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Supervisors: Maŕıa Alpuente Frasnedo

Julia Sapiña Sanchis



Valencia – September 18th, 2017.





ABSTRACT

Current technology allows us to have a great deal of computation power in
the palm of our hand in the form of smartphones. Such powerful and versatile
devices are the perfect tools to, e.g., authenticate users in both virtual and
physical systems. Key2phone is a smartphone solution designed to facilitate
authorized users to access restricted spaces by turning their smartphones into
electronic keys. This master’s thesis focuses on the study of the safety and
security properties of the Key2phone electronic lock. First, a model of the
Key2phone protocol is implemented by using the Maude language, which is a
high-performance reflective language and system supporting both equational
and rewriting logic specification and programming. Then, a reachability
analysis is performed in the Maude system, which ensures the safety of the
system by proving that no states considered unsafe can be reached. Finally,
liveness properties are checked by using the Maude LTL logical model checker
(LMC).
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RESUMEN

La tecnoloǵıa actual nos permite tener un gran potencial de computación
en la palma de la mano. Estos dispositivos, versátiles y potentes, son la
herramienta perfecta para, por ejemplo, autorizar usuarios tanto en sistemas
virtuales como f́ısicos. Key2phone es una solución para smartphone diseñada
para facilitar el acceso de usuarios autorizados a espacios restringidos, con-
virtiendo sus smartphones en llaves electrónicas. Esta tesis de master se
centra en el estudio de las propiedades de seguridad del sistema Key2phone
usando el lenguaje de programación Maude, que es un lenguaje reflectivo
de alto rendimiento que soporta programación y especificaciones tanto de
lógica ecuacional como de reescritura. Entonces, se realiza un análisis de
alcanzabilidad, que comprueba la seguridad del sistema, probando que no se
alcanzan estados del sistema considerados inseguros. Finalmente, se verifican
propiedades de viveza y seguridad usando la herramienta Maude LTL logical
model checker (LMC).
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RESUM

La tecnologia actual ens permet tindre un gran potencial de computació en la
palma de la mà. Estos dispositius, versàtils i potents, són la ferramenta per-
fecta per a, per exemple, autoritzar usuaris tant en sistemes virtuals com a
f́ısics. Key2phone és una solució per a smartphone dissenyada per a facilitar
l’accés d’usuaris autoritzats a espais restringits, convertint els seus smart-
phones en claus electròniques. Esta tesi de màster se centra en l’estudi de les
propietats de seguretat del sistema Key2phone usant el llenguatge de pro-
gramació Maude, que és un llenguatge reflectiu d’alt rendiment que suporta
programació i especificacions tant de lògica ecuacional com de reescriptura.
Llavors, es realitza una anàlisi d’alcanzabilidad, que comprova la seguretat
del sistema, provant que no s’aconseguixen estats del sistema considerats
insegurs. Finalment, es verifiquen propietats de vivor i seguretat usant la
ferramenta Maude LTL logical model checker (LMC).
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CHAPTER 1

INTRODUCTION

We live in a world where communications are the keystone of our day to day.
This is enhanced by the fact that almost everyone has a smartphone that
takes part in his/her daily life in a very active way. Smartphones allow us
to do almost everything, from checking and updating our social networks to
using them for electronic payments by means of communication technologies
like Bluetooth or Near Field Communications (NFC) [KC12].

Recently, the boundaries of what we can do with our smartphones have
been pushed even further. We have the idea that our phone is kind of our
personal identifier in the virtual world and we carry the smartphone every
day at every moment. Then, what is keeping us from using our phone to
identify us in the real world? A phone can be used, e.g., to unlock a hotel
room, work office, house door; even to open garage and car doors. Although
the use of a smartphone as an integrated door-key has several advantages,
it also poses various safety and security vulnerabilities and threats. In the
event that our smartphone is misplaced or stolen, we are totally vulnerable;
also, how will the communication system behave during some severe disas-
ters? For example, our workplace is on fire and people are trapped inside.
Should the trapped people have to dial the door number and enter the Per-
sonal Identification Number (PIN) code to open the door? This can be a very
time-consuming and unfeasible process, which may prove fatal when time is
critical. Even the slightest vulnerability or threat in the system can severely
hinder the safety and security of their owners, family, and goods. Hence, it is
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Introduction 2

essential to provide a comprehensive analysis of personal safety and system
security requirements. Further, there is a need for a suitable formal speci-
fication and verification model of the smartphone based door access control
system in order to determine well behavior considerations and integrate them
within the system’s design. The resulting model could help the engineers to
articulate what they must design in order to ensure the safety and security
of the system. But a smartphone solution exists that wants to accomplish
all this, the Key2phone system.

Key2phone [CLB+15] is a mobile access solution for the management of
electronic doors, turning one’s smartphone into a key for electronic locks.
Once the solution is deployed, the doors could be opened by typing the iden-
tifying number of each door or by reaching the system via Bluetooth connec-
tivity. When the door control module detects a dialed number, it checks the
user identification. In case the user belongs to an authenticated group, the
module opens the door; if the user does not belong to any valid group, the
call is simply ignored, which means that this request is free of computational
load. In the case when the communication is done via Bluetooth, the door
will only open when an authorized user, who has the Key2phone Bluetooth
application running, reaches the Bluetooth range of the door. The access
rights are managed online with a web-based configuration management sys-
tem and access policies are transmitted to the Key2phone control module.

Safety and security are high-rank concerns in systems like Key2phone,
where people physical safety is at stake. By physical safety we mean trying
to avoid every scenario where a person may be injured. Also, we have to take
care about the security of the system, with the promise of protection against
any misuse by the authorized users.

Chaudhary et al. [CLB+15] provide an study of the security threats/vul-
nerabilities and their manage control in an environment where Key2phone
could be deployed. They identified different actors, preconditions, and as-
sumptions for each possible scenario. The first phase of the study consisted
in asking a group of experts in security and usability to make a list of the
safety requirements for each scenario. In the second phase, external field
experts participated to identify if there were any missing or unnecessary re-
quirements.

The goal of this master’s thesis is to study the trustworthiness of the
Key2phone mobile access solution. Our analysis is based on using the high
performance language and system Maude [CDE+16], which effectively sup-
ports reachability analysis and model checking. A preliminary formal speci-
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fication for the system using the Finite State Process (FSP) formal specifica-
tion method, which is based on process algebra notation, and finite Labeled
Transition Systems (LTS), was first given in [CLB+15].

This manuscript is organized as follows. In Chapter 2, we provide an
introduction to rewriting logic, the Maude language, and the Maude LTL
logical model checker. In Chapter 3 we summarize the list of security threats
and vulnerabilities discussed in [CLB+15] and the resulting design of the
Key2phone system. Chapter 4 describes the formal specification developed
in this work and Chapter 5 analyses the properties to be verified. Finally,
Chapter 6 provides some conclusions and discusses future work.



CHAPTER 2

PRELIMINARIES

In order to better understand this work, we recall the standard notions and
terminology of term rewriting. We assume some basic knowledge of term
rewriting [TeR03] and rewriting logic [Mes92]. Some familiarity with the
Maude language is also assumed [CDE+16].

This chapter is organized as follows. Section 2.1 addresses the notions
of the rewriting logic. In Section 2.2 we introduce the fundamentals of the
Maude language. Finally, in Section 2.3 the Maude LTL logical model checker
capabilities are explained.

2.1 Rewriting logic

We assume an order-sorted signature Σ = (S,≤,Σ) with poset of sorts (S,≤),
and an finite number of function symbols Σ. We also assume an S-sorted
family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.
τ(Σ,X )s and τ(Σ)s are the sets of terms and ground terms of sort s, respec-
tively. τ(Σ,X ) and τ(Σ) for the corresponding term algebras. The set of
variables that occur in a term t is denoted by Var(t). In order to simplify
the presentation, we often disregard sorts when no confusion can arise.

A position w in a term t is represented by sequence of natural numbers
that addresses a subterm of t (Λ denotes the empty sequence, i.e., the root
position). The set of positions of a term t is written Pos(t), and the set of
non-variable positions PosΣ(t). The subterm of t at position w is t|w, and
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Preliminaries 5

t[u]w is the result of replacing t|w by u in t.
A substitution σ is a mapping from variables to terms {X1 → t1, . . . , Xn →

tn} such that Xiσ = ti for i = 1, . . . , n (with Xi 6= Xj), and Xσ = X for
all other variables X. Given a substitution σ = {X1 → t1, . . . , Xn → tn},
the domain of σ is the set Dom(σ) = {X1, . . . , Xn}. For any substitution
σ and set of variables V , σ |̀V denotes the substitution obtained from σ by
restricting its domain to V (i.e., Xσ|̀V if X ∈ V , otherwise Xσ|̀V = X).
Given two terms s and t, a substitution σ is a matcher of t in s, if sσ = t.
By matchs(t), we denote the function that returns a matcher of t in s if such
a matcher exists, otherwise matchs(t) returns fail.

A conditional rule is an expression of the form λ→ ρ if C, where λ, σ ∈
τ(Σ,X ), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci
is an equational condition, a matching condition, or a rewrite expression.
When the condition C is empty, we simply write λ → ρ. A conditional
rule λ → ρ if c1 ∧ . . . ∧ cn is admissible iff it fulfils the exact analogous of
the admissibility constraints (i) and (ii) for the equational conditions and
the matching conditions, plus the following additional constraint: for each
rewrite expression ci in C of the form e⇒ p, Var(e) ⊆ Var(λ)∪

⋃i−1
j=1 Var(cj).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ τ(Σ,X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ τ(Σ,X ). The E-equivalence
class of a term t is denoted by [t]E, and τ(Σ/E,X ) and τ(Σ/E) denote the
corresponding order-sorted term algebras modulo E. An equational theory
(Σ, E) is a pair with Σ and order-sorted signature and E a set of Σ a set of
Σ-equations.

A rewrite rule is an oriented pair l→ r, where l /∈ X and l, r ∈ τ(Σ,X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
Rc = (Σ, E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. A topmost rewrite theory (Σ, E,R) is a rewrite theory
s.t. for each l → r ∈ R, l, r ∈ τ(Σ,X )State for a top sort State, r /∈ X , and
no operator in Σ has State as an argument sort. The rewriting relation
→R on τΣ(X ) is t

p→R t′ (or →R) if p ∈ PosΣ(t), l → r ∈ R, t|p = lσ, and
t′ = t[rσ]p for some σ. The relation →R/E on τΣ(X ) is =E;→R; =E, i.e.,
t →R/E ⇐⇒ ∃u1, u2 ∈ τΣ(X ) s.t. t =E u1, u1 →R u2, and u2 =E s. Note
that →R/E on τΣ(X ) induces a relation →R/E on τΣ/E(X ) by [t]E →R/E [t′]E
iff t→R/E t′. The transitive (resp. transitive and reflexive) closure of →R/E

is denoted →+
R/E(resp. →∗R/E). A term t is called →R/E-irreducible (or just
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R/E -irreducible) if there is no term t′ such that t →R/E t′. For a rewrite
rule l → r, we say that it is sort-decreasing if for each substitution σ, we
have rσ ∈ τΣ(X )s. A rewrite theory (Σ, E,R) is sort-decreasing if all rules
in R are. For a Σ-equation t = t′, we say that it is regular if Var(t′), and
it is sort-preserving if for each substitution σ, we have tσ ∈ τΣ(X )s implies
t′σ ∈ τΣ(X )s and vice versa. For substitution σ, ρ and a set of variablesV
we define σ|V →R/E ρ|V if there is x ∈ V such that xσ →R/E xρ, and for
all other y ∈ V we have yσ =E yρ. A substitution is called R/E-normalized
(or normalized) if xσ is R/E -irreducible for all x ∈ V .

