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ABSTRACT 

 

Continuous climb operations are the following step to optimise departure trajectories with 

the goals of minimizing fuel consumption and pollutants and noise emissions in the airports 

neighbourhood, although due to intrinsic nature of these procedures, the integration of these 

procedures need to develop a new framework for airline operators and air traffic control. 

Based on the BADA model developed by EUROCONTROL, three activities have been 

carried out: simulation of several continuous climbs for three aircraft types (Light, Medium 

and Heavy), analysation of different applied separations throughout the climb from the 

runway up to cruise level and, as third activity, definition of new separation minima to ensure 

that the minimum separations are not violated with this new procedures along the climb. In 

this work are presented the results of modelling three continuous climb type (constant true 

airspeed, constant climb angle and constant vertical speed) and new time-based separations 

for most used models in Palma TMA, which will be the case-study scenario. Finally, this 

theoretical analysis has been applied to a real scenario in Palma de Mallorca TMA in order 

to compare how the capacity deals with the introduction of this new procedure to standard 

departures, standard departures are understood as a departure with a level-off at a determined 

altitude and with the possibility to be affected by any ATC action. First outcomes are 

promising because capacity, theoretically, would not be grossly diminished, which could 

initially be expected based on previous studies on continuous descent approaches, although 

these results should be considered cautiously due to the fact that the model lacks several 

factors of associated uncertainty for a real climb. 

 

 

1. INTRODUCTION 

 

Air Transport is one of the largest worldwide industries, according to (OACI, 2013), nearly 

of 3100 million of passengers took the air transport network in 2013. The number of 

passengers increased over 5% compared with 2012 and it is expected to reach more than 

6400 million to 2030. This increase of demand prompts the necessity to perform a future 

restructuration of the worldwide airspace (SESAR, 2014), by the implementation of novel 

air procedures which will allow aircrafts to guide themselves over more accuracies 
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trajectories, decreasing the time of flight and likewise helping to reduce the environmental 

impact. 

 

On the last decade significant research has been carried out over climb operations by major 

stakeholders as NASA (ROACH, 2010), FAA, EUROCONTROL, etc. The Continuous 

Climb Operation (CCO) aim is to enable aircraft to fly their optimal path within the 

requirements of the ATC system. IFATCA (2012) presented a literature review, up to 2012, 

and analysed the requirements that a CCO should fulfil if a new procedure is defined. The 

potential problems outlined were that these new procedures are more complex and, therefore, 

will increase operational risk and the compliance with the vertical profile would be more 

difficult to monitor and distinguish which aircraft is flying a CCO or a level-off departure. 

 

CCO modelling is based on Continuous Descent Approach (CDA) developments because 

the CDA modelling was built before (TONG, 2007). The theoretical integration of these 

procedures (MELBY, 2008; MILLER, 2011) concludes that remarkable USD savings can 

be achieved with this implementation. Moreover, the potential benefits in the environmental 

frame can be very high in terms of pollutants and noise emissions. Thus, for all these reasons, 

an important number of research have analysed the CCO potential to reduce these 

environmental aspects with different optimization approaches (KHARDI, 2010; PRATS, 

2010; TORRES, 2011). 

 

Based on studies performed on the integration of CDAs in a Terminal Manoeuver Area 

(TMA), it is known that the implementation of these procedures suppose a significant 

capacity reduction (ALAM, 2010; REN, 2003; WEITZ, 2005), because releasing the descent 

operation of possible ATC actions, as level-offs or speed changes, supposes that the 

separation minima must be enlarged to assure that will not be violated. However, the inverse 

analysis of how the integration of CCOs affect the capacity of a TMA has not been tackled 

so far in-depth. 

 

This work is organized as follows: A conceptual framework for continuous climb procedures 

is presented in the next section with the development of the BADA model and some results 

of the benefits of a CCO. This is followed by a discussion of the relationship between TMA 

and airport operational capacity based on Palma TMA (SPAIN) scenario and the viability of 

CCO integration. The major findings of this research and the outlines of future works are 

summarized in the last section. 

 

 

2. CONTINUOUS CLIMB OPERATION 

 

2.1 Continuous Climb Operation concept 

 

A CCO is an operational procedure characterized by the execution of a climb according just 
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to the aircraft performance without ATC restrictions: level-offs, headings or speed changes 

are eliminated in order to let a ‘free’ trajectory throughout its climb. By this way, the CCO 

aircraft climbs with its optimal profile in which it can optimize several factors. Currently the 

main factors to reduce in airports neighbourhoods are the fuel consumption and the 

pollutants and noise emissions which suppose restrictions for the airport capacity nowadays 

and hardly in the future. Indirect factors that will be improved with the use of CCO are the 

time and distance to reach the cruise level. This potential savings and the following 

drawbacks for the air traffic management agree with the analysis carried out by Reynolds 

(2014): 

 Major uncertainty because each aircraft has a different optimal climb profile.  

 Need to increase distance between following aircrafts to ensure that at any time 

minimum safety requirements are violated.  

