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Abstract 

This paper deals with the cost optimization of road bridges consisting of concrete slabs prepared in situ and 

two precast-prestressed U-shaped beams of self-compacting concrete. It shows the efficiency of four 

heuristic algorithms applied to a problem of 59 discrete variables. The four algorithms are the Descent 

Local Search (DLS), a threshold accepting algorithm with mutation operation (TAMO), the Genetic 

Algorithm (GA), and the Memetic Algorithm (MA). The heuristic optimization algorithms are applied to a 

bridge with a span length of 35 m and a width of 12 m. A performance analysis is run for the different 

heuristics, based on a study of Pareto optimal solutions between execution time and efficiency. The best 

results were obtained with TAMO for a minimum cost of 104184 €. Among the key findings of the study, 

the practical use of these heuristics in real cases stands out. Furthermore, the knowledge gained from the 

investigation of the algorithms allows a range of values for the design optimization of such structures and 

pre-dimensioning of the variables to be recommended. 
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1 Introduction  

Precast-prestressed concrete (PPC), that is, pretensioned concrete beams with cast-in-situ slabs, has been 

commonly used by designers when building road bridges [1]. In this context, structural engineers have 

taken advantage of precast technology by specifying designs that utilize standard beams of comparatively 

short spans, typically ranging from 10 to over 40 m. Moreover, reducing the material weight through 
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prestressing is decisive due to transportation and elevation costs. This is where structural optimization of 

this type of large and repetitive structure becomes especially relevant. 

The basic goal of structural optimization is to find a design having lowest cost, and ensuring predicted 

constraints. Additionally, in most structural optimization problems, the main drawback appears to be related 

to the constructability of the proposed design such as reinforcement placement, rules of good design 

practice, construction management plan, and so on [2]. The decisions taken in such a complex environment 

require the development of new decisional tools and methods that provide more effective and realistic 

solutions [3,4]. Among the available computational methods that can be used to solve optimization 

problems, heuristics and metaheuristics are approximate methods that are considered as particularly useful 

algorithms in structural engineering [5].  

The earliest studies into structural reinforced concrete (RC) optimization date back to the late 1990s [6,7]. 

However, Cohn and Dinovitzer [8] identified a great gap between theoretical work and the practical 

application of structural optimization. Recent research has been conducted with regard to heuristics and 

metaheuristics [9], such as Descent Local Search (DLS) [10], Genetic Algorithms (GAs) [11,12], 

evolutionary algorithms [13,14], Simulated Annealing (SA) [15,16], Variable Neighborhood Search (VNS) 

[17], Harmony Search (HS) [18, 19], Ant Colony Optimization (ACO) [20], Glowworm Swarm Algorithm 

(GSA) [21], Eagle Strategy (ES) [22], and the Big Bang–Big Crunch algorithm (BB-BC) [23], among 

others. 

Despite the aforementioned research works, there is still limited knowledge on the optimization of 

prestressed concrete (PC) bridge structures. Hassanain and Loov [24] reviewed research on cost 

optimization of concrete bridge structures; nevertheless, as Hernandez et al. [25] have noted, most 

approaches for PC bridges found in the literature are not suitable for application in real-life engineering. 

Ohkubo et al. [26] studied PC box girder bridges and proposed a multi-criteria fuzzy optimization of the 

total construction cost and aesthetic feeling. Sirca and Adeli [27] and Ahsan et al. [28] focused on the 

optimal-cost design of concrete I-girder bridges. Both used PPC for the beams; the latter also used post-

tensioned tendons. García-Segura et al. [29] proposed a hybrid HS for the design of post-tensioned concrete 

box-girder pedestrian bridges. Martí et al. [30] used a hybrid SA to minimize the cost of PC precast U-

beam road bridges. 
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In this line of work, this paper focuses on the cost optimization of PPC road bridges. The PPC bridge system 

studied consists of two PC U-beams with a span length of 35 m and a top slab formed by a 0.06 m precast 

RC slab used as formwork for the cast-in-place RC slab (Figure 1). Beams are made of self-compacting 

concrete. The top slab allows vehicle traffic and has a width of 12 m (Figure 2). The optimization searches 

for the geometric variables, concrete, and steel that minimize the cost. A module evaluating all relevant 

limit states has been implemented, and subsequently metaheuristics that are capable of finding cost-

optimized solutions have been developed specifically for this work. 

