190 

A total of 28 matrices were generated corresponding to different combinations of the 191 

measurement points of the intact fruit and the flesh of the half cut fruit. The first two 192 

matrices corresponded to the mean values of reflectance of the measurements at the six 193 

points of the intact fruit shown in Figure 1. The third and fourth matrices contained 194 

mean values of the measurements at four points (2-5-3-4), which corresponded to the 195 

lowest part of the intact persimmon in the VNIR and NIR detectors, respectively. The 196 

fifth to fourteenth matrices contained mean values for measurements of other 197 

combinations of points (1-6-2-5, 1-6-3-4, 1-6, 2-5 and 3-4) in both VNIR and NIR. 198 

Other combinations of measured points have not been taken into account since the 199 

deastringency process normally progresses from the top to the bottom of the fruit (Fig. 200 

5) and would not make sense. The remaining 14 matrices corresponded to the mean 201 

values of the measurements of the same combinations of points, but from the flesh of 202 

the half cut fruit. 203 

 204 



4.1. Spectral Pre-processing 205 

To remove the influence of unwanted effects such as high-frequency noise, baseline 206 

shifts, light scattering, random noise and any other external effects due to instrumental 207 

or environmental factors, six methods of spectral pre-processing and their combinations 208 

were applied before the development of the prediction models. These methods included 209 

standard normal variate (SNV), multiplicative scatter correction (MSC), Savitzky-Golay 210 

smoothing (SG), first (1-Der) and second (2-Der) derivatives, and direct orthogonal 211 

signal correction (DOSC). All spectral pre-processing methods and the prediction 212 

models were carried out using MATLAB R2015b (The Mathworks Inc., Natick, MA, 213 

USA). 214 

SNV is commonly used to eliminate the multiplicative noise due to the influence of 215 

particle size or scatter interference (Rinnan et al., 2009). SNV subtracts the mean from 216 

an individual spectrum and divides it by its standard deviation (Feng & Sun, 2013). 217 

Similarly, MSC is used to compensate for the non-uniform scattering effect induced by 218 

diverse particle sizes and other physical effects in the spectrum (Fearn et al., 2009; 219 

Vidal & Amigo, 2012). It linearises each spectrum to an average spectrum (derived 220 

from the calibration set) and adjusts it using the least squares method.  221 

Moreover, smoothing is an effective way to reduce high-frequency noise. There are 222 

several smoothing methods in the literature, but one of the most commonly applied is 223 

SG smoothing (Savitzky & Golay, 1964). This method has the advantage of preserving 224 

signal characteristics such as the maximum and minimum relative values or the width of 225 

the peaks, which usually disappear with other smoothing methods. In the present work, 226 

SG smoothing was calculated with two-degree polynomials and a window size of seven 227 

points. 228 

1-Der and 2-Der are well-accepted pre-processing methods to eliminate the shifting, the 229 

scattering and the background noise, as well as to distinguish overlapping peaks and to 230 

improve the spectral resolution (Sinija & Mishra, 2011). They were calculated using the 231 

SG algorithm with three-point smoothing filters and a two-degree polynomial (Liu et 232 

al., 2010).  233 

Finally, DOSC are novel methods used to remove information that has a poor 234 

correlation (orthogonal) with the response matrix (Zhu et al., 2008). DOSC obtains 235 

components that are orthogonal to the response matrix and eliminates those that are 236 

considered irrelevant, thus improving the predictability. 237 

 238 



4.2. Modelling by different calibration methods 239 

Estimation of prediction error is required to evaluate the performance of fitted models. 240 

Cross-validation is widely used to estimate the prediction error (Fusiki, 2011). In this 241 

work, 70 % of the fruits in each maturity stage were randomly selected to build the 242 

models that were internally validated using a 10-fold cross-validation. The remaining  243 

30 % of the samples were never used to build or train the model with the purpose of 244 

externally evaluating the performance of the regression techniques used to predict the 245 

tannin content. The regression techniques used in this work were PLSR, SVM and the 246 

LS-SVM regression. 247 

The PLSR multivariate method is widely used to evaluate the linear relationship 248 

between inputs (spectral data or X-variables) and the response variable (tannin content 249 

in this case or Y-variable) in spectroscopic analysis (Geladi & Kowalski, 1986). The 250 

procedure is based on the use of latent variables (LVs), instead of real variables 251 

(spectral data), depending on the covariance between the predictors, or X-variables, and 252 

the response, or Y-variable, leading to a parsimonious model with reliable predictive 253 

power (Lorber et al., 1987). SVM is a popular machine learning tool for regression 254 

(Vapnik, 2013) based on the Vapnik-Chervonenkis (VC) dimension and on the principle 255 

of structural risk minimisation (Gunn, 1998). It is considered a non-parametric 256 

technique because the SVM models are based on a non-linear kernel function. In short, 257 

SVM assigns the calibration dataset to a high-dimensional feature space by means of a 258 

non-linear mapping, and then performs a linear regression. This technique has the 259 

advantage of being very efficient and robust during the training of the model. In this 260 

study, the Matlab statistical and machine learning toolbox was used to train the model 261 

with the spectral and tannin information, using a linear kernel and a 10-fold cross-262 

validation. 263 

Finally, LS-SVM is a learning algorithm which improves the generalisation ability of 264 

the machine learning procedure based on the principle of structural risk minimisation 265 

(Liu et al., 2008; Suykens & Vandewalle, 1999). It handles both linear and non-linear 266 

multivariate problems with less computational cost and with a small sample database. 267 

This is achieved using linear equations instead of quadratic problems to reduce the 268 

complexity of the optimisation process (Liu & Sun, 2009). The LS-SVM has the 269 

advantage of limited over-fitting, high predictive reliability and a strong generalisation 270 

capability. The LS-SVMlab v1.8 toolbox (Suykens, Leuven, Belgium) was used to 271 

develop the calibration models. During the development of the model, the linear kernel 272 



and a 10-fold cross-validation were used to avoid problems of over-fitting. The linear 273 

kernel included a regularisation parameter that determined the trade-off between 274 

minimising the training error and minimising the model complexity. A large γ implies 275 

little regularisation, and therefore a more non-linear model (Sun et al., 2009). 276 

