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Resumen

La contaminacién se estd volviendo un gran problema para las grandes areas
metropolitanas, en gran parte debido al tréfico. A nivel europeo, al igual que
en otras areas, la regulacién es cada vez mas restrictiva. Una buena prueba de
ello es la normativa Euro de la Unién Europea.

Especialmente importantes son las emisiones de 6xidos de nitrégeno (NOx)
y particulas (PM). La reduccién de contaminantes se puede abordar desde dos
estrategias distintas. La primera es la prevencion. Modificar el proceso de
combustién a través de las leyes de inyeccién o controlar la renovaciéon de
la carda son los métodos més comunes. La segunda estrategia es la elimi-
nacién. Se puede reducir los NOx mediante catélisis o atmédsfera reductora y
las particulas mediante la instalacién de un filtro en el conducto de escape. La
presente tesis se centra en el estudio de éste ultimo.

La mayoria de as estrategias para la reducciéon de emisiones penalizan el
consumo. El filtro de particulas no es una excepcién. Restringe el paso de
aire. Como consecuencia la presién se incrementa a lo largo de toda la linea
reduciendo las prestaciones del motor. La optimizacién del filtro es de vital
importancia. Tiene que mantener su eficacia a la par que que se minimiza
la caida de presiéon y con ella el consumo de combustible. El objetivo de
la tesis es encontrar la relaciéon entre la miscroestructura y las propiedades
macroscopicas del filtro. Las conclusiones del estudio podran utilizarse para
optimizar la microestructura.

La microestructura elegida imita los filtros de mulita acicular. Se gen-
era por ordenador mediante generacién procedimental utilizando parametros
aleatorios. Gracias a ello se puede estudiar la relacién que existe entre la mi-
croestructura y las propiedades macroscopicas como la porosidad y la perme-
abilidad. El campo fluido se resuelve con LABMOTER, un software desarrol-
lado en esta tesis. Esta basado en Lattice Boltzmann, una nueva aproximacion
para simular fluidos. Adema&s también se ha utilizado el framework WALBERLA
desarrollado por la universidad Friedrich Alexander de Erlangen Niirnberg.

La segunda parte de la tesis se centra en las particulas suspendidas en el
fluido. Sus propiedades vienen dadas en funcién del didmetro aerodindmico. Es
una buena aproximacién desde un punto de vista macroscépico. Sin embargo
éste no es el caso. El tamano de la discretizacién requerida para calcular
el medio poroso es similar al tamano de las particulas. En consecuencia se
necesita simular geometrias realistas. Las particulas Diesel son agregados de
esferas. El proceso de aglomeracion se ha simulado mediante colisién balistica.
Los resultados se han analizado con detalle.

El segundo paso es la caracterizacion aerodindmica de los aglomerados.
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Debido a que el tamano de las particulas precursoras es similar a la distancia
entre moléculas el fluido no puede ser considerado un medio continuo. Se
necesita una nueva aproximacién. La herramienta apropiada es la Simulacion
Directa Monte Carlo (DSMC). Por ello se ha desarrollado un software basado
en esta formulacion. Desafortunadamente no ha habido tiempo suficiente como
para implementar condiciones de contorno sobre geometrias complejas.

La tesis ha sido fructifera en multiples aspectos. Se ha desarrollado un
modelo basado en generacién procedimental capaz de crear una microestruc-
tura que aproxime mulita acicular. Se ha implementado y validado un nuevo
solver CFD, LABMOTER. Ademas se ha planteado una técnica que optimiza la
preparacion del calculo. El proceso de aglomeracién se ha estudiado en detalle
gracias a un nuevo simulador desarrollado ad hoc para esta tarea. Mediante el
analisis estadistico de los resultados se han planteado modelos que reproducen
la poblacién de particulas y su evolucién con el tiempo. Técnicas de Cuantifi-
cacién de Incertidumbre se han empleado para modelar la dispersién de datos.
Por dltimo, un simulador basado en DSMC se ha desarrollado para calcular
fluidos rarificados.
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Resum

La contaminacié s’esta tornant un gran problema per a les grans arees metropoli-
tanes, en gran part degut al trafic. A nivell europeu, a ligual que en atres

arees, la regulacié és cada volta més restrictiva. Una bona prova d’aixo és la

normativa Euro de I’'Uni6é Europea.

Especialment importants sén les emissions d’oxits de nitrogen (NOx) i
particules (PM). La reducci6é de contaminants se pot abordar des de dos es-
trategies distintes. La primera és la prevencié. Modificar el procés de com-
bustié a través de les lleis d’inyeccié o controlar la renovacié de la carrega
sén els metodos més comuns. La segona estrategia és l'eliminacié. Se pot re-
duir els NOx mediant catalisis o atmosfera reductora i les particules mediant
I'instalacié d’un filtre en el vas d’escap. La present tesis se centra en 'estudi
d’este ultim.

La majoria de les estrategies per a la reduccié d’emissions penalisen el
consum. El filtre de particules no és una excepcié. Restringix el pas d’aire.
Com a conseqiiéncia la pressio s’incrementa a lo llarc de tota la llinea reduint
les prestacions del motor. L’optimisacié del filtre és de vital importancia.
Ha de mantindre la seua eficacia a la par que que es minimisa la caiguda de
pressié i en ella el consum de combustible. L’objectiu de la tesis és trobar la
relacié entre la microescritura i les propietats macroscopiques del filtre. Les
conclusions de ’estudi podran utilisar-se per a optimisar la microestructura.

La microestructura elegida imita els filtres de mulita acicular. Se genera
per ordenador mediant generacié procedimental utilisant parametros aleatoris.
Gracies ad aix0 es pot estudiar la relacié que existix entre la microestructura i
les propietats macroscopiques com la porositat i la permeabilitat. El camp fluit
se resol en LABMOTER, un software desenrollat en esta tesis. Esta basat en
Lattice Boltzmann, una nova aproximacié per a simular fluits. Ademés també
s’ha utilisat el framework WALBERLA, desentollat per I’Universitat Friedrich
Alexander d’Erlangen Niirnberg.

La segona part de la tesis se centra en les particules suspeses en el fluit.
Les seues propietats venen donades en funcié del diametro aerodinamic. Es
una bona aproximacié des d’'un punt de vista macroscopic. No obstant este
no és el cas. El tamany de la discretisacié requerida per a calcular el mig
poros és similar al tamany de les particules. En conseqiiencia es necessita
simular geometries realistes. Les particules diésel sén agregats d’esferes. El
procés d’aglomeracié s’ha simulat mediant colisié balistica. Els resultats s’han
analisat en detall.

El segon pas és la caracterisacié aerodinamica dels aglomerats. Degut a que
el tamany de les particules precursores és similar a la distancia entre molecules
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el fluit no pot ser considerat un mig continu. Se necessita una nova aproxi-
macié. La ferramenta apropiada és la Simulacié Directa Monte Carlo (DSMC).
Per aixo0 s’ha desenrollat un software basat en esta formulacié. Malafortunada-
ment no ha hagut temps suficient com per a implementar condicions de contorn
sobre geometries complexes.

La tesis ha segut fructifera en multiples aspectes. S’ha desenrollat un
model basat en generacié procedimental capag¢ de crear una microestructura
que aproxime mulita acicular. S’ha implementat i validat un nou solver CFD,
LABMOTER. Ademés s’ha plantejat una técnica que optimisa la preparacié
del calcul. El procés d’aglomeracié s’ha estudiat en detall gracies a un nou
simulador desenrollat ad hoc per ad esta tasca. Mediant ’analisis estadistic
dels resultats s’han plantejat models que reproduixen la poblacié de particules
i la seua evolucié en el temps. Tecniques de Quantificacié d’Incertea s’han
empleat per a modelar la dispersié de senyes. Per 1ltim, un simulador basat
en DSMC s’ha desenrollat per a calcular fluits rarificats.



Abstract

Contamination is becoming an important problem in great metropolitan areas.
A large portion of the contaminants is emitted by the vehicle fleet. At Eu-
ropean level, as well as in other economical areas, the regulation is becoming
more and more restrictive. Euro regulations are the best example of this ten-
dency.

Specially important are the emissions of nitrogen oxide (NOx) and Particle
Matter (PM). Two different strategies exist to reduce the emission of pollu-
tants. One of them is trying to avoid their creation. Modifying the combustion
process by means of different fuel injection laws or controlling the air regene-
ration are the typical methods. The second set of strategies is focused on the
contaminant elimination. The NOx are reduced by means of catalysis and/or
reducing atmosphere, usually created by injection of urea. The particle matter
is eliminated using filters. This thesis is focused in this matter.

Most of the strategies to reduce the emission of contaminants penalise fuel
consumption. The particle filter is not an exception. Its installation, located
in the exhaust duct, restricts the pass of the air. It increases the pressure
along the whole exhaust line before the filter reducing the performance. Op-
timising the filter is then an important task. The efficiency of the filter has
to be good enough to obey the contaminant normative. At the same time
the pressure drop has to be as low as possible to optimise fuel consumption
and performance. The objective of the thesis is to find the relation between
the micro-structure and the macroscopic properties. With this knowledge the
optimisation of the micro-structure is possible.

The micro-structure of the filter mimics acicular mullite. It is created by
procedural generation using random parameters. The relation between micro-
structure and the macroscopic properties such as porosity and permeability
are studied in detail. The flow field is solved using LABMOTER, a software
developed during this thesis. The formulation is based on Lattice Botlzmann
Methods, a new approach to simulate fluid dynamics. In addition, WALBERLA
framework is used to solve the flow field too. This tool has been developed by
Friedrich Alexander University of Erlangen Niirnberg.

The second part of the thesis is focused on the particles immersed into the
fluid. The properties of the particles are given as a function of the aerody-
namic diameter. This is enough for macroscopic approximations. However,
the discretisation of the porous media has the same order of magnitude than
the particle size. Consequently realistic geometry is necessary. Diesel parti-
cles are aggregates of spheres. A simulation tool is developed to create these
aggregated using ballistic collision. The results are analysed in detail.
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The second step is to characterise their aerodynamic properties. Due to
the small size of the particles, with the same order of magnitude than the
separation between molecules of air, the fluid can not be approximated as a
continuous medium. A new approach is needed. Direct Simulation Monte
Carlo is the appropriate tool. A solver based on this formulation is developed.
Unfortunately complex geometries could not be implemented on time.

The thesis has been fruitful in several aspects. A new model based on
procedural generation has been developed to create a micro-structure which
mimics acicular mullite. A new CFD solver based on Lattice Boltzmann Meth-
ods, LABMOTER, has been implemented and validated. At the same time it
is proposed a technique to optimised setup. Ballistic agglomeration process
is studied in detail thanks to a new simulator developed ad hoc for this task.
The results are studied in detail to find correlation between properties and the
evolution in time. Uncertainty Quantification is used to include the Uncer-
tainty in the models. A new Direct Simulation Monte Carlo solver has been
developed and validated to calculate rarefied flow.
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Chapter 1

Introduction

1.1 Motivation and objectives

Contamination is becoming an important problem in great metropolitan areas.
A large portion of the contaminants is emitted by the vehicle fleet. So much so
that some of the largest cities in Europe such as London or Paris are limiting
the circulation of personal cars in the city centre. Reducing the speed limit or
forgiving the circulation of cars in alternating days depending on the license
plate are two of the most usual measures. Other cities such as Madrid acti-
vates the anti-contamination protocol if the measured pollutants concentration
excesses a healthy threshold. At European level, as well as in other economical
areas, the regulation is becoming more and more restrictive. Euro regulations
are the best example of this tendency.