 

Figure 1. Longitudinal profile of the bridge 

 

Figure 2. Cross section of the beam-slab deck 

2 Definition of the problem  

The mathematical problem is comprised of economical optimization of the structure, represented by the 

objective function f in Eq. (1) while satisfying the constraints in Eq. (2). 

( )nxxxfC ,...,, 21=  (1) 

0),.....,( 21 ≤nj xxxg  (2) 

( )
iiqiii dddx ,...,, 21∈  (3) 

Note that x1, x2,..., xn are the design variables whose combination is to be optimized. Each variable can take 

on the discrete values listed in Eq. (3). 
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The objective function considered is the cost function defined in Eq. (4), where pi are the unit prices; mi are 

the measurements of the units in which the construction of the PCC bridge is split, and r is the total number 

of construction units. 

 ∑
=

×=
ri

ii mpC
,1

 (4) 

The cost of the bridge depends on the material volumes used as well as the labour, machinery, and resources 

necessary for the construction. The cost function is obtained by adding the price of each unit multiplied by 

the respective measurements (Table 1). As discrete values are used to guarantee the constructability, this is 

a combinatorial optimization problem. 

The analysis includes 59 design variables. Figure 3 shows the main geometric variables considered in this 

analysis. The seven geometric variables comprise the depth of the beam (h1), the thickness of the  slab (e4), 

the width of the soffit of the beam (b1) and its thickness (e1), the width and thickness of the flanges (b3 and 

e3), and the thickness of the webs (e2). Regarding the material strength, there are two variables that define 

the concrete grades used for the slab and the girder. There are 46 variables that define the standard 

reinforcement setup in the beams and slab. Figure 3 shows the top (As6) and bottom (As7) longitudinal 

passive reinforcement of slab, the top (t4) and bottom (t5) transverse reinforcement of slab, and the 

transverse reinforcement of the bottom flange (t1), web (t2) and the top flange (t3) of beam. The prestressing 

steel, which is formed by 0.6-inch strands, is defined by four variables representing: (1) the number of 

strands in the top flanges (level 4), (2) the number of strands in the bottom flange (levels 1-3), (3) the 

number of sections with strand sheaths (non-bonded steel) in the second, and (4) third layers of the bottom 

flange. Each strand is prestressed to 189.40 kN. All of the variables of this analysis are discrete and can 

adopt a range of values, giving rise to 1.6*1065 possible solutions. This large number of solutions justifies 

the application of a heuristic algorithm to find cost-effective results within a reasonable computation time. 



5 

  

 

Figure 3: Geometric variables of the beam structure 

The main parameters are divided into geometry, loading, cost, reinforcement, and exposure parameters. 

These include the width of the deck, inclination of the webs, span length, slenderness of the beam, dead 

loads, transport distance, and steel types. The beam parameters are chosen to facilitate the adjustment of 

their design to the existing precast molds. The durability requirements are those demanded by the concrete 

code EHE-08 [31]. The slenderness of the beam is limited to a minimum of L/18 due to aesthetic ground 

and specific road transportation considerations, where L is the span length. Otherwise, the optimization 

algorithm tends to increase continuously the depth of the beam, particularly for short span bridges. The 

details of the parameters can be found in Martí et al. [30] (Table 2).  

The structural constraints of IAP-98 [32] include the verifications of the ultimate and serviceability limit 

states for bending, shear, and torsion as well as fatigue, cracking, and deflection resulting from the dead 

and traffic loads. It is also tested both flexural and shear minimum amounts of reinforcement, as well as the 

minimum geometric requirement. The design live load consists of three axis of 200 kN each (1.5 m distance 

between axes), superimposed with a uniform load of 4.0 kN/m2. The dead load is a wearing surface of 0.09 

m as well as a uniformly distributed load of 2 × 0.5 kN/m for concrete bridge barrier rails installed along 

the edge of the deck. Precast RC slabs of 0.06 m width were considered for the formwork of the top concrete 

slab. The general exposure class was IIb, according to the Spanish code on structural concrete [31]. The 

stresses and reactions are obtained from a self-developed program that considers different stress states that 

occur during the manufacture and placement of the beams. The calculations for the decompression limit 

state comprise verifying that under the combination of actions corresponding to the phase being studied, 
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decompression does not occur in the concrete in any fiber in the section. Temporary deflections were limited 

to 1/250 of the free span length for the frequent combination. Further, time-dependent deflections were 

limited to 1/1000 of the free span length for the quasi-permanent combination. The durability limit state 

was checked according to the working life design, which was checked at each iteration. 

