
CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.4074 

 
 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

OPTIMIZATION MODEL FOR SCHOOL TRANSPORTATION 

DESIGN BASED ON ECONOMIC AND SOCIAL EFFICIENCY. 

 

Sara Ezquerro Eguizábal 
Researcher, University of Cantabria, Spain 

José Luis Moura Berodia 
Associate Professor, University of Cantabria, Spain 

Ángel Ibeas Portilla 
Associate Professor, University of Cantabria, Spain 

Juan Benavente Ponce 
Researcher, University of Cantabria, Spain 

ABSTRACT 

The purpose of this paper is to design a model that allows to suggest new planning proposals 

on school transport, so that greater efficiency operational will be achieved.  It is a multi-

objective optimization problem including the minimization of the cost of busing and 

minimizes the total travel time of all students. The foundation of the model is the planning 

routes made by bus due to changes in the starting time in schools, so the buses are able to 

perform more than one route. 

The methodology is based on the School Bus Routing Problem, so that routes from different 

schools within a given time window are connected, and within the restrictions of the 

problem, the system costs are minimized. The proposed model is programmed to be applied 

in any generic case. 

This is a multi-objective problem, in which there will be several possible solutions, 

depending on the weight to be assigned to each of the variables involved, economic point of 

view versus social point of view. Therefore, the proposed model is helpful for policy 

planning school transportation, supporting the decision making under conditions of 

economic and social efficiency. 

The model has been applied in some schools located in an area of Cantabria (Spain), resulting 

in 71 possible optimal options that minimize the cost of school transport between 2,7% and 

35,1% regarding to the current routes of school transport, with different school start time 

and minimum travel time for students. 

1. INTRODUCTION 

School transport in Spain is a Special Regulated Public Transport Service financed by the 

autonomous communities through public tenders per school year and represents a heavy 
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financial burden for them.  This is partially due to the difficulties companies have in using 

the vehicles for other purposes during the rest of the day, and the existence of historically 

defined routes which have never been subjected to a process of scrutiny to optimise them 

as well as the rigid school timetables. 

The main goal of this study is to design an optimisation model which will allow proposals 

for route planning to be defined in such a way that they will maximise efficiency from 

operational, economic and social points of view. Opening and closing times of schools will 

be modified by establishing time windows which will allow the buses to cover one school 

route and then be able to cover another school route (see Figure 1). 

 

Figure 1. The main idea (before-after) 

 

The aim of the research is to simultaneously optimise the group of school routes and the 

connections between them. These are created from the differences between the school 

opening times in such a way that the routing problem is dependent on the problem of 

combining the timetables and vice versa. 

The analysis and research are aimed at finding a balance between profitability and quality of 

service, making it a problem of multiple objectives: economic (cost optimisation, regional 

government) and social objectives (optimisation of journey time, users). 

The initial hypotheses were that the bus capacities were homogenous and they should arrive 

at the school between 2 and 10 minutes before the schools open so that the students arrive in 

time at their classrooms but do not have to wait too long. The locations of the stops, the 

number of students at each stop and the destination school will also be basic input data. 

 

2. STATE OF THE ART 

Many works are available which describe research aimed at optimising school transport. 

Authors have proposed the possibility of changing school opening and closing times while 

considering the school transport routes to be fixed (Kim et al, 2011). However, few authors 
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have proposed making changes to school timetables to minimise service costs at the same 

time as addressing the problem of each individual school route taking into account the 

journey time of the students. 

In an initial approach, the problem of school transport can be addressed as a SBRP (School 

Bus Routing Problem) (Schittekat et al., 2013) which is a variation of a VRP (Vehicle 

Routing Problem) where there is more than one objective to minimise. 

On the other hand, Desrosiers et al. (1980), added a maximum time constraint on each 

student’s journey and/or time window, for their arrival at school. Furthermore, Li and Fu 

(2002) presented an approach with multiple objectives where the number of buses, the bus 

journey time and the students’ journey times are minimised. Fugenschuh (2009) considered 

the problem of programming the school bus by allowing the school opening times to be 

adapted to the transfer of the students during the journey based on VRPTW (Vehicle Routing 

Problem Time Window), but considered the routes to be basic input data. 

