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2.1.1.1 Propiedades geométricas 





2.1.1.2 Propiedades Físicas 



𝑓𝐵𝑎𝑛𝑑 𝐺𝑎𝑝 =
𝑐

𝜆
=

𝑐

2 ∗ 𝑎
                          (2.1)

𝜆

 

𝐼𝐿(𝑑𝐵) = 20 log (
𝑝𝑑𝑖𝑟𝑒𝑐𝑡𝑎

𝑝𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑑𝑎
)          (2.2)
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𝑝 = 𝑝𝑖𝑛𝑐 + ∑ 𝑝𝑠𝑐
𝑗

𝑁

𝑗=1
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𝑗
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𝑗

𝑁

𝑗=1,𝑗≠𝑛

𝑝𝑖𝑛𝑐
𝑗

= 𝑇𝑗𝑝𝑗

𝑇𝑗  

𝑝𝑗 𝑝𝑖𝑛𝑐
𝑗

𝑝𝑛 = 𝑇𝑛 (𝑝𝑖𝑛𝑐 + ∑ 𝑝𝑠𝑐
𝑗

𝑁

𝑗=1,𝑗≠𝑛
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𝑇𝑗

 

𝑟𝑖 = (𝑟𝑖 , 𝜃𝑖) 𝑎𝑖

𝑟𝑟

𝐻𝑛(𝑘𝑟)𝑒𝑖𝑛𝜃 𝐽𝑛(𝑘𝑟)𝑒𝑖𝑛𝜃

2.3.2.1 Incidencia de una onda plana 

𝑒𝑖𝑘⃗⃗𝑥⃗ 𝑘⃗⃗ 𝑟 = 𝑥⃗ 𝑘 = 2𝜋/λ λ

𝑝𝑖𝑛𝑐 = ∑ 𝐴𝑞𝐽𝑞(𝑘𝑟)𝑒𝑖𝑞𝜃

𝑞=+∞

𝑞=−∞

                  (2.7)



 

𝑝𝑠𝑐
𝑗

= ∑ 𝐴𝑗𝑞𝐻𝑞(𝑘𝑟𝑗)𝑒𝑖𝑞𝜃𝑗

𝑞=+∞

𝑞=−∞

                  (2.8)

𝑟𝑗 = √(𝑥 − 𝑥𝑗)2 + (𝑦 − 𝑦𝑗)2                    (2.9)

𝜃𝑗 = arcsin [
(𝑦 − 𝑦𝑗)

𝑟𝑗
]                                (2.10)



𝑝(𝑥, 𝑦) = 𝑝𝑖𝑛𝑐 + ∑ ∑ 𝐴𝑙𝑠𝐻𝑙𝑠(𝑘𝑟𝑙)𝑒(𝑖𝑠𝜃𝑙)
𝑠=∞

𝑠=−∞

𝑁

𝑙=1

     (2.11)
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𝜌0𝑐2

𝜕2𝑝

𝜕𝑡2
+ ∇ (−

1

𝜌0
∇p) = 0             (2.12)

𝜌0

𝑝(𝑥, 𝑡) = 𝑝(𝑥) sin(𝜔𝑡)                      (2.13)

𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒𝑗𝜔𝑡                      (2.14)
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1

𝜌0
∇𝑝) −

𝜔2

𝜌0𝑐2
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𝑝 = 𝑃0𝑒𝑗(𝜔𝑡−𝑘𝑥)                      (2.16)

𝑘 = |𝑘|
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2
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1

2
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𝜕𝑝

𝜕𝑡
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𝑓𝑓 =
𝐴𝑔𝑒𝑜𝑚𝑒𝑡𝑟í𝑎 𝑑𝑒𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑜𝑟

𝐴𝑐𝑒𝑙𝑑𝑎 𝑢𝑛𝑖𝑑𝑎𝑑
=

2𝜋𝑟2

𝑎2
                  (3.1)