Specially important are the emissions of nitrogen oxide (NOy) and Particle
Matter (PM) among others such as unburned hydrocarbons. Two different
strategies exist to reduce the emission of pollutants. One of them is trying to
avoid their creation. Modifying the combustion process by means of different
fuel injection laws or controlling the air regeneration are the typical methods.
The second set of strategies is focused on the contaminant elimination. The
NOy are reduced by means of catalysis and/or reducing atmosphere, usually
created by injection of urea. The particle matter is eliminated using filters.
The filter traps the particles forming a deposition on its walls. The filter is
regenerated by means of delayed post-injections, burning and reducing the
deposition.

Most of the strategies to reduce the emission of contaminants penalise fuel
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consumption. The particle filter is not an exception. Its installation, located in
the exhaust duct (see figure , restricts the pass of the air. It increases the
pressure along the whole exhaust line before the filter. With higher pressure
in the exhaust pipe the regeneration of the air in the cylinder is more difficult.
With a turbo-group installed the expansion relation of the turbine is reduced,
limiting the amount of energy available for the compressor. In both cases there
is a penalty in performance. Optimising the filter is then an important task.
The efficiency of the filter has to be good enough to obey the contaminant
normative. At the same time the pressure drop has to be as low as possible to
optimise fuel consumption and performance. The objective of the thesis is to
find the relation between the micro-structure and the macroscopic properties.
With this knowledge the optimisation of the micro-structure is possible.

s N
Turbine Atmosphere

Filter

Combustion chamber

Piston

. J

Figure 1.1: Scheme of the exhaust duct in a typical automotive engine.

1.2 Justification and previous work

This thesis is focused on the deposition and filtering study at micrometer scale.
The physics at micro-scale level can explain the macroscopic properties of the
material. Several accurate models of filters are based on these properties. One
example is the model developed by Torregrosa et al. [I]. The architecture
of the filter is described as a collection of ducts interconnected by porous
material. Each duct is characterised by one-dimensional unsteady differential
equation returning very accurate results. Consequently the model developed by
Torregrosa et al. can be used to design the filter and to study its integration
in the exhaust duct. Payri et al. [2] also develop a model to analyse the
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integration of the filter. This model directly relates the macroscopic properties
of the material with the pressure drop.

This thesis goes one step further in the level of detail. One of the objectives
is to find the relation between the micro-structure descriptors and the macros-
copic properties. The results of the simulations also return the distribution
in space of the depositions and the flow field through the filter. The physical
mechanisms can be explained in detail from these results. Understanding the
physical mechanism is the first step to optimise the micro-structure. Several
tools and solvers have been developed for this purpose.

The first and probably most important developed solver in the frame of
this thesis is the Computational Fluid Dynamics (CFD) part. Taking into
account the geometry to be simulated and the flow regime the best option to
be considered is a Lattice Boltzmann Method (LBM). This kind of solvers have
multiple advantages in comparison with classical CFD techniques. Previous
research of other authors corroborates this.

Pan, Luo and Miller [3] apply several LBM techniques, boundary conditions
and refinement levels to calculate beds of spheres. They compered the results
to analyse their influence in the solution. This is a work to be done before
any large simulation of porous media. The conclusions of this paper can be
used to decide which collision operator is the most appropriate to get accurate
solutions and maximise performance.

In the particular case of Diesel filters, several researchers simulate them.
Hayashi and Kubo [4] calculate filters for two different scales. The largest
scale is able to characterise the whole device. In these simulations the porous
material is characterised by its macroscopic properties. The smallest scale
simulates a fraction of porous wall. The porous medium is directly simulated
from its micro-structures. Particle transport and deposition are also conside-
red. Yamamoto and his team [5], [6, [}, [8 [, 10, 11], from Nagoya University,
simulate the physics of filters. They use LBM to solve the flow field. The
micro-structure is measured from tomography of samples. Stewart et al. [12],
from Northwest Pacific National Laboratory (NPNL) did an analogous work.
They simulated the deposition of Diesel particles in a filter made of mullite.
As well as Yamamoto’s team, they obtained the geometry from tomography
of samples. Fraunhofer Institute for Industrial Mathematics (ITWM) dedicate
resources to develop solvers of porous media and other materials GEODICT
[13]. They have a lot of simulations in fluid dynamics at micro-scale level.
Some of their simulations are focus on the filtering process of Diesel particles
[14, [T5], [16]. As difference to previous researchers GEODICT creates the geo-
metry instead of getting it from physical samples. They developed a software
for chaotic procedural-generated geometries.
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With respect to the suspended particles in the fluid, the most important pa-
rameter is the aerodynamic equivalent diameter. This magnitude is the easiest
to be measured, reason why most of the research about characterising Diesel
particles are focused on it. It explains the trajectory of the particles from an
aerodynamic point of view. Some investigation about the relation between real
geometry and descriptors can be found in the articles written by DeCarlo et
al. [I7). However, due to the large amount of scales to be simulated, other
physical phenomena have to be taken into account depending on the particle
size. The trajectory of the smallest particles is influenced by Brownian motion
(diffusion). This magnitude is correlated with the equivalent aerodynamic dia-
meter but with large amounts of uncertainty. In the other end are the largest
particles. The assumption of point particles is not valid for the biggest scales.
The particle diameter can cover several cells. 3D effects have to be considered
to detect collisions with the walls and to compute the trajectory correctly.
Again, the size of the particle correlates with the aerodynamic diameter but
with uncertainty. A new objective appears. The population of particles cha-
racterised by their equivalent aerodynamic diameter has to be converted to
physical magnitudes. Uncertainty Quantification (UQ) techniques are used to
convert the measurements in equivalent units to physical units. The process
to find this relation is decomposed in two parts. The Diesel particles are very
well described as agglomerates of spheres. The first part consists on create rea-
listic agglomerates able to described statistically the properties of real Diesel
particle populations. The second stage consist on measured the aerodynamic
properties of the created agglomerates. This second part could not be finished
on time and only the basic solver and its theory are explained in this document.

With respect to the particle Diesel, their shapes are not well investigated
in detail. The fractal dimension is used to describe them. It measures how
compact is an agglomerate. Some authors try to described the 3D structure
from their image at the microscope and then calculate the fractal dimension
[18]. Some others simulate the formation process. This last strategy is the
followed in this thesis. A new solver has been developed to simulate the ag-
glomeration process. It has been supposed free molecular regime. It means
that the molecules travel large distance before collide with others in compari-
son with the characteristic length scale. The precursors of Diesel particles and
the mean free path (mean distance between collisions) of air are of the same
order of magnitude. The air can not be considered as a continuum media. On
the contrary, it has been supposed ballistic agglomeration (no fluid, only par-
ticles). This assumption saves a lot of computational effort paying a slightly
penalty in the accuracy of the results. Other researchers have simulated anal-
ogous ballistic agglomeration such as [19] 20, 21], 22] 23] 24] 25| 26]. However
the developed software innovates in two different aspects. Firstly, High Per-
formance Computing capabilities allow simulations with particles formed by
several tens of thousands of precursors. Secondly a stochastic value decides
when after an impact the colliding agglomerates fuse and when they simply
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collide. Different scales of agglomerates present self-similarity. It means that
the agglomerates are fractals. The fractal dimension of the resulting popula-
tion has been calculated. Dekkers and Friedlander [26] measures the resultant
aggregates for continuous, rarefied and free-molecular regimes.

The evolution of the particle population in time is also of interest. A
dependency between the particle distribution and time can be established. A
modified decay equation relates the number of agglomerates with time. This
equation includes the parameters which control the agglomeration process.
The relation is specified by studying the results of several combinations of
these parameters. However there is a stochastic component in the solution.
This component is a random variation with respect to the expected value.
The uncertainty is characterised by UQ techniques. A generic population can
be reconstructed from the controlling parameters and a random deviation. In
other words, the same combination of input parameters can return multiple
values.

With respect to the aerodynamic studies of the agglomerates. The dia-
meter of the precursors (smallest Diesel particles) rounds 10nm. The distance
between collisions of air molecules is the same order of magnitude. The hypoth-
esis of air as a continuous medium is not valid to calculate the aerodynamic
of agglomerates. A new CFD solver has been developed to simulate this kind
of fluids. It is based on Direct Simulation Monte-Carlo (DSMC). This solver
is the appropriate to simulate rarefied flows. DSMC is a Lagrangian method.
Each molecule (or set of molecules) is calculated separately. They are sparse
and the concentration is relatively low. The number of molecules contained in
a single cell is not representative enough to get a smooth macroscopic field.
Macroscopic magnitudes such as temperature, density or speed are recovered
after collecting statistics for a while.

A solver based on DSMC has been developed. In addition to the physics
several boundary conditions are implemented. Inlet and outlet are replaced by
reservoirs just as other researchers do. For the wall new boundary conditions
have been developed. The new boundary condition is calibrated from simula-
tions of Couette flow. The drag of a sphere has been successfully calculated.
Unfortunately the development time of the algorithm to simulate triangulate
surfaces is too long, as well as the algorithm to convert a generic agglomer-
ate into a triangulate surfaces. Even so the advances in these fields are also
included in this thesis.

Once the particles are well characterised they can be included in the simula-
tions. They are tracked computing their trajectory. Depending on the particle
size the dominant physical phenomenon is different. The diameters of the
smallest particles round ten nanometers. The particles with this size diffuse in
the air. The discrete counterpart of the continuous Fick’s law for diffusion is
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Brownian motion. Brownian motion dominates the movement at nanomenter
scales. The effects disappear when the particles become larger. Intermediate
sizes are only affected by the aerodynamic properties of the particles and iner-
tia. When the size of the particles is comparable to the lattice spacing three
dimensional effects have to be considered. Point particle hypothesis is not
valid any more. The agglomerate is affected by multiple nodes of the lattice
instead of by single one. In addition the particle momentum is the same order
magnitude large than the characteristic momentum of a single node. Under
these conditions the reaction force becomes significant. Particle tracking and
flow field are coupled. The details of the particles can no be capture by the
lattice. Their presence is modelled by a kernel function.

The deposition happens when a particle impinges the wall. During this
process the particle stops and all its kinetic energy is dissipated. The proba-
bility of a particle to become part of the deposition depends on this magnitude.
When the kinetic energy is large the probability to be part of the deposition is
low and wvice versa. The alternative to the deposition is the collision. It hap-
pens when the energy to be absorbed is too high. The restitution coeflicient
fixes the amount of remaining kinetic energy.