The relation →R/E is called terminating if there is no infinite sequence
t1 →R/E t2 →R/E . . . tn →R/E tn+1 . . .. Further, the relation →R/E is
confluent if whenever t →∗R/E t′ and t →∗R/E t

′′
, there exists a term t′′′

such that t′ →∗R/E t′′′ and t′′ →∗R/E t′′′. An order-sorted rewrite theory

(Σ,E ,R) is confluent (resp. terminating) if the relation →R/E is conflu-
ent (resp.terminating). In a confluent, terminating, sort-decreasing, order-
sorted rewrite theory, for each term t ∈ τΣ(X ), there is a unique (up to E-
equivalence) R/E -irreducible term t′ obtained from t by rewriting to canon-
ical form, which is denoted by t→!

R/E t′, or t ↓R/E when t′ is not relevant.
The relation→R/E -reducibility is undecidable in general since E-congruence

classes can be arbitrarily large. Therefore, R/E -rewriting is usually imple-
mented by R,E -rewriting, thanks to the notion of coherence. A relation
→R,E on τΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff there is a
non-variable position p ∈ PosΣ(t), a rule l → r in R, and a substitution
σ such that t|p =E lσ and t′ = t[rσ]p. Note that, assuming E-matching is
decidable, →R,E is decidable. Notions such as confluence, termination, irre-
ducible terms, and normalized substitution, are defined in a straightforward
manner.

2.2 Maude

Maude is a very efficient implementation of rewriting logic [Mes92], which
is publicly available at http://maude.cs.illinois.edu. Maude is a high-
performance reflective language and system supporting both equational and
rewriting logic specification and programming for a wide range of applications
[CDE+16]. A Maude program is made up of different modules. Each module
can include:

� sort (or type) declarations;

http://maude.cs.illinois.edu
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� variable declarations;

� operator declarations;

� rules and/or equations describing the behavior of the system opera-
tions, i.e., the functions.

Maude mainly distinguishes two kinds of modules depending on the con-
structions they define and on their expected behavior. Functional modules
do not contain rules and their equations are expected to be confluent and ter-
minating. On the contrary, system modules can contain both equations and
rules, but their equations are also expected to be confluent and terminating
though the behavior of its rules may be non-confluent and non-terminating.
A functional module is enclosed by the reserved keywords fmod and endfm,
whereas a system module enclosed in between mod and endm [CDE+16].

2.2.1 Sorts

Maude identifiers are sequences of ASCII characters without white spaces,
nor the special characters ‘[’,‘]’, ‘(’, ‘)’, ‘{’, ‘}’, unless they are escaped with
the back-quote character ‘`’. A sort is the type of the data being defined and
they are declared as follows:

sort S .

where S is the identifier of the newly introduced sort S. If we want to
introduce many sorts S1 S2 ...Tn at the same time, we write:

sorts S1 S2 ... Sn .

Sorts can be organized into hierarchies with subsort declarations. In the
following declaration:

subsort S1 < S2 .

we state that each term of sort S1 is also of sort S2. For example, we can
define natural numbers by considering their classification as positive numbers
or as the zero number in this way:
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sorts Nat Zero NonZeroNat .

subsort Zero < Nat .

subsort NonZeroNat < Nat .

op 0 : -> Zero [ctor] .

op s : -> Nat -> NonZeroNat [ctor] .

Maude also provides operator overloading. For example, if we add:

sort Binary .

op 0 : -> Binary [ctor] .

to the previous declarations, the operator 0 is used to construct values
both for the Nat and for the Binary sorts.

2.2.2 Operators

After having declared the sorts, we define operators. Operators are struc-
tures with a list of sorts as its arguments and a sort as a result. The scheme
of an operator has the form:

op C : S1 S2 ... Sn -> S .

where S1 S2 ... Sn are the sorts of the arguments for operator C, and
S is the resulting sort for the operator. We can also declare at the same time
many operators C1 C2 ... Cm with the same signature (i.e., sort of argu-
ments and resulting sort):

ops C1 C2 ... Cm : S1 S2 ... Sn -> S .

Operators can be split into constructors and defined symbols. Construc-
tor terms are made of constructor symbols and variables, and they constitute
the ground terms or data associated to a sort, whereas defined symbols are
used to construct calls to functions whose behavior will be specified by means
of equations or rules. The rewriting engine of Maude does not distinguish
between constructors or defined symbols, so there is no real syntactic differ-
ence between them. However, for documentation (and debugging) purposes,
operators that are used as constructors can be labeled with the attribute
ctor.
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Operator attributes

Operator attributes are labels that can be associated to an operator in order
to provide additional information (either syntactic or semantic) about the
operator. All such attributes are declared within a single pair of enclosing
square brackets “[” and “]”:

C1 C2 . . . Cm : S1 S2 . . . Sn → S[A1 . . . Ak]

where the Ai are attribute identifiers. The set of operator attributes
includes among others: ctor, assoc, comm, id, ditto, etc.

Mix-fix notation

Another interesting feature of operators in Maude is mix-fix notation. Every
operator defined as above is declared in prefix notation, that is, its arguments
are separated by commas, and enclosed in parenthesis, following the operator
symbol, as in:

C(s1, s2, . . . , sn)

where C is an operator symbol, and s1, s2, . . . , sn are, respectively, terms
of sorts S1, S2, . . . , Sn. Nevertheless, Maude provides a powerful and tunable
syntax analyzer that allows us to declare operators that are composed of dif-
ferent identifiers separated by its arguments. Mix-fix operators are identified
by the sequence of its component identifiers with characters ‘_’ inserted in
the place each argument is expected to be, as follows:

op if then else fi : Bool Exp Exp -> Exp .

op : Element List -> List .

The first line above defines an if-then-else operator, while the second one
defines lists of juxtaposed (i.e., separated by white spaces) elements. A term
built with the if then else fi operator looks like:

if b1 then e1 else e2 fi
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where the tokens if, then, else, and fi represent the mix-fix operator,
b1 represents a term of sort Bool, and finally e1 and e2 represent terms of
sort Exp. A term built with the operator looks like:

e1 e2

where e1 is a term of sort Element, e2 is a term of sort List, and the
space separating them represents the juxtaposition operator .

2.2.3 Structural axioms

The Maude language allows the specification of structural axioms over oper-
ators, i.e., certain algebraic properties like associativity, commutativity, and
unity that operators may satisfy. In the following, we write A, C, U re-
spectively to refer to these three algebraic properties. Structural axioms
perform the computation on equivalence classes of expressions, instead of
on simple expressions. In order to carry out computations on equivalence
classes, Maude chooses an irreducible representative of each class and uses it
for the computation. Thanks to the structural information, given as opera-
tor attributes, Maude can also choose specific data structures for an efficient
low-level representation of expressions. For example, let us define a list of
natural numbers separated by colons:

Sorts NatList EmptyNatlist NonEmptyNatList .

subsort EmptyNatList < NatList .

subsort Nat < NonEmptyList < NatList .

op nil : -> EmptyNatList [ctor] .

op _:_ : NatList Natlist -> NonEmptyNatList [assoc] .

The operator _:_ is declared as associative by means of its attribute
assoc. Associativity means that the value of an expression is not dependent
on the subexpresion grouping considered, that is, the places where the paren-
thesis are inserted. Thus, if _:_ is associative Maude considers the following
expressions as equivalent:

s(0) : s(s(0)) : nil

(s(0) : s(s(0))) : nil

s(0) : (s(s(0)) : nil)
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As another example, let us define an asociative list with nil as its iden-
tity element:

sort NatList .

subsort Nat < NatList .

op nil : -> NatList [ctor] .

op _;_ : NatList NatList -> NatList [assoc id: nill] .

The operator _;_ is declared as having nil as its identity element by
means of its attribute id: nil. Having an identity element e means that
the value of an expression is not dependent on the presence of e’s as subex-
presions, that is, it is possible to insert e’s without changing the meaning of
the expression. Thus, in our example Maude considers the following expres-
sions (and an infinite number of similar ones) as equivalent:

s(0) ; s(s(0))

nil ; s(0) ; s(s(0))

s(0) ; nil ; s(s(0))

s(0) ; s(s(0)) ; nil

nil ; s(0) ; nil ; s(s(0)) : nil
...

For that reason, Maude omits nil in the irreducible representative, unless
it appears alone as an expression. Now, let us introduce how we define a
multiset, that is, an associative an commutative list with nil as its identity
element:

sort NatMultiSet .

subsort Nat < NatMultiSet .

op nil : -> NatMultiSet .

op _:_ : NatMultiSet NatMultiSet -> NatMultiSet [assoc comm

id: nil] .

In this example, the operator _:_ is declared to be commutative by means
of the attribute comm. Commutativity means that the value of an expression
is not dependent on the order of its subexpressions, that is, it is possible
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to change the order od subexpressions without changing the meaning of the
expression. Thus, if _:_ is a commutative and associative operator, Maude
considers the following expressions equivalent:

s(0) : s(s(0)) : s(s(0))

s(s(0)) : s(0) : s(s(0))

s(s(0)) : s(s(0)) : s(0)

The structural properties are efficiently built in Maude. Additional struc-
tural properties can be defined by means of equations, as we discuss below.

Rules and equations

In Maude, rules and/or equations characterize the behavior of the defined
symbols. Both language constructions have a similar structure:

eq l = r .

rl l => r .

where l and r are terms, i.e., expressions recursively built by nesting
correctly typed operators and variables. l is called the left-hand side of a
rule or equation, whereas r is its right-hand side. Both rules and equations
can also be conditional. The behavior is similar, with the difference that for a
conditional rule or equation to apply, there is a need to meet some conditions
listed in the declaration of the rule or equation. In Maude, the declaration
of conditional rules and equations is as follows:

ceq l = r if Condition-1 /\ ... /\ Condition-k .

crl l => r if Condition-1 /\ ... /\ Condition-k .

Variables

Variables can be declared when they are used in an expression by using the
structure name:sort, or also in general variable equation:

var N1 N2 ... Nm : S .

where N1 N2 ... Nm are variable names and S is a sort.
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2.2.4 The search command

The search command allows one to explore (following a breadth-first strat-
egy) the reachable state space in different ways. Throughout this thesis, we
will use the search command this way:

search <term1> =>* <term2> .

where, <term1> is the starting term that will be used to explore the state
tree, <term2> is the pattern that has to be reached, and =>* indicates that
the rewriting proof from <term1> to <term2> can consist of zero or more
steps.

2.3 Model checking in Maude

The Maude LTL model checker [SS03] supports on-the-fly explicit-state model
checking of concurrent systems that are expressed as rewrite theories.

In every Maude system module, we can find two different levels of speci-
fication [CDE+16]:

� a system specification level, provided by the rewrite theory specified by
that system module which defines the behavior of the system.

� a property specification level, given by some property (or properties).

On the one hand, in order to check the system specification we only need
to execute the specification in a Maude environment and see if its behavior
is as desired. On the other hand, we need a specific property specification
logic, e.g., linear temporal logic (LTL), and a decision procedure for it, e.g.,
model checking, to prove properties when the set of states that are reachable
from an initial state in a system module is finite. To accomplish this, Maude
uses all the modules specified in the file model-checker.maude.