As described below, our problem differs from those mentioned above in several ways. The 

routing problem is solved at the same time as the vehicle planning problem in order to 

minimise journey times for the students and minimise the number of buses being used within 

different time windows. This will allow future decision makers to give weight to these two 

economic and social criteria. 

 

 

3. METHODOLOGY 

The multiple objective optimisation model is a support tool for future decision makers. There 

will no single solution, but rather various solutions making up a group of solutions which 

are in equilibrium between the economic and social factors. The objective function of the 

model is shown in expression 1 which will be decisive in planning school transport giving 

weight to the variables (α, β). 

Min ( α·operating costs+ β·user costs)                                   (1) 

The schematic shown in figure 2 was used in the development of the optimisation model and 

developed in the following iterative way: 

- First phase, the routing problem for each school is solved. Variables are the number 

of routes serving each school and the maximum journey time allowed on them.  

- Second phase, an optimisation model is used to solve the route combination problem; 

various routes are created for the same bus within the necessary time window, 

thereby providing multiple alternatives for the planning problem.  
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- Third phase, a pre-analysis is performed on all the alternatives obtained to 

differentiate which of them could minimise the objective function (for different 

values of α and β), and which are, therefore, solutions to the model. 

 

 

Figura 2. Methodology 

 

3.1. Routing problems for each school 

The routing problem for each school was solved using SBRP. The SBRP problem can be 

understood as the intersection of two well-known optimisation problems. The first, the 

problem of m travelling agents (m-TSP) is a generalisation of the TSP (Travelling Salesman 

Problem) and is aimed at creating exactly m routes, one for each vehicle, so that each stop 

is served once by one of the vehicles. The second problem is that of packaging, consisting 

(nº of routes, duration of service and t máx.) 
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of picking up a group of students where their total number is not greater than the capacity of 

the bus. 

In the solution of SBRP exactly m routes need to be created, this number of routes is variable 

and will be defined by:  

𝑛º 𝑟𝑜𝑢𝑡𝑒𝑠 𝑚𝑖𝑛𝐴 ≤ 𝑛º 𝑟𝑜𝑢𝑡𝑒𝑠𝐴 ≤  𝑛º 𝑟𝑜𝑢𝑡𝑒𝑠 𝑚a𝑥𝐴                                      (2) 

 

𝑁º 𝑒𝑠𝑡𝐴

𝐶
≤ 𝑛º 𝑟𝑜𝑢𝑡𝑒𝑠𝐴 ≤  

𝑁º 𝑒𝑠𝑡𝐴

0.5 · 𝐶
                                                    (3) 

 Where:  

- Nº est.: the number of pupils going to school A.   

- C: capacity of the buses.  

A further variable has also been added to this problem, the maximum permitted route time. 

This represents a constraint on the routing problem which limits the duration of the routes 

and will change in 15 minute intervals, up to the maximum of 60 minutes fixed by the rule. 

The routing problem for each school will not have a unique solution, there will be various 

solutions, representing the sum of the combinations of these variables, number of routes and 

their maximum travelling time (nº routes, tmax) where a solution is possible. This knowledge 

provides the routes and their duration.  

 

 

3.2. Planning the bus fleet 

Once the routing problem have been solved for each school, the following step is to plan the 

size of the bus fleet so that a bus is available to cover routes serving one or more schools 

within a time window, which cannot be greater than 60 minutes. In other words, the aim is 

to minimise the number of buses required, which is the same as minimising the economic 

costs, taking into account journey route times and time window of all possible combinations 

The objective function of this vehicle planning problem (ec.4) addresses the need to find the 

minimum combination required to serve the set of schools (Z). Each combination is obtained 

from the Cartesian product of schools and sets (ec. 5 and 6). 

Equation 7 shows that the number of buses required is the difference between the number of 

routes of each individual school and the number of connections between them.  