𝑓𝐵𝑎𝑛𝑑 𝐺𝑎𝑝 =
𝑐

𝜆
=

𝑐

2 ∗ 𝑎
→ 𝑎 =

𝑐

2 ∗ 𝑓𝐵𝑎𝑛𝑑 𝐺𝑎𝑝
=

343
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= 0.1715
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𝐴𝑔𝑒𝑜𝑚𝑒𝑡𝑟í𝑎 𝑑𝑒𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑜𝑟

𝐴𝑐𝑒𝑙𝑑𝑎 𝑢𝑛𝑖𝑑𝑎𝑑
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2𝜋𝑟2

𝑎2
→ 𝑟 = √

𝑓𝑓 ∗ 𝑎2

2𝜋
        (3.2)
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3.3.2.1 Tamaño de los elementos (FEM) 

𝑡𝑎𝑚𝑎ñ𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑜 =
𝑐

𝑓𝑚á𝑥𝑖𝑚𝑎 ∗ 8
            (3.3)



3.3.2.2 Número de frecuencias a simular (FEM) 
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RESUMEN 
 

Actualmente existen diferentes métodos para realizar simulaciones acústicas. La 
conveniencia de utilizar un método u otro depende del sistema que se estudia en cada caso. En 
este trabajo se realiza una comparativa entre diferentes métodos (Múltiple Scattering, Método de 
Elementos Finitos y Método de Diferencias Finitas en el Dominio del Tiempo) aplicados a la 
cuantificación del aislamiento proporcionado por estructuras periódicas (cristales de sonido). Se 
considera un estudio sistemático sobre tiempo computacional, la precisión y el coste 
computacional. 

 
 
 

ABSTRACT 
 

Nowadays there are different available methods to perform simulations in acoustics. The 
suitability of them strongly depends on the system studied in each case. In the present work, a 
comparison between different methods (Multiple Scattering, Finite Elements Method and Finite 
Difference Time Domain) is carried out particularized to the quantification of the isolation provided 
by periodic structures (Sonic crystals). It has been considered a systematic study about 
computational time, precision and computational cost. 

 
 
 

 
INTRODUCTION 
 

A Sonic Crystal (SC) is a periodic array of cylindrical acoustic scatters with radius r 
separated by a predetermined lattice constant, and embedded in a fluid [1]. The first works 
simulating these structures started using the Plane Waves Expansion theory (PWE) by 
Yablonovitch [2] and John [3] in 1987. At the end of 20th century, Multiple Scattering Theory (MST) 
started to develop in acoustics, with the work of Sánchez-Pérez et al [4].  
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In addition, several numerical methods have been well studied by the scientific community. 
Different researchers have been using these methods to study the behaviour of phononic crystals. 
As an example, Cao et al. [5] used the Finite Difference Time Domain Method (FDTD), which, 
according to the authors, was an effective technique for the band-structure calculations of 2D 
phononic crystals. Some published works also document the use of the Finite Elements Method 
(FEM) for the analysis of periodic structures. Wang et al. [6] used FEM to study the generation of 
large band-gaps by periodic structures. Some of recent works like Sánchez-Pérez et al. [7] used 
FEM to define a two-step 2D model for designing of sonic crystal barriers. In Liu, et al. [8], a 
wavelet-based FEM was used to investigate the band structure of 1D phononic crystals [9]. In this 
work, the study is focussing on the comparison of the methods of Multiple Scattering, Finite 
Elements Method and Finite Difference Time Domain Method.  

 
 
 

STATE OF ART OF SIMULATION METHODS 
 
MULTIPLE SCATTERING HISTORY 
 

The first author who studied this method was Záviska in 1913 [10]. He described the 
method in 2D acoustic field for the scattering of finite arrays. This method was applied in 1914 by 
Ignatowsky [11] for the case of normal incidence on an infinite row of cylinders. Multiple scattering 
can be understood as an interaction of wave fields with two or more obstacles. Multiple Scattering 
Theory solves the problem considering that the field scattered by one obstacle induces further 
another scattered field to the other obstacles, these obstacles induce, in the same way, further 
scattered fields to all the other obstacles, and so on. This characterizes Multiple Scattering Theory 
as a self-consistent method, being applicable to randomly or periodically-spaced cylinders. The 
first work in acoustics with MST was in 2001 by Chen et al [12].  
 