Temporal logic allows one to specify properties such as safety properties,
which ensure that something bad never happens; and liveness properties,
which ensure that something good can eventually happen. These properties
are related to the infinite behavior of a system. There are different temporal
logics, but we focus on the linear temporal logic LTL, because of its intu-
itive appeal, widespread use, and well-developed proof methods and decision
procedures.
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2.3.1 LTL formulas and the LTL module

Given a set AP of atomic propositions, we inductively define the formulas
of the propositional linear temporal logic over AP, LTL(AP), or simply LTL
when no confusion can arise, as follows [CDE+16]:

� True: > ∈ LTL.

� Atomic propositions: If p ∈ AP , then p ∈ LTL.

� Next operator: If ϕ ∈ LTL, then ◦ϕ ∈ LTL.

� Until operator: if ϕ, ψ ∈ LTL, then ϕ U ψ ∈ LTL.

� Boolean connectives: if ϕ, ψ ∈ LTL, then the formulas ¬ϕ and ϕ∨ψ
are in LTL.

Other LTL connectives can be defined in terms of the above minimal set
of connective as follows:

� Other Boolean connectives:

– False: ⊥ = ¬>.

– Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))

– Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.

� Other temporal operators:

– Eventually: ♦ϕ = >Uϕ
– Henceforth: �ϕ = ¬♦¬ϕ
– Release: ϕRψ = ¬((¬ϕ)U(¬ψ))

– Unless: ϕWψ = (ϕUψ) ∨ (�ϕ)

– Leads-to: ϕ; ψ = �(ϕ→ (♦ψ))

– Strong implication: ϕ⇒ ψ = �(ϕ→ ψ)

– Strong equivalence: ϕ⇔ ψ = �(ϕ↔ ψ)

The LTL syntax is a module that is included into the MODEL-CHECKER

module. In Appendix B. Properties specification we provide the Maude code
that defines this module.
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2.3.2 Associating Kripke structures to rewrite theories

A Kripke structure is a total unlabeled transition system to which we add a
collection of unary state predicates on its set of states.

Formally, a Kripke structure is a triple A = (A,→A, L) such that A is a
set, called the set of states, →A is a total binary relation on A, called the
transition relation, and L : A → P(AP ) is a function, called the labelling
function, that associates to each state a ∈ A the set L(a) of those atomic
propositions in AP that hold in the state a [CDE+16].

Since the models of temporal logic are Kripke structures, we need to ex-
plain how we can associate a Kripke structure to the rewrite theory specified
by a Maude system module [CDE+16].

In order to define the semantics of LTL, the following satisfaction relation
is used:

A, a |= ϕ

where A is the Kripke structure having AP as its atomic propositions, a is a
state a ∈ A and, finally, the LTL formula ϕ ∈ LTL(AP). We say A, a| = ϕ
if and only if, for each path π ∈ Path(A)a, the path satisfaction relation

A, π |= ϕ

holds, where we define the set Path(A)a of computation paths stemming from
state a as a set of functions of the form π : N → A such that π(0) = a and,
for each n ∈ N we have π(n)→A π(n+ 1).

These path satisfaction relation can be defined for any path, beginning
at any state, inductively as follows:

� We always have A, π |=LTL >.

� For p ∈ AP,

A, π |=LTL p⇔ p ∈ L(π(0))

� For ◦ϕ ∈ LTL(AP),

A, π |=LTL ϕUψ ⇔ (∃n ∈ N)
((A, sn; π |=LTL ψ) ∧ ((∀m ∈ N)m < n⇒ A, sm; π |=LTL ϕ))

� For ¬ϕ ∈ LTL(AP),
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A, π |=LTL ¬ϕ⇔ A, π 6|=LTL ϕ

� For ϕ ∨ ψ ∈ LTL(AP),

A, π |=LTL ϕ ∨ ψ ⇔ Aπ |=LTL ϕ or A, π |=LTL ψ

To accomplish the goal of associating the Kripke structure to the rewrite
theory R = (Σ, E, φ,R) specified by a Maude system module M, we need to
make explicit two things:

� the intended sort k of states in the signature Σ, and

� the relevant state predicates, that is, the relevant set AP of atomic
propositions.

These state predicates are just certain predicates about the state of the
system specified by M that are needed to specify some system properties
[CDE+16]. For this reason, these state predicates do not need to be part of
the system specification; instead, they will be defined in the property speci-
fication. In order to clarify this, we going to take the system specification M

and choose a given sort, say Foo, as our subsort of states. Once we choose
this, we are able to specify the relevant state predicates in a different module
called M-PREDS that includes M. This M-PREDS module is created following
the pattern:

mod M-PREDS is

protecting M .

including SATISFACTION .

subsort Foo < State .

...

endm

where the dots ‘. . . ’ indicate the part in which the syntax and semantics
of the relevant state predicates are specified, as further explained in what
follows.

The module SATISFACTION is contained inside the model-checker.maude
file, is very simple, and has the following specification:
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fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op |= : State Prop -> Bool [frozen] .

endm

In this module, we can see that the two sorts State and Prop are left
unspecified. This declaration will be done when we import the module
SATISFACTION into our predicate module, using the following declaration:

subsort Foo < State .

Now, all terms of sort Foo in M are also terms of sort State.
On the one hand, we have the State sort, which is related to the cho-

sen sort in the system module; and on the other hand, we have the state
predicates, which are defined in our predicate module by using appropriate
equations. These state predicates are declared as operators of sort Prop, and
now is when the operator

op |= : State Prop -> Bool [frozen] .

defines the satisfiability of the given predicate by using suitable equations.
In order to illustrate how we can define the M-PREDS module, we are going

to show an example, extracted from the chapter 10 of [CDE+16].

Example
Consider the following module MUTEX in which two processes, one named

a and another named b, can be either waiting or in their critical section, and
take turns accessing their critical section by passing each other a different
token (either $ or *).

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __: Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .
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op [_,_] : Name Mode -> Proc [ctor] .

ops * $ : -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $ .

endm

For this example, we choose the sort Conf of configurations as our State sort.
Now we want to check the liveness and safety of the MUTEX algorithm, and
for this, we need state predicates that tell us whether a process is waiting or
is in his critical section.

mod MUTEX-PREDS is

protecting MUTEX .

including SATISFACTION .

subsort Conf < State .

op crit : Name -> Prop .

op wait : Name -> Prop .

var N : Name .

var C : Conf .

var P : Prop .

eq [N, critical] C |= crit(N) = true .

eq [N, wait] C |= wait(N) = true .

eq C |= P = false [owise] .

endm

In the above example we can see how one can specify the desired states
by choosing a sort in MUTEX and declaring it as a subsort of State. Then,
desired state predicates are defined as operators of sort Prop, by defining
their semantics using a set of equations that specify for what states a given
state predicate evaluates to true.

2.3.3 LTL model checking

Once we have a system module M that specifies a rewrite theoryR = (Σ, E, φ,R),
chosen the sort k in M as our State subsort, and defined some state predi-
cates Π along with their semantics in a suitable module, we implicitly have
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a Kripke structure K(R, k)Π on the set of atomic propositions APΠ. Now,
given an initial state [t] ∈ T (Σ/E, k) and an LTL formula ϕ ∈ LTL(APΠ)
we would like to have a procedure to decide the satisfaction relation:

K(R, k)Π, [t] |= ϕ

Unfortunately, this relation is undecidable, unless these two conditions hold
[CDE+16]:

1. the set of states in T (Σ/E, k) that are reachable from [t] by rewriting
is finite

2. the rewrite theory R = (Σ, E, φ,R) specified by M plus the equations
D defining the predicates Π are such that:

� both E and E ∪ D are (ground) Church-Rosser and terminating,
perhaps modulo some axioms A, with (Σ, E) ⊆ (Σ ∪ Π,E ∪ D)
being a protecting extension.

� R is (ground) coherent relative to E (again, perhaps modulo some
axioms A).

Under the above assumptions, both the state predicates Π and the transi-
tion relation→1

R are computable and, given the infinite reachability assump-
tion, we can settle the above satisfaction problem using a model-checking
procedure [CDE+16].

For this, Maude uses an on-the-fly LTL model-checking procedure that
works as follows. Each LTL formula ϕ has an associated Büchi automaton
Bϕ whose acceptance ω-language is exactly that of the behaviors satisfying
ϕ. We can reduce the satisfaction problem to the emptiness problem of
the language accepted by the synchronous product of B¬ϕ and (the Büchi
automaton associated with) R = (Σ, E, φ,R). The formula ϕ is satisfied if
and only if such language is empty. The model-checking procedure checks
emptiness by looking for a counterexample, that is, an infinite computation
belonging to the language recognized by the synchronous product [CDE+16].



CHAPTER 3

THE KEY2PHONE SYSTEM

In this chapter, we introduce the Key2phone system [CLB+15]. This model
was designed trying to meet all the security requirements pointed by the
group of experts that were asked to analyze the system. In [CLB+15], FSP
(Finite State Process) and LTS(Labeled Transition Systems) are used to
formalize the specification, to increase the formal guarantees of the system
as well as their understanding and to emphasize the evolutionary nature of
the system requirements. In the following section, we can summarize the list
of threats and vulnerabilities discussed in [CLB+15].

3.1 Security threats and vulnerabilities

In this section we recall the list of security threats and vulnerabilities of the
Key2phone system. Every subsection explains each known vulnerability and
the measures that must be taken in order to solve it.

3.1.1 Human physical safety

During an emergency situation, e.g., fire breaks into the building, is very
inconvenient for a user to dial the identifier of the door to open. A safety
measure for this is to use different sensors that trigger when a danger is
detected and automatically open the doors. However, it is necessary to avoid
false alarms.

20
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Also, people can be trapped in-between or under the doors while closing
them. To avoid this, it is advisable to install door entrapment protection
mechanism.

3.1.2 Follow on attack or tailgating

An unauthorized person may enter the premises while the door is still closing.
Using an automatic locking system can be a good counter measure.

3.1.3 Lost, theft, misplace of mobile phone

There is a high risk of misplacing the smartphone, which can expose the
system to unauthorized access. As a counteract measure, an authentication
mechanism should be used. Also, reset mechanisms can be implemented in
case that the user forgets his/her credentials.

3.1.4 Password cracking

Even if the smartphone is secured with authentication mechanisms, the at-
tackers can use a series of different techniques in order to crack the password.
To avoid this, three actions can be applied; (i) increasing the entropy of the
password by using uncommon and lengthy compositions; (ii) blocking any
user after three failed attempts of authentication; and (iii) adding a delay of
5 seconds for every failed attempt.

3.1.5 Bluetooth hacked

When the Bluetooth functionality is activated, hackers can intercept the
signal and gain full access to the smartphone. As a counteract measure, it is
advisable that the discovery and connect mode are always turned off; also,
the verifier should not accept unknown claims.

3.1.6 Spoofing

Attackers can employ caller ID spoofing to fake the authorized mobile num-
ber to open the door. Simply authenticating the caller as mentioned in
Subsection 3.1.3 before opening the door can protect against spoofing.
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3.1.7 Attacks during data transmission

In order to avoid attackers to steal data packets travelling over network, it is
recommendable to use end-to-end protection and Cellular Message Encryp-
tion Algorithms (CMEA) [DW97].