 277 

4.3. Variable selection 278 

Since the number of variables used as inputs (wavelengths) in the models is high (1570 279 

variables for the VNIR and 198 for the NIR spectra), they may contain excessive 280 

collinearity and redundancy. Therefore, it was considered appropriate to find the most 281 

important wavelengths as effective wavelengths (EWs) for each model. This was 282 

performed with the purpose of reducing the high dimensionality of the spectral data and 283 

the computational cost, thus achieving an optimal model. 284 

The algorithm that was applied to select the EWs was a successive projection algorithm 285 

(SPA). SPA is a variable selection algorithm applied to solve collinearity problems and 286 

to select the wavelengths with fewer redundancies by means of a simple procedure of 287 

projection in a vectorial space, thereby allowing for the selection of the best subsets of 288 

wavelengths that conform to the minimum collinearity (Araújo et al., 2001; Galvao et 289 

al., 2008; Zhang et al., 2013). SPA was applied for each calibration set and the EWs 290 

obtained were used again as inputs of the PLSR, SVM and LS-SVM models. 291 

 292 

4.4. Model evaluation 293 

The accuracy and the predictive capability of the three different models were evaluated 294 

by means of the coefficient of determination (R2), the root mean square error (RMSE) 295 

and the ratio of performance to deviation (RPD) obtained on the external validation set. 296 

Generally, a good model must have high R2 with low RMSE. In addition, an acceptable 297 

model should have an RPD value of more than 2.5, a value above 3.0 being very good 298 

(Williams & Sobering, 1993; Viscarra Rossel et al., 2007; Kamruzzaman et al., 2016; 299 

Cortés et al., 2016). These parameters can be defined by equations 2 to 4. 300 

       ܴଶ = 1 − ∑ (௬ො೔ି௬೔)మ೔ಿసభ∑ (௬ො೔ି௬ത೔)మ೔ಿసభ        (2) 301 

ܧܵܯܴ       =  ට∑ (௬ො೔ି௬೔)మ೔ಿసభ ே         (3) 302 

ܦܴܲ       =  ௌ஽(௬)ோெௌா௉     (4) 303 

 304 



where:  305 

 ŷi is the estimated value of the ith persimmon. 306 

 yi is the measured value of the ith persimmon. 307 

 N: is the number of observations. 308 

 SD: is the standard deviation of the measured values. 309 

 310 

5. RESULTS AND DISCUSSION 311 

The total number of persimmon samples was 140, with a mean tannin content of     312 

0.250 % (STD=0.221). The statistical values of the persimmon tannin content in the 313 

calibration and external validation sets are shown in Table 1. 314 

 315 

Table 1. Statistical values of tannin content (%) of the studied persimmons 316 

 317 

Before applying the models, the raw reflectance spectra (Fig. 3) of the samples were 318 

pre-processed using the described methods.  319 

 320 

Figure 3. Raw reflectance spectra (%) of the persimmons in the calibration set for: (a) 321 

the VNIR region; and (b) the NIR region 322 

 323 

Thus, the PLSR, SVM and LS-SVM models were developed using both raw and pre-324 

processed spectra. Samples in the external validation set were later used to evaluate the 325 

performance of the models. The results (R2, RMSE and RPD) of the models for the 326 

external validation set are shown in Table 2 and Table 3. Table 2 shows the results 327 

using the average of the six measurement points for the intact fruit set, and Table 3 for 328 

the half cut fruit set. 329 

 330 

Table 2. Results of tannin content using the average of the six measurement points with 331 

all wavelengths by PLSR, SVM and LS-SVM models for the intact fruit set 332 

 333 

Table 3. Results of tannin content using the average of the six measurement points with 334 

all wavelengths by PLSR, SVM and LS-SVM models for the half cut fruit set 335 

Tables 2 and 3 show that, on average, the models with the best performance are those 336 

which included SNV in the pre-processing that was applied (SNV+1-Der, SNV+2-Der, 337 



SNV+DOSC). Figure 4 shows the results for the best PLSR model, which was obtained 338 

with the spectra measured at the six measurement points of the intact fruits and pre-339 

processed using SNV+1-Der. 340 

 341 

Figure 4. Normalised X-loading weights of the best PLSR model for the six 342 

measurement points (with SNV+1-Der pre-processing for the intact fruit set) for the (a) 343 

VNIR and (b) NIR detectors, respectively. Only the weights corresponding to the latent 344 

variables that explain 95 % of the Y-variable variance are shown (5 for VNIR and 16 345 

for NIR detectors) 346 

 347 

Tables 4 and 5 show the results for the three selected methods and the above mentioned 348 

pre-processing combinations after applying SPA for wavelength selection. 349 

 350 

Table 4. Results of tannin content using the average of the six measurement points with 351 

EWs for the models created by PLSR, SVM and LS-SVM for the intact fruits set 352 

Table 5. Results of tannin content using the average of the six measurement points with 353 

EWs for the models created by PLSR, SVM and LS-SVM for the half cut fruit set 354 

This analysis was performed for the different combinations of the six measurement 355 

points, obtaining the results in Table 6, which shows the best results for each 356 

combination of points and each model. Tables 7 and 8 show the results for the 357 

combination of measurement points 2-5-3-4 (average of the equator and bottom of the 358 

fruit) for the intact and half cut fruit sets, respectively, for the three models (PLSR, 359 