 Need to increase time windows into potential conflict points among departure and 

landing flows.  

 Lastly, an operational capacity reduction which could inhibit the integration of CCO 

with step-traffic.  

 

2.2 Continuous Climb Operation model 

 

In this section the modelling of distinct stages of a CCO procedure is described and the 

simulation of three CCO types are presented. The CCO structure is bounded by the 

restrictions applied to the aircraft operational characteristics along the take-off and climb 

phase and with the vanishing of any ATC or ATM bound. So that three stages are 

distinguished: 

1. From take-off up to 1.500 ft.: this section is defined by climbing in take-off 

configuration with maximum thrust and extended flaps. 

2. From 1.500 ft. up to transition altitude 𝐻𝑝: the aircraft climbs according to its optimal 

profile, clean (cruise) configuration and the ATC restriction of 𝑣𝑚𝑎𝑥 = 250 𝐼𝐴𝑆 up 

to FL100 disappears. 

3. From 𝐻𝑝 up to cruise level: the aircraft changes the speed operational concept to 

Mach operational concept, where 𝑀𝑎𝑐ℎ =
𝑣𝑡𝑎𝑠

𝑎⁄  and 𝑎 is the sound speed. 

 

In this research three different continuous climb models have been put into practice based 

on different operational concept: 

 Constant true airspeed 𝑣𝑡𝑎𝑠 = 𝑐𝑡𝑒; 

 Constant climb angle 𝛾 = 𝑐𝑡𝑒, and, 

 Constant vertical speed ℎ̇ = 𝑐𝑡𝑒. 

 

These models have been implemented to distinct aircraft types following the aircraft model 

of BADA (EUROCONTROL, 2014). In Table 1 is presented, for a medium type aircraft 

(B737), the summary of the results for three key factors (fuel consumption, time and 
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horizontal distance) in order to assess the benefits of each CCO. Besides, this results are 

compared with a ‘standard’ departure which climbs with 𝑣𝑡𝑎𝑠 = 𝑐𝑡𝑒 concept and performs a 

level-off of 3 min at FL90. 

 

Operational concept 
Key Factors 

Fuel consumption (kg) Time (s) Horizontal distance (km) 

𝑣𝑡𝑎𝑠 = 350 𝑘𝑡𝑠 1261.5 865 155.8 

𝛾 = 2.5º 1766.9 1015 230.1 

ℎ̇ = 2000 𝑓𝑡/𝑚𝑖𝑛 1894.3 1098 255.2 

‘Standard’ departure 1661.5 1211 169.2 

Table 1 – Results in terms of key factors of CCO simulation with the BADA model 

depending on the operational concept. 

 

Firstly, because space reasons solely best cases for each CCO type has been presented in 

Table 1, for each operational concept considered variations have been assessed in order to 

appreciate how these variations affect the climb profile: from 150 to 400 kts variations for 

𝑣𝑡𝑎𝑠 = 𝑐𝑡𝑒 ; from 1 to 5º for 𝛾 = 𝑐𝑡𝑒 and from 500 to 2500 ft/min for ℎ̇ = 𝑐𝑡𝑒.. As it is 

observed in Table 1, best outputs for fuel consumption, time and distance are for 𝑣𝑡𝑎𝑠 = 𝑐𝑡𝑒 

and it is clear the influence of the level-off in terms of fuel consumption and time. In Figure 

1, the corresponding CCO profiles of the best cases are represented: 

 

  

Figure 1 – Trajectory of the three CCO types: a) Height function of time and b) Fuel 

consumption function of height. 

 

 

3. TMA - RUNWAY SEPARATION: CASE-STUDY PALMA 

 

The aim of this module is to analyse how affects the separations between aircrafts the 

integration of CCO procedures in the different parts of a TMA in order to assure the safety 

of the departures and the separation minima. TMA capacity is constrained by diverse factors 

as traffic density, arrival and departure trade-offs, airspace design, SID and STAR 

procedures, number of airports inside TMA, potential conflict points, etc. Thus, in order to 

http://creativecommons.org/licenses/by-nc-nd/4.0/


CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3525 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

consider the integration of these procedures into a high-density real scenario, Palma TMA 

traffic has been deeply analysed with the NEST tool (EUROCONTROL, 2013). 

 

In this research, as a first approach of separation assessment, separation between aircraft 

types are defined as a measure of the TMA – Runway capacity. Firstly, depending on the 

spatial location of the aircrafts they are distinguished three types of separations which must 

be applied for the departure traffic: runway, TMA and en-route. The definition of each one 

depends on the following factors: 

 Standard Instrumental Departure (SID) allocation, 

 Aircraft pair type, wake-turbulence minima, and 

 Ground-navigation systems, radar coverage or not. 