3.1.8 Disruption of services to authorized users

Attackers can employ techniques to flood the system to prevent a legitimate
user from accessing the service. A mechanism for integrity management,
intrusion or anomaly detection systems, and timeliness detection of data can
be implemented as counter measures.

3.1.9 Attacks by authorized users

Theres is a chance that a user can misuse any system or device, either in-
tentionally or by accident, but designing suitable policies for the authorized
user and ensuring that they all understand and adhere to the policies can
help to prevent from accidental misuse.

3.1.10 Phising

Hackers can obtain the password by technical subterfuge, or by using social
engineering to obtain it directly from the user. The solution for this is similar
to the one exposed in 3.1.9.

3.1.11 Software/hardware vulnerabilities

Attackers may exploit vulnerabilities in both software and hardware. The
only thing against this is using high quality hardware and software.

3.2 Key2phone system design

The formalization of the Key2phone system begins with the authorization
function, which is related to vulnerability 3.1.9. This involves the creation
of a log where every user’s activity will be registered in order to guarantee
accountability.
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For the authorization, two kinds of identifiers are used: the primary key
and the non-primary key. The primary key bearers are those who have
administrator rights, while the non-primary key holders are general users.
The Key2phone system is a composition of six different modes:

� Management mode

� Move mode

� Remote mode

� Sleep mode

� Normal mode

� Emergency mode

Non-primary key users only have access to the Normal mode, Move mode,
and Emergency mode. On the other hand, primary key users have authoriza-
tion to all modes. Figures 3.1 and 3.2 illustrate which modes can access the
different users.

Management mode. This mode is only reachable by the primary key
holders, i.e., administrators. In this mode, the user can (i) add any new
non-primary users; (ii) update or delete the existing non-primary users; (iii)
download the activity log; and (iv) configure security rules through the con-
figuration management system. These security rules are related to the Sleep
mode and the Remote mode and are used to specify, for example, at what
time the Sleep mode should be enabled or disabled.

There is a demand to keep apart administrators from general users, but in
order to correctly identify different users and to prevent any misuse related to
threat of Section 3.1.3, user authentication is required. This can be achieved
by using an username-password pair that is simple to implement and does
not add extra costs. However, there exists the risk identified in Section 3.1.4
and a delay between failed attempts is also convenient. The idea is that,
whenever somebody employs techniques like dictionary attack, brute-force
attack, and/or password-guess for password cracking, the attacker will have
to wait for the failed delay, thus, forcing them to spend more time for the
task.



The Key2phone system 24

Move mode. This mode is activated when a user requires frequent door
opening, allowing the user to open the door by just pressing a button. The
door opens when a valid Bluetooth comes into the door proximity and open-
button in the Key2phone Bluetooth application is pressed. This avoid users
the tiresome task of entering the PIN code each time they open the door.

The Move mode can be accessed by every user after entering the correct
PIN. In contrast to the user authentication mechanism, there is no increasing
waiting time policy after a failed attempt. Instead, the number of attempts is
limited to three. After that, the phone will be blocked from opening a door or
changing the mode. This is not a definitive measure because an administrator
can unlock the number via the web-based configuration management system.
There is an implicit danger in using this measure, as it can be abused to block
someones phone intentionally. However, in this case the attacker needs to
authenticate as the user he or she wants to block, so it’s a rare case that can
hardly happen. This kind of mechanisms will also prevent caller ID spoofing,
i.e., vulnerability in Section 3.1.6, since fake caller will fail to open the door
without a valid PIN code. Also, the objective of any Denial of service (DoS)
or Distributed Denial of Service (DDoS) attack is to make unavailable any
service by flooding the system with superfluous request, but this kind of
attack will be shutdown due to the blocking of any number that fails to give
a correct PIN in three attempts. This can be seen as a mitigation for threat
in Section 3.1.8.

Once the PIN is correct and the user enters the Move mode, the mobile
phone’s Bluetooth is also set discoverable and connectable. To counteract
vulnerability in Section 3.1.7, a time has to be set to for which the Move mode
has to be enabled. This way the phone will be protected against Bluetooth
hacking and the user will be relieved from having to separately press a button
for enabling the Bluetooth.

Sleep mode. This mode defines the operational behavior of the door-lock
system during the night time. Once the Sleep mode is activated, the rules
determined by the primary key holder get activated; for example, the time
after which the door has to be locked with no more operations.

Remote mode. In this mode, the administrator has the ability to control
the door from remote locations. When this mode is accessed, the rules de-
fined by the administrator are loaded and taken into use. For the functioning
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of the Remote mode, it is necessary to detect the administrator’s location.
Also, the administrator can activate the geo-location service, which will con-
tinuously record the current location and will enable remote mode when the
administrator is out of the system premises.

Normal mode. This mode is the default mode for opening the doors. The
access to this mode is also via PIN code, and the three attempts policy is
applied. In this mode an identified user can dial the number of the door or
reach the door proximity with Bluetooth enabled to open the door.

Emergency mode. This mode is thought for the case when there is some
kind of natural disaster or danger within the building. When this mode is
activated, the system notifies people inside the premise and opens the door
automatically to facilitate an escape route in a short time. This way, it is
solved the problem identified in vulnerability in Section 3.1.1. To correctly
operate the Emergency mode, it requires additional sensors, e.g., smoke sen-
sors, to be deployed and connected with the Key2phone system. However,
the sensor-system has to protect from nuisance or false alarms and, at the
same time, it must trigger when there is any true cause. A sensor that au-
tomatically adjusts the sensitivity without affecting its performance during
no-alarm situations can prove to be extremely helpful.

In order to ensure people’s safety using this system, and to avoid vulner-
ability in Section 3.1.1, it is necessary to protect any entrapment in between
the doors. Likewise, for every open-door operation a close-door operation is
followed that can be helpful to prevent tailgating, which is a solution for the
vulnerability of Section 3.1.2.

Similarly to [CLB+15], no measure is included against vulnerabilities of
Sections 3.1.7, 3.1.10, and 3.1.11, because they are related to the data trans-
mission, people actions, and employed hardware/software, which are either
out of scope or need a deeper study.
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Figure 3.1: Admin action flow

Figure 3.2: General user action flow



CHAPTER 4

FORMAL SPECIFICATION OF THE KEY2PHONE

SYSTEM USING MAUDE

As already mentioned, the goal of this thesis is to verify safety and liveness
properties of the Key2phone system by means of a model formalization and
analysis using Maude, based on the guidelines in [CLB+15]. In order to
become familiar with and gain some mastery of the system, we first use the
online stepper and analysis tool Anima [ABFS15], which effectively supports
reachability analysis in a visual manner.

The Anima tool offers a rich and highly dynamic, parameterized tech-
nique for trace of inspection in rewriting logic theories that allows the non-
deterministic execution of a given conditional rewrite theory to be followed
up in different ways [ABFS15]. This tool allows us to inspect the computa-
tion tree for a given input expression so that any state that is not supposed
to be there can be easily identified. Wherever an anomalous system config-
uration tree is detected, we can inspect, browse, query, search, and/or slice
the computation to locate coding mistakes.

We needed to represent the possible changes that the system will experi-
ment during an execution. For this, we defined that the parameters that we
wanted to monitor were:

� The identity of the user.

� The current mode of the system.

27
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� A counter to check the login attempts.

� The door that is being used at each moment.

� The action the user is doing.

� The information that will be uploaded to the log.

With this in mind, we created a constructor that encapsulates all this
information, which is defined as follows:

op < | | | | | | > : Key Mode Int Pin Door Action Log -> Status .

The above operator has seven arguments, which are explained as follows:

� The first parameter admits terms of sort Key and represents the cat-
egory of the user: primary key holders are the ones with administra-
tor privileges, and to represent them is used the value primary; non-
primary key holders, or general users, are those who are not adminis-
trators and the value nonprimary is used to represent them; finally the
constant nouser, indicates that the user has not authenticated him-
self/herself yet.

� The second parameter accepts terms of sort Mode and stores the actual
mode in which the user is. This parameter has nine different values,
six of them are the modes mentioned in Chapter 3, while the three
remaining ones are used to represent the user’s state. These states are:
unlogged, logged and blocked. The two first are transition modes, in
which the user has not authenticated himself, or the user has identified
himself but hasn’t chosen any mode, respectively. The blocked con-
stant is used to represent the case when the user could not authenticate
himself in three attempts, and an administrator is required to unlock
the account.

� The third parameter’s only purpose is to count the authentication at-
tempts a user has made and change the mode to blocked after too
many attempts have happened. It accepts terms of sort Int.

� The fourth parameter accepts terms of sort Pin. Here we can see as
list of the different terms that are seen in this parameter:
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– nopin: This value means that there is no need to authenticate the
user.

– trypin: This value indicates that the user is attempting to authen-
ticate himself/herself.

– correctpin: The PIN is correct and access to the desired mode is
granted.

– incorrectpin: The PIN is incorrect and the user needs to try a new
attempt, unless there are no more attempts left and the phone
number is blocked.

� For the fifth parameter, terms of sort Door are accepted and is used
to represent the sensor in the entrapment of the door. This parameter
indicates if the door is opened, closed or if there’s an object thats does
not let the door to be closed.

� The sixth parameter accepts terms of sort Action and records if there
is an action running and which action is.

� The seventh parameter admits terms of sort Log, which store the in-
formation of the system’s log. Usually, it is a pair that is composed of
a key and an action/door opened. In this work we do not consider the
way in which the log is updated since it is irrelevant for our goal.

Figure 4.1 shows the predefined configuration (of sort Status) that repre-
sents the initial system state, i.e., when the user just started the application
and has not done anything else.

Figure 4.1: Initial state of the system
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The next state stemming from this state is the authentication of the user.
In order to represent this, the following transition rules have been specified:

rl < nouser | unlogged | N | nopin | nodoor | noaction | nolog > =>

< login(admin,password ) | unlogged | N | nopin | nodoor | noaction

| nolog > .

rl < nouser | unlogged | N | nopin | nodoor | noaction | nolog > =>

< login(admin,nopassword) | unlogged | N | nopin | nodoor | noaction

| nolog > .

rl < nouser | unlogged | N | nopin | nodoor | noaction | nolog > =>

< login(noadmin) | unlogged | N | nopin | nodoor | noaction | nolog >.

This set of rules specifies the change in the first parameter. Here we
represent all the three possible states to which the system can evolve. The
first one represents a primary key bearer who identifies himself/herself by
using a correct pair username/password; the second one is the same scenario,
but the user types an incorrect password; the last state corresponds to a
general user who authenticates itself. A graphical representation of all the
possible one-step transitions from the initial state can be seen in Figure 4.2.

Figure 4.2: Login transitions

Note that the non-primary key bearers do not need a password because
the administrators keep a list of general users that can regain access to the
system. This section is made to entirely match the initial state instead of
only matching the nouser constant, in order to avoid that any blocked user
attempts to re-login himself/herself.

For this system specification, the three-attempt authentication mecha-
nism is implemented. The following rules define its behavior:

rl < login(admin,password) | unlogged | N | nopin | nodoor | noaction
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| nolog > =>

< primary | logged | counter | nopin | nodoor | noaction | nolog >.

rl < login ( noadmin ) | unlogged | N | nopin | nodoor | noaction

| nolog > =>

< nonprimary | logged | counter | nopin | nodoor | noaction | nolog >.