The construction sequences and the long-term interaction between the precast beam and the cast-in-place 

concrete were considered to design the elements and analyze the structural response of the bridge in each 

phase. The program uses two models for the analysis according to the work by Martí et al. [30]. Figure 4 

shows the first model used for a linear elastic analysis of the beam before being connected to the slab. This 

model is composed of 20 beam elements and 21 nodes. In this phase, the elastic shortening of concrete was 

considered when calculating the short-term prestress loss. The second model calculated stress resultants 

and reactions taking into account long-term prestress loss due to creeping and shrinkage of concrete and 

prestressing steel relaxation by a stiffness matrix program using a 2-D mesh with 20 bar elements and 21 

sections for each beam, which are connected with three bar elements for each of the 21 sections. Figure 5 

shows a detail of the entire bar model with 103 bar elements and 84 nodes, for which a linear elastic analysis 

including gross section properties was used. This grillage model was used to represent the mechanical 

characteristics of the bars in which the longitudinal stresses due to the distortion of the cross-section were 

considered. The program has been programmed with Fortran 95 and Compaq Visual Fortran Professional 

6.6.0 on a personal computer that contains an Intel Core TM2 Quad CPU Q6600 2.40 GHz processor. 

 

Figure 4: First model used for the analysis of the beam before being connected to the slab 
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Figure 5: Second model detail for deck long-term analysis 

3 Applied heuristic search methods  

3.1 Descent Local Search (DLS) 

This algorithm (Figure 6) begins with obtaining a random solution. A small movement, which modifies a 

fixed number of randomly chosen variables, changes each variable by either increasing or decreasing it by 

a step or unit. If the new solution has lower cost and is feasible after checking the restrictions, the working 

solution replaces the previous one. This process is repeated until no further improved solution can be found 

for a given number of iterations. To account for the random component of the method, the process is 

repeated nine times according to the methodology proposed by Payá-Zarforteza et al. [33]. It is known that 

this heuristic becomes trapped in a local optimum, but the main aim of this method is to choose the most 

efficient moves for incorporation into the threshold acceptance algorithm. 
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Figure 6: Flowchart of the DLS process 

The movements set out in this study modify 5, 10, 15, 20, 25, or 30% of the variables. The termination 

criterion is defined as the number of consecutive iterations without cost improvement. Figure 7 shows the 

average cost values according to the movement and termination criteria. The Pareto optimal solutions with 

the best trade-off between cost and time correspond to V9-5000 iterations, V12-10000 iterations, and V12-

15000 iterations. Note that the nomenclature Vn-i corresponds to the number of variables (n) and the number 

of consecutive iterations without cost improvement (i). V9-5000 iterations exhibit a resulting cost of 

134529€ and need 790 seconds of computation time. Although further cost reductions of 1.6 and 2.8% are 

achieved by the next Pareto solutions (V12-10000 iterations and V12-15000 iterations), the computing time 

increases significantly by 72.2% and more than 200%, respectively. The best solution (115459€) was 

obtained by varying 15% of the variables (V9). V9 is chosen as the best movement. 
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Figure 7: Cost evolution of the DLS algorithm for different movements and termination criteria 

3.2 Threshold Accepting algorithm with Mutation Operation (TAMO) 

The Threshold Accepting (TA) algorithm was originally described by Dueck and Scheuer [34]. The initial 

threshold (U0) is adjusted by Medina’s criterion [35], which consists in halving or doubling the initial 

temperature until the acceptance range is between 20 and 40%. After applying a movement, the current 

solution is then checked against structural restrictions. The new solution is accepted if the conditions of 

feasibility and threshold are satisfied. The threshold decreases gradually during the optimization process 

according to a reduction coefficient (αTA). The TA method is also capable of surpassing local optima and 

gradually converges as the threshold value decrease to zero. 