Min (Comb )                                                     (4)  

Comb=A× CA={A,CA:A∈Z y CA∈SetA}                                         (5) 
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  Set
A

=(nº routes 
A

, start time 
A

, t. maxA)   {

∀ A∈Z

∀ nº routes

∀ t. máx

∀ start time

                     (6) 

 

Nº buses
Comb

= ∑ Nº routes 
A 

- ∑  Nº Connec
A

                  ∀  Comb                 (7)

A∈ZA ∈Z

 

 

S.a.: 

0≤t.connecA, A',i
comb ≤………..≤t.connec

A
n-1

, A
n
,i

comb ≤∆Hmax   {

∀  Comb

∀  A , A´ ∈Z

∀  A ≠ A´

𝑖 ∈ 𝑁

             (8) 

0≤ t.connec
A, A

´
,i

comb
≤t.connec

A, A
´
,i

comb +t.connec
A

´
, A

n
,i

comb ≤∆Hmax   {

∀  Comb

∀  A , A´ ∈Z

∀  A ≠ A´

i ∈ N

             (9) 

t.connecA, A
n
,i

comb ≥t.connec
A, A

´
,i

comb  + t.connec
A

´
, A

n
,i

comb   {

∀  Comb

∀  A , A´ ∈Z

∀  A ≠ A´

𝑖 ∈ 𝑁

               (10) 

∆HA=Start timeA
n

comb
- Start time

A
´

comb
≤60 min.    {

∀  Comb

∀  A∈Z
            (11)                                                        

 

 Nº  poss. connec. A= ∑ xA,i
comb = {

0     if     ∆H< t.connecA, A´
comb  

1     if     ∆H≥ t.connecA, A'
comb 

        {

∀  Comb
∀  A , A´ ∈Z
∀  A ≠ A´

i ∈N

    (12) 

   

 t.connecA, A',i
comb = {

0                      if     ∆H< t.connecA, A'
comb  

t.connecA, A',i
comb     if     ∆H≥ t.connecA, A', i

comb  
       {

∀  Comb

∀  A , A´ ∈Z

∀  A ≠ A´

𝑖 ∈ 𝑁

         (13)    
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∑ ∑ t.connecA,A',i
comb

A´∈ZA∈Z

= ∑ ∑ (t.move
A,i

comb

i∈NA∈Z

+t.routescomb
i
'
A´

)       {

∀  Comb

∀  A , A´ ∈Z

∀  A ≠ A´

𝑖 ∈ 𝑁

        (14) 

 

 

 NºConnec.
A

= {
Nº possible connec.

A
   if   Nº routesi

A≥ nº poss. connec.A

Nº routesA                     if    Nº routesA< nº  poss. connec.A 
 ∀A∈Z  (15) 

 

∑ xA,i´

i

=  Nº routesA                        
∀ Comb

∀ A∈Z
                        (16) 

∑ xA,i´

A

=1                                  
∀ Comb

∀ i∈N
                              (17) 

 

Where: 

- ∆H= time window necessary to connect the schools. 

- T. max. = Maximum time allowed to cover the route.  

- Nº routes A= Number of trips made to school A or, similarly, the number of buses.  

- Nº connec. A= the number of connections made from school A´ to the other schools.  

- Nº poss. connec. A= is the number of possible connections that can be made from 

school A to the other schools complying with the time window constraint. 

- xA, i
comb = dummy variable which could take a value of 1 if there is enough time to use 

one of the buses that arrives to A to perform the service of route i. 

- t.connec
A,A

'
,i

comb = journey time from school A to school A´ through the header i , for any 

combination. 

- t.moveA,i 
comb= journey time from school A to header of route i, which is a route to 

destination school A´.  

- t.routecomb
iA´= journey time of the route from header i´ to school A´.  

 

Equations (8), (9), (10) and (11), represent how the time window is obtained, in other words, 

where each school is located within the time band (A, A´…, An-1,An) , knowing that the time 

position of schools varies up to make all possible temporary combinations.  Therefore, the 

time window will be the difference between the start time of the last school situated in the 

time band minus the start time of the first school (ec. 11).  
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Constraint (12) represents whether it is possible to make connections between schools and 

route headers with other schools and constraints (13) and (14) represent their duration. (Fig. 