The above set of rules establishes how, whenever the username/password
pair is correct, the Key parameter of Status is changed to primary or to
non-primary, depending on the user category. An example of a correct login
is illustrated in Figure 4.3

Figure 4.3: Correct login transition

In the case when the combination username/password is incorrect, the
following rules apply:

crl < login ( admin , nopassword ) | unlogged | N | nopin | nodoor | noaction

| nolog > =>

< nouser | unlogged | N - 1 | nopin | nodoor | noaction | nolog >

if ( N > 0 ) .

rl < nouser | unlogged | 0 | nopin | nodoor | noaction | nolog > =>

< nouser | blocked | 0 | nopin | nodoor | noaction | nolog > .

This rules are designed in a way that the user is taken back to the nouser
state so he/she can try to authenticate again, provided there are remaining
attempts left. Figure 4.4 illustrate the system transitions when a user fails
to authenticate himself/herself in three attempts.

Due to the limitations for general users in terms of accessing the differ-
ent modes, without loss of generality, in this work only the branch of the
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Figure 4.4: Failed login transition

search related to the primary key holders is discussed since the other ones
are perfectly similar.

Once the user succeeds at the authentication phase, the system proceeds
to the status shown in Figure 4.5, where the key is primary and the mode
enters the transition value logged.

Figure 4.5: Primary key authentication

At this point, the next thing a user needs to do is to select a mode. Since
we are representing the case of an administrator, he/she has full access to all
six available modes, as we can see in Figure 4.6. In order to represent this
in our model, the following transition rules are provided:
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< primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | management | N | nopin | nodoor | noaction | nolog > .

rl < primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | emergency | N | nopin | nodoor | noaction | nolog > .

rl < primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | move | N | nopin | nodoor | noaction | nolog > .

rl < primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | remote | N | nopin | nodoor | noaction | nolog > .

rl < primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | sleep | N | nopin | nodoor | noaction | nolog > .

rl < primary | logged | N | nopin | nodoor | noaction | nolog > =>

< primary | normal | N | nopin | nodoor | noaction | nolog > .

Non-primary user’s code is exactly the same, changing the key and re-
stricting the mode to the ones he/she can enter:

rl < nonprimary | logged | N | nopin | nodoor | noaction | nolog > =>

< nonprimary | emergency | N | nopin | nodoor | noaction | nolog > .

rl < nonprimary | logged | N | nopin | nodoor | noaction | nolog > =>

< nonprimary | move | N | nopin | nodoor | noaction | nolog > .

rl < nonprimary | logged | N | nopin | nodoor | noaction | nolog > =>

< nonprimary | normal | N | nopin | nodoor | noaction | nolog > .
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Similarly to the login phase, we need to make a full matching of the state
to avoid general users entering modes that only apply for administrators.

The first mode to inspect is the Management mode. The system first
changes the term noaction to actionexpected. This is the way to repre-
sent the state where the user has not chosen any action. When the user
finally executes an action, it is recorded in the sixth parameter and the log
is updated. The following rules are used to implement this behavior:

rl < primary | management | N | nopin | nodoor | noaction | nolog > =>

< primary | management | N | nopin | nodoor | actionexpected | nolog > .

rl < primary | management | N | nopin | nodoor | MACTION | nolog > =>

< primary | management | N | nopin | nodoor | MACTION

| updatelog ( primary , MACTION ) >.

Where MACTION is a variable of sort Maction that has been previously
defined in the program and is used to cover all the different actions that can
be done in the management mode. The different actions are represented by
using these transition rules:

rl actionexpected => adduser .

rl actionexpected => removeuser .

rl actionexpected => updateuser .

rl actionexpected => downloadreport .

rl actionexpected => configuresecurityrules .

The next mode to design and inspect is Sleep mode. When this mode is
entered, all the security rules, previously defined by the administrator, are
applied and the specified doors are closed. In Figure 4.7, the branching of the
sleep mode section is given. There is a bifurcation at the end of the branch
that represents when the sensors detect an object in the door threshold. This
functionality is modeled by means of the following rules:

rl < primary | sleep | N | nopin | nodoor | noaction | nolog > =>

< primary | sleep | N | nopin | nodoor | applysleepmodepolicy | nolog>.

rl < primary | sleep | N | nopin | nodoor | applysleepmodepolicy

| nolog> =>

< primary | sleep | N | nopin | nodoor | protected | nolog > .
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Figure 4.7: Sleep mode

The next mode is the Emergency mode. This mode is designed to first
notify all the users of the given danger and then open all the doors. Also, it
enters in stop mode to avoid trapping someone. Here are the rules used that
model this behavior:

rl < KEY | emergency | N | nopin | nodoor | noaction | nolog > =>

< KEY | emergency | N | nopin | nodoor | notifyemergency | nolog > .

rl < KEY | emergency | N | nopin | nodoor | notifyemergency | nolog > =>

< KEY | emergency | N | nopin | nodoor | opendoors | nolog > .

rl < KEY | emergency | N | nopin | nodoor | opendoors | nolog > =>

< KEY | emergency | N | nopin | nodoor | stop | nolog > .

Note that, since there is a possibility of mortal danger, a variable KEY

of sort Key is used. This way, the notification will be sent to everybody,
disregarding if it is and administrator, a general user, or someone who has
not authenticated himself/herself. A slice of the computational tree related
to this mode can be seen in Figure 4.8.

The Remote mode is supposed to work when the location of the admin-
istrator indicates that he or she is no longer in the building. Since this is
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Figure 4.8: Emergency mode

irrelevant for this work, the entrance to this mode is the same as in the other
modes:

rl < KEY | remote | N | nopin | nodoor | noaction | nolog > =>

< KEY | remote | N | nopin | nodoor | activateremotemodesecurity | nolog > .

rl < KEY | remote | N | nopin | nodoor | activateremotemodesecurity

| nolog > => < KEY | remote | N | nopin | nodoor | protected | nolog > .

In this mode we also have the bifurcation explained above about the
threshold sensor, as illustrated in Figure 4.9.

Now, only remains to explain Normal mode and Move mode. Both be-
have in a very similar way, the only difference being that in Move mode the
user has to specify how long he is going to stay in that mode. Both modes
require a PIN in order to regain access to them. The implementation of this
mechanism is very similar to the login mechanism. First we apply the fol-
lowing transition rules to represent both a correct PIN and an incorrect one:

crl < KEY | PINM | N | trypin | nodoor | noaction | nolog > =>

< KEY | PINM | N | correctpin | nodoor | noaction | nolog > if ( N > 0 ) .

crl < KEY | PINM | N | trypin | nodoor | noaction | nolog > =>

< KEY | PINM | N | incorrectpin | nodoor | noaction | nolog > if ( N > 0) .

Then, the resulting states matches the left-hand side of the following con-
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Figure 4.9: Remote mode

ditional rules:

crl < KEY | PINM | N | correctpin | nodoor | noaction | nolog > =>

< KEY | PINM | counter | correctpin | doorselection | noaction | nolog >

if ( N > 0 ) .

crl < KEY | PINM | N | incorrectpin | nodoor | noaction | nolog > =>

< KEY | PINM | N - 1 | trypin | nodoor | noaction | nolog >

if ( N > 0 ) .

rl < KEY | PINM | 0 | trypin | nodoor | noaction | nolog > =>

< KEY | blocked | 0 | nopin | nodoor | noaction | nolog > .

The variable KEY is similar as the one referred to in Emergency mode
due to the fact that both key holders can have access to both modes. The
variable PINM is used to refer to both modes in one sentence, yielding to a
more compact and optimized code. Figure 4.10 illustrates the scenario where
all three attempts fail.

When the PIN is correct, it grants the user access and the parameter
Door changes its initial value nodoor to doorselection, which indicates the
state where the system is waiting for the user to choose a door via dialing
its ID number or get into the range of the Bluetooth. To represent the two
actions, the following transition rules are given:
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Figure 4.10: Incorrect PIN

rl doorselection => doorid .

This changes the state so that it can match the following rules:

rl < KEY | PINM | N | correctpin | doorid | noaction | nolog > =>

< KEY | PINM | counter | correctpin | opendoor ( doorid ) | noaction

| nolog > .

rl < KEY | PINM | N | correctpin | opendoor ( doorid ) | noaction | nolog >

=>

< KEY | PINM | counter | correctpin | (doorid , open ) | noaction

| updatelog ( KEY , doorid ) > .

rl < KEY | PINM | counter | correctpin | (doorid , open ) | noaction

| updatelog ( KEY , doorid ) > =>

< KEY | PINM | counter | correctpin | (doorid , protected ) | noaction

| updatelog ( KEY , doorid ) > .

Once the door is opened, the fifth parameter stores the number of the
door and the actual status. Also, the information is stored in the system’s
log by using the term updatelog(KEY,doorid). A graphical representation
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of the whole transition can be seen in Figure 4.11.

Figure 4.11: Correct PIN and log update



CHAPTER 5

KEY2PHONE ANALYSIS USING MAUDE

Every property of a system is an intersection of a safety property and a live-
ness property. Properties, which have long been used for reasoning about
systems, are sets of traces (i.e., system executions). Hyperproperties can ex-
press security policies, such as confidentiality, that properties cannot. How-
ever, hyperproperties cannot be verified by model-checking as they depend
on an infinite set of infinite sets of system executions [CS10]. This is why in
this master’s thesis we focus on the classical system properties of safety and
liveness which any system property can be reduced.

We have developed a system module that defines a rewrite theory that
specifies the behavior of the Key2phone system. In Section 5.1 we provide
some examples of reachability property analysis and discuss the results of the
reachability tests. Then, in Section 5.2 we explain the properties checked for
the system, as well as the results obtained of each one.

5.1 Reachability analysis

The aim of the reachability analysis is to ensure that all the intended states
are reached by the system and, also, that no harmful state is ever reached.
Thanks to the Anima tool [ABFS15], we can visually inspect that the in-
tended states are met, but for a further verification, we used the Maude’s
search command.

The first search we made is related to the keys. We wanted to be sure that

41
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no general user is able to ever change its own key, unless he or she re-logins.
We can see below the command used and the result of it.

search in KEY2PHONE-CHECK :

< nonprimary | logged | counter | nopin | nodoor | noaction | nolog >

=>*

< primary | A:Mode | B:Int | C:Pin | D:Door | E:Actions | F:Log > .

No solution.

states: 40 rewrites: 73 in 0ms real (~ rewrites/second)

To check this, we made a search with every other parameter as a variable,
because we are only interested in checking that the first parameter never
changes to primary. As we can see, the search command returns that there
is no solution for this search, so it is verified that a user cannot change its
own key without a re-login (i.e., re-executing the program).

For the next analysis, we want to check that no general user is able to
access modes reserved only to the administrators. Below we can see the
associated search execution and its result.

search in KEY2PHONE-CHECK :

< nonprimary | logged | counter | nopin | nodoor | noaction | nolog >

=>*

< A:Key | X:Adminmode | B:Int | C:Pin | D:Door | E:Actions | F:Log > .

No solution.

states: 40 rewrites: 73 in 1ms real (~ rewrites/second)

For this command, we used X:Adminmode as a variable that refers to all
the reserved modes. As we can see, there is no solution and so, it is verified
that none of the reserved modes can be accessed by a general user.