SVM, LS-SVM), and the best pre-processing combinations for the six measurement 360 

points (SNV+1-Der, SNV+2-Der and SNV+DOSC). The highest RPD achieved was 361 

always equal to or better than the highest RPD obtained with any other combination of 362 

points. This is reasonable, since from the tannin prints observed in Figure 5, which were 363 

obtained using the technique based on FeCl3, the highest differences are in the lower 364 

part of the fruit, the upper part being more similar in fruits with different CO2 365 

treatments (Fig. 5b-e). 366 

 367 

Figure 5. Impressions of tannin content representing the evolution of the astringency 368 

distribution and intensity for persimmons after different CO2 treatments: a) untreated; 369 

and b-e) treated with CO2 for 6, 12, 18 and 24 h, respectively 370 



 371 

Table 6. Results of tannin content achieved using different combinations of 372 

measurement points and pre-processing methods with all wavelengths by PLSR, SVM 373 

and LS-SVM models 374 
 375 
Table 7. Results of tannin content achieved using the average of the four measurement 376 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the 377 

intact fruit set 378 

 379 

Table 8. Results of tannin content achieved using the average of the four measurement 380 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the half 381 

cut fruit set 382 

As in the previous case, SPA was applied for wavelength selection. Tables 9 and 10 383 

show the results of these analyses for the three models and pre-processing 384 

combinations. 385 

 386 

Table 9. Results of tannin content achieved using the average of the four measurement 387 

points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs selected by SPA for 388 

the intact fruit set 389 

Table 10. Results of tannin content achieved using the average of the four measurement 390 

points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs selected by SPA for 391 

the half cut fruit set 392 

In this work, different models were obtained to estimate the content of tannins in 393 

persimmon from their original and pre-processed reflectance spectra. The models were 394 

created for measurements of the skin (intact fruit) and the flesh (half cut fruit). For the 395 

intact fruit, good results were obtained for the three methods analysed (PLSR, SVM and 396 

LS-SVM), achieving an RPD>3 in the best cases, using the average of the six 397 

measurement points. The best results using the prediction set were obtained using PLSR 398 

and SNV+1-Der pre-processing, in the VNIR region (RPD=3.26, R2=0.904, 399 

RMSE=0.075). Using SVM, the best results were for the NIR spectra and the 400 

SNV+DOSC pre-processing. However, the analysis of the VNIR spectra using SVM 401 

gave similar results with some pre-processing such as SNV+2-Der. Finally, the best 402 



results with the LS-SVM method were obtained with the SNV+DOCS pre-processing in 403 

the NIR region. Regarding half cut fruit and the average of six measurement points, the 404 

results were poorer than in the case of intact fruit. 405 

The selection of the most important wavelengths using SPA generally improves the 406 

results, especially in the case of half cut fruit. A model with an RPD greater than 3 was 407 

obtained for the VNIR spectra with the SNV+2-Der pre-processing and SVM method. 408 

In the case of the intact fruit, although the results did not always improve, the best result 409 

of the study was obtained using PLSR with SNV+DOSC in the NIR region, with an 410 

RPD of 3.46 (R2=0.915, RMSE=0.071). As shown in Figure 4a, the values of the 411 

loading weights were higher around the 1000 nm band for the VNIR range, which 412 

corresponds to the information presented by Noypitak et al. (2015) in relation with the 413 

spectrum for the tannic acid powder. These loadings explained the better results 414 

obtained with the VNIR probe over those obtained in the NIR, and also the reduced 415 

number of EWs obtained in the VNIR range. 416 

For both the intact and the half cut fruit cases, the three methods analysed achieved 417 

poorer predictions using the average of the four measurement points (combination 2-5-418 

3-4) than those obtained with the six measurement points. Regarding the selection of 419 

EWs with SPA (with this combination of points), this method also improved the results 420 

obtained for the half cut fruit, similarly to the results obtained with six measurement 421 

points. However, the SPA analysis showed no significant improvement in intact fruit 422 

(RPD<3).  423 

 424 

6. CONCLUSIONS 425 

This study points to visible and NIR spectroscopy as a non-destructive method suitable 426 

for determining astringency in persimmon fruits in an easy and rapid way without 427 

expensive and tedious chemical analysis or the subjective evaluation of the tannin print 428 

method. Reflectance spectra at selected points in intact and half cut persimmons were 429 

acquired in the VIS and NIR regions. A total of seven signal pre-processing methods 430 

including SNV, SG, 1-Der, 2-Der, MSC, DOSC and combinations of them have been 431 

used in the measurements of the single point and the combination of selected points. 432 

The combinations considered were SNV+1-Der, SNV+2-Der and SNV+DOSC, since 433 

they showed the best performance from all the combinations evaluated. Astringency in 434 

persimmon fruits was predicted using three regression techniques, such as PLSR, SVM, 435 

and LS-SVM. 436 



In addition, EWs were obtained using SPA. Depending on the method, the EWs varied 437 

from 1 to 30 when the VNIR spectra were used and from 17 to 57 when using the NIR 438 

spectra. 439 

The best performance for intact fruits was obtained using PLSR on the full spectra of 440 

the six measurement points after pre-processing with SNV+1-Der, an R2=0.904 and 441 

RPD=3.26 being achieved. Moreover, the best prediction results obtained with the EWs 442 

(41 bands) were obtained for the PLSR model using the six measurement points of the 443 

intact fruit in the NIR spectra and SNV+DOSC pre-processing (R2=0.915; RPD=3.46). 444 

Hence, this technology has proved itself to be a feasible non-destructive method to 445 

determine the astringency in persimmon fruits, since the best results were achieved in 446 

intact fruits. 447 

 448 
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  623 



Figure 1. Selected points for the spectroscopic measurements in: a) intact fruit; and b) 624 
the flesh of half cut fruit 625 
 626 
Figure 2. A labelled picture of the spectrometer 627 
 628 
Figure 3. Raw reflectance spectra (%) of the persimmons in the calibration set for: (a) 629 

the VNIR region; and (b) the NIR region 630 

 631 

Figure 4. Normalised X-loading weights of the best PLSR model for the six 632 

measurement points (with SNV+1-Der pre-processing for the intact fruit set) for the (a) 633 

VNIR and (b) NIR detectors, respectively. Only the weights corresponding to the latent 634 

variables that explain 95 % of the Y-variable variance are shown (5 for VNIR and 16 635 

for NIR detectors) 636 

 637 

Figure 5. Impressions of tannin content representing the evolution of the astringency 638 

distribution and intensity for persimmons after different CO2 treatments: a) untreated; 639 

and b-e) treated with CO2 for 6, 12, 18 and 24 h, respectively 640 

 641 

 642 
  643 



Table 1. Statistical values of tannin content (%) of persimmons 644 
DATA SET Sample Nº Min Max Mean STD 
Calibration 98 0.023 0.735 0.243 0.210 
Prediction 42 0.023 0.752 0.266 0.245 
 645 
Table 2. Results of tannin content using the average of the six measurement points with 646 

all wavelengths by PLSR, SVM and LS-SVM models for the intact fruit set 647 

Model Pre-treatment LV, γ VNIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR RAW 18 0.829 0.100 2.45 36 0.813 0.105 2.34 