1.3 Methodology

1.3.1 Work philosophy

This thesis has been laid out as an optimisation problem. The variable to
be maximised is the advance in the filtering simulation. In other words, it is
wanted to simulated as much as possible physical phenomena.

As in every optimisation process there are restrictions. The thesis is not
an exception. Computational resources, rigour of the results and development
time are the most important ones. The algorithms to solve the different pro-
blems have to be adapted to the computer architecture used for the thesis, a
shared memory machine with 2 Central Processing Unit (CPU)s with 6 cores
each (24 threads in total with hyper-threading technology) and 128GB. This
restricts the simulation in two different ways. Firstly each simulation can
not consumes more than 128GB. This fact forces to create adaptive solvers.
The memory is consumed by the regions of the domain where small details
have to be capture instead of by the entire domain. Secondly the algorithms
have to be as fast as possible to get results rapidly using whole the machine.
High Performance Computing (HPC) techniques become mandatory. Some
strategies like divide and conquer algorithms or vectorisation are widely used.
The workstation is also equipped with a Graphics Processor Unit (GPU) for
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General-Purpose computing on Graphics Processing Units (GPGPU). This de-
vice has been used to create a test environment with maximum performance.
Due to its low memory capacity it can be only used for small computations.
Its used accelerates the development process. With this technology the tests
are solved in minutes, avoiding to wait for the results for a long time.

Other of the restrictions is rigour in the development and the results. Each
assumption and hypothesis are carefully applied and demonstrated. Several
models are applied if the range of validity of each hypothesis is not large enough
to cover the entire populations. Mesh independent studies corroborates that
the solutions of the simulations are not affected by the discretisation. These
studies are extended to the domain size. Cross-correlations demonstrate how
the domains of the simulations are big enough to keep inside multiple of the
biggest structures. It makes the solution of these simulations representative
enough to avoid the presence of some anomaly and obtain averaged results.
About the results and proposed models, every one have been decomposed in
their deterministic and stochastic parts. With respect to the deterministic
component, over-fitting, one of the most usual errors in modelling, has been
avoided using the appropriate statistical tools. UQ techniques also model the
stochastic part. It is not usual to see this type of studies in other researches.
The contribution of the stochastic component is specially important if the
solution presents random variations. Such is the case of the relation particle
size vs. number of precursors. The same number of precursors can return
multiple gyration radius (an indirect measured of the particle size). It is needed
to characterise the whole population instead of simply the expected value.

1.3.2 Work flow
The filtering process can be decompose in multiple physical phenomena.

1. Geometry generation or measurement
Domain discretisation

Solution of the flow field

Particle transport

Deposition

A

Regeneration

The first idea was to include in the simulation all the previous points except
regeneration. However, due to some unexpected difficulties particle deposition
can not be included in time.
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The development of each part has been done in sequential way. The geome-
try generator was the first tool to be developed. It recreates a filter of mullite.
It consists on multiple needles of crystal whose interstices filter the particle
Diesel. The generator is based on random numbers. It is a special case of
procedural generation.

After creating the solid phase is time to solve the flow field through it. The
developed solver for such purpose is based on lattice Boltzmann techniques.
The first task to do is to discretise the domain to apply the numerical method
on it. Discretising the domain is closely related with the solver of the flow field.
At the beginning uniform discretisation was used. However the required me-
mory to solve the entire domain exceeds the available memory of the computer.
In addition, solving the whole domain with fine lattice is computationally very
expensive. A new solver was developed to calculate with non-uniform adap-
tive lattices. At the same time the mesher was also developed. This software
is able to calculate the flow field changing the discretisation dynamically to
adapt the mesh to the solution. However it has a penalty in performance. The
computational cost per cell increases in more than an order of magnitude. The
framework WALBERLA, developed by Lehrstuhl fiir Systemsimulation (LSS),
a department of Friedrich-Alexander Universitit Erlangen-Nirnberg (FAU),
combines good performance with multi-resolution mesh. Some of the simula-
tions have been done in collaboration with this department and using their
framework.

Once the flow field is calculated and the solution is stationary it is time
to include particles. The simplest model to calculate trajectories and conse-
quently the first to be implemented is inertia-free motion. This hypothesis is
valid when the drag force is much larger than the inertia of the particle. The
trajectory is coincident with the trajectory of a fluid particle. For stationary
non-turbulent flows trajectory and pathline are coincident. Consequently the
trajectory of the particles are approximated by the path-line.

The problem of this model is its poor range of validity. The inertial effects
for most of the particles are not negligible. Both drag force and inertia have
to be considered. The particles tends to follow the pathlines except for abrupt
curvatures, when the centrifugal forces push the particles far from the path-
line. Most of the particle matter, considering the distribution in mass, are in
the validity range of this less restrictive hypothesis. This is in fact the most
widely used model to track Diesel particles. Most of the measurements, usually
based on equilibrium between drag force and external forces such as gravity,
centrifugal forces or electromagnetic forces, use normalised magnitudes. This
decouples the particular properties of each particle such as shape or density,
with high variability, from the aerodynamic behaviour. To reduce the number
of variables to take into account the measured particles are described in terms
of their equivalent magnitudes. Equivalent magnitudes come from equivalent



1.4. RESOURCES AND TOOLS 9

particles. They have spherical shape and normalised density of 1000Kg/m?.
The diameter of the equivalent spherical particles is called equivalent aerody-
namic diameter. Their motion of equivalent and original particles are identical.
Calculating the trajectory of the equivalent particle returns the original in the
range of validity of the hypothesis. When the magnitude of interest is particle
matter, assuming this hypothesis returns accurate results. On the contrary, if
the magnitude of interest is the number of particles instead of the mass, Brow-
nian motion has to be considered. Brownian motion is a random movement of
small objects. It is the Lagrangian version of the Fick’s law for diffusion. In
the case of interest, most of the particles are affected by this phenomenon.

In the opposite limit are the largest particles. When the particle size is
comparable to lattice spacing the particle can not be considered as a point.
3D effects have to be included. In this thesis the 3D effects are simplified and
modelled by a Kernel Gaussian function. Due to the small momentum quan-
tity trajectory calculation and flow field can be decoupled without penalty in
accuracy. For stationary flow field without any variation in time trajectory cal-
culation is just a simple post-processing task. However, when this hypothesis
is not valid, the momentum exchange between the particle and the surrounding
nodes is not negligible. The fluid pulls the particle and the particle pushes the
fluid. The flow patterns can be affected by the presence of the particles and
consequently both particle motion and flow field have to be calculated together
in coupled way.

Assuming the equivalent diameter to calculate Brownian motion can result
in errors in the trajectory. It is then necessary knowing the real properties of
the particles, at less in the range affected by Brownian motion. The measure-
ments are usually done in equivalent magnitudes instead of real ones. Know-
ing the relation between equivalent magnitudes and real magnitudes becomes
mandatory. For such purpose two solvers are developed. The first solver re-
creates the formation of agglomerates (particle Diesel) by ballistic collisions.
It returns realistic geometry. The second solver calculates the drag force (drag
coefficient) of the generated agglomerates. Then the equivalent particles are
calculated. At this point there are as much couples of real and equivalent par-
ticles as simulations. Using statistics a model to relate both magnitudes can be
created. It allows to convert the equivalent population of particles into a real
population. Unfortunately this part has not been finished on time. However
the methodology are described in detail for future works.

1.4 Resources and tools

Most of the simulations were run in a workstation. The workstation used
for the simulations has two CPUs Intel Xeon ES-2640 at 2.50GHz, with 6
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cores each and hyper-threading technology, 8 slots of DDR3 RAM at 1333MHz
with 16GB each to sum 128GB in total, and a nVidia Tesla C2075 with 448
CUDA cores at 1.15GHz with 6GB DDR5 RAM memory. Every developed
application has been optimised to run in this computer. Parallelisation has
been usually done using Open Multi-Processing (OpenMP) library, the best
option for shared memory machines. Special algorithms, such as divide and
conquer strategies, reduce the computational load to improve performance
and save simulation time. HPC techniques have also been implemented for
the same purpose. The limiting factor is Random Access Memory (RAM)
memory. Adaptive discretisation of the flow field to the geometry and the
solution reduces the number of required cells without lost of accuracy. However
refinement has a negative effect in performance. The memory is not aligned.
Their location can not be known a priori. The access to the registers is not
direct. Indexing is needed. As consequence there are much more cache misses,
is ineffective, algebra can not be vectorised and indexes for linking
have to be calculated each iteration.

Some of the solvers and subroutines have been implemented for the GPU.
These implementations take advantage of the great amount of cores contained
on it to solve the same problem in a fraction of time. The difference in com-
putational time for the most vectorizable applications could be more than two
orders of magnitude in comparison with the same calculation in sequential
mode by a CPU.

Some other simulations have been done in collaboration with LSS using
their framework WALBERLA. This software is optimised to run in the most
powerful supercomputers. The architecture of this type of machines is usually
distribute memory. The cluster of LSS and SuperMUC supercomputer are of
this kind. Both of them have been used to run some simulations of the porous
media. Typical simulations are launched in the cluster, whereas the largest
ones have been calculated by SuperMUC.

Several programming languages have been used depending on the purposed
of the developed software. The solvers, developed with HPC strategies, are al-
most written in C++ and Fortran. OpenMP, MPI and CUDA are the libraries
used for parallelisation. When the variable to be optimised is the development
time instead of the software performance the code was developed in high pro-
gramming languages. Scripts are usually developed in Linux Bash or Python.
About basic tests and auxiliary tools, they are usually written in Python or
Matlab/Octave.

The post-processing tasks are usually done with the specific software Pa-
raview. This software is a very powerful tool. It includes several filters for
different purposes: results visualisation, data extraction, time regression, in-
terpolation, etc. Some macros have been developed ad hoc in Python to effi-
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ciently analyse the results of the simulation. The data of interest is automati-
cally extracted with the macros. A second option whose single purpose is data
visualisation is Blender. Blender is a software specialised in animation. One
of its more powerful tools is its render engine. This engine is able to render
volumetric textures based on voxels. The results of the simulations are con-
verted to volumetric textures and then rendered with this software. The whole
process is done by macros written in python. Stream-lines and particles are
also imported to Blender by other macros. The code is able to generate the
geometry of the path-lines and fix the properties of the material for rendering.
The colour and optionally the radius along the path-line depends on a variable
of the solution.
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Chapter 2

The porous media and its
nature

Porous media are very common in nature and its use is very extended in
engineering. Filtering is one of their applications. In the following sections it
is briefly explained the filtering process, the micro-structure of the material, its
mathematical characterisation and how to create computer-generated porous
media with procedural generation techniques.