TAMO combines the TA algorithm with a local search strategy based on the mutation operator that is used 

in the GA. Figure 8 shows a flowchart of this algorithm. The GA explores the solution space using a 

population of solutions and operators such as selection, crossover, and mutation. TA hybridization was 

previously applied by Luz et al. [36] to optimize bridge abutments. The procedure followed for the 

calibration was the same as that applied in DLS. The best movement was V9. 
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Figure 8: Flowchart of the TAMO process 

The application of the TAMO algorithm requires the definition of the threshold coefficient value (αTA) as 

well as the iteration chain (LI). For the first random solution, a temperature equal to 0.5% of the cost is 

taken. This criterion allows U0 to be fixed in two chains. Figure 9 shows a typical curve of cost reduction 

and threshold decrease following TAMO. As the stop criterion, simultaneous compliance with two 

requirements is implemented: first, a threshold lower than 2% of the initial threshold U0, and second, two 

chains without improving the best solution. Table 3 shows the results of a 16 case-study series as well as 

the minimum, mean, and deviation (MD) of the mean with respect to the minimum for the costs. 
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Figure 9: Typical cost variation and threshold reduction for TAMO 

The lowest cost, which is 104,184€, was obtained using LI = 5,000 and αTA = 0.95 (T4). This value was 

obtained after running TAMO algorithm 400 times. However, it is possible to run the algorithm nine times 

for each span length instead of 400 times in order to achieve a balance between the quality of the results 

and the amount of computing time required to obtain them, according to the methodology proposed by 

Payá-Zarforteza et al. [33]. The difference checked between the minimum cost obtained with the nine 

TAMO runs of the heuristic number T4 (Table 3), and the extreme value estimated using the three-

parameter Weibull distribution that fits 400 TAMO results is less than 1.83%. For these parameters, the 

average cost is also the minimum, 107,856€. For the same problem [30], the hybrid Simulated Annealing 

with Mutation Operation (SAMO) achieved the lowest cost of 108,008€ (S12) with a Markov Chain (MC) 

= 5,000 and coefficient reduction (αSA) = 0.85, while the best average cost was 110,477€ (S3) with MC = 

2,500 and αSA = 0.95. Figure 10 shows the average cost values versus time of the results obtained by 

applying different parameter combinations for SAMO and TAMO strategies. Five Pareto solutions are 

highlighted. All of them belong to TAMO. The average costs of the 16 combinations of SAMO and TAMO 

are 115709€ and 112021€ respectively. This means that the average cost is 3.2% lower when applying 

TAMO. In addition, TAMO obtained similar computing times to the SAMO algorithm.  
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Figure 10: Average costs of SAMO and TAMO for the 16 different combinations 

3.3 Genetic Algorithm (GA) 

This metaheuristic technique was proposed by Holland [37], inspired by the process of natural evolution. 

Individuals of a population evolve through genetic crossover and mutation, creating better-adapted 

individuals. The new population is selected in an elitist way. The probability of selecting each individual is 

proportional to its aptitude. The method, therefore, gives higher probability to the selection of the best 

solutions of the current population. The crossover operation decides which information is transferred from 

these two individuals to the new solution. The mutation operator randomly changes some characteristics of 

the new solution. Penalties are implemented for the infeasible solutions, worsening their aptitude according 

to a penalty function (Eq. (5)). 









+=

f
kCkCp

1
1.1)()(  (5) 

 

Cp(k) is the penalized cost of the unfeasible “k” solution,  C(k) is the unpenalized cost, and “f” is a penalty 

factor that depends on the feasibility of the solution. The penalty factor is equal to the minimum limit state 

factor, which is obtained as the ratio between the resistance of the structural response and the load effect of 

actions. The penalty factor is smaller than one for an unfeasible solution. This coefficient reduces the 

divergence caused by the high sensitivity of the unfeasible PC structures. Other penalty functions were tried 

without improving the convergence to the minimum. Figure 11 shows a flowchart of this algorithm. 
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Figure 11: Flowchart of the GA process 

First, nine executions with crossover values of 0.25, 0.50, and 0.75 and population sizes of 100, 250, and 

500 individuals have been performed. Results are taken for 25, 50, 75, 100, 125, 150, 175, and 200 

generations. For this first analysis, mutation has not been considered. Elitism and mutation have been 

selected as optional. Regarding the population size, the average cost improves and the computing time 

increases as the number of individuals increases. Table 4 summarizes the results for a population size of 

500 individuals. On some occasions, elitism reduces the minimum value. Compared to non-elitism, 

solutions are 3.1% cheaper.The best average cost (138743 €) is obtained for 200 generations, a crossover 

value of 0.5, and elitism. 