3). 

 

Figure 3. Time band. Connection times between schools 

Constraint (15) represents the requirement of the availability of an adequate number of buses 

to connect the schools, in other words, the number of connections will be (at the most) the 

number of routes (buses) which the connecting school has available. Furthermore, 

constraints (16) and (17) stop the headers being connected by more than one vehicle. 

Once the vehicle planning problem has been solved for all the combinations of ΔH – nº 

routes – maximum time, multiple alternatives become available which have minimised the 

number of buses required. From these multiple alternatives (Alt.) we know: 

- Nº of buses required 

- Time required to cover each route 

- Time window required for that alternative 

- Km driven by each bus 

However, not all of these alternatives are going to be optimal from an economic or social 

aspect so a pre-analysis is performed, as a function of the number of buses (Nº buses), time 

window (ΔH), average journey times (Taverage) and average maximum time for schools routes 

(T aver.max.), to find the solutions of the multiple objective optimisation model. This requires 

that three of these variables are fixed and the other is minimized, knowing that Taverage and 

Tmax are connected: 

min(Nº buses)Alt            ∀ {

ΔHi= ΔHi+1

Taverage
i= Taverage

i+1

Tmax
i=Tmax

i+1

                 ∈Alt                   (18) 
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min(ΔH)Alt                      ∀   {

Nº buses
i
= Nº buses

i+1

Taverage
i= Taverage

i+1

Tmax
i=Tmax

i+1

            ∈Alt                 (19) 

min(Taverage)
Alt

           ∀    {
Nº buses

i
= Nº buses

i+1

ΔH
i
= ΔH

i+1

Tave.max.
i=Tave.max.

i+1

              ∈Alt      (20) 

min(Tave.max.)
Alt           ∀    {

Nº busesi= Nº busesi+1

ΔHi= ΔHi+1

Taverage
i=Taverage

i+1
              ∈ 𝐴𝑙𝑡             (21) 

Where: 

Taverage= 

∑
∑ troute

C

nº routesC *nº pupils
C

C

∑ nº pupils
               ∀ Alt.                         (22) 

Tave.max.=       
∑  (T

ave.max.
*nº pupils)C

∑ nº pupils
               ∀ Alt.                         (23) 

With this pre-analysis, those alternatives that minimize the economic and social cost are 

obtained.  

 

3.2.1. Programming the planning bus fleet 

A program written in Python 3.5 has been used to plan the bus fleet. It provides a faster way 

to efficiently resolve the issue, and the possibility of applying this methodology in any 

generic case (regardless of the number and size of schools). 

The program´s input data are the results obtained from the routing problem for each school: 

nº routes, maximum time allowed to cover the route, journey time of the route and header of 

the route. 

Besides an extensive use of the standard library (particularly the concurrent.futures module 

for easy handling of parallel tasks, and many of itertools’ functions), several external 

modules have been utilised: numpy (Van der Walt, 2011) , for easy and fast matrix 

manipulation; dill (Mckerns, 2011), to back up the program’s output as native Python 

objects that could not be serialised with pickle; easygui, to effortlessly create a working 

GUI; and the optimization package PuLP’s implementation of the COIN-OR algorithm 

(Lougee-Heimer, 2003) and openpyxl to handle importing and exporting data to and from 

Excel files. 
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3.2.1.1. Data handling 

To attain a good performance while performing the program’s tasks, how long it takes one 

bus which starts at a school “A” to travel to another school’s (“B”) route header and follow 

it to its end is stored in the following data structure, called “time_data”, which is 

implemented by a matrix, inside a dictionary, inside a list: 

time_data[school_B][(number_of_routes, max_time)][school_A, route] = time       (24) 

To loop efficiently over all relevant arrival times to the different schools, it is convenient to 

use an OrderedDict object, called “schedule”, which will contain lists of schools that start at 

the same instant: 

Schedule [time] = [school_0, … school_n]           (25) 

Once a routing choice (number of buses, and maximum time of the routes) and a bus arrival 

timetable have been defined, the adjacency matrix between schools and route headers can 

be built using a numpy array composed of boolean objects. 