 
FINITE ELEMENTS METHOD HISTORY 
 

This method was originated from the need to solve complex problems of elasticity and 
structural analysis in civil and aeronautical engineering. Its development dates to the work by A. 
Hrennikoff [13] and R. Courant [14] in the early 1940s. Typical areas of interest include structural 
analysis, heat transfer, fluid flow, mass transport, electromagnetic potential and acoustics. The 
finite elements method formulation of the problem results in a system of algebraic equations. The 
method provides approximate values of the unknowns to a discrete number of points over the 
domain [15]. To solve the problem, the methodology subdivides the large problem into smaller 
ones or simpler parts that are called finite elements. The simple equations which model these 
finite elements are then assembled into a larger system of equations which models the entire 
problem. 

 
FINITE DIFFERENCE TIME DOMAIN METHOD HISTORY 
 

The finite-difference time-domain method (FDTD) is possibly the simplest one of the full-
wave techniques used to solve problems in electromagnetics, both conceptually and in terms of 
implementation. The FDTD method employs finite differences as approximations to both the 
spatial and temporal derivatives which appear in Maxwell’s equations. The technique was firstly 
proposed by K. Yee [16]. The originality of the idea of Yee resides in the allocation in space of 
the electric and magnetic field components, during recent times the procedure it has developed 
and became better. 
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SONIC CRYSTAL UNDER ANALYSIS 
 

In order to perform a comparison between the different methods exposed above, we have 
established a simple sonic crystal structure to be analyzed. Every principal parameters of each 
method will be varied to study its effect. The structure is composed of 7 rows and 4 columns of 
circular scatters, with a lattice constant such that the first band gap is localized at 1000 Hz (Figure 
1). We have chosen 4 columns given that it is the minimal value required to observe periodicity 
effects [17], and 7 rows to obtain a width of 1.2 m in the experimental section which is a standard 
measure in the building sector. The position of band gap is chosen on that frequency in which the 
target frequency range for traffic noise spectrum is centred, at 1000 Hz [17]. The filling fraction (ff) 
of the structure will be varied from 0.6 to 0.9 and the uncertainty will be averaged to obtain a 
single value. 

 

 
Figure 1. Structure to study with 0.75 of ff 

 
In order to quantify the performance of the sonic crystal under analysis we have used the 

parameter known as Insertion Loss, defined as (1): 
 

𝐼𝐼𝐼𝐼 = 20 ∗ log � 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

� (1) 

 
Where Pdirect is the pressure level without the barrier and Pinterfered the pressure level with 

barrier. The range of simulated frequencies was from 100 Hz to 5000 Hz, frequencies provided 
by the normalized traffic noise spectrum [18]. 
 
 
 
SIMULATIONS RESULTS 
 

The uncertainty of calculations has been considered by comparison with the best case in 
each simulation technique. All the simulations of this work were performed in a PC with 8 cores 
of i7-7700HQ at 2.8 GHz and 16 GB DDR4-2400 RAM 
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MULTIPLE SCATTERING SIMULATION 
 

The first parameter to characterize was the order of the calculations, in other words, how 
many scattered fields are taken into account. Figure 2 illustrates the effect of the order in the 
accuracy of the method. It can be seen that order 5 is enough to obtain a very low uncertainty. 
Actually, increasing the order has nearly no effect. 

 

 
Figure 2. Number of scattered fields 

 
With the order set to 5, the next parameter to study is how many induvial frequencies per 

band have to be considered.  
 