 SNV 17 0.828 0.101 2.44 35 0.810 0.106 2.32 

 SG 19 0.802 0.108 2.28 46 0.758 0.119 2.06 

 1-Der 9 0.898 0.077 3.17 28 0.850 0.094 2.61 

 2-Der 9 0.885 0.082 2.98 24 0.755 0.120 2.05 

 MSC 17 0.828 0.101 2.44 34 0.821 0.103 2.39 

 DOSC 1 0.817 0.104 2.37 1 0.704 0.132 1.86 

 SNV + 1-Der 10 0.904 0.075 3.26 27 0.861 0.090 2.72 

 SNV+ 2-Der 10 0.883 0.083 2.96 22 0.795 0.110 2.23 

 SNV+DOSC 1 0.814 0.104 2.35 18 0.814 0.105 2.34 

SVM RAW  0.813 0.105 2.34  0.117 0.256 0.96 

 SNV  0.863 0.090 2.74  0.010 0.241 1.02 

 SG  0.813 0.105 2.34  0.107 0.255 0.96 

 1-Der  0.893 0.079 3.09  0.728 0.126 1.94 

 2-Der  0.896 0.078 3.14  0.811 0.105 2.33 

 MSC  0.861 0.090 2.71  0.016 0.244 1.00 

 DOSC  0.835 0.099 2.49  0.731 0.126 1.95 

 SNV + 1-Der  0.894 0.079 3.11  0.852 0.093 2.63 

 SNV+ 2-Der  0.897 0.078 3.15  0.861 0.090 2.72 

 SNV+DOSC  0.834 0.099 2.48  0.899 0.077 3.19 

LS-SVM RAW 1.828 0.805 0.107 2.29 4126.52 0.814 0.105 2.35 

 SNV 4278.28 0.821 0.102 2.39 59.782 0.870 0.087 2.81 

 SG 111.231 0.789 0.111 2.20 4035.02 0.760 0.119 2.07 

 1-Der 82.282 0.868 0.088 2.79 1.275 0.805 0.107 2.29 

 2-Der 13.288 0.860 0.091 2.71 0.215 0.738 0.124 1.98 

 MSC 0.014 0.829 0.100 2.44 80.185 0.862 0.090 2.72 

 DOSC 1.35 x 1010 0.817 0.104 2.37 4.61 x 1013 0.704 0.132 1.86 

 SNV + 1-Der 358.236 0.877 0.085 2.88 89.781 0.866 0.089 2.77 

 SNV+ 2-Der 184.810 0.885 0.082 2.99 0.109 0.805 0.107 2.29 

 SNV+DOSC 2.10 x 106 0.815 0.104 2.35 0.002 0.897 0.078 3.15 
 648 

  649 



Table 3. Results of tannin content using the average of the six measurement points with 650 

all wavelengths by PLSR, SVM and LS-SVM models for the half cut fruit set 651 

Model Pre-treatment LV, γ VNIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR RAW 15 0.761 0.118 2.07 38 0.733 0.125 1.96 

 SNV 14 0.741 0.123 1.99 37 0.736 0.125 1.97 

 SG 17 0.727 0.127 1.94 59 0.329 0.198 1.24 

 1-Der 9 0.856 0.092 2.66 31 0.659 0.142 1.73 

 2-Der 9 0.864 0.089 2.74 22 0.583 0.156 1.57 

 MSC 14 0.741 0.123 1.99 37 0.729 0.126 1.94 

 DOSC 1 0.741 0.123 1.99 1 0.604 0.153 1.61 

 SNV + 1-Der 8 0.844 0.096 2.57 30 0.678 0.138 1.78 

 SNV+ 2-Der 9 0.861 0.090 2.72 22 0.642 0.145 1.69 

 SNV+DOSC 1 0.744 0.123 2.00 7 0.712 0.130 1.88 

SVM RAW  0.826 0.101 2.43 0 0.174 0.220 1.11 

 SNV  0.813 0.105 2.34 0 0.557 0.161 1.52 

 SG  0.792 0.110 2.22 0 0.098 0.230 1.07 

 1-Der  0.872 0.087 2.83 0 0.822 0.102 2.40 

 2-Der  0.877 0.085 2.88 0 0.841 0.097 2.54 

 MSC  0.800 0.108 2.26 0 0.526 0.167 1.47 

 DOSC  0.754 0.120 2.04 0 0.629 0.148 1.66 

 SNV + 1-Der  0.858 0.091 2.68 0 0.812 0.105 2.33 

 SNV+ 2-Der  0.871 0.087 2.82 0 0.853 0.093 2.64 

 SNV+DOSC  0.760 0.119 2.06 0 0.826 0.101 2.42 

LS-SVM RAW 1.946 0.796 0.109 2.24 1458.98 0.736 0.125 1.97 

 SNV 0.004 0.795 0.110 2.23 32.265 0.794 0.110 2.23 

 SG 190.193 0.760 0.119 2.07 1334.51 0.655 0.142 1.72 

 1-Der 0.011 0.858 0.091 2.69 0.378 0.819 0.103 2.38 

 2-Der 32.619 0.870 0.087 2.80 0.049 0.794 0.110 2.23 

 MSC 0.003 0.796 0.110 2.24 24.415 0.783 0.113 2.17 

 DOSC 3.26 x 1010 0.741 0.123 1.99 3.58 x 109 0.604 0.153 1.61 

 SNV + 1-Der 9577.86 0.849 0.094 2.61 0.163 0.795 0.110 2.23 

 SNV+ 2-Der 1.15 x 104 0.866 0.089 2.76 0.051 0.817 0.104 2.37 

 SNV+DOSC 89.830 0.744 0.123 2.00 0.405 0.819 0.103 2.38 
  652 



Table 4. Results of tannin content using the average of the six measurement points with 653 

EWs for the models created by PLSR, SVM and LS-SVM for the intact fruits set (*) 654 

Model Pre-treatment EW/LV, EW, 
EW/γ 

VNIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 22/22 0.861 0.090 2.72 48/48 0.893 0.079 3.10 