 After the number of buses required to service a planning choice has been found, each case 

is stored in “solution”, a series of nested Python’s DefaultDicts: 

Solution [number of buses][time between earlier and latest bus arrival][mean time children 

stay on the bus][weighted maximum time children stay on the bus][each school’s routing 

choice]= [list of all schedules that can be used to reach this case]    (26) 

 

3.2.1.2. Increasing computing performance 

Whenever the complexity of the tasks made it approachable, functional programming was 

utilised, using mainly Python’s map and itertools.starmap functions, as well as numpy’s 

batch processing methods. 

When looping over all possible cases, the number of buses needed is the only required 

information; which buses serve which routes is not useful. Thus, instead of solving the full 

linear programming problem (4), the script solves a smaller case, which has a solution 

functionally related to the full problem’s one, and can be solved much quicker. This is 

achieved by manipulating the adjacency matrix in the following way: 

a. Each school can initially share as many buses as routes serve it. 

b. Remove columns that add up to less than 2: (“sum”) 

o If sum == 0: no extra work is needed. 

o If sum == 1: 

 We increase the number of times a bus is shared between schools 

(“n_shared”) by 1. 
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 We decrease the number of buses available at that row’s school by 1. If it 

reaches zero, we remove that school’s row and go back to b. 

 

After this process, we will either have a zero-dimension matrix, in which case the number 

of buses needed for the current planning option would be the total number of routes minus 

“n_shared”; or a non-zero adjacency matrix, which will be sent, along each remaining 

school’s still shareable buses, to PuLP’s COIN LP solver. In this instance, the number of 

buses needed would be the total number of routes, minus “n_shared”, minus the solution to 

the LP problem. 

To take full advantage of multi-core processors, parallel programming has been 

implemented, a process greatly simplified by Python concurrent.futures module. A recursive 

function is used to cover all meaningfully different solutions, and each main branch is solved 

asynchronously by a different process. Each result is sent to a queue shared by all of them, 

from where is taken by another independent task that stores, and analyses the data. 

3.2.1.3. Data output 

The script can present the information stored in the structure “time_data” in three different 

ways: 

 Raw output, which includes all cases that were analysed. 

 Filtered output, described in (18), (19), (20), (21): as the script covers the search 

space, it keeps track, for each condition, of the minimum value it has found for the 

objective variable, for every combination of the other three. At the end, all cases that 

do not present a minimum value for any of the four conditions are discarded. 

E.g. if a solution has already been stored, characterized by (Nº buses, ΔH, Taverage, 

Tmax) and a new one is (Nº buses´, ΔH´, Taverage´, Tmax´), the latter would not be 

selected by (18) if: Nº buses < Nº buses´, ΔH =ΔH´, Taverage =Taverage´, Tmax =Tmax´ 

 Pareto frontier output: the program returns the set of possible choices that are Pareto-

efficient. These are found as the script processes all relevant scenarios: 

a. We initialize a list of candidates “L” with the worst possible solution: float (“inf”) 

for each variable. 

b. As each case “c” is solved: 

 If any alternative stored in L strictly dominates c (at least one improvement, and 

no set-backs): 

 We discard c. 

 else: 

 We discard from L all choices that are strictly dominated by c. 

 c is added to L. 

 

3.3. Calculating economic cost 
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Once the solutions to the multiple objective optimisation model are available, the economic 

cost of each solution can be calculated. This process was supported by a previous study on 

school transport costs, Ibeas et al. (2006). The duration of the routes and the required time 

windows, variables which affect the users, are also known for each solution. 

As the proposed model is aimed at supporting future decision makers on questions of school 

transport a range of solutions are available; the different weights placed on each variable 

(economic cost, journey time or time window) provide different solutions. 