 
Figure 3. Uncertainty versus computational cost for MS. (a): Linear axis. (b): Logarithmic scale 

 
Considering 4 frequencies per one third octave band (fourth point in Figure 3) the 

uncertainty is less than 3%. In this case the computational cost is about 180 seconds. Increasing 
the number of frequencies does not cause a significative reduction of the uncertainty but 
increases unnecessarily the computational cost. Then, we understand that this is the best 
compromise point between uncertainty and computational cost for this method.  
 
FINITE ELEMENTS METHOD 
 

This simulation method was performed with the commercial software COMSOL 
Multiphysics. The first parameter to study was the size of each simpler part. Considering the 
maximum frequency of work, it can be calculated the minimum size of each element. First, it was 
studied the size of each element. In this paper was considered 8 elements for wave length and 
the maximum work frequency was 5000 Hz, so, it was performed simulations with 3 frequencies 
per one third octave band and 3 sizes of elements, (for 3000 Hz, 4000 Hz and 5000 Hz, or 0.0143 
m, 0.0107 m and 0.0086 m). 
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Figure 4. Size of the elements FEM 

 
As it can be seen in Figure 4, the accuracy of the simulation is less than 3% for all cases, 

so we will use the maximum size of element, (the first point in figure 4) that corresponds to a size 
of 0.0143 m, because with higher sizes, the computational cost increases unnecessary.  

 
Other variable parameter in FEM is the number of frequencies to simulate (like in multiple 

scattering). The same distribution of simulation frequencies used in multiple scattering was used 
for FEM. In the next figure we can see the error cost vs computational cost. Each point represents 
how many frequencies per one third octave band were used, (from 1 to 10). 

 

  
Figure 5. Uncertainty versus computational cost for FEM. Left (a): Linear axis. Right (b): Logarithmic scale  
 
 Figure 5 shows that considering three frequencies per one third octave band is enough 
to obtain an uncertainty lower than 3%. Increasing the number of simulation frequencies causes 
an unnecessary increase of the computational cost. 
 
FINITE DIFFERENCE TIME DOMAIN 
 

In an analogous way to the case of FEM, the most important parameter is the size of the 
elements. A smaller size of elements provides greater precision in the simulation but also requires 
more computational cost. The size of the elements was chosen in order to obtain 10 to 35 
elements per wavelength. It is worth noting that the smallest wavelength to be considered is about 
6 cm (that corresponds to the higher frequency, 4000*√2  Hz).  
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Figure 6. Uncertainty versus computational cost for FDTD. Left (a): Linear axis. Right (b): Logarithmic 

scale 
  

As can be seen in Figure 6, considering around 23 elements per wavelength, (the eighth 
point in Figure 6), we can find equilibrium between computational cost and error. So, increasing 
the number of elements per wavelength increases the computational cost unnecessary. 

 
 

 
COMPARATIVE ANALYSIS 
 
 In order to clarify which method can calculate the parameter of Insertion Loss (IL) with 
less computational cost and better accuracy, a comparison between the values of “IL” for the case 
of ff=75% it was carried out, the results are shown in the next Figure: 
 

 
Figure 7. IL calculations for ff=75% 

 
As we can be seen, on one hand the value of IL with FEM and FDTD was similar, but the 

value of MS was too different from the other ones, so we advise against this method for these 
simulations. On the other hand, we also can see that the value of IL converges faster in FDTD 
than in FEM. 
 
 
 
CONCLUSIONS 
 

In this work, different simulation methods have been compared in order to clarify which 
would be used with less computational cost and would provide better accuracy in simulation of 
acoustic barriers based on periodic structures. 
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Attend to error results; any of the three methods studied could be used in this type of 

simulations. But, thanks to a comparative analysis study (Figure 7), we can conclude that Multiple 
Scattering has a low computational cost, but the values of IL are very different from the other 
simulation methods. Also, we have seen that with FEM and FDTD, we obtain values very similar, 
but FEM needs more computational cost than FDTD. Thus, FDTD converge the values of IL faster 
than FEM.  
 

We conclude that, in future works, is advised to perform simulations of acoustic barriers 
based on periodic structures using FDTD method. 
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