2.1 Description

The most important hydrodynamic characteristic of porous media is permeabi-
lity. Permeability explains the hydrodynamic behaviour of the material from
a macroscopic point of view. When the flow at micro-scale level is low the
pressure drop scales linearly with the flow rate. This relation is known as the

Darcy’s law
1

i=—~[k]VP. (2.1)
I

q is the flow rate, [k] is the permeability tensor, p is the viscosity and P is
pressure. There are several variations of Darcy’s law to take into account other
effects not covered by the hypothesis. The Forchheimer variation includes an
inertial term to take into account non-linear effects. The modified equation

along the pressure gradient direction is
oP & p

Q. (2.2)

% B Mq K1
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The new term includes the density of the fluid p and the inertial permeability
k1. For isotropic materials the permeability tensor can be replaced by a scalar
k. The flux is related with the fluid velocity @ by the porosity ¢

ﬁ:

(2.3)

-y

The porosity is the relation between the volume covered by the fluid phase over
the total volume. Its value is in the range between 0 and 1. Each material is
characterised by different values of porosity ¢ and permeability [«].

2.2 The filtering process

The filter traps particle matter in its interior creating deposits. At the begin-
ning there are only two phases, the solid phase and the fluid phase. Particle
matter deposition is the third phase. At micro-scale level this material is mo-
delled as porous media. There is a porous material inside a porous material.
The difference is in the scale. Whereas the studied geometry has a porous
size of several microns the depositions have porous size in the order of tens of
nanometers. The discretisation of the simulations of this thesis can capture
details until 1um. Lower scales have to be modelled by the Darcy’s law

The depositions constrict the pass of air through the filter. The mass flow
rate is reduced for constant pressure gradients or the pressure drop increases for
constant mass flow rates. The blocking process of the filters can be decomposed
in two stages depending on the occlusion type. At the beginning the filter is
clean. The particle matter starts to travel in the interior of the filter creating
the first deposits. The quantity of deposited matter decreases with the depth.
A lot of particle matter is also captured by the surface in contact with the
dirty fluid. The deposits grow at the same time that they block the pass of
the air. At the end of the first stage the particle matter obstructs every pore
of the surface. All the air which crosses the filter crosses the deposits. Here
starts the second stage. The suspended particles can not cross the deposits
and precipitate on the surface. This layer grows to create a region between the
solid phase and the fluid phase. This bed of precipitated matter is in practise
a new filter over a filter, but with much smaller porous size.

2.3 Topology of the micro-structure

A lot of different materials can be used to made a Diesel filter. Adler sum-
marises in his article [I] the filtering properties of several ceramic materials.
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Every material crystallises into its own micro-structure. Accordingly to this
criterion the filters can be characterised as foam filters, particulate filters, fi-
bre filters, acicular filters, amorphous filters, etc. All the resulting geometries
can be decomposed mathematically into its stochastic and deterministic parts.
The proportion of each part describes how is the material. Autocorrelation is
the magnitude used in this thesis to detect determinism. Values far from zero
at large distances quantifies the deterministic component. The normalised au-
tocorrelation of woven filters is a cosine curve. The maximum value at infinite
distances is close to one. It means that the micro-structure of woven materials
is almost deterministic. On the contrary, the autocorrelation values of chaotic
porous media becomes zero after a distance.

2.3.1 Detection of largest scales: autocorrelation

The cross-correlation between two dependent variables f and g measures their
similarity as a function of the relative displacement A¢ in the R space along
the independent variables &;4. It is defined as

o0 oo

(9@ = [ [ 1@o+ 2 derdeedep. (20
The discrete equivalence is

o0
(f * g)nl,--- mp Z fml:"' smp 9mitni,- ;mptnp- (25)

mi, -, mMp=—0C

—

The autocorrelation is the cross-correlation of a variable with itself Z;(A¢) =
(f %= f). It can be observed how the autocorrelation for zero displacement is
the square of the euclidean norm of the function. Every dependent variable
can be normalised dividing by the square root of the autocorrelation at zero
displacement

F(©) = f(€)/1/ % (0). (2.6)

Any inner product of two normalised dependent variables is always bounded
by the interval [-1, 1]. Because the autocorrelation for 0 displacement of a
generic function is its norm, the result is one if the function is normalised.
The obvious consequence is that the autocorrelation for 0 displacement is a
global maximum. This strategy can be also applied to calculate the cross-
correlation. Using normalised variables the result is again bounded by the
interval [-1, 1]. However the maximum value is usually lower than 1 and its
location is not necessarily at zero.

For N4 samples along the d-th dimension the computational cost of calculat-
ing the cross-correlation has order O(N?). However the cost can be drastically
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reduced if the signal is periodic along the d-th dimension. When the generic
function f is periodic along &4, then Fast Fourier Transforms (FFT) can be
applied instead of the brute force algorithm. It reduces the order of the com-
putation to O(Nglog(Ny)). If f(kq) is the function f(&4) in frequency domain
for a generic wave number kg, then the cross-correlation of two dependent
variables in frequency domain can be expressed as

— ~

(f *9)(ka) = f(ka)g" (Ka), (2.7)

where * denotes the complex conjugate value and " means the FFT trans-
form. Then applying the Inverse Fast Fourier Transforms (IFFT) the cross-
correlation in the physical domain is returned.

Any coherent structure correlates with itself. The autocorrelation can be
used to measure the size of these structures. To analyse the geometry using
this technique a phase field ¢ is created for each material. Volumes covered
by the associated material returns a phase field equal to 1, 0 otherwise. The
cross-correlation between phase fields returns the intersection volume for every
displacement. However these magnitudes can not be directly used to detect
the structure size. Structure size detection requires normalised fields. The
mean value has to be subtracted and the result divided by the square root of
the autocorrelation at zero displacement.

The structure appears in the autocorrelation as an elliptic region around
the origin. The shape of the correlated region provides information about
the isotropy of the material and the orientation of its structures. Circular
regions means that the material is isotropic. On the contrary, ellipses with
high eccentricity are the autocorrelations of anisotropic materials. The axes of
the ellipse are aligned with the principal axes of the largest coherent structures.
The correlated region doubles the size of the coherent structure.

2.4 Synthetic porous geometry generator

The solid phase of a porous media is usually very complex. Because the little
size of the structures the measurement of the geometry requires of very expen-
sive techniques. One of them and, in fact, the most usual, is the tomography.
Yamamoto’s team [2] B, 4, [ [6l [7, 8] uses this technique to obtain the 3D
image of the porous media structured in This returns an acceptable
resolution (1pm) and covers acceptable domain sizes (400pm). However this is
sometimes not good enough (see sections[5.1.2|and [5.1.3] of this document) and
the domain could not be representative (see section [5.1.4 of this document).

When the experimental data is not reachable computer-generated solid
phase can replace it. The software GEODICT [J] creates virtual filters for
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a large set of materials [I0, [IT]. The micro-structure of the filter has been
created following a similar procedure. In the following lines it is explained a
set of techniques to create several types of computer-generated filters.

2.4.1 Acicular mullite

The filters made of acicular mullite are usually used in competitions. Thanks
to its high porosity their pressure drop is very low compared with other types
of filters for the same filtering efficiency.

The acicular mullite is manufactured from a precursor material block. Ap-
plying heat and using catalysis the precursor crystallises. The crystals are not
randomly distributed. They grow up from specific locations called nucleation
points forming radial aggregates.

The program which mimics this micro-structure uses populations of param-
eters to control the shape of the crystals, the location of the nucleation points,
the number of aggregates per unit volume and the distribution of crystals in
a single aggregate.

The first step in the creation process is to find the location of the nucleation
points. Their existence is limited to the space covered by the block of the
precursor material. They are supposed to be uniformly distributed along this
region. Once the location of the nucleation point of each aggregate is fixed a set
of crystals is created. How many crystals each aggregate contains is controlled
by a random sample whose population follows a log-normal distribution. Log-
normal distribution forces the number of crystals to be positive. After fixing
the number of crystals each crystal has to be created. The creation process
starts from a normalised crystal whose length and thickness are well known.
Each one is a parallelepiped finished by two pyramids with fixed angle at its
bases. The origin of coordinates coincides with its centre of gravity and the
length follows the X direction of the local coordinate system. Then, two scales
are applied along and across the crystal respectively. The first scale to be
applied is for the length. The scale factor is again a sample coming from a log-
normal distribution and it scales all dimensions. The second scale only modifies
the crystal thickness and it is applied after the first scaling. That is, the second
scale is not the thickness itself, it is the inverse of aspect ratio. This strategy
avoids the existence of strange shaped crystals (extremely long or extremely
thick). Again the aspect ratio is not always the same. It is different for each
crystal and the population follows a log-normal distribution. With this two
simple operations the crystal is correctly shaped. Now it has to be oriented
and located. The last operation to be applied on the crystal is a translation
to force the coincidence between the nucleation point of the aggregate and
the origin of the local coordinate system associated to the crystal. At this
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moment the centre of coordinates of the local system overlaps the centre of
gravity of the crystal. That is, the geometry of the crystal is anti-symmetric
respect to the local coordinate system. To destroy this property the crystal is
translated along its main axis. The translated distance is called eccentricity
of the crystal. This parameter is defined as the distance between the centre of
gravity of the crystal and the nucleation point of the aggregate over the total
length of the crystal. It is also random-generated and it is extracted from a
normal population centred in 0. A sample can never exceed the value 0.5 so
the standard deviation which describes the population has to be controlled.
Otherwise the crystal could be far away from the aggregate. Now the needle
points out the local X axis. However they grow up in every direction, in uniform
way per steradian. The crystal has to be oriented in [elevation| and [azimuthl
Respect to the elevation, it can take values between —7/2 and 7/ 2|ﬂ A uniform
random population is generated and transformed afterword to avoid an over-
concentration of crystals around [nadir] and [zenithl The operator arcsin is
applied on every sample. Once the crystal is elevated it has to be rotated
around the Z axis. This time the rotation angle can be extracted directly from
a uniform random population after scaling its value by 2w. The final step is
just to move the centre of coordinates of the crystal to the nucleation point.
Whole the process is repeated for each crystal till complete each aggregate.
The figure resumes the process.

1Because the eccentricity is equally distributed to positive and negative values the eleva-
tion range can be reduced to the interval bounded by the limits 0 and 7 /2.
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FOR EACH AGGLOMERATE

Random location for the nucleation point
inside the precursor material block.
Distribution type: uniform 3D.

Number of crystals in the agglomerate.
Distribution type: log-normal

FOR EACH CRYSTAL

Scale by the length.
Distribution type: log-
normal

Scaling thickness by the as-
pect ratio.

Distribution type: log-
normal

Eccentricity. Displacement
along the X direction.
Distribution type: normal

Elevation.
Distribution type: arcsin
of uniform

Azimuth.
Distribution type: uniform

(z,9,2)

Move the crystal to the nu-
cleation point.

Figure 2.1: Creation process of the computer-generated mullite.



22

CHAPTER 2. THE POROUS MEDIA AND ITS NATURE

Bibliography

1]

2]

[10]

[11]

ADLER, J. Ceramic diesel particulate filters. International Journal of
Applied Ceramic Technology, 2(6):(2005), 429-439.