 SNV+ 2-Der 26/26 0.891 0.080 3.06 54/54 0.822 0.102 2.40 

 SNV+DOSC 1/1 0.871 0.087 2.81 41/41 0.915 0.071 3.46 

SVM SNV + 1-Der 22 0.849 0.094 2.61 48 0.761 0.118 2.07 

 SNV+ 2-Der 26 0.884 0.082 2.98 54 0.768 0.117 2.10 

 SNV+DOSC 1 0.878 0.085 2.89 41 0.895 0.079 3.12 

LS-SVM SNV + 1-Der 22/9.06 x 104 0.821 0.103 2.39 48/10.309 0.833 0.099 2.48 

 SNV+ 2-Der 26/0.982 0.889 0.081 3.04 54/50.492 0.836 0.098 2.50 

 SNV+DOSC 1/122.96 0.874 0.086 2.85 41/3.818 0.893 0.079 3.09 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 655 

 656 

Table 5. Results of tannin content using the average of the six measurement points with 657 

EWs for the models created by PLSR, SVM and LS-SVM for the half cut fruit set(*) 658 

Model Pre-treatment EW/LV, 
EW, EW/γ 

VNIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 30/30 0.880 0.084 2.92 28/28 0.834 0.099 2.48 

 SNV+ 2-Der 25/25 0.880 0.084 2.92 38/38 0.790 0.111 2.21 

 SNV+DOSC 1/1 0.856 0.092 2.67 51/51 0.850 0.094 2.62 

SVM SNV + 1-Der 30 0.879 0.084 2.91 28 0.837 0.098 2.51 

 SNV+ 2-Der 25 0.894 0.079 3.12 38 0.743 0.123 2.00 

 SNV+DOSC 1 0.862 0.090 2.72 51 0.828 0.101 2.44 

LS-SVM SNV + 1-Der 30/0.288 0.865 0.089 2.76 28/8.152 0.774 0.115 2.13 

 SNV+ 2-Der 25/2.468 0.885 0.082 2.98 38/6.694 0.743 0.123 2.00 

 SNV+DOSC 1/97.163 0.857 0.092 2.68 51/0.030 0.825 0.101 2.42 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 659 

 660 

  661 



Table 6. Results of tannin content achieved using different combinations of 662 

measurement points and pre-processing methods with all wavelengths by PLSR, SVM 663 

and LS-SVM models(*) 664 

Points Model Pre-reatment Entire BEST  
PRE-TREAT. 

Half cut 

REG. R2 RMSE RPD REG. R2 RMSE RPD 
1-6-2-5 PLSR 1-Der VNIR 0.885 0.082 2.98 SNV+1-Der VNIR 0.829 0.100 2.45 
 SVM SNV+ 1-Der VNIR 0.894 0.079 3.11 2-Der VNIR 0.860 0.091 2.70 
 LS-SVM SNV+1-Der VNIR 0.885 0.082 2.99 2-Der VNIR 0.851 0.094 2.62 
1-6-3-4 PLSR SNV+1-Der VNIR 0.884 0.083 2.97 SNV+2-Der VNIR 0.863 0.090 2.73 
 SVM SNV+ 1-Der VNIR 0.885 0.082 2.99 2-Der VNIR 0.883 0.083 2.96 
 LS-SVM SNV+ 2-Der VNIR 0.874 0.086 2.85 2-Der VNIR 0.871 0.087 2.82 
1-6 PLSR SNV+ 1-Der VNIR 0.815 0.104 2.35 SNV+1-Der VNIR 0.803 0.108 2.28 
 SVM SNV+ 1-Der VNIR 0.857 0.092 2.67 2-Der VNIR 0.848 0.094 2.60 
 LS-SVM SNV+ 1-Der VNIR 0.843 0.096 2.56 SNV+2-Der VNIR 0.842 0.096 2.54 
2-5 PLSR 2-Der VNIR 0.869 0.088 2.80 SNV+1-Der VNIR 0.786 0.112 2.19 
 SVM SNV+ 1-Der VNIR 0.882 0.083 2.94 SNV+2-Der NIR 0.837 0.098 2.51 
 LS-SVM 1-Der VNIR 0.866 0.089 2.77 1-Der NIR 0.814 0.104 2.35 
3-4 PLSR SNV+ 1-Der VNIR 0.837 0.098 2.51 2-Der VNIR 0.852 0.093 2.63 
 SVM SNV+ 2-Der VNIR 0.872 0.087 2.82 SNV+2-Der NIR 0.853 0.093 2.64 
 LS-SVM SNV+ 2-Der VNIR 0.863 0.090 2.73 1-Der VNIR 0.843 0.096 2.55 

* Only the best prediction results for each model are shown, indicating the associated pre-processing 665 
 666 
  667 



Table 7. Results of tannin content achieved using the average of the four measurement 668 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the 669 

intact fruit set(*) 670 

Model Pre-treatment LV, γ VNIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 9 0.874 0.086 2.86 27 0.830 0.100 2.46 

 SNV+ 2-Der 9 0.889 0.081 3.04 21 0.760 0.119 2.07 

 SNV+DOSC 1 0.808 0.106 2.31 15 0.810 0.106 2.32 

SVM SNV + 1-Der  0.895 0.079 3.12  0.862 0.090 2.72 

 SNV+ 2-Der  0.890 0.080 3.06  0.813 0.105 2.34 

 SNV+DOSC  0.824 0.102 2.41  0.857 0.092 2.68 

LS-SVM SNV + 1-Der 4.880 0.872 0.087 2.83 0.230 0.851 0.093 2.62 

 SNV+ 2-Der 547.70 0.872 0.087 2.83 0.073 0.760 0.119 2.07 

 SNV+DOSC 1.04 x 107 0.808 0.106 2.31 0.001 0.858 0.091 2.68 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 671 

 672 
Table 8. Results of tannin content achieved using the average of the four measurement 673 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the half 674 

cut fruit set(*) 675 

Model Pre-treatment LV, γ VNIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 8 0.843 0.096 2.55 30 0.627 0.148 1.66 