A second analysis is carried out to examine the benefits of mutation. The best parameters obtained in the 

first analysis are selected. These are 500 individuals, a crossover value of 0.5, and 200 generations.  The 

number of variables subjected to mutation is tracked sequentially. Table 5 shows the results for each 
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mutation step. The best improvement with regard to the cost value without mutation is mutation = 4. Figure 

12 represents the evolution of the best GA heuristic (mutation = 4) for both average and minimum costs. 

 

Figure 12: The evolution of average and minimum costs of a GA 

3.4 Memetic Algorithm (MA) 

MA [38] combine population-based global search and local search metaheuristics. Figure 13 shows a 

flowchart of this algorithm. The process starts with population generation. Each individual is improved 

through a local search with the purpose of getting closer to a local optimum. The new better-quality 

population initiates the GA procedure. The goal of combining both strategies is to acquire good genes for 

the parents (local search), which are then combined to improve the quality of the following generations 

(population-based global search). This algorithm use the same operators as GA, which are crossover and 

mutation. The TAMO technique has been used in this algorithm for the local search strategy. 
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Figure 13: Flowchart of the MA process 

The following parameters are considered for the local search: MC equal to 50, initial temperature (T0) equal 

to 5% of the cost, and stop criteria of 10, 25, and 50 chains. Likewise, the best heuristic obtained by the GA 

is chosen. The parameters are 500 individuals, 200 generations, elitism, a crossover value of 0.5, and 

mutation = 4. Nine executions are run for each of the three stop criteria. The results are shown in Table 6, 

where the average cost refers to the average of the values of the nine executions. It is worth noting that the 

computing time increases by194 to 575%, compared to GA. However, improvements of 2.2, 6.1, and 9.8% 

are observed for 10, 25, and 50 chains, respectively. 

Figure 14 shows the evolution of average and minimum costs as the number of generations increases. A 

behavior similar to that of other metaheuristics can be observed, where the average values decrease rapidly 

in the beginning.  Then, the cost results decrease much more slowly until they become practically constant. 

Comparing the results of MA with those of TAMO, the average cost (119703 €) and the minimum cost 
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(116933 €) were 9.7 and 10.1% higher than those achieved with TAMO, respectively. Regarding the 

computing time, the MA heuristic needed more than seven times the processing time of TAMO. 

 

Figure 14: The evolution of average and minimum costs of MA 

4. Comparison of the results 

Table 7 summarizes the values of the best parameters obtained from the applied heuristics: DLS, TAMO, 

GA1 (without elitism), GA2 (with elitism), GA3 (with elitism and mutation = 4), and MA. Additionally, the 

values obtained with SAMO [30] are incorporated in the tables. The average costs, minimum cost, average 

time, and increment of the average costs with respect to TAMO are included. The heuristic that achieves 

the best results is TAMO. However, SAMO only increases the cost by 2.4% (S3) and 3.8% (S12). MA, 

DLS, GA3, GA2, and GA1 follow with cost increments of 11.0, 19.0, 23.0, 28.7, and 33.0%, respectively. 

Table 8 summarizes the geometry, concrete, and reinforcement for the best solutions obtained by each 

heuristic. The beam depth varies between 1.69 and 1.94 m. The three local search heuristics (DLS, TAMO, 

and SAMO) search for big beam depths with reduced thickness. The lower depth values coincide with the 

worst solutions. The best solution has a beam depth of 1.93 m, which is equivalent to a ratio of depth to 

span length of 1/18.1. This value is close to the limit imposed (1/18).  

There is a trend towards economization of the concrete volume, providing the best inertia while at the same 

time being as light as possible. This is reflected by high beams and small thicknesses, leading to less need 

for prestressing. The best results are achieved with minimal prestressing steel in the top flanges, but enough 

to prevent cracking during the tensioning phase. In addition, no strands are needed in the third layer. In an 

attempt to lighten the structure, higher-strength concrete, with values between 40 and 50 MPa, is used in 

the beams.  
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The beam depth h1, bottom flange width b1, and number of strands of the TAMO solution are similar to 

those of the SAMO solution, but the minor thickness of the bottom flanges b1 is compensated by concrete 

of greater grade (HP-45). Regarding the slab, the thickness e4 acquires values between 0.19 and 0.27 m. 