YAMAMOTO, K.; SATAKE, S.; YAMASHITA, H.; TAKADA, N.; MISAWA,
M. Lattice boltzmann simulation on porous structure and soot accumula-
tion. Mathematics and Computers in Simulation, 72(2-6):(2006), 257-263.

YAMAMOTO, K.; SATAKE, S.; YAMASHITA, H. Lattice boltzmann simu-

lation on flow with soot accumulation in diesel particulate filter. Interna-
tional Journal of Modern Physics C, 18(4):(2007), 528-535.

YAMAMOTO, K.; SATAKE, S.; YAMASHITA, H.; TAKADA, N.; MISAWA,
M. Fluid simulation and x-ray ct images for soot deposition in a diesel
filter. Furopean Physical Journal-Special Topics, 171:(2009), 205-212.

YAMAMOTO, K.; OOHORI, S.; YAMASHITA, H.; DAIDO, S. Simulation
on soot deposition and combustion in diesel particulate filter. Proceedings
of the Combustion Institute, 32:(2009), 1965-1972.

Yamamoro, K.; YamavucHl, K.; TAKADA, N.; Misawa, M.; Furu-
TANI, H.; SHINOZAKI, O. Lattice boltzmann simulation on continuously
regenerating diesel filter. Philosophical Transactions of the Royal Soci-
ety a-Mathematical Physical and Engineering Sciences, 369(1945):(2011),
2584-2591.

YAMAMOTO, K.; YAMAUCHI, K. Numerical simulation of continuously
regenerating diesel particulate filter. Proceedings of the Combustion In-
stitute, 34:(2013), 3083-3090.

YamMaMoOTO, K.; OHORI, S. Simulations on flow and soot deposition
in diesel particulate filters. International Journal of Engine Research,
14(4):(2013), 333-340.

FRAUNHOFER INSTITUTE FOR INDUSTRIAL MATHEMATICS. GeoDict
(2017).

RIEF, S.; KEHRWALD, D.; SCHMDT, K.; WIEGMANN, A. Fraunhofer
software tools geodict/filterdict for the simulation of diesel particulate fil-
ters. NAFEM: Reliable Use of Numerical Methods in Upfront Simulations.
Wiesbaden, Germany.

RIEF, S.; ScaMIDT, D.M.K.; WIEGMANN, A.; TRANSPORTATIONS, T.
Virtual diesel particulate filters: Simulation of the structure, exhaust gas
flow and particle deposition (2009).



Chapter 3

Calculation of the flow

field. The Lattice
Boltzmann Method

3.1 Introduction

The LBM is a mathematical artifice which emulates the physics of Navier-
Stokes (NS) equations. It is based on the kinetic theory formulation, which
relates the molecule motion with the macroscopic properties of the fluid. The
solver to be applied depends on the scale. When the scale is very small the fluid
is rarefied and the domain contains a reduced set of molecules which collide
and interact with each other. Simulators based on Molecular Dynamics (MD)
can emulate the mechanic of this type of fluids. The number of molecules
contained in the domain increases rapidly with the density or the scale. When
the concentration is large enough the hypothesis of continuous media becomes
valid. Simulating the motion of every particle separately becomes unreach-
able in this context. Another approach is needed. The particle population
contained in a differential of volume (continuous media permits this assump-
tion) is statistically described by a three-dimensional distribution in speed.
This distribution, which varies in space and time, depends on a reduced set
of parameters. The distribution intrinsically also contains the values of the
macroscopic magnitudes (typical magnitudes in classical fluid dynamics, such
as density, pressure or velocity). As an example. The addition of the mass of
every particle (integral of the population along the particle speed and volume)
returns the mass of fluid contained in that volume. In analogous way, the sum-
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Figure 3.1: Flow regime vs. simulations

mation of all the linear momenta (mass of each particle times its speed) along
the volume is the macroscopic momentum contained in the volume. Other
magnitudes such as pressure, temperature or viscosity can also been obtained
by more complicated ways. The equation which governs the evolution in time
and space of particle populations is the Boltzmann equation. This equation is
the base of the LBM, reason why it takes this name. The Boltzmann equation
can solve what is called mesoscale. At mesoscales, the flow field is considered
continuous but still rarefied. In other words, the equilibrium distribution of
particles is not reached at each point.

When the characteristic time and length to achieve equilibrium is much
smaller than the scale of the simulation, NS can be directly applied. This
scale is called the macroscopic scale and it is the classical formulation of fluid
mechanics. Because the large scales contain the smallest ones, the integral
of the smallest scales returns the equation for a single point in largest scales.
Thus the Boltzmann equation is obtained after integrating the MD equation
along large time and space increments, and similarly NS is recovered after
integrating the Bolzmann-equation. The figure represents how each large
scale is a simplification of the previous one. What Lattice Boltzmann Method
does is to take advantage of this equivalence and replace the physical fluid by
an equivalent rarefied gas described by means of artificial particle populations.
The way how this gas tends to equilibrium emulates the effects of the viscosity
in the real fluid. The macroscopic magnitudes such as velocity or pressure are
implicit in the populations and they can be calculated easily. With pressure
and velocity replaced by particle populations, the pressure correction loop is
not needed anymore, saving computational effort.
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The distributions, continuous in Boltzmann equation, are discrete in LBM.
The discrete velocities have to be coherent with the domain decomposition.
During a time step the particles can only travel from one node to other, so the
discrete velocities have to be the distance between contiguous nodes over the
time step. The decomposition, for the simplest cases, is uniform and struc-
tured, reason why the method includes the word “lattice” in its name. This
condition is mandatory to keep the same set of discrete velocities everywhere.
The lattice is immersed into the domain, it does not decompose it in strict
sense. In other words, the lattice is not adapted to the geometry. The pres-
ence of BCs in generic locations is taken into account in the formulation instead
of being part of the decomposition process. This is a direct consequence of the
uniform-spaced restriction.

But the most distinctive characteristic of LBM is its explicit formulation.
The use of particle distributions instead of fluid magnitudes gives this impor-
tant advantage. The explicit formulation is local, the state of one node is only
affected by the surroundings. From the computational point of view it makes
the method highly parallelisable. It is a good candidate to be implemented
for distribute memory machines and accelerators. On the contrary, implicit
methods are global. They usually require the inversion of large matrices with
the corresponding computational cost in numerical operations and communi-
cation. One more advantage of LBM is the speed of convergence, second order
for the simplest schemes.

On the contrary LBM shows some negative counterparts. As every explicit
method, LBM requires more iterations to converge. Consequently the method
is not the most appropriate for small simulations in general. Other disadvan-
tage is the memory consumption. Discrete distributions usually demand more
space than macroscopic magnitudes. Finally, one more aspect to take into
account is the time dependence. LBM is in origin non-steady, time is involved
for every simulation.

What is mentioned above are the characteristics of the simplest LBM algo-
rithms. However there are some advance LBM implementations which improve
the previous exposed characteristics. For instance, one of the most extended
improvements is the used of several lattices of different size making the decom-
position adaptable to the geometry or the solution.

As direct consequence of LBM characteristics the best candidates to be
simulated are:

e Complex geometries. The lattice is immersed into the domain, it does not
decompose it. Because the mesh has not to be adapted to the geometry
the meshing process is fast ans simple. This is the case of porous media,
capillary vessels, riverbeds and any other chaotic geometry.
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e Moving BCs. The immersed lattice makes LBM a good candidate to
simulate moving geometry too. The mesh has not to be recomputed for
every time step. Immiscible multiphase flows, deposition, crystal growth,
deformable structures... are perfect candidates to be solved with LBM.

e Distribute memory machines and accelerators. The locality of the method
brings the possibility of developing highly parallel applications. This
quality makes the LBM the perfect candidate to run large simulations in
machines of this architecture.

In this chapter the LBM method will be explained in detail. The following
section explains what LBM is, the mathematical background, the hypothesis
to take into consideration, how to recover NS and how to convert the physical
units to lattice units. Immediately after the BCs are explained. In LBM the
BCs are generally under-restricted. Consequently the restriction imposed at
the boundaries can be accomplished by infinite populations. A new point of
view is introduced in the current thesis with respect to the Boundary Condition
(BC). They are considered as restricted optimisation problems.

3.2 Theoretical background

The formulation of LBM is based on the Boltzmann equation
of+¢-Vaf+d-Vaof =Q. (3.1)

In this context ¢ is the speed of the particles, d = ﬁ/m the acceleration
of a particle with mass m due to the force F, f = f(t,Z,¢) is the particle
distribution with respect to the particle velocity ¢ at the location & at time ¢,
Q is the collision operator responsible of the redistribution of f along ¢, and
the operands Vz and Vz are the gradients in space and velocity of the particles
respectively.

For a single location and instant, f represents how the matter is distributed
in velocity. In other words, the distribution adds three more independent
variables, creating a six-dimensional hyperspace (see ﬁgure. If the equation
has to be solved numerically, these three extra dimensions have to be also
discretised.

3.2.1 Discretisation of Boltzmann equation

There are three sets of independent variables to be discretised: time, space and
velocity. The computational scheme is governed by the velocity discretisation.
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Figure 3.2: 6D-Hypercube representing the distribution of f. Each little cube
represents the velocity domain. One of this exists for each location in space
domain.

The nomenclature of the LBM scheme is normalised accordingly as DXQY,
where X is the number of dimensions of the scheme and Y the number of
discrete velocities. For example, the scheme to solve 3D domains with 19
discrete velocities is named D3Q19.