 SNV+ 2-Der 8 0.827 0.101 2.43 19 0.765 0.117 2.09 

 SNV+DOSC 1 0.712 0.130 1.89 7 0.630 0.147 1.66 

SVM SNV + 1-Der  0.856 0.092 2.66  0.827 0.101 2.43 

 SNV+ 2-Der  0.834 0.099 2.49  0.877 0.085 2.88 

 SNV+DOSC  0.725 0.127 1.93  0.783 0.113 2.17 

LS-SVM SNV + 1-Der 2952 0.861 0.091 2.71 1.876 0.812 0.105 2.33 

 SNV+ 2-Der 54.177 0.834 0.099 2.48 0.067 0.839 0.097 2.52 

 SNV+DOSC 2.62 x 106 0.713 0.130 1.89 12.150 0.761 0.119 2.07 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 676 

  677 



Table 9. Results of tannin content achieved using the average of the four measurement 678 

points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs selected by SPA for 679 

the intact fruit set(*) 680 

Model Pre-treatment EW/LV, EW, 
EW/γ 

VNIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 16/16 0.838 0.098 2.51 28/28 0.856 0.092 2.67 

 SNV+ 2-Der 30/30 0.854 0.093 2.65 28/28 0.779 0.114 2.15 

 SNV+DOSC 1/1 0.860 0.091 2.70 30/30 0.865 0.089 2.76 

SVM SNV + 1-Der 16 0.851 0.094 2.62 28 0.759 0.119 2.06 

 SNV+ 2-Der 30 0.864 0.089 2.74 28 0.806 0.107 2.30 

 SNV+DOSC 1 0.862 0.090 2.73 30 0.857 0.092 2.68 

LS-SVM SNV + 1-Der 16/0.317 0.834 0.099 2.49 28/4.435 0.813 0.105 2.34 

 SNV+ 2-Der 30/0.144 0.843 0.096 2.56 28/0.823 0.749 0.122 2.02 

 SNV+DOSC 1/5.785 0.861 0.090 2.71 30/0.009 0.855 0.092 2.65 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 681 

 682 

Table 10. Results of tannin content achieved using the average of the four measurement 683 

points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs selected by SPA for 684 

the half cut fruit set(*) 685 

Model Pre-treatment EW/LV, EW, 
EW/γ 

VNIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 23/23 0.865 0.089 2.75 28/28 0.823 0.102 2.41 

 SNV+ 2-Der 18/18 0.835 0.098 2.49 17/17 0.798 0.109 2.25 

 SNV+DOSC 1/1 0.814 0.104 2.35 57/57 0.805 0.107 2.29 

SVM SNV + 1-Der 23 0.859 0.091 2.70 28 0.826 0.101 2.43 

 SNV+ 2-Der 18 0.811 0.105 2.33 17 0.818 0.103 2.37 

 SNV+DOSC 1 0.823 0.102 2.41 57 0.770 0.116 2.11 

LS-SVM SNV + 1-Der 23/0.249 0.860 0.091 2.70 28/1.30 x 105 0.805 0.107 2.29 

 SNV+ 2-Der 18/44.110 0.835 0.098 2.49 17/39.054 0.775 0.115 2.13 

 SNV+DOSC 1/18.698 0.815 0.104 2.36 57/0.051 0.756 0.120 2.05 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 686 

 687 

 688 



Highlights 

 Persimmon astringency can be assessed by chemometrics and spectroscopy 
tecnology 

 VIS-NIR in the range 600-1100 nm and NIR in the range 900-1800 nm have been 
tested 

 Several pre-processing and statistical methods have been tested in intact and half cut 
fruit 

 Easy handling applicability of non-destructive technique in internal quality analysis 

*Highlights (for review)
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Table 1. Statistical values of tannins content (%) of persimmons 
DATA SET Sample Nº Min Max Mean STD 
Calibration 98 .023 .735 .243 .210 
Prediction 42 .023 .752 .266 .245 

 

Table 2. Prediction results of tannins content using the average of the six measuring 

points with all wavelengths by PLSR, SVM and LS-SVM models for the intact fruit set 

MODEL PRE-
TREATMENT LV, γ VIS-NIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR RAW 18 .829 .100 2.45 36 .813 .105 2.34 

 SNV 17 .828 .101 2.44 35 .810 .106 2.32 

 SG 19 .802 .108 2.28 46 .758 .119 2.06 

 1-Der 9 .898 .077 3.17 28 .850 .094 2.61 

 2-Der 9 .885 .082 2.98 24 .755 .120 2.05 

 MSC 17 .828 .101 2.44 34 .821 .103 2.39 

 DOSC 1 .817 .104 2.37 1 .704 .132 1.86 

 SNV + 1-Der 10 .904 .075 3.26 27 .861 .090 2.72 

 SNV+ 2-Der 10 .883 .083 2.96 22 .795 .110 2.23 

 SNV+DOSC 1 .814 .104 2.35 18 .814 .105 2.34 

SVM RAW  .813 .105 2.34  .117 .256 .96 

 SNV  .863 .090 2.74  .010 .241 1.02 

 SG  .813 .105 2.34  .107 .255 .96 

 1-Der  .893 .079 3.09  .728 .126 1.94 

 2-Der  .896 .078 3.14  .811 .105 2.33 

 MSC  .861 .090 2.71  .016 .244 1.00 

 DOSC  .835 .099 2.49  .731 .126 1.95 

 SNV + 1-Der  .894 .079 3.11  .852 .093 2.63 

 SNV+ 2-Der  .897 .078 3.15  .861 .090 2.72 

 SNV+DOSC  .834 .099 2.48  .899 .077 3.19 

LS-SVM RAW 1.828 .805 .107 2.29 4126.52 .814 .105 2.35 

 SNV 4278.28 .821 .102 2.39 59.782 .870 .087 2.81 

 SG 111.231 .789 .111 2.20 4035.02 .760 .119 2.07 

 1-Der 82.282 .868 .088 2.79 1.275 .805 .107 2.29 

 2-Der 13.288 .860 .091 2.71 .215 .738 .124 1.98 

 MSC .014 .829 .100 2.44 80.185 .862 .090 2.72 

 DOSC 1.35 x 1010 .817 .104 2.37 4.61 x 1013 .704 .132 1.86 

 SNV + 1-Der 358.236 .877 .085 2.88 89.781 .866 .089 2.77 

 SNV+ 2-Der 184.810 .885 .082 2.99 .109 .805 .107 2.29 

 SNV+DOSC 2.10 x 106 .815 .104 2.35 .002 .897 .078 3.15 
 

  