TAMO gives a thickness (0.26 m) that is almost the highest one and the highest concrete grade (HA-40). 

The width of the flanges (b3) should be short since it does not improve the flexure capacity.  

It is worth noting that the use of elitism or non-elitism in the GA does not affect the geometry of the best 

solutions, as the values of the variables are the same. However, Table 9 shows the cost differences in the 

passive reinforcement. The lowest total steel quantities correspond to TAMO, followed by DLS and 

SAMO. Table 10 shows the concrete volume in the beams and slab. The larger thicknesses of the slabs 

obtained from TAMO lead to a greater concrete volume compared with SAMO (20.1%). This allows the 

amount of reinforcement to be reduced compared to SAMO (42.2%) and DLS (34.0%). In the beam, the 

volume of concrete given by TAMO is the smallest. The amounts of reinforcing steel given by TAMO, 

DLS, and MA are similar and are smaller than the amount given by SAMO.  

5. Conclusions 

Four algorithms are compared for the efficient design of precast-prestressed U-beam road bridges. DLS, 

TAMO, GA, and MA are used to find cost-optimized solutions automatically. The results achieved by 

SAMO [30] for the same problem are incorporated. The conclusions are as follows: 

• The most efficient move obtained in DLS, namely V9 (random variation of nine variables), was 

used for the other local search heuristic. 

• TAMO was shown to be the most efficient procedure, closely followed by SAMO. In addition, 

the processing times for these two are acceptable for utilization in real cases. The best results for 

TAMO were achieved with a chain length of 5000 iterations and a reduction coefficient of 0.95.  

• Regarding GA, elitism improves the cost results. Compared to non-elitism, the solutions are 3.1% 

cheaper. The calibration recommends a population size of 500 individuals and a crossover value 

of 0.5. 

• Comparing MA with GA, the first raises the computing time by 194 to 575% but improves the 

cost result by 9.8%. 
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• SAMOS3, SAMOS12, MA, DLS, GA3, GA2, and GA1 increase the cost results by 2.4, 3.8, 11.0, 19.0, 

23.0, 28.7, and 33.0%, respectively, with respect to the average achieved by TAMO. 

• The structural results of the three local search heuristics (DLS, TAMO, and SAMO) show a trend 

towards the maximum beam depth with minimum thicknesses.  

• The greater slab thicknesses obtained by TAMO, with respect to SAMO, are compensated with 

less passive reinforcement. However, TAMO gives smaller beams and a larger amount of 

reinforcement. 

• In the attempt to lighten the structure, it is advisable to use higher-strength concretes of between 

40 to 50 MPa for the beams. Regarding the slab, the greater the depth, the lower the concrete 

strength.  The best values range between 35 and 40 MPa. The optimization tends towards short 

dimensions for the top flanges of the beam and minimal prestressing steel in the top flanges, but 

enough to prevent cracking. 
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Tables and Figures 

Table 1. Unit prices of the materials in euros 

Description Price of beam (€) Price of slab (€) 

kg reinforcing steel (B-500-S) 2.63 1.40 

kg prestressing steel (Y-1860-S7) 3.38 – 

m of beam mould 75.11 – 

m2 of slab formwork – 30.00 

m3 of concrete HA-25 – 64.99 

m3 of concrete HA-30  – 69.95 

m3 of concrete HA-35  – 74.03 

m3 of concrete HA-40  – 79.12 

m3 of concrete HP-35  122.25 – 

m3 of concrete HP-40  133.40 – 

m3 of concrete HP-45  142.15 – 

m3 of concrete HP-50  152.89 – 
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Table 2. Input parameters for the analysis 

Loading parameters  

Concrete bridge barrier width 2 × 0.50 m 

Thickness of the wearing surface tws = 0.09 m 

Concrete bridge barrier loads 2 × 5.0 kN/m 

Geometric parameters  

PC precast bridge width W = 12.00 m 

Spacing between beams Sv = 6.00 m 

Inclination, top flange tablet ns3 = 3 

Top flange division s3 = 3 

Inclination, bottom flange tablet ni3 = 3 

Bottom flange division i4 = 4 

Web inclination 80º 

Minimum beam slenderness L/18 

Bearing center to beam face distance 0.47 m 

Reinforcement parameters  

Passive reinforcing steel (B-500-S) fyk = 500 N/mm2 

Active prestressing steel (Y1860-S7) fpk = 1700 N/mm2 

Strand diameter Φs = 0.6” 