Every generic function g(¢) dependent on the velocity can be decomposed
in orthogonal polynomials as

9@ = 3" 9(6) 2 (@W(@. (3.2)

Where the subscript ., means “relative to the a-th discrete velocity”, g(¢,) =
Jao 18 the generic function evaluated in &,, &£, is the a-th polynomial of the
orthogonal base, and W (¢) is the weighting function. The polynomial satisfies
the property & (€g) = da,p, being 6 the Kronecker’s delta. Defining the inner
product of two functions .%#;(¢) and %, (¢) as

(Z1(@), Z2(@)) = // fw FADFAOW (@) degdeydes,  (3.3)

the orthogonal condition imposes

(Z0,(6), Z0a,(€)) =0 Vi = as. (3.4)
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Applying the polynomial decomposition to the distribution function and weight-
ing with the centred Gaussian probabilistic density function with standard
deviation ¢, the distribution is decomposed as

f(t7 f? é) \/768

The entire Boltzmann equation [3.I] can be decomposed in analogous way, get-
ting

3 [(at +C,- %) Falt, B) — Qult, f)} P,(@) exp (—|||2/2¢2) = 0. (3.6)

[e3%

=Y falt, ) Pa(@) exp (—[|E%/2¢3) . (3.5)

Multiplying by other of the polynomials &?3(¢) and integrating in velocity each
component is decoupled from the others returning one equation per discrete
velocity

(at 4+, %) Fult, ) = Qa(t, 7). (3.7)

To be orthogonal the polynomial roots have to be coincident with the quadra-
ture points. For Gaussian distribution functions the associated orthogonal ba-
sis is formed by Hermite polynomials. This requirement is only possible when
the stencil is small. Complex schemes with large sets of discrete velocities can
not satisfy this condition. Consequently some of the quadrature points are not
coincident with the lattice nodes. The orthogonal basis is replaced by poly-
nomials with equidistant roots. With the orthogonality condition not being
satisfied the cross product of the polynomials is different to 0

@u@.250) = | 2P OW () de £ 0. (3.8)

After applying the step the result is a coupled equation system
(M]s.a (91 + 8 V) falt,T) = [M]5.a80(1,7) (3.9)
where the weighting matrix [M] is filled instead of being diagonal. If every term

in the Boltzmann equation can be directly decomposed following the expression
the matrix cancels itself. However, if there are some extra terms S

Of+E Vaf=Q+S8 (3.10)

and this term can not be decomposed, the resultant expression is

(at +é,- 65) falt, &) — Qu(t,2) = (M]3}, [ - Ps(c)S(c)de.  (3.11)

In this case the matrix [M] has to be considered. If it is not the case the
procedure can be applied over non-uniform lattices. One example is the work
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realised by He and Luo [I]. They decouple the discrete velocity and the lattice.
As consequence populations stream to random locations. The interpolation
step is introduced in addition to collision and streaming by the researchers.
One characteristic of LBM is the relation between the discretisations. The
time step At, the distance between neighbouring nodes AZ and the velocity
of the particles ¢ are related by

AZ, = Gy AL, (3.12)

Every particle located in a node can only travel to the exact locations of other
nodes during a time step. The selected velocity fixes the geometry of the
lattice and vice-versa. A secondary deduction of the previous restriction is
the uniformity of the lattice. To keep the velocity set equal in whole domain
the distance between the nodes has to be kept too. Considering first order
approximation the resultant equation is

1 o
At (fa(t + At,x) - fa(tan)) T
-~+ﬁ&ﬁfMﬁ+AmﬁHw@—h@+NﬁD=Qﬁﬁ)(M$

Co, can be replaced by the restriction resulting

fa(t + AL T) — fo(t, Ax) + fo(t + AL T+ AT,) — fo(t + At T) = AL Qu (L, 7).

(3.14)
Taking advantage of the linearity, the equation can be decomposed in two
whose addition returns the original one

falt 4 ALE )= fult  F) = AIQL(1 ), (3.15a)
Falt + At T+ AZo) — fult+ AL F) = 0. (3.15b)

It represents the division in two different steps of each iteration in time. During
the first step the collision operator redistributes the population among the
velocities. It solves the evolution of the population in time. During the second
step the particles travel to the contiguous nodes following the direction fixed
by their velocity. It solves the advective part of the Boltzmann equation. The
names given to these steps are collision step and stream step respectively.

3.2.2 Numerical integration

As it has been seen before, the weighting function for LBM is the centred
Gaussian distribution with standard deviation equal to ¢s. This values depends
on the selected scheme. Every magnitude in LBM is approximated following
the expression Consequently, the integral of a generic distribution g(¢)
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can be approximated as
+ oo +oo
[ @@= [ zi@w@de (3.16)

The integral of the right hand side is always the same. The results are the
weighting factors w,

Wo = /jw P ()W (0) de. (3.17)

So the integral value can be calculated fast as a weighted sum

| a@de= Y o (3.18)

3.2.3 Equilibrium distribution function

In absence of external forces without any gradient in space the ideal monoatomic
gas tends to fit the Maxwell distribution. This is a 3D Gaussian distribution
centred in the mean velocity whose standard deviation is y/kpT/m, being
kp the Boltzmann constant, T the temperature and m the molecular mass. In
LBM the standard deviation corresponds to ¢, what is called speed of sound of
the lattice. The equilibrium distribution is the Gaussian distribution displaced
the macroscopic velocity 4 times the density p(t, &)

P (3.19)

FUL ) = plt, @) exp (— & l|2/262) (2mc?)
The polynomial approximation to the equilibrium distribution can be written
as

—D/2

FUEE D) = 3 £ 7) Pa(@) exp (— 1P /262) (27c2) (3.20)

Now it is time to compute the discrete values. As usual the previous equation
is multiplied by the polynomial 75(¢) and integrated to get

o) = [ " B .70 de (3.21)

Replacing the equilibrium distribution by its value it is gotten the final expres-
sion of the discrete equilibrium distribution

_lle—a)

fe(t, &) = p(t, T) /+OO Z.(0) (27rc§)_D/2 exp ( 502 > dc.  (3.22)
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This equation can be also written in terms of a displaced velocity &’ = ¢é— @

S1012
Feut, ) = / Po(@ + 1) (2r¢2) "% exp (— ”; |2| ) e’ (3.23)
CS
The generic polynomial can be written as sum of binomials
D
Po(E + 1) Z H 4 ug)Fm, (3.24)

where a,, is the n-th factor and &, 4 the n-th exponent for the d-th dimension.
Each binomial can be expanded

I
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3
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3
R
3

(cy +ug)kna (3.25)

where the operand

(:1) N m—?:a)'m' (3.26)

is the binomial coefficient. The product of the expansion by the weighting
function can be easily integrated. The n-th moment of the d-th independent
variable, equivalent to calculate the inner product (¢’}j, 1), is known a priori

too
MU(I”) =(c}],1) = / cy (27705)71/2 exp (—0’3/205) dcly. (3.27)

It admits algebraic solution

n/2
Md(n) _ ) ml_zll(n —2m+1), {n|(3k e N)[n=2k]}; (3.28)
0, {n| 3k € N)[n =2k + 1]}.

It can be observed how the parity of the Gaussian distribution (W(c) =
W (—c)) makes zero the odd moments. Table contains the first even mo-
ments of the distribution. The complexity of all this process can be drastically

Moments | M© M@ M® M©) M® M0

Values 1 2 3ct 15¢8 105¢8 94510

S

Table 3.1: First six even moments of the centred Gaussian distribution with
standard deviation equal to cs.
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reduced if the nodes of the lattice overlap the quadrature points of the weight-
ing function. If this condition is accomplished the integral value of a generic
variable can be approximated as

[ T @W @) de = 3 wag(r). (3.29)

Each equilibrium component can be reformulated by recovering the expression
[3:22] and replacing the exponential by the product of the weighting function
and exponential of the deviation

+oo 2 id—i- 1 _ S o
f50(t,3) = p(t, @) / P0() exp (“‘““) (2n¢?) "% exp (00) dé.
— oo C

2¢2 2¢2
(3.30)
The integral part can be replaced by the summation of the quadrature
Yoy Sy Sy,
£t 7) = p(t, 7) zﬁ:wﬂa(a@) exp (W) (3.31)

The o-th polynomial evaluated in the §-th node is &2,(¢3) = dap, Where dqop
is the Kronecker’s delta. The polynomial takes value 1 when o = 5 and 0
otherwise. The summation is then simplified to a single term

(3.32)

20, U —1U-U
f;quwaexp< < )

2
2cz

The exponential function is computationally expensive. In practice it is re-
placed by the truncated Taylor series around @ = 0

2o U — -1 Co W WU (Co- ) .
exp (“262> =1+ acz -5zt “264 +o(|@®). (3.33)
S S S S

Each component of the equilibrium distribution can be calculated as

Covil W10 (T i)
€ = pw, |1 - 3.34
fal = pw [ =2 22 T g } (3.34)

Another way to approximate the exponential is in terms of the entire exponent

20 - U—1U-U 1 (28, d—id-d\"
T — - U —
e — | = — ] . 3.35
P ( 2¢2 > Z n! < 2¢2 ) (3:35)
n=0

It can be also expressed in an recursive way. Being %, (z) = 1/n+ a%41(x),
the exponential is exp(z) = 1 + xZ%1(x). The calculus starts from the last
term, where the recursive series is truncated, with an approximated value
Zn = 1/N. The successive terms are computed in descending order applying
the recursive rule till calculate % (z) and the exponential. This technique can
be used to obtain high order accuracy to admit larger values of .
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3.2.4 The collision operator

When two population of spherical particles f; and f; collides they interchange
momentum, and the distribution is altered to f; and fj’ . Here the apostro-
phe means “after collision”. The collision operator, considered till now as an
abstract entity, admits algebraic solution

2= [[] [ J] it = 50 e - esloy | dej. (330

oi; is the cross section and w is the solid angle (see figure . Solving

Ci—Cj

Figure 3.3: Elastic binary collision scheme.

this equation for every node becomes a prohibitive task for several reasons.
The post-collision variables are implicit and non-linear, the populations are
integrated multiple times and there is a component for every combination of
speeds. These are the reasons why in practice the collision operator is mode-
lled instead of being simulated. Several techniques are developed to simplify
the calculus. The most important ones are the Single Relaxation Time (SRT)
or the so called Bhatnagar-Gross-Krook (BGK), the Two Relaxation Time
(TRT) and the Multiple Relaxation Time (MRT). All of them reproduce the
asymptotic tendency to the equilibrium distribution induced by the collision
operator using relaxation. Several researchers compare the results of the same
simulation solved with different collision operators. One example is the work
realised by Freitas et al. [2]. They solve turbulent channel flow (Couette)
for several collision operators. The results are analysed in accuracy and com-
putational speed. The reference values are the results of Direct Numerical
Simulation (DNS) simulations.

Turbulent modelling can be included modifying the collision operator. The
modification depends on the model. Yu, Girimaji and Luo et al. [3] study
the decay of isotropic turbulence in cubic domains using both DNS and Large
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Eddy Simulation (LES) modelling. For DNS calculation no assumption is
required and the collision operator is used without any modification. For LES
calculation the collision operator is adapted locally to take into consideration
turbulent viscosity.

Bhatnagar-Gross-Krook collision operator

The easiest and fastest model to approximate the collision operator is the
BGK model. The equivalence with NS equations was introduced by Qian,
d’Humieres and Lallemand [4]. It consists on emulating the tendency imposed
by £ over the distribution to tend to equilibrium as a simple relaxation method

Q=1 (f-fv). (3.37)

This approximation can be decomposed following [3:2} obtaining an equivalent
expression for each a-th component Q, = —(fo — f&7)/7. The resulting LBM
equation is

Falt+ A6T +AT) = fultT) = =2 [l ®) ~ a6 D). (3:39)

Two Relaxation Time collision operator

TRT collision model improves the robustness of BGK. The distribution is
decomposed in the symmetric f3 and anti-symmetric f$ parts

fa= o+ fa- (3.39)

The way to calculate each component is
f;z(fa+f&)/2a fg:<foz_f&)/2; (340)
where @ means relative to the opposite a-th discrete velocity ¢; = —¢,. Then

two different interrelated relaxation parameters are applied to each population.

o= = (f2 = f3°0) = = (f2 - J2°0). (3.41)

The parameter 7, is the equivalence of 7 for the BGK model. 74 and 7, are
related by a magic number x

D e

This number receives different values attending to the objective criteria. Walls
located at the middle distance between two contiguous nodes are correctly
calculated for y = 3/16. Values of x = 1/4 returns the strongest robustness.