Tables with alternative format



Table 3. Prediction results of tannins content using the average of the six measuring 

points with all wavelengths by PLSR, SVM and LS-SVM models for the half cut fruit 

set 

MODEL PRE-
TREATMENT LV, γ VIS-NIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR RAW 15 .761 .118 2.07 38 .733 .125 1.96 

 SNV 14 .741 .123 1.99 37 .736 .125 1.97 

 SG 17 .727 .127 1.94 59 .329 .198 1.24 

 1-Der 9 .856 .092 2.66 31 .659 .142 1.73 

 2-Der 9 .864 .089 2.74 22 .583 .156 1.57 

 MSC 14 .741 .123 1.99 37 .729 .126 1.94 

 DOSC 1 .741 .123 1.99 1 .604 .153 1.61 

 SNV + 1-Der 8 .844 .096 2.57 30 .678 .138 1.78 

 SNV+ 2-Der 9 .861 .090 2.72 22 .642 .145 1.69 

 SNV+DOSC 1 .744 .123 2.00 7 .712 .130 1.88 

SVM RAW  .826 .101 2.43  .174 .220 1.11 

 SNV  .813 .105 2.34  .557 .161 1.52 

 SG  .792 .110 2.22  .098 .230 1.07 

 1-Der  .872 .087 2.83  .822 .102 2.40 

 2-Der  .877 .085 2.88  .841 .097 2.54 

 MSC  .800 .108 2.26  .526 .167 1.47 

 DOSC  .754 .120 2.04  .629 .148 1.66 

 SNV + 1-Der  .858 .091 2.68  .812 .105 2.33 

 SNV+ 2-Der  .871 .087 2.82  .853 .093 2.64 

 SNV+DOSC  .760 .119 2.06  .826 .101 2.42 

LS-SVM RAW 1.946 .796 .109 2.24 1458.98 .736 .125 1.97 

 SNV .004 .795 .110 2.23 32.265 .794 .110 2.23 

 SG 190.193 .760 .119 2.07 1334.51 .655 .142 1.72 

 1-Der .011 .858 .091 2.69 .378 .819 .103 2.38 

 2-Der 32.619 .870 .087 2.80 .049 .794 .110 2.23 

 MSC .003 .796 .110 2.24 24.415 .783 .113 2.17 

 DOSC 3.26 x 1010 .741 .123 1.99 3.58 x 109 .604 .153 1.61 

 SNV + 1-Der 9577.86 .849 .094 2.61 .163 .795 .110 2.23 

 SNV+ 2-Der 1.15 x 104 .866 .089 2.76 .051 .817 .104 2.37 

 SNV+DOSC 89.830 .744 .123 2.00 .405 .819 .103 2.38 
  



Table 4. Prediction results of tannins content using the average of the six measuring 

points with EWs (by SPA) by PLSR, SVM and LS-SVM models for the intact fruit 

set(*) 

MODEL PRE-
TREATMENT 

EW/LV, EW, 
EW/γ 

VIS-NIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 22/22 .861 .090 2.72 48/48 .893 .079 3.10 

 SNV+ 2-Der 26/26 .891 .080 3.06 54/54 .822 .102 2.40 

 SNV+DOSC 1/1 .871 .087 2.81 41/41 .915 .071 3.46 

SVM SNV + 1-Der 22 .849 .094 2.61 48 .761 .118 2.07 

 SNV+ 2-Der 26 .884 .082 2.98 54 .768 .117 2.10 

 SNV+DOSC 1 .878 .085 2.89 41 .895 .079 3.12 

LS-SVM SNV + 1-Der 22/9.06 x 104 .821 .103 2.39 48/10.309 .833 .099 2.48 

 SNV+ 2-Der 26/.982 .889 .081 3.04 54/50.492 .836 .098 2.50 

 SNV+DOSC 1/122.96 .874 .086 2.85 41/3.818 .893 .079 3.09 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 

 

Table 5. Prediction results of tannins content using the average of the six measuring 

points with EWs (by SPA) by PLSR, SVM and LS-SVM models for the half cut fruit 

set(*) 

MODEL PRE-
TREATMENT 

EW/LV, 
EW, EW/γ 

VIS-NIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 30/30 .880 .084 2.92 28/28 .834 .099 2.48 

 SNV+ 2-Der 25/25 .880 .084 2.92 38/38 .790 .111 2.21 

 SNV+DOSC 1/1 .856 .092 2.67 51/51 .850 .094 2.62 

SVM SNV + 1-Der 30 .879 .084 2.91 28 .837 .098 2.51 

 SNV+ 2-Der 25 .894 .079 3.12 38 .743 .123 2.00 

 SNV+DOSC 1 .862 .090 2.72 51 .828 .101 2.44 

LS-SVM SNV + 1-Der 30/.288 .865 .089 2.76 28/8.152 .774 .115 2.13 

 SNV+ 2-Der 25/2.468 .885 .082 2.98 38/6.694 .743 .123 2.00 

 SNV+DOSC 1/97.163 .857 .092 2.68 51/.030 .825 .101 2.42 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 

 

  



Table 6. Prediction results of tannins content using different combinations of measuring 

points and pre-processing with all wavelengths by PLSR, SVM and LS-SVM models (*) 

POINTS 
MODEL 

BEST 
PRE-
TREAT. 

Entire BEST 
PRE-
TREAT. 