Beam surface reinforcement Φr = 8 mm 

Strand sheaths Levels 2 and 3 

Vertical slenderness of stirrups 200 (length/diameter) 

Cost parameters  

Transport distance (one way) Td = 50 km 

Active prestressing steel crops 25% 

Legislative and exposure parameters   

Code regulation EHE/IAP-98 

External ambient conditions IIb (EHE) 
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Table 3. Results of the TAMO algorithm for 16 parameter combinations 

Heuristic 

number 
αTA LI Average 

cost (€) 

Average 

time (s) 

Minimum 

cost (€) 

Deviation 

(%) 

T1 0.95 500 111073 3667 107919 2.92 

T2 0.95 1000 111200 7463 107910 3.05 

T3 0.95 2500 109312 18458 107970 1.24 

T4 0.95 5000 107856 36958 106042 1.71 
T5 0.90 500 114587 1931 108279 5.83 

T6 0.90 1000 110305 3711 107825 5.99 

T7 0.90 2500 109897 9318 106569 3.17 

T8 0.90 5000 110452 19635 108363 2.08 

T9 0.85 500 117418 1314 109169 7.56 

T10 0.85 1000 114370 2661 107908 5.99 

T11 0.85 2500 109552 6413 106191 3.17 

T12 0.85 5000 110139 12977 107894 2.08 

T13 0.80 500 118589 1074 110728 7.10 

T14 0.80 1000 114232 2091 109139 4.67 

T15 0.80 2500 112214 5074 108015 3.89 

T16 0.80 5000 111134 9747 107874 3.02 
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Table 4. GA results for a population size of 500 individuals 

Crossover Generations 

Without elitism With elitism 

Average 

Cost(€) 

Time 

(s) 

Best 

Cost€) 

% 

Desv. 

Average 

Cost(€) 

Time 

(s) 

Best 

Cost(€) 

% 

Desv. 

0.25 

10 157175 13948 147762 6.40% 153560 13758 148212 3.60% 

25 154493 14607 144327 7.00% 151048 14412 147340 2.50% 

50 150758 15705 144327 4.50% 148592 15519 145186 2.40% 

75 149304 16804 144327 3.40% 147512 16627 141425 4.30% 

100 147537 17902 141039 4.60% 146825 17734 140179 4.70% 

125 146889 19001 136076 7.90% 146567 18842 139137 5.30% 

150 146516 20099 136076 7.70% 146433 19949 138290 5.90% 

175 146408 21197 136076 7.60% 146337 21056 138290 5.80% 

200 146285 22296 135709 7.80% 146160 22164 137442 6.30% 

0.5 

10 156951 13928 149382 5.10% 155907 13745 149470 4.30% 

25 151264 14590 145577 3.90% 148711 14397 143798 3.40% 

50 148806 15696 139770 6.50% 142763 15477 137458 3.90% 

75 147387 16803 139702 5.50% 140890 16558 134412 4.80% 

100 146284 17909 139702 4.70% 140117 17638 133377 5.10% 

125 145771 19016 138275 5.40% 139830 18719 133332 4.90% 

150 145492 20122 138275 5.20% 139285 19799 132618 5.00% 

175 145266 21228 138275 5.10% 138885 20879 132618 4.70% 

200 145105 22335 137207 7.80% 138743 21960 132618 4.60% 

0.75 

10 156620 13952 149816 4.50% 154134 13763 147789 4.30% 

25 151442 14618 133683 13.30% 146274 14414 136229 7.40% 

50 147701 15491 127325 16.00% 142436 15498 130041 9.50% 

75 145189 16365 127325 14.00% 141470 16583 128945 9.70% 

100 144271 17238 126613 14.00% 140903 17667 128618 9.60% 

125 144061 18112 126613 13.80% 140574 18752 128293 9.60% 

150 143741 18985 126450 13.70% 140354 19836 128261 9.40% 

175 143551 19858 126450 13.50% 140217 20920 128261 9.30% 

200 143314 20732 126418 13.40% 140084 22005 128261 9.20% 

 