Now that we know that the general users can not change its own key, nor
access the reserved modes for the administrators, we wanted to check that
the general users can access the modes that it were designed for. Below we
can see the commands used and the results of them.
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search in KEY2PHONE-CHECK :

< nonprimary | logged | counter | nopin | nodoor | noaction | nolog >

=>*

< A:Key | X:Mode | B:Int | C:Pin | D:Door | E:Actions |

F:Log > .

Solution 1 (state 0)

states: 1 rewrites: 1 in 2ms real (~ rewrites/second)

A:Key --> nonprimary

X:Mode --> logged

B:Int --> 2

C:Pin --> nopin

D:Door --> nodoor

E:Actions --> noaction

F:Log --> nolog

Solution 2 (state 1)

states: 2 rewrites: 2 in cpu 25ms real (~ rewrites/second)

A:Key --> nonprimary

X:Mode --> emergency

B:Int --> 2

C:Pin --> nopin

D:Door --> nodoor

E:Actions --> noaction

F:Log --> nolog

Solution 3 (state 2)

states: 3 rewrites: 3 in cpu 41ms real (~ rewrites/second)

A:Key --> nonprimary

X:Mode --> move

B:Int --> 2

C:Pin --> nopin

D:Door --> nodoor

E:Actions --> noaction

F:Log --> nolog

Solution 4 (state 3)

states: 4 rewrites: 4 in 54ms real (~ rewrites/second)

A:Key --> nonprimary

X:Mode --> normal

B:Int --> 2

C:Pin --> nopin

D:Door --> nodoor
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E:Actions --> noaction

F:Log --> nolog

...

Solution 40 (state 39)

states: 40 rewrites: 73 in cpu 493ms real (~ rewrites/second)

A:Key --> nonprimary

X:Mode --> normal

B:Int --> 2

C:Pin --> correctpin

D:Door --> objectindoor

E:Actions --> noaction

F:Log --> updatelog(nonprimary,doorid)

No more solutions.

states: 40 rewrites: 73 in 504ms cpu (504ms real) (~ rewrites/second)

For this search, we omitted the solutions 5 trough 39 due to the duplica-
tion of the modes. As in the last search, we used a variable, the X:Mode, but
this time to refer to all the modes that can be reached from the initial state.
Disregarding the first result because is the starting point, it is verified that
the system can reach all the intended states.

5.2 Model cheking

In the above section, we verified the reachability of the system with a few
examples, but for a further study of the system’s properties we need to make
use of another tool. In order to properly achieve this aim and provide an
accurate study of the desired properties, we make use of the LTL model
checker of Maude.

As explained in Section 2.3.2, the module KEY2PHONE-PREDS contains the
protected system module specification and includes the module SATISFACTION
previously loaded into the Maude environment.

mod KEY2PHONE-PREDS is

protecting KEY2PHONE .

including SATISFACTION .
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The next step is to choose a sort in the system specification and declare it
as a subsort of the sort State. As we defined in the KEY2PHONE module, the
intended sort for this is the Status sort because it contains all the information
about the state of the system and is where all the changes will be made. With
this decision, the next line is added to the file:

subsort Status < State .

This module is used to monitor all the changes in Status so we defined
the following variables:

var K : Key .

var M : Mode .

var I : Int .

var P : Pin .

var D : Door .

var AC : Actions .

var L : Log .

var S : Status .

that are used later to create state predicates that tell us when a desired
parameters takes a value that we want to check, while disregarding the others.

Another module has been created, the KEY2PHONE-CHECK module, which
is simply used to specify the initial system state where properties are to be
checked.

mod KEY2PHONE-CHECK is

protecting KEY2PHONE-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 : -> Status .

eq initial1 = < nouser | unlogged | counter | nopin | nodoor

| noaction | nolog > .

The initial state defined in KEY2PHONE-CHECK is the same initial state in
the system module because we want to make sure that the properties are true
for every possible execution, and also, by declaring the initial state here, we
do not haver to type the whole status every time we want to check a property.
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From this point on, the next step is to define the properties we are inter-
ested to check. As stated in [CS10], all properties can be constructed as the
intersection of a safety property and a liveness property, where:

� a safety property is a property that proscribes “bad things” and can be
proved using an invariance argument, and

� a liveness property is a trace property that prescribes “good things”
and can be proved using a well-foundedness argument.

As already mentioned, this system is not complex and a reachability test
may suffice to check many interesting properties, but the problem rises when
we want to make a conditional or hybrid check involving liveness properties
of any kind as well.

5.2.1 Verified properties

Safety property ensure that nothing bad will happen, and the first property
we want to check is related to this. According to the system’s design, no
door should remain open forever, but it will be eventually closed. However
there is one thing that we want to positively avoid, and that is to harm any
user who uses this system.

“Every time a door is opened, it will not remain in this state unless
something is preventing it to close”

In order to check this property, we find it convenient to define three state
predicates telling us when a door is opened, when is closed and when the
sensors are warning us that something is in the door threshold. These state
predicates are defined as follows:

eq < K | M | I | P | open | AC | L > |= dooropen = true .

eq < K | M | I | P | closed | AC | L > |= doorclosed = true .

eq < K | M | I | P | objectindoor | AC | L > |= protection = true .

Note that dooropen, doorclosed and protection are defined as opera-
tors of sort Prop. This way, the function in the SATISFACTION module, can
be used to check if they are true or not. In this case, dooropen will be true
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when a door is opened, doorclosed will be true when a door is closed, and
protection will be true when there is an object in the threshold.

Once we have the state predicates, we need to translate the statement of
the property by using logical connectors. The LTL encoding is as follows:

[] ((~ dooropen) W <> (doorclosed \/ protection ))

and the Maude command to check the property, setting the initial state
as initial1, is the following:

red modelCheck (initial1,[]((~ dooropen) W <>(doorclosed \/ protection))).

The result can be seen below and proves that the considered safety prop-
erty is satisfied.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[]((∼ dooropen) W

<>(doorclosed ∨ protection ))).

rewrites: 259 in 1ms (0 rewrites/second)

result Bool: true

“A door wont open unless a correct PIN code has been previously entered”.

For assuring this conditional safety property, we need to check the opening
of the doors and when a correct PIN is entered into the system. The state
predicates for the opening of a door has already been declared, but we need
a similar state predicate for the PIN. It is declared as follows:

eq < K | M | I | correctpin | D | AC | L > |= verifiedpin = true .

This predicate will be true every time a user types a correct PIN. The
corresponding LTL encoding for this property is as follows:

[]((~dooropen) W verifiedpin)
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Then, the Maude LTL model checker command that verifies this property
is:

red modelCheck (initial1 ,[]((~ staynonprimary ) W [] staynonprimary)).

The result, proving that the property is met, can be seen below.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1, [](∼ dooropen W veri-

fiedpin)).

rewrites: 272 in 2ms (0 rewrites/second)

result Bool: true

“Always, in the event of any emergency signal, all doors are immediately
opened”

avoiding any harm to the users is a vital part of this system. This means
that besides from keeping the users from being harmed by a malfunction of
the system, we also have to ensure that the users are safe when the danger
comes from outside of the system (i.e., the building is on fire). In order to
check this property, we need to check when an emergency alert is sent, as well
as when the system open all the doors. This is quite easy because there are
two actions specified in the Emergency mode to deal with these two events.
The state predicates that we define are the following:

eq < K | M | I | P | D | notifyemergency | L > |= notify = true .

eq < K | M | I | P | D | opendoors | L > |= dooroverriden = true .

With the notify predicate, we are able to check when the notification is sent
to all the users, then, when the doors open, the dooroverriden predicate is
also satisfied.

Now, the LTL encoding for this property is specified as follows:

[] ((~ notify) W O dooroverriden)
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Now we are able to check the properties by using the following Maude

command, starting, as in the previous checks, from the state initial1:

red modelCheck (initial1, [] ((~ notify) W O dooroverriden)) .

We can see below that the property is satisfied in the system.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[]((∼ notify) W O

dooroverriden )).

rewrites: 237 in 1ms (0 rewrites/second)

result Bool: true

“All the doors will only open simultaneously when the system is in the
emergency mode”

It is true that giving the ability to open all the doors to the system in case
of emergency is almost mandatory, but it also creates one of the biggest flaws
of the system, which can be exploited by someone with malicious intentions.

We will use the dooroverride state predicate defined before, and add a
new state predicate that warns us when the Emergency mode is entered.

eq < K | emergency | I | P | D | AC | L > |= emergencymode = true .

With this new state predicate we can define the LTL encoding as follows:

[] ((~ dooroverriden) W emergencymode)

The following Maude command is used to check if the property is true:

red modelCheck (initial1, [] ((~ dooroverriden) W emergencymode)) .
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and the result, proving that the property is true, can be seen below.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[](∼ dooroverriden W

emergencymode ).

rewrites: 238 in 1ms (0 rewrites/second)

result Bool: true

“Any user logged using a Non-primary key will remain with this key unless
he or she re-logs”

In order to check this property, the following equational predicate defini-
tion is added:

eq < nonprimary | M | I | P | D | AC | L > |= staynonprimary = true .

With this state predicate, staynonprimary will remain true as long as
the Key keeps the nonprimary value. Then, the translated statement is:

[] ((~ staynonprimary ) W [] staynonprimary)

and we can use this Maude command to check the property in the system:

red modelCheck (initial1 , [] ((~ staynonprimary ) W [] staynonprimary) ) .

Below we can see the result of the command executed, verifying that the
property holds.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[](∼ staynonprimary W

[] staynonprimary )).

rewrites: 287 in 1ms (0 rewrites/second)

result Bool: true
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“When an account is blocked, the user wont be able to unlock it”

The state predicate defined to check this property is similar to the one
defined for the previous property, but this time we monitor when the second
parameter changes to blocked.

eq < K | blocked | I | P | D | AC | L > |= stayblocked = true .

Now we can translate the statement into LTL as follows:

[] ((~ stayblocked ) W [] stayblocked)

The corresponding Maude command used to check this property is:

red modelCheck (initial1, [] ((~ stayblocked ) W [] stayblocked))

and the result that verifies the property can be seen below.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[](∼ stayblocked W []

stayblocked )).

rewrites: 250 in 1ms (0 rewrites/second)

result Bool: true

“In every possible execution there will be a moment when the log will be
updated”

We cannot assure that, in every possible execution, there will be a moment
when a door opens. This is because, in the Manage mode, no action of
opening a door will ever happen. But there is a thing that happens in
every execution, the update of the system’s log with the actions done during
the execution. In order to prove this statement, we have to define a state
predicate for every different form of update that has been defined in the
system. The following equations are used:
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eq < K | M | I | P | D | AC |

updatelog(nouser, blocked) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, blocked) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(nonprimary, blocked) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, doorid) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(nonprimary, doorid) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, adduser) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, removeuser) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, updateuser) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, downloadreport) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, configuresecurityrules) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, notifyemergency) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(nonprimary, notifyemergency) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, applysleepmodepolicy) > |= logupdated = true .

eq < K | M | I | P | D | AC |

updatelog(primary, activateremotemodesecurity) > |= logupdated = true .

Every time the system updates the log, logupdated turns true; this way
we can introduce the following LTL encoding of the statement:

[] <> logupdated

and the corresponding Maude command that proves this property is:

red modelCheck (initial1, [] <> logupdated ) .
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The result of the execution can be seen below and proves that the last prop-
erty holds as well.

reduce in KEY2PHONE-CHECK in : modelCheck (initial1,[] <> logupdated).

rewrites: 242 in 1ms (0 rewrites/second)

result Bool: true



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this master’s thesis, we checked the safety properties of the Key2phone
system by verifying that the safety requirements proposed in [CLB+15] are
met. Moreover, additional liveness properties that prove the correct func-
tioning of the modeled system have been also checked.