1
Ts
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Multiple Relaxation Time collision operator

One further step is to describe the relaxation process by means of several re-
laxation parameters. What MRT does is to relax the integral moments in a
different way instead of applying directly the relaxation on the distribution.
The process is divided in three steps. Firstly the integral moments of interest
m are calculated as a weighted sum of the discrete components of the distri-
bution m = [M]f. Mathematically this operation is the product of a matrix
[M] and the vector which contains the distribution f. The resultant moments
are relaxed independently, each one with its own relaxing factor A. Once the
moments have been relaxed the new distribution is recovered multiplying by
(M)~

Q = [M]"UA)(M]F — me). (3.43)

The relaxing parameters are contained in the diagonal matrix [A]. In a similar
way to the TRT model, each factor is selected accordingly to an objective
criterion such as accuracy or robustness. Because the extra tuning parameters
the MRT can be also adapted to multiphysics.

3.2.5 Chapman-Enskog expansion

Fluid mechanics is governed by the NS equation. The LBM approximates this
behaviour. It is needed to find the equivalence between both formulations.
The followed process to find this relation is the Chapman-Enskog expansion.

The NS equations for mass and moment conservation are

dup+V - (pit) =0 and (3.44a)
Bu(pil) +V - (pi @ @) = —VP+uV - [V @i+ (ﬁ@ﬁ)T] (3.44b)

respectively. Here the gradient is denoted by V® instead of simply V to be
easily distinguished from the divergence V.. The operator ® is the external
product, P is the pressure, p the dynamic viscosity, p the density and @ the
velocity.

The equivalence depends on the numerical scheme and the collision model.
From now in advance all the formulation will be developed for the BGK co-
llision model for the sake of simplicity. It is the simplest model and reaches
maximum performance. However there is a penalty in accuracy and stability
for high Reynolds numbers. It is not the case of the simulations of this thesis,
where the Reynolds number is around 1. This regime is completely laminar
and it is close to be Stokes regime. BGK collision model returns satisfactory
results in this context. The process for other collision models is analogous.
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The discrete Boltzmann equation without external forces simplified with
the BGK model is

At
falt+ AL, Z 4+ AZ,) — fol(t, @) = - (falt,Zo) — fE(t,Za)) (3.45)
The displaced term can be expanded around f, (¢, Z) in Taylor series as
I | e\
falt+ LT+ AT) = Y — (At@t TN vf) full, 7). (3.46)
n=0

where the n-th power of the gradient term is
(Afa : %) = AT, (3.47)

Expanding the series and truncating in second order the expression becomes
- 1
folt + At T+ AZ,) = <1 + At + A%y - Viz + 5AltZ’af e
- 1 - . .
<o +AtAZ, - Vz + §A£’Q®2 . V§2> falt, T) + O(AF | AZL|)?).  (3.48)

From restriction the space increment can be replaced as AT, = Atéc,.
The previous equation becomes

- 1
falt + At T+ AZ,) = (1 + At + Até, - Viz + 5Alf?af e
L1 .
o FAEE, Vi + 5At%}‘?’" . v§’2) falt,Z) + O(A?). (3.49)
The same equation can be written as a function of the operator 0; + ¢, - 65 as

Falt + AL T+ ATy) ~ {1+At([~)t+€a.ﬁf)+...

At?
2

The value of f,(t+ At, &+ AZ,) can be replaced in expression returning

At
2

(at +a, .65)2] Fult, B) + O(AF).  (3.50)

(o Fa) 4 5 (04 2 92) | fult.d) = =2 (a(0.2) - 270,

(3.51)

The distribution, as well as the derivative operators, can be decomposed as
the addition of components of different order of magnitude

F=FO 4ef® 2@ (3.52a)
8y =0 + 20", (3.52b)
Vi=eV) (3.52¢)
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The previous expansions in order of magnitude are included in As result,
one equation is returned for each order of magnitude:

0 fO) _pea— (3.53a)
1 -

el - ;f(il) = (615(0) + Ca - Vi?O)) £ (3.53b)
1 -

2o L= (0 b TO) S0+ (3.53¢)
At

. 2
5 (07 + e V) 10+ o0 g0

The second equation can be introduced in the third replacing (8,50) + Cy -
VNV by =180 )7

20 . FO _ fea — (3.54a)
1 -

e o= (0 4 V) £ (3.54b)
1 At 0, » (0 1

ER O (1 - 2T> (0 + 2 99 S0 10050 (3.540)

From the first expression it is concluded that the distribution of 0 order is the
equilibrium distribution. The higher orders will be used to fit the relation with
NS. The first moments of the order 0 distribution are, by definition,

p=> [0, pu=3 . 0, =320,
[0 « (o3
2O =3"e2 0 0=3"f" V{neNn>o0}

and 0= e f" V{neNn>o0} (3.55)

[e3%

Here II(© and 2 are tensors of second and third order respectively. The
n-th moment of a discrete variable g, is a tensor of order n calculated as
M™(g,) =3, %" ®g,. This definition can be used to calculate the zeroth,
first and second moments of expression

0=0"p +VV. (pid), (3.56a)
0=0"(pit) + V. 1, (3.56b)

1 B
_;H(l) — at(O)H(O) —l—VéO) .

(1]

©, (3.56¢)
Similar procedure can be performed with expression returning
0=0")p, (3.57a)

AL =
0= (1 - ;) v 4 o pi. (3.57b)
T
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The macroscopic integral equation can be recovered by the addition of the
moments

0= (58,5(0) + 528,5(1)) p +€6éo) - (pid), (3.58a)

0= (gat(o) + sQat(”) (pit) + £V - [H(O) Fe(l— At/2r) H(l)} . (3.58b)
The original derivatives can be recovered

0=0yp +Vz-(pid), (3.59a)

0= 9 (pd) + Vs - [H@ te(1— At/27) nm} . (3.59b)

IO and 2© are defined as the moments of the equilibrium distribution

400
M(n),eq _ / E@nfCQ<E’) dcé. (360)

oo

The integral returns the values

HZ(;J) = M(Q)’eq = p@éij + PUU; (361&)
ESI)@ = MOt = p0 (b jk + u;6in + urdiy) + pusujuy (3.61b)

where 6 = ¢2 and § is the Kronecker’s delta. These values can be replaced in

getting

1
—;HS) = 0L (0065 + puiy) + O (p0 (widjy, + wibin, + updij) + puuguy,) .

(3.62)
Assuming some hypothesis the previous equation can be reduced:
e 0 = c? is constant (isothermal flow).
Bupb + Nz - pfii = 0 (atp + Vs pﬂ’) ~0 (3.63)

The continuity equation makes 0 the elements of the trace 0;p80;; +
awpruk(Sij =0.

e The velocity magnitude is very small. This is equivalent to assume cons-
tant velocity cross product u;u;.

Or(pusutj) + Ogy pusujus, = U, (c'?tp +V- (pﬁ)) =0 (3.64)

Second and higher terms are negligible, d;pu;u; + 0s, pusujup ~ 0.
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The equation is then reduced to
e
—;Hij = 00z, puj + Ox, pui;). (3.65)
Written as tensor products the equation is
1 = -
——nM =9 (V ®pii + (Ve pﬁ)T) . (3.66)
.

Now the tensors II(?) and II(Y) can be replaced in the momentum equations to
obtain

0=0,p+V - (pid), (3.67a)

- At /= -
0=0(ptl) + V- {p@[[]%—pﬁ@ﬁ—s@ <7’—2> (V@pﬁ+(V®pﬁ)T>}
(3.67b)

This equation takes the same shape than NS. However the magnitudes are not
directly equivalent. NS works with physical units. LBM works with lattice
units. For a direct comparison it is needed to scale NS to lattice units.

3.2.6 Scaling Navier-Stokes to lattice units

The LBM works with lattice units. It improves the performance and simplifies
the formulation. In this section the physical units are denoted by the super-
script £, There are three basic scaling factors to convert the physical units
into lattice units.

e Length conversion. Two contiguous nodes are separated by one length
lattice unit. The conversion factor is then directly

o = zAx (3.68)
where Az is the lattice size.

e Velocity conversion. The time step is one time lattice unit long.
During this time the characteristic distribution covers one length lat-
tice unit. In other words, the characteristic speed of the distribution is
one length lattice unit per time lattice unit. Accordingly with the LBM
hypothesis, the characteristic macroscopic speed Uy has to be much lower
than the speed of the distribution. Usually a factor K is selected in such
a way that K velocity lattice units are equivalent to Uy physical units

uf = Ugu/K. (3.69)

K usually takes values around 0.01.
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e Time conversion. During a time step the distribution with velocity
Up/K physical units covers the distance Az. The time step is one time
lattice unit long, consequently

KA
tPh = 200y (3.70)
U(]

e Density and mass conversion. The surrounding volume around a
node contains one mass lattice unit. In physical units this value is
b hAz3. Then the relation between the mass lattice unit and its physical
counterpart is

mPh = pPh ArPm. (3.71)
The relation between densities is immediate

p"" = pg"p. (3.72)

The physical magnitudes expressed in lattice units can be replaced in the NS
equation After dividing the resultant expression by poUg/K2Az it is
obtained

Op+V-(pi)=0  and (3.73a)

O (pil) +V - (pE @ @) = — K Gprny L L g, [ﬁ@ﬁﬂﬁ@ﬁ)ﬂ
¢ poUg ReL Ax ’
(3.73D)

where the Reynolds number Rey, is

_ pololL

Rey, (3.74)

The expression [3.73]is directly comparable with the results obtained from the
Chapman-Enskog expansion [3.67}

e Lo || Ko 1 L o (2 & T
O (pt) |+|V - (pi @ w)|= prUgVP + RGLA—I:KV- [(V®u+(V®u) )]

Ai(pit) |+|V - (pE @ @) |=|—V - (p0[I])|+|V - {59 (T— %) (6®pa+ (ﬁ@pﬁ)T)}

Variation Convection Pressure Stress

(3.75)
The derivative in time and the advection terms are directly equivalent. The
rest of the terms have to be compared, forcing the factors to be equal.

e Pressure conversion. The pressure conversion can be calculated by
direct comparison of the “gradient of scalar” term between NS equation
and Chapman-Enskog expansion

K2

poU§

VPP = Vpc?, (3.76)
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Because all the factors are constant, the gauge pressure is

onUS
s K2 :

PP = (p—1)c (3.77)

Viscosity conversion. The divergence of the sum of gradients term
can be also directly compared

1 L = (=2 . & .t
—RGL—MKv[v(@qu(gu) ]
AN = e e o
=0T v-[V®pu+(V®pu)] (3.78)

It can be noticed how the density is implicit in the right hand side. Con-
sequently these terms are no directly comparable if the density gradient
is not negligible. Considering the density as constant and equal to 1 in
lattice units the equivalence is

ApoUp Az ( At)
_ 24

= = . (3.79)

For dimensionless problems characterised by the Reynolds number the

equivalence is
1 L At
——K=c(1—-=—]. :
Rep Ax c; (7’ 5 ) (3.80)

3.2.7 Summary of hypothesis

Several hypothesis have been considered in this section. There are several
reasons to assume them. Compatibility with NS equations, improvement of
the performance, robustness, discretisation... The most important ones are
summarised here. Every simulation has to accomplish these conditions to be
correctly solved. The following hypothesis have to be considered before calcu-
lating with LBM:

e Characteristic velocity much lower than distribution velocity Uy < ¢,

This hypothesis has been assumed along the whole process.