Table 5. Application of mutation in GA for 500 individuals, 0.5 crossover, and 200 generations 

Mutation Average Cost(€) Time (s) Best Cost (€) % MD % Improvement 

0         138,743       21,964          132,618    4.6% – 

1         134,846       22,469          130,424    3.4% 2.8% 

2         133,992       22,479          126,366    6.0% 3.4% 

3         133,091       22,487          125,187    6.3% 4.1% 

4         132,678       22,499          123,078    7.8% 4.4% 

5         132,707       22,131          125,345    5.9% 4.4% 
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Table 6. Results of MA 

Markov C. 

Chain 

Number 

Average 

Cost(€) Seconds 

Best 

Cost (€) % MD 

% 

Improv./GA 

50 10       129,718        43,639     124,446   4.2% 2.2% 

  25       124,564        76,934     119,332   4.4% 6.1% 

  50       119,703      129,441     116,933   2.4% 9.8% 

 

Table 7. Summary of the heuristics 

  DLS SAMOS3 SAMOS12  TAMO  GA1*   GA2*  GA3*   MA  

Average cost (€) 128309 110477 111903 107856 143414 138863 132678 119703 

Best cost (€) 115459 109004 108008 106042 126418 127969 123078 116933 

Average time (s.) 8122 18322 12986 36233 20732 21960 22499 129441 

% Average cost/TAMO 

cost 19.0% 2.4% 3.8% 0.0% 33.0% 28.7% 23.0% 11.0% 

*GA1 without elitism. GA2 with elitism. GA3 with elitism and mutation = 4 

 

Table 8. Best results: geometry, concrete and active reinforcement 

   Cost (€) 

h1 

(m) 

e4 

(m) 

 b1  

(m) 

 b3 

(m) 

e1 

(m) 

e2 

(m) 

e3 

(m) 

fc,beam 

(MPa) 

fc,slab 

(MPa) 

p1 

(n) 

p2 

(n) 

p3 

(n) 

p4 

(n) 

DLS 115459 1.93 0.27 1.90 0.38 0.25 0.10 0.31 45 40 35 26 0 2 

SAMOS12 108008 1.94 0.19 1.99 0.29 0.18 0.10 0.23 40 40 36 20 0 2 

TAMO 104184 1.93 0.26 2.00 0.33 0.15 0.10 0.28 45 40 37 20 0 2 

GA1* 126418 1.78 0.24 1.92 0.33 0.17 0.16 0.20 45 30 35 29 0 6 

GA2* 127969 1.78 0.24 1.92 0.33 0.17 0.16 0.20 45 30 35 29 0 6 

GA3* 123078 1.69 0.22 1.98 0.41 0.23 0.14 0.32 40 35 36 34 0 6 

MA 116933 1.80 0.23 1.78 0.38 0.22 0.10 0.30 50 35 32 31 0 2 

*GA1 without elitism. GA2 with elitism. GA3 with elitism and mutation=4 

 

Table 9. Best results: passive reinforcement 

Steel DLS SAMOS12  TAMO   GA1*   GA2*   GA3*   MA  

In beams (kg) 6325 5562 6803 8554 8496 7167 6359 

In slab (kg) 17341 19561 10860 22105 22181 20015 19419 

Total (kg) 23666 25123 17664 30659 30677 27182 25778 

% Steel/record 34.0% 42.2% 0.0% 73.6% 73.7% 53.9% 45.9% 

*GA1 without elitism. GA2 with elitism. GA3 with elitism and mutation=4 

 

Table 10. Best results: concrete in beams and slab 

Concrete DLS SAMOS12  TAMO   GA1*   GA2*  GA3*  MA  

In beams (m3) 74.575 61.206 59.753 67.906 67.906 78.263 66.378 

In slab (m3) 116.446 81.943 112.133 103.507 103.507 94.882 99.194 

Total (m3) 191.021 143.149 171.886 171.413 171.413 173.145 165.572 

% Concrete/record 33.4% 0.0% 20.1% 19.7% 19.7% 20.9% 15.7% 

*GA1 without elitism. GA2 with elitism. GA3 with elitism and mutation=4 
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