 

 

4. APPLICATION OF THE PROPOSED MODEL 

The proposed model has been applied to an area in the region of Cantabria (Spain) containing 

three primary schools (CP. Santa Juliana, CP. Manuel Liaño Beristaín and CP. Cantabria). 

The following information is known about these schools: the number of pupils and the 

destination schools of those using school transport and the location of the stops and the 

number of pupils at each one.  

The routing problem has been solved considering the number of routes and the constraint on 

journey time as variables. The ArcGis geographic information system software was used to 

solve the problem and a total of 21 solutions were found for combinations of the number of 

routes and maximum time variables, as shown in table 1.   

 Nº pupils Nº routes Max. time Nº solutions 

CP. Santa Juliana 85 2-3-4 

30-45-60 

8 

CP. Manuel Liaño Beristaín 55 1-2 4 

CP. Cantabria 244 5-6-7 9 

Table 1. Combinations for solving the routing problem 

The figure 4 represents an example of the solution of a routing problem: the case of Santa 

Juliana School with four routes (each one in different colour) and maximum time to cover 

the route is 30 minutes. The journey time of each route is shown as well as the location of 

the bus stop and the school. 
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Figure 4. Solution of routing problem: Santa Juliana´s school, nº routes=4 and 

t.max=30 minutes.  

The second phase solves the planning problem using the solutions provided by the routing 

problem. The application created in Python for this step has been implemented obtaining 

17.021 possible alternatives (ec.5). It is observed how increases the required number of buses 

when the time window decreases or average travel time increases. 

 

Figure 5. Time window vs Average route time 
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However, none of these alternatives are going to be optimal from an economic or social 

aspect until pre-analysis, as mentioned above, is performed (function of the number of buses, 

average journey time, maximum time for school routes and time window). The figure 6 

represents the 71 results obtained for the multiple objective optimisation model and the 

current case, which has not changes in start school times. It shows shows that to attain the 

minimum average route time and time window, 11 buses are needed. However, if 5 buses 

are used the average route time and the window time significantly increase.  In addition, 

there are also cases without changes in school schedules occur (ΔH = 0) but their routes vary 

compared to the current situation because they are historical routes that have not been 

updated. 

  

 

Figure 6. Window time vs average route time vs nº of buses. 

Once the start time of each schools is known, those having earlier or later opening times are 

chosen from the cases shown in table 2. The figure 7 shows the cases for those 71 results 

and the current case, and it is observed that cases A and F are the most frequent for smaller 

number of buses and lower average route time.  
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 From To headers of 

case A CP. Cantabria 
CP. Manuel Liaño Beristaín and/or 

CP. Santa Juliana 

case B CP. Santa Juliana 
CP. Cantabria and/or CP. Manuel 

Liaño Beristaín 

case C CP. Manuel Liaño Beristaín 
CP. Cantabria and/or CP. Santa 

Juliana 

case D 
CP. Cantabria and/or CP. Santa 

Juliana 
CP. Manuel Liaño Beristaín 

case E 
CP. Cantabria and/or CP. Manuel 

Liaño Beristaín 
CP. Santa Juliana 

case F 
CP. Santa Juliana and/or CP. Manuel 

Liaño Beristaín 
CP. Cantabria 

case G No changes in start school time. 

Table 2. Connecting cases between schools 

 

 

Figure 7. Cases of connectivity vs Nº buses vs Average route time 

As this is a support model aimed at future decision makers, they will be the ones who 

determine which of the alternatives is the definitive solution, depending on the importance 

they place on the economic and social costs. The figure 8 represents the case F (buses 

connecting Santa Juliana school and Manuel Liaño Beristaín school to headers of Cantabria 

school), which involves 13 of the 71 results, each one is represented in a different colour and 

the red one is the actual situation, unmodified start school time. It shows the results of the 

objective function: economic cost, time window and average route time. There are fewer 

buses used by all the solutions than in the current situation (without changes being made to 

school timetables) and even the average journey time is reduced for some of them. The 
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number of buses required by each of the alternatives is directly related to the economic cost 

which has enabled the authors to calculate the saving as between 16.5% and 33.7%. 