In order to accomplish this, first we defined a formal specification of the
Key2phone system by using the Maude language. Then, we performed some
reachability tests to ensure that every intended state is reached at some
point and complemented this analysis by using the Anima tool [ABFS16],
which helped us to visually check the computation trees generated by the
Key2phone model. We also made use of the Maude LTL Logical Model
Checker to express and verify some liveness properties that were beyond the
scope of the previous reachability analyses and provide further guarantees of
the correct functioning of the system.

The results of the analyses made in this thesis prove that the design of the
Key2phone system is able to solve the vulnerabilities/threats ascertained in
[CLB+15], this meaning that it correctly handles malicious users, and that
the mechanism implemented to avoid any harm to a human being works
properly.

As future work, we aim to achieve a more compact and optimized code.
Also we plan to implement the system using Full-Maude in order to make a
more thoughtful analysis of the system.
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APPENDIX A. KEY2PHONE SPECIFICATION

load model-checker.maude .

mod KEY2PHONE is

protecting INT .

--- Sort Declaration

sorts PrimaryKey NonPrimaryKey Id Password Key Mode Status

Generalmode Adminmode Transitionrule Pin Pinmode Door

DoorId DoorStatus Log Actions Maction

BlockedMode NonBlockedMode .

--- Everything related to the Status needs to be put in this

subsort

subsort Transitionrule Key Mode Pin Door Log Actions < Status .

subsort PrimaryKey NonPrimaryKey < Key .

subsort Id Password < Key .

subsort Pinmode Adminmode Generalmode < NonBlockedMode < Mode .

subsort BlockedMode NonBlockedMode < Mode .

subsort DoorId DoorStatus < Door .

subsort Maction < Actions .

--- Initialize ops

ops admin noadmin nouser : -> Id .

55
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ops password nopassword : -> Password .

ops counter : -> Int .

ops doorselection nodoor : -> Door .

ops nopin correctpin incorrectpin trypin : -> Pin .

op doorid : -> DoorId .

ops open protected closed objectindoor : -> DoorStatus .

op init : -> Status .

ops actionexpected applysleepmodepolicy protectdoorentrapment

notifyemergency activateremotemodesecurity stop opendoors

noaction : -> Actions .

op nolog : -> Log .

op primary : -> PrimaryKey .

op nonprimary : -> NonPrimaryKey .

ops logged unlogged : -> NonBlockedMode .

op blocked : -> BlockedMode .

ops management sleep remote : -> Adminmode .

op emergency : -> Generalmode .

ops normal move : -> Pinmode .

ops adduser removeuser updateuser downloadreport

configuresecurityrules : -> Maction .

--- Here, the sort Transitionrule is used

in order to keep clean the result when a search is done

op login : Key -> Transitionrule .

--- op changemode : Mode -> Transitionrule .

--- op checkpin : Pin -> Transitionrule .

---op dialnumber : Door -> Transitionrule .

op opendoor : Door -> Door .
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op updatelog : Log -> Log .

--- op executeaction : Actions -> Actions .

--- op closedoor : Bool -> DoorStatus .

--- op <_|_|_|_> : Key Mode Int Pin -> Status .

op <_|_|_|_|_|_|_> : Key Mode Int Pin Door Actions Log

-> Status .

--- op <_|_|_|_|_> : Key Mode Int Pin Door -> Status .

--- op <_|_|_|_|_> : Key Mode Int Pin Actions -> Status .

--- op <_|_|_|_|_|_> : Key Mode Int Pin Actions Log -> Status .

op _,_ : Id Password -> PrimaryKey .

op _,_ : DoorId DoorStatus -> Door .

op _,_ : Key DoorId -> Log .

op _,_ : Key Actions -> Log .

op _,_ : Key Mode -> Log .

--- Declaration of the vars

var N : Int .

var KEY : Key .

var MODE : Mode .

var ADMINM : Adminmode .

var GENERALM : Generalmode .
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var PINM : Pinmode .

var NBLOCKEDM : NonBlockedMode .

var DOORID : DoorId .

var MACTION : Maction .

var PIN : Pin .

var OIBD : Bool . --- OIBD stands for Object In Between Doors

--- Initialize status op

eq init = < nouser | unlogged | counter

| nopin | nodoor | noaction | nolog > .

eq counter = 2 .

--- Transitionrule nouser to login

rl < nouser | unlogged | N | nopin | nodoor | noaction

| nolog >

=>

< login( admin , password ) | unlogged | N | nopin

| nodoor

| noaction | nolog > .

rl < nouser | unlogged | N | nopin | nodoor | noaction

| nolog >

=>

< login( admin , nopassword ) | unlogged | N | nopin

| nodoor

| noaction | nolog > .

rl < nouser | unlogged | N | nopin | nodoor | noaction

| nolog >

=>

< login( noadmin ) | unlogged | N | nopin | nodoor

| noaction | nolog > .
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--- Transitionrule logged to MODE

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | management | N | nopin | nodoor | noaction

| nolog > .

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | emergency | N | nopin | nodoor | noaction

| nolog > .

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | move | N | nopin | nodoor | noaction

| nolog > .

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | remote | N | nopin | nodoor | noaction

| nolog > .

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | sleep | N | nopin | nodoor | noaction

| nolog > .

rl < primary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< primary | normal | N | nopin | nodoor | noaction

| nolog > .
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rl < nonprimary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< nonprimary | emergency | N | nopin | nodoor | noaction

| nolog > .

rl < nonprimary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< nonprimary | move | N | nopin | nodoor | noaction

| nolog > .

rl < nonprimary | logged | N | nopin | nodoor | noaction

| nolog >

=>

< nonprimary | normal | N | nopin | nodoor | noaction

| nolog > .

--- Transitionrule nopin to trypin

rl trypin => correctpin .

rl trypin => incorrectpin .

--- Transitionrule accessmode to dialnumber

rl doorselection => doorid .

--- Transitionrule actionexpected to MACTION

rl actionexpected => adduser .

rl actionexpected => removeuser .

rl actionexpected => updateuser .

rl actionexpected => downloadreport .

rl actionexpected => configuresecurityrules .

--- Transitionrule protected to doorstate
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rl protected => closed .

rl protected => objectindoor .

--- Rules that change the Key

rl < login( admin , password ) | unlogged | N | nopin

| nodoor | noaction | nolog >

=>

< primary | logged | counter | nopin | nodoor | noaction

| nolog > .

crl < login ( admin , nopassword ) | unlogged | N | nopin

| nodoor | noaction | nolog >

=>

< nouser | unlogged | N - 1 | nopin | nodoor | noaction

| nolog >

if ( N > 0 ) .

rl < login ( admin , nopassword ) | unlogged | 0 | nopin

| nodoor | noaction | nolog >

=>

< nouser | blocked | 0 | nopin | nodoor

| noaction | updatelog (nouser, blocked) > .

rl < login ( noadmin ) | unlogged | N | nopin | nodoor

| noaction | nolog >

=>

< nonprimary | logged | counter | nopin | nodoor

| noaction | nolog > .

--- Rules that change the mode

rl < primary | PINM | N | nopin | nodoor | noaction | nolog >

=>

< primary | PINM | N | trypin | nodoor | noaction | nolog > .
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rl < nonprimary | PINM | N | nopin | nodoor | noaction

| nolog >

=>

< nonprimary | PINM | N | trypin | nodoor | noaction | nolog >.

rl < nonprimary | ADMINM | N | nopin | nodoor | noaction

| nolog >

=>

< nonprimary | logged | N | nopin | nodoor | noaction | nolog >.

--- Rules to check the pin

crl < KEY | PINM | N | correctpin | nodoor | noaction | nolog >

=>

< KEY | PINM | counter | correctpin | doorselection | noaction

| nolog > if ( N > 0 ) .

crl < KEY | PINM | N | incorrectpin | nodoor | noaction

| nolog >

=>

< KEY | PINM | N - 1 | trypin | nodoor | noaction | nolog >

if ( N > 0 ) .

--- Rules to update the log

rl < KEY | PINM | N | correctpin | doorid | noaction

| nolog >

=>

< KEY | PINM | counter | correctpin | opendoor ( doorid ) |

noaction | nolog > .

rl < KEY | PINM | N | correctpin | opendoor ( doorid ) |

noaction | nolog >

=>

< KEY | PINM | counter | correctpin | open | noaction

| updatelog ( KEY , doorid ) > .

rl < KEY | PINM | N | correctpin | open | noaction
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| updatelog ( KEY , doorid ) >

=>

< KEY | PINM | counter | correctpin | protected

| noaction | updatelog ( KEY , doorid ) > .

--- equations for the actions in management mode

rl < primary | management | N | nopin | nodoor | noaction

| nolog >

=>

< primary | management | N | nopin | nodoor | actionexpected

| nolog > .

rl < primary | management | N | nopin | nodoor | MACTION

| nolog >

=>

< primary | management | N | nopin | nodoor | MACTION

| updatelog ( primary , MACTION ) > .

--- equations for the actions in sleep mode

rl < primary | sleep | N | nopin | nodoor | noaction | nolog >

=> < primary | sleep | N | nopin | nodoor

| applysleepmodepolicy

| updatelog ( primary , applysleepmodepolicy) > .

rl < primary | sleep | N | nopin | nodoor

| applysleepmodepolicy

| updatelog ( primary , applysleepmodepolicy) >

=>

< primary | sleep | N | nopin | protected | noaction

| updatelog ( primary , applysleepmodepolicy) > .

--- equations for the actions in emergency mode

rl < KEY | emergency | N | nopin | nodoor | noaction | nolog >
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=>

< KEY | emergency | N | nopin | nodoor | notifyemergency

| nolog > .

rl < KEY | emergency | N | nopin | nodoor | notifyemergency

| nolog >

=>

< KEY | emergency | N | nopin | nodoor | opendoors

| nolog > .

rl < KEY | emergency | N | nopin | nodoor | opendoors

| nolog >

=>

< KEY | emergency | N | nopin | nodoor | stop

| updatelog ( KEY, notifyemergency) > .

--- equations for the actions in remote mode

rl < primary | remote | N | nopin | nodoor | noaction | nolog >

=>

< primary | remote | N | nopin | nodoor

| activateremotemodesecurity

| updatelog ( primary, activateremotemodesecurity ) > .

rl < primary | remote | N | nopin | nodoor

| activateremotemodesecurity

| updatelog ( primary, activateremotemodesecurity ) >

=>

< primary | remote | N | nopin | protected | noaction

| updatelog ( primary, activateremotemodesecurity ) > .

endm

mod KEY2PHONE-PREDS is

protecting KEY2PHONE .

including SATISFACTION .
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subsort State < Status .

ops verifiedpin dooropen staynonprimary emergencymode

notify doorclosed protection dooroverriden stayblocked

logupdated : -> Prop .

var K : Key .

var M : Mode .

var I : Int .

var P : Pin .

var D : Door .

var AC : Actions .

var L : Log .

var S : Status .

var PR : Prop .