 

In the case of the leading aircraft SID differs from the trailing aircraft just after taking-off, 

the Spanish RCA (MINISTERIO DE FOMENTO, 2014) specifies that the separation 

minima must be of 1 min, whereas aircrafts using the same SID, or partially the same, the 

separation must be of 2 min. In the case of wake-turbulence minima the following minima 

must be applied depending on the aircraft pair and the separation type considered: 

 

Leading aircraft Trailing aircraft Time Distance 

Heavy Heavy 2 min 4 NM 

Heavy Medium 2 min 5 NM 

Heavy Light 2 min 6 NM 

Medium Light 2 min 5 NM 

Table 2 – Wake-turbulence separation minima. 

 

TMA separation minima depends on the existence of radar coverage or not and if it does 

exist is of 3 or 5 NM depending on the distance between aircraft and airport, in Palma TMA 

is 3 NM. On the other hand, en-route separation minima with radar coverage are 5 NM. 

 

Currently, ATC can act to assure the minima separation between departure aircrafts, but with 

the integration of CCOs they have to let freely the flight up to reach the cruise level, in other 

words, ATC cannot indicate the CCO aircraft to perform a level-off or vectoring or any speed 

change. The fundamental change of this procedure is that the trailing aircraft cannot take-off 

unless it does exist the certainty that it is not going to violate the separation with the 

precedent aircraft along the climb. That means that new separations have to be 

calculated/defined to assure this concept. 

 

In order to quantify the new shape of these minima several simulations among three types 

of aircraft have been tested, an example of a CCO pair is presented in Figure 2. The 

separation is time-based and they have been calculated based on the time spend to reach the 

wake-turbulence minima in Nautical Miles. Palma TMA scenario is featured by a major 

aircraft for each aircraft type: PRM1 (Light), B737 (Medium) and A332 (Heavy), which 
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have been used to simulate CCO and standard departure. 

 

  
 

Figure 2 – Trajectories of Medium – Heavy pair performing CCOs:  a) Height 

function of time and b) Separation between aircrafts. 

 

Standard departure pairs have been simulated and tested in order to quantify the separation 

necessary to ensure the safety of the operations. As they have been defined in section 2, the 

results in the Figure 3 are calculated to permit a standard departure any ATC, namely, the 

aircraft pair must be separated by the separation minima based on distance procedure of 

Table 2. Both CCO and standard results are showed in Table 3: 

 

 CCO Standard Departure 

Aircraft type Light Medium Heavy Light Medium Heavy 

Light 61 113 436 61 61 61 

Medium 71 60 250 71 60 60 

Heavy 86 77 68 86 77 68 

Table 3 – CCO and Standard Departure runway separation minima in seconds. 

 

The first conclusion is that CCO separations are better in various cases than 2 minute wake-

turbulence minima so, initially, they will enhance the time-based capacity. Compared with 

standard departure separations, there are the same separations except three cases (L-M or H 

and M-H) because in these cases the trailing aircraft is bigger than the precedent so the 

leading aircraft will be reached by the bigger one, therefore, the CCO separation must be 

increased. On the other hand, these pair, for standard departures cases, will suppose the 

interaction and merging of ATC actions and that will reduce as well the capacity. 

 

Palma capacity in rush hour is 34 departures, so, theoretically, the integration of CCO would 

not suppose a great impact because the 95% of the aircrafts are Medium and the M-M 

separation is of 60 sec. Although first results are promising, this is a first approach in which 

several factors have not been considered, i.e., speed variations in climb profile, pilot errors, 

temperature influence, wind and so on, that will create uncertainties which will enlarge these 
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initial separations and maybe will forbid the use of CCO in rush hours. 

 

4. CONCLUSIONS AND FUTURE WORK 

 

Nowadays air transport focuses on the development of more efficient and optimal procedures 

with the goal of reduce fuel consumption and pollutants and noise emissions albeit rarely it 

is analysed the influence that these changes produce into the airspace capacity. This research 

is focalised on the assessment of the integration of CCOs in a real scenario, Palma TMA, for 

that it has been performed a methodology based on BADA model for the simulation of CCO 

trajectories depending on three operational concepts: 𝑣𝑡𝑎𝑠 , ℎ̇ 𝑦 𝛾 constant. The results 

produced in terms of fuel consumption, time and distance confirm that 𝑣𝑡𝑎𝑠 = 𝑐𝑡𝑒 climb 

provides best results. Once the CCO benefits are known, it has been considered how affects 

the execution of CCOs into the separation minima inside a TMA scenario, concerning 

mainly to the runway separation as a function of aircraft type and the connection with 

standard (level-off) departure separation. The separation minima has been calculated as well 

for the three major aircraft models that operate in Palma de Mallorca (PRM1, B737 and 

A332). Lastly, the implementation of these calculated minima have been assessed in a real 

and high-density scenario, Palma TMA and airport, obtaining a first positive outcome 

because the capacity is not reduced. Although, this is a theoretical result that has not 

considered uncertainties associated with any real climb as wind, pilot or on-board systems 

errors, etc., which will suppose an increase on the separation minima. Therefore, future work 

to develop among other research lines are: to add diverse aircraft models, to introduce several 

influence factors that will directly affect to the climb profile, to analyse the interaction of 

CCO with arrival flows, to model separations between CCO and standard departures mixed 

and to model the collision risk of these new procedures. 
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