For the other cases similar results were obtained, always improving economic cost (between 

2,7-35,1%) and sometimes social cost also, but for high economic savings the social cost 

significantly decreases.  

 

Figure 8. Case F. Result of the objective function: Economic cost vs ΔH vs average 

route time 

 

 

5. CONCLUSIONS 

The main contribution made by this work is that it allows school opening and closing times 

to be modified by considering the routing problem of each school together with the general 

problem of timetables in such a way that planners can plan the routes taken by the school 

buses and thereby minimise the number of buses being used at the same time as considering 

journey times. School transport is optimised from both the administration’s and users’ points 

of view by considering economic and social aspects which give extra value to the model. A 

multiple objective optimisation model has been formulated to support future transport 

decision makers which provide more than one solution as the variables used are not 

interrelated. In addition, the application created to solve the planning bus fleet, solve this 

step in less than 2 minutes, and provides the possibility of applying this methodology in any 

generic case.  

The model was applied to an area in Cantabria (Spain) where 3 primary schools are located 

with a total of 384 pupils using school transport. Seventy-one possible solutions were found, 
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all of which reduce the economic costs by between 2,7% and 35,1% and in certain cases 

even managed to reduce journey times of the school buses. 

 

6. REFERENCES 

BEKTAŞ, T.; ELMASTAŞ, S. (2007) Solving school bus routing problems through integer 

programming. Journal of the Operational Research Society, 2007, vol. 58, no 12, p. 1599-

1604. 

BENNETT, B. T., y GAZIS, D. C. (1972). School bus routing by computer. Transportation 

Research, 6(4), 317-325. 

BODIN, L. D. (1975). A taxonomic structure for vehicle routing and scheduling problems. 

Computers y Urban Society, 1(1), 11-29. 

BODIN, L. D., Y BERMAN, L. (1979). Routing and scheduling of school buses by 

computer. Transportation Science, 13(2), 113-129.  

BRACA, J., BRAMEL, J., POSNER, B., Y SIMCHI-LEVI, D. (1997). A computerized 

approach to the New York City school bus routing problem. IIE transactions, 29(8), 693-

702. 

CORDEAU, J. F., LAPORTE, G., y MERCIER, A. (2001). A unified tabu search heuristic 

for vehicle routing problems with time windows. Journal of the Operational research 

society, 52(8), 928-936. 

DAZA, J. M., MONTOYA, J. R., y NARDUCCI, F. (2009). Resolución del problema de 

enrutamiento de vehículos con limitaciones de capacidad utilizando un procedimiento 

metaheurístico de dos fases. Revista EIA, 12, 23-38. 

DESROSIERS, J., SOUMIS, F., DESROCHERS, M., y SAUVEGERAD, M. (1986). 

Methods for routing with time windows. European Journal of Operational Research, 23(2), 

236-245. 

FÜGENSCHUH, A. (2007). Solving a school bus scheduling problem with integer 

programming. European Journal of Operational Research, 193(3), 867-884. 

GARCIA-NAJERA, A., Y BULLINARIA, J. A. (2011). An improved multi-objective 

evolutionary algorithm for the vehicle routing problem with time windows. Computers y 

Operations Research, 38(1), 287-300. 

GAVISH, B., SCHWEITZER, P., Y SHLIFER, E. (1978). Assigning buses to schedules in 

a metropolitan area. Computers y Operations Research, 5(2), 129-138. 

http://creativecommons.org/licenses/by-nc-nd/4.0/


CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.4074 

 
 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

GLOVER, F. Y LAGUNA, M. (1997). Tabu Search. Kluver Academic Publishers, Boston. 

HO, S. C., Y HAUGLAND, D. (2004). A tabu search heuristic for the vehicle routing 

problem with time windows and split deliveries. Computers y Operations Research, 31(12), 

1947-1964. 

IBEAS, A., LUIS MOURA, J., DELL'OLIO, L., y de DIOS ORTÚZAR, J. (2006). Costing 

school transport in Spain. Transportation planning and technology, 29(6), 483-501. 