---emergency state predicates

eq < K | emergency | I | P | D | AC | L >

|= emergencymode = true .

eq < K | M | I | P | D | notifyemergency | L >

|= notify = true .

eq < K | M | I | P | D | opendoors | L >

|= dooroverriden = true .

eq < K | M | I | correctpin | D | AC | L >

|= verifiedpin = true .

---door status state predicates

eq < K | M | I | P | open | AC | L >

|= dooropen = true .

eq < K | M | I | P | closed | AC | L >

|= doorclosed = true .

eq < K | M | I | P | objectindoor | AC | L >

|= protection = true .

eq < nonprimary | M | I | P | D | AC | L >
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|= staynonprimary = true .

eq < K | blocked | I | P | D | AC | L >

|= stayblocked = true .

--- Log state predicates

eq < K | M | I | P | D | AC | updatelog(nouser, blocked) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(primary, blocked) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(nonprimary, blocked) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(primary, doorid) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(nonprimary, doorid) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(primary, adduser) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(primary, removeuser) >

|= logupdated = true .

eq < K | M | I | P | D | AC | updatelog(primary, updateuser) >

|= logupdated = true .

eq < K | M | I | P | D | AC

| updatelog(primary, downloadreport) > |= logupdated = true .

eq < K | M | I | P | D | AC

| updatelog(primary, configuresecurityrules) >

|= logupdated = true .
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eq < K | M | I | P | D | AC

| updatelog(primary, notifyemergency) >

|= logupdated = true .

eq < K | M | I | P | D | AC

| updatelog(nonprimary, notifyemergency) >

|= logupdated = true .

eq < K | M | I | P | D | AC

| updatelog(primary, applysleepmodepolicy) >

|= logupdated = true .

eq < K | M | I | P | D | AC

| updatelog(primary, activateremotemodesecurity) >

|= logupdated = true .

endm

mod KEY2PHONE-CHECK is

protecting KEY2PHONE-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 initial3 initial4 : -> Status .

eq initial1 = < nouser | unlogged | counter | nopin | nodoor

| noaction | nolog > .

endm



APPENDIX B. PROPERTIES SPECIFICATION

***(

This file is part of the Maude 2 interpreter.

Copyright 1997-2006 SRI International,

Menlo Park, CA 94025, USA.

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General

Public License along with this program; if not,

write to the Free Software Foundation, Inc., 59

Temple Place, Suite 330, Boston, MA 02111-1307, USA.

)
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***

*** Maude LTL satisfiability solver and model checker.

*** Version 2.3.

***

fmod LTL is

protecting BOOL .

sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor format (g o)] .

op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _/\_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 55 format (d r o d)] .

op _\/_ : Formula Formula -> Formula [comm ctor gather

(E e) prec 59 format (d r o d)] .

op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _U_ : Formula Formula ->

Formula [ctor prec 63 format (d r o d)] .

op _R_ : Formula Formula ->

Formula [ctor prec 63 format (d r o d)] .

*** defined LTL operators

op _->_ : Formula Formula ->

Formula [gather (e E) prec 65 format (d r o d)] .

op _<->_ : Formula Formula ->

Formula [prec 65 format (d r o d)] .

op <>_ : Formula ->

Formula [prec 53 format (r o d)] .

op []_ : Formula ->

Formula [prec 53 format (r d o d)] .

op _W_ : Formula Formula ->

Formula [prec 63 format (d r o d)] .

op _|->_ : Formula Formula ->

Formula [prec 63 format (d r o d)] . *** leads-to

op _=>_ : Formula Formula ->

Formula [gather (e E) prec 65 format (d r o d)] .

op _<=>_ : Formula Formula ->
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Formula [prec 65 format (d r o d)] .

vars f g : Formula .

eq f -> g = ~ f \/ g .

eq f <-> g = (f -> g) /\ (g -> f) .

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

eq f => g = [] (f -> g) .

eq f <=> g = [] (f <-> g) .

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~(f U g) = (~ f) R (~ g) .

eq ~(f R g) = (~ f) U (~ g) .

endfm

fmod LTL-SIMPLIFIER is

including LTL .

*** The simplifier is based on:

*** Kousha Etessami and Gerard J. Holzman,

*** "Optimizing Buchi Automata",

p153-167, CONCUR 2000, LNCS 1877.

*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula

PE-Formula PU-Formula .

subsort TrueFormula FalseFormula < PureFormula <

PE-Formula PU-Formula < Formula .
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op True : -> TrueFormula [ctor ditto] .

op False : -> FalseFormula [ctor ditto] .

op _/\_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _/\_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _/\_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _\/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _\/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _\/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op O_ : PE-Formula -> PE-Formula [ctor ditto] .

op O_ : PU-Formula -> PU-Formula [ctor ditto] .

op O_ : PureFormula -> PureFormula [ctor ditto] .

op _U_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _U_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _U_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _U_ : TrueFormula Formula -> PE-Formula [ctor ditto] .

op _U_ : TrueFormula PU-Formula -> PureFormula [ctor ditto] .

op _R_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _R_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _R_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _R_ : FalseFormula Formula -> PU-Formula [ctor ditto] .

op _R_ : FalseFormula PE-Formula -> PureFormula [ctor ditto] .

vars p q r s : Formula .

var pe : PE-Formula .

var pu : PU-Formula .

var pr : PureFormula .

*** Rules 1, 2 and 3; each with its dual.

eq (p U r) /\ (q U r) = (p /\ q) U r .

eq (p R r) \/ (q R r) = (p \/ q) R r .

eq (p U q) \/ (p U r) = p U (q \/ r) .

eq (p R q) /\ (p R r) = p R (q /\ r) .

eq True U (p U q) = True U q .

eq False R (p R q) = False R q .

*** Rules 4 and 5 do most of the work.

eq p U pe = pe .

eq p R pu = pu .
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*** An extra rule in the same style.

eq O pr = pr .

*** We also use the rules from:

*** Fabio Somenzi and Roderick Bloem,

*** "Efficient Buchi Automata from LTL Formulae",

*** p247-263, CAV 2000, LNCS 1633.

*** that are not subsumed by the previous system.

*** Four pairs of duals.

eq O p /\ O q = O (p /\ q) .

eq O p \/ O q = O (p \/ q) .

eq O p U O q = O (p U q) .

eq O p R O q = O (p R q) .

eq True U O p = O (True U p) .

eq False R O p = O (False R p) .

eq (False R (True U p)) \/ (False R (True U q)) =

False R (True U (p \/ q)) .

eq (True U (False R p)) /\ (True U (False R q)) =

True U (False R (p /\ q)) .

*** <= relation on formula

op _<=_ : Formula Formula -> Bool [prec 75] .

eq p <= p = true .

eq False <= p = true .

eq p <= True = true .

ceq p <= (q /\ r) = true if (p <= q) /\ (p <= r) .

ceq p <= (q \/ r) = true if p <= q .

ceq (p /\ q) <= r = true if p <= r .

ceq (p \/ q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q U r) = true if p <= r .

ceq (p R q) <= r = true if q <= r .

ceq (p U q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q R r) = true if (p <= q) /\ (p <= r) .
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ceq (p U q) <= (r U s) = true if (p <= r) /\ (q <= s) .

ceq (p R q) <= (r R s) = true if (p <= r) /\ (q <= s) .

*** condition rules depending on <= relation

ceq p /\ q = p if p <= q .

ceq p \/ q = q if p <= q .

ceq p /\ q = False if p <= ~ q .

ceq p \/ q = True if ~ p <= q .

ceq p U q = q if p <= q .

ceq p R q = q if q <= p .

ceq p U q = True U q if p =/= True /\ ~ q <= p .

ceq p R q = False R q if p =/= False /\ q <= ~ p .

ceq p U (q U r) = q U r if p <= q .

ceq p R (q R r) = q R r if q <= p .

endfm

fmod SAT-SOLVER is

protecting LTL .

*** formula lists and results

sorts FormulaList SatSolveResult TautCheckResult .

subsort Formula < FormulaList .

subsort Bool < SatSolveResult TautCheckResult .

op nil : -> FormulaList [ctor] .

op _;_ : FormulaList FormulaList ->

FormulaList [ctor assoc id: nil] .

op model : FormulaList FormulaList -> SatSolveResult [ctor] .

op satSolve : Formula ~> SatSolveResult

[special (

id-hook SatSolverSymbol

op-hook trueSymbol (True : ~> Formula)

op-hook falseSymbol (False : ~> Formula)

op-hook notSymbol (~_ : Formula ~> Formula)

op-hook nextSymbol (O_ : Formula ~> Formula)

op-hook andSymbol (_/\_ : Formula Formula ~> Formula)

op-hook orSymbol (_\/_ : Formula Formula ~> Formula)

op-hook untilSymbol (_U_ : Formula Formula ~> Formula)



Appendix B 74

op-hook releaseSymbol (_R_ : Formula Formula ~> Formula)

op-hook formulaListSymbol

(_;_ : FormulaList FormulaList ~> FormulaList)

op-hook nilFormulaListSymbol (nil : ~> FormulaList)

op-hook modelSymbol

(model : FormulaList FormulaList ~> SatSolveResult)

term-hook falseTerm (false)

)] .

op counterexample : FormulaList FormulaList ->

TautCheckResult [ctor] .

op tautCheck : Formula ~> TautCheckResult .

op $invert : SatSolveResult -> TautCheckResult .

var F : Formula .

vars L C : FormulaList .

eq tautCheck(F) = $invert(satSolve(~ F)) .

eq $invert(false) = true .

eq $invert(model(L, C)) = counterexample(L, C) .

endfm

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

fmod MODEL-CHECKER is

protecting QID .

including SATISFACTION .

including LTL .

subsort Prop < Formula .

*** transitions and results

sorts RuleName Transition TransitionList ModelCheckResult .

subsort Qid < RuleName .

subsort Transition < TransitionList .

subsort Bool < ModelCheckResult .



Bibliography 75

ops unlabeled deadlock : -> RuleName .

op {_,_} : State RuleName -> Transition [ctor] .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList ->

TransitionList [ctor assoc id: nil] .

op counterexample : TransitionList TransitionList ->

ModelCheckResult [ctor] .

op modelCheck : State Formula ~> ModelCheckResult

[special (

id-hook ModelCheckerSymbol

op-hook trueSymbol (True : ~> Formula)

op-hook falseSymbol (False : ~> Formula)

op-hook notSymbol (~_ : Formula ~> Formula)

op-hook nextSymbol (O_ : Formula ~> Formula)

op-hook andSymbol (_/\_ : Formula Formula ~> Formula)

op-hook orSymbol (_\/_ : Formula Formula ~> Formula)

op-hook untilSymbol (_U_ : Formula Formula ~> Formula)

op-hook releaseSymbol (_R_ : Formula Formula ~> Formula)

op-hook satisfiesSymbol (_|=_ : State Formula ~> Bool)

op-hook qidSymbol (<Qids> : ~> Qid)

op-hook unlabeledSymbol (unlabeled : ~> RuleName)

op-hook deadlockSymbol (deadlock : ~> RuleName)

op-hook transitionSymbol ({_,_} : State RuleName ~> Transition)

op-hook transitionListSymbol

(__ : TransitionList TransitionList ~> TransitionList)

op-hook nilTransitionListSymbol (nil : ~> TransitionList)

op-hook counterexampleSymbol

(counterexample :

TransitionList TransitionList ~> ModelCheckResult)

term-hook trueTerm (true)

)] .

endfm}
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