Half cut 
 

REG. R2 RMSE RPD REG. R2 RMSE RPD 
1-6-2-5 PLSR 1-Der VIS-NIR .885 .082 2.98 SNV + 

1-Der VIS-NIR .829 .100 2.45 

 SVM SNV +   
1-Der VIS-NIR .894 .079 3.11 2-Der VIS-NIR .860 .091 2.70 

 LS-SVM SNV+1-
Der VIS-NIR .885 .082 2.99 2-Der VIS-NIR .851 .094 2.62 

1-6-3-4 PLSR SNV+1-
Der VIS-NIR .884 .083 2.97 SNV + 

2-Der VIS-NIR .863 .090 2.73 

 SVM SNV +  
1-Der VIS-NIR .885 .082 2.99 2-Der VIS-NIR .883 .083 2.96 

 LS-SVM SNV +  
2-Der VIS-NIR .874 .086 2.85 2-Der VIS-NIR .871 .087 2.82 

1-6 PLSR SNV +  
1-Der VIS-NIR .815 .104 2.35 SNV + 

1-Der VIS-NIR .803 .108 2.28 

 SVM SNV +  
1-Der VIS-NIR .857 .092 2.67 2-Der VIS-NIR .848 .094 2.60 

 LS-SVM SNV +  
1-Der VIS-NIR .843 .096 2.56 SNV + 

2-Der VIS-NIR .842 .096 2.54 

2-5 PLSR 2-Der VIS-NIR .869 .088 2.80 SNV +  
1-Der VIS-NIR .786 .112 2.19 

 SVM SNV +  
1-Der VIS-NIR .882 .083 2.94 SNV + 

2-Der NIR .837 .098 2.51 

 LS-SVM 1-Der VIS-NIR .866 .089 2.77 1-Der NIR .814 .104 2.35 
3-4 PLSR SNV +  

1-Der VIS-NIR .837 .098 2.51 2-Der VIS-NIR .852 .093 2.63 

 SVM SNV +  
2-Der VIS-NIR .872 .087 2.82 SNV + 

2-Der NIR .853 .093 2.64 

 LS-SVM SNV +  
2-Der VIS-NIR .863 .090 2.73 1-Der VIS-NIR .843 .096 2.55 

* Only the best prediction results for each model are shown, indicating the associated pre-processing 
 

  



Table 7. Prediction results of tannins content using the average of the four measuring 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the 

intact fruit set (*) 

MODEL PRE-
TREATMENT LV, γ VIS-NIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 9 .874 .086 2.86 27 .830 .100 2.46 

 SNV+ 2-Der 9 .889 .081 3.04 21 .760 .119 2.07 

 SNV+DOSC 1 .808 .106 2.31 15 .810 .106 2.32 

SVM SNV + 1-Der  .895 .079 3.12  .862 .090 2.72 

 SNV+ 2-Der  .890 .080 3.06  .813 .105 2.34 

 SNV+DOSC  .824 .102 2.41  .857 .092 2.68 

LS-SVM SNV + 1-Der 4.880 .872 .087 2.83 .230 .851 .093 2.62 

 SNV+ 2-Der 547.70 .872 .087 2.83 .073 .760 .119 2.07 

 SNV+DOSC 1.04 x 107 .808 .106 2.31 .001 .858 .091 2.68 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 

  



Table 8. Prediction results of tannins content using the average of the four measuring 

points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM models for the half 

cut fruit set(*) 

MODEL PRE-
TREATMENT LV, γ VIS-NIR LV, γ NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 8 .843 .096 2.55 30 .627 .148 1.66 

 SNV+ 2-Der 8 .827 .101 2.43 19 .765 .117 2.09 

 SNV+DOSC 1 .712 .130 1.89 7 .630 .147 1.66 

SVM SNV + 1-Der  .856 .092 2.66  .827 .101 2.43 

 SNV+ 2-Der  .834 .099 2.49  .877 .085 2.88 

 SNV+DOSC  .725 .127 1.93  .783 .113 2.17 

LS-SVM SNV + 1-Der 2952 .861 .091 2.71 1.876 .812 .105 2.33 

 SNV+ 2-Der 54.177 .834 .099 2.48 .067 .839 .097 2.52 

 SNV+DOSC 2.62 x 106 .713 .130 1.89 12.150 .761 .119 2.07 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 
  



Table 9. Prediction results of tannins content using the average of the four measuring 

points (2-5-3-4) with EWs (selected by SPA) by PLSR, SVM and LS-SVM models for 

the intact fruit set(*) 

MODEL PRE-
TREATMENT 

EW/LV, EW, 
EW/γ 

VIS-NIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 16/16 .838 .098 2.51 28/28 .856 .092 2.67 

 SNV+ 2-Der 30/30 .854 .093 2.65 28/28 .779 .114 2.15 

 SNV+DOSC 1/1 .860 .091 2.70 30/30 .865 .089 2.76 

SVM SNV + 1-Der 16 .851 .094 2.62 28 .759 .119 2.06 

 SNV+ 2-Der 30 .864 .089 2.74 28 .806 .107 2.30 

 SNV+DOSC 1 .862 .090 2.73 30 .857 .092 2.68 

LS-SVM SNV + 1-Der 16/.317 .834 .099 2.49 28/4.435 .813 .105 2.34 

 SNV+ 2-Der 30/.144 .843 .096 2.56 28/.823 .749 .122 2.02 

 SNV+DOSC 1/5.785 .861 .090 2.71 30/.009 .855 .092 2.65 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 
 

Table 10. Prediction results of tannins content using the average of the four measuring 

points (2-5-3-4) with EWs (selected by SPA) by PLSR, SVM and LS-SVM models for 

the half cut fruit set(*) 

MODEL PRE-
TREATMENT 

EW/LV, EW, 
EW/γ 

VIS-NIR EW/LV, EW, 
EW/γ 

NIR 

R2 RMSE RPD R2 RMSE RPD 

PLSR SNV + 1-Der 23/23 .865 .089 2.75 28/28 .823 .102 2.41 

 SNV+ 2-Der 18/18 .835 .098 2.49 17/17 .798 .109 2.25 

 SNV+DOSC 1/1 .814 .104 2.35 57/57 .805 .107 2.29 

SVM SNV + 1-Der 23 .859 .091 2.70 28 .826 .101 2.43 

 SNV+ 2-Der 18 .811 .105 2.33 17 .818 .103 2.37 

 SNV+DOSC 1 .823 .102 2.41 57 .770 .116 2.11 

LS-SVM SNV + 1-Der 23/.249 .860 .091 2.70 28/1.30 x 105 .805 .107 2.29 

 SNV+ 2-Der 18/44.110 .835 .098 2.49 17/39.054 .775 .115 2.13 

 SNV+DOSC 1/18.698 .815 .104 2.36 57/.051 .756 .120 2.05 
* Only the best prediction results for each model are shown, indicating the associated pre-processing 
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