IBEAS, A., MOURA, J. L., y DELL'OLIO, L. (2009). Planning school transport: design of 

routes with flexible school opening times. Transportation planning and technology, 32(6), 

527-544. 

KIM, B. I., KIM, S., y PARK, J. (2012). A school bus scheduling problem. European Journal 

of Operational Research, 218(2), 577-585. 

KONTORAVDIS, G., Y BARD, J. F. (1995). A GRASP for the vehicle routing problem 

with time windows. ORSA journal on Computing, 7(1), 10-23. 

LI, L. Y. O., y FU, Z. (2002). The school bus routing problem: a case study. Journal of the 

Operational Research Society, 552-558. 

LÖBEL, A. (1998). Vehicle scheduling in public transit and Lagrangean pricing. 

Management Science, 44(12-part-1), 1637-1649. 

LOUGEE-HEIMER, R. (2003). The Common Optimization INterface for Operations 

Research: Promoting open-source software in the operations research community. IBM 

Journal of Research and Development, 47(1), 57-66. 

MCKERNS, M. M., STRAND, L., SULLIVAN, T., FANG, A., & AIVAZIS, M. A. (2012). 

Building a framework for predictive science. arXiv preprint arXiv:1202.1056. 

NEWTON, R. M., Y THOMAS, W. H. (1974). Bus routing in a multi-school system. 

Computers y Operations Research, 1(2), 213-222. 

ORLOFF, C. S. (1976). Route constrained fleet scheduling. Transportation Science, 10(2), 

149-168. 

PARK, J., Y KIM, B. I. (2010). The school bus routing problem: A review. European Journal 

of operational research, 202(2), 311-319. 

PARK, J., TAE, H., Y KIM, B. I. (2012). A post-improvement procedure for the mixed load 

school bus routing problem. European Journal of Operational Research, 217(1), 204-213. 

http://creativecommons.org/licenses/by-nc-nd/4.0/


CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.4074 

 
 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

PEPIN, A. S., DESAULNIERS, G., HERTZ, A., Y HUISMAN, D. (2009). A comparison 

of five heuristics for the multiple depot vehicle scheduling problem. Journal of Scheduling, 

12(1), 17-30. 

SALHI, S., Y SARI, M. (1997). A multi-level composite heuristic for the multi-depot vehicle 

fleet mix problem. European Journal of Operational Research, 103(1), 95-112. 

SANHUEZA, N. D. A., NÍÑEZ, C. E. O., Y BELMAR, G. E. P. (2012). Un modelo de 

programación lineal entera mixta para el problema de ruteo de vehículos en el transporte 

escolar.  

SCHITTEKAT, P., KINABLE, J., SÖRENSEN, K., SEVAUX, M., SPIEKSMA, F., y 

SPRINGAEL, J. (2013). A metaheuristic for the school bus routing problem with bus stop 

selection. European Journal of Operational Research, 229(2), 518-528. 

SPADA, M., BIERLAIRE, M., Y LIEBLING, T. M. (2005). Decision-aiding methodology 

for the school bus routing and scheduling problem. Transportation Science, 39(4), 477-490. 

SWERSEY, A. J., Y BALLARD, W. (1984). Scheduling school buses. Management 

Science, 30(7), 844-853. 

THANGIAH, S. R., FERGANY, A., WILSON, B., PITLUGA, A., Y MENNELL, W. 

(2008). School bus routing in rural school districts. In Computer-aided Systems in Public 

Transport (pp. 209-232). Springer Berlin Heidelberg. 

VAN DER WALT, S., COLBERT, S. C., & VAROQUAUX, G. (2011). The NumPy array: 

a structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 

22-30. 

YU, T., Y DAVIS, L. (2008). An Introduction to Evolutionary Computation in Practice. 

Evolutionary Computation in Practice, 88, 1-8. 

ZUÑIGA, E. A., y GURROLA, L. C. G. Un algoritmo GRASP para un problema de rutas 

de vehículos escolares aplicado al transporte de personal de una empresa de manufactura. 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/