— Taylor series expansion of the equilibrium distribution around « =
0. The equilibrium distribution has been decomposed as the pro-
duct of equilibrium for velocity zero (weighting function) times the
deviation. The deviation has been Taylored to reduce the compu-
tational cost. Large velocities imply error in the equilibrium distri-
bution.
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— Negligible second moment variation. The tensor terms 0y (pu;u;) +
Oy, (pusujui) appears during the Chapman-Enskog expansion. Both
of them have been considered negligible in comparison with other
terms where the velocity appears only once.

e Isotherm flow. The value of ¢, has been considered constant. The terms
dypf + V - (pfii) are zero with this assumption. However variations of
¢s can be considered. The deviation respect to the reference weighting
function has to include these effects.

e Quasi-incompressible. The variations in density has been considered
small. This assumption is linked with the low velocity hypothesis (large
variations of velocity induces large variations of density). This hypothe-
sis is needed to force compatibility between NS and Boltzmann equation.
More complex models can simulate compressible effects. Xu et al. [5]
summarise in their review some of these methods.

3.2.8 Lattice Boltzmann wvs. Classical CFD

Using LBM instead of classical CFD techniques like Finite Volume Method
(FVM) is advantageous depending on the context. There are several factors to
take into consideration before deciding which method is the most appropriate.
The decision depends on the characteristics of each technique. In the following
lines LBM is briefly compared with Finite Volume Method, the most used in
fluid dynamics.

e Linearity: FVM solves the discrete NS equations. These equations have
second order terms in velocity. On the contrary, LBM solves Boltzmann
equation, which is completely linear in the implicit component.

e Correction of pressure loop: pressure and velocity can not be com-
puted at once with NS formulation. An internal loop of iterations is
needed to correct the pressure and achieve mass conservation. This step
is not needed with LBM.

¢ Boundary conditions: the implementation of BCs for LBM is much
simpler than for FVM. In addition LBM BCs are usually under-restricted
problems.

e Immersed geometry: the discretisation in LBM has not to be adjusted
to the walls. Consequently complex geometries can be meshed easier and
moving walls does not force to remesh the domain each iteration.

e Simpler implementation: the mathematics of LBM are much easier
than NS. The development is faster and robuster.
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e Locality: the formulation of LBM is explicit. FVM needs to be implicit
to have long enough time steps with accurate results. Implicit formu-
lation requires inversion of large matrices. The operation is global. On
the contrary, LBM is local. Each discrete element can be calculated
independently of the rest. As consequence the communication between
processors in LBM is much lower than in FVM. It means that the scala-
bility of LBM methods is close to be ideal [6].

e More memory consumption: LBM has more registers than FVM.
Consequently memory consumption is higher in LBM than in FVM.

e Unsteady solver: LBM is intrinsically unsteady.

The previous points can be considered to argue when to select the LBM as
the best option. There are several factors to take into account: computer
architecture, size of the problem and complexity of the geometry. LBM should
be used under these assumptions:

e Expensive calculations: scalability is one of the most important ad-
vantages of LBM methods. When the number of discrete elements be-
comes very large it is recommendable to use LBM instead of FVM. The
reasons are better scalability (usually large simulations runs in several
cores) and locality of the algorithm. Inversion of matrices, required by
FVM, becomes more expensive when the number of discrete elements
increases.

e Complex geometry: complex geometries like porous media are very
difficult to be correctly meshed. This is the reason why LBM becomes
a better option. Something similar happens with moving walls. The
mesh in FVM has to be refreshed for each time step. Remeshing is not
required in LBM.

e Computers with accelerators: LBM algebra is very easy to vectorise.
Consequently it is the best candidate to be implemented for accelerators
as GPUs.

Several researchers are trying to improve the advantages and reduced the weak-
nesses of LBM. The most important disadvantage is memory consumption.
Several researches focus their attention in reducing the demand of memory.
Argentini, Bakker and Lowe [7] propose an algorithm for structured lattices
which can save up to 78% of the required memory.
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3.3 Boundary Conditions

When the surrounding area around a lattice node is not part of the domain
the incoming distributions from those directions do not exist. The stream step
can not be completed. The BCs built the nonexistent part accordingly to the
existent portion and the restrictions at the boundaries. Some kinds of BCs
also recompute the entire distribution.

Unlike classical CFD techniques, the BCs of LBM are usually under-restricted.

It means that the conditions can be achieved by multiple distributions. The
article of Latt et al. [8] probes this. They compare several formulations for the
same BCs. It is analysed the performance and the accuracy. Therefore extra
constrains are required to restrict the problem. The election of these constrains
depends on the desired functionality. Robustness, accuracy or computational
cost are typical criteria. This is expressed by means of an objective function.
The objective functions are either extra restrictions or optimisation functions.
The same objective function applied for different restrictions creates families
of BCs. The most important sets of BCs are the Inamuro BCs [9] and the Zou
& He BCs [10]. The bounce-back BC, only applicable for stopped walls, is also
widely used due to its simplicity. All of them are local and they only create
or modify the unknown part of the distribution. These three families and a
fourth one developed in this thesis are explained in the following sections. An
example makes the explanation easier. It is shown in figure [3:4] It consists on
a vertical wall located at the right of the central node, at half lattice spacing
away, in a D2Q9 scheme. The procedure followed for this particular case can
be extrapolated to any other generic scheme.

®

A

Y

@ ®

Figure 3.4: Boundary condition scheme.
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More sophisticated ways to restrict the BCs exist. The explanation about
them is not included in this document but a mention is needed. They usually
improve robustness or accuracy paying a penalty in performance. Interpolated
and extrapolated distributions are generally more accurate for smooth limit-
ing surfaces. This is the case of Guo BCs [I1]. Simplest BCs return exact
solutions if the wall is located at the middle distance between neighbouring
nodes. Guo et al. force the restriction in the exact location by interpolation.
This interpolation locates the wall with first order accuracy. Higher orders can
be achieved using finite differences. The extrapolated values contains informa-
tion from several nodes. It is taken into account not only the values of the
surrounding nodes but also the first derivatives. The resulting BC is more sta-
ble and accurate. The negative counterpart is the lost of locality. Skordos [12]
developed BCs in analogous way. He uses the gradient to extrapolate values
outside the domain.

In spite of more accurate results and better stability for smooth walls,
high order interpolation techniques are not recommended for sharp surfaces.
High curvature induces aliasing and other negative effects. Consequently the
numerical error of high order techniques is greater for sharp walls in comparison
with first order interpolation or the most basic methods.

3.3.1 Fixed wall: bounce-back

The bounce-back BC is the easiest and fastest way to simulate walls. For
stopped boundaries, the bounce-back BC consists on inverting the distribution
which impinges on it fo"* = f5. The subscript 4 means “related to the opposite
a-th component, whose speed is ¢ = —¢,”. The mean value between the
mirrored and the streamed population is directly 0, reason why the zero speed
condition is directly accomplished. Because the outgoing population is the
same than the incoming one, but with opposite speed, the conservation of
mass is also achieved.

With respect to the implementation, there are two variants. One of them,
the half-way bounce-back, reintroduces the population into the domain during
the same time step. The outgoing distributions are bounced-back into the
source node but with opposite direction. Only some of the components are af-
fected by the BC. The second strategy consists on transferring the impinging
components into a node located outside the domain. Once it has been trans-
ferred, whole the population is inverted and streamed again. This method is
called full-way bounce-back. With this strategy it is not necessary to check
when a direction cuts the wall. However, if the outer nodes are nodes of the
lattice, every full-way bounce-back BC needs to be at least one cell thick.

Both bounce-back BCs have exact solution when the wall is located at the
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middle distance between nodes. Unfortunately this is not the usual case. The
exact bounced distribution usually finishes in a non-valid location out of the
lattice. Some advance BCs redistribute the bounced population between the
neighbouring nodes. It makes the BC more accurate for smooth surfaces. The
negative counterpart is its penalty in performance. Extra operations are re-
quired to redistribute the populations. For the sake of simplicity and other
reasons related with the geometry (see section for more details), pure
bounce-back BC has been considered good enough for the simulations of in-
terest.

With respect to the formulation purposed here, the distribution of reference
is the full-bounced distribution f¢f = f5. Its density is conserved p°t — p*ef =
0 as well as the moment (pi)°"* — (pi)™" = 0. It can be seen how the original
bounce-back expression is returned foUt = fref = f, After calculating foU*
only the components which impinge the wall are streamed to the fluid node.

3.3.2 Non-slip wall. Inamuro boundary condition.

Inamuro, Yoshino and Ogino [9] proposed in 1995 a new BC for moving walls.
The extra condition required to restrict the problem is equilibrium. Every
incoming population is completely relaxed.

The Inamuro BC is based on its counterpart in the kinetic theory. In
molecular dynamics, when a population strikes the wall it is reflected diffusely
following the Maxwellian distribution (equilibrium). The reflected distribution
moves at the velocity of the wall. However the resultant population does
not. In molecular dynamics there is a discrepancy between the velocity of the
wall and the surrounding gas. It happens when the distance from the wall is
comparable to the mean free path. This difference in velocity, tangent to the
wall, is called slip velocity. It contradicts the restriction imposed by the BC.
In some sense calculating non-slip BCs by means of equilibrium is a paradox.

Inamuro et al. reformulate the reflection to compensate the slip velocity by
means of a mathematical artifice. This undesired magnitude, unknown at the
beginning, is added to the wall velocity before calculating equilibrium. The
normal velocity does not change. To make the explanation more intuitive from
now in advance the mathematical development is specified for the reference
example shown at figure[3.4] The unknown components are fs, fg and f7. All
of them are in equilibrium. They can be written in terms of the velocity of the
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wall ,,, the slip velocity 4’ and the corrected density p’ as

1 9 3
5= p' ~ |1+ 3uy + —ud — = uvar(varv')zH, (3.81)
9 2 2
e L
6q:p,% 1+3(—Uu)+vw+vl)"' (382)
~+g (—ty + vy +0)? = % [uﬁ, + (Vu +v’)2H ,
eq /1 [ /
T =05 143 (—ty — vy —0") - (3.83)
~~~+2(uwvwv/)22[u%ﬂ+(vw+v')2H.

The variables p’ and v’ are the unknowns to be found. A peculiarity of v’ is
that the equation becomes non-linear when the walls are not parallel to the
lattice. This is the reason why it is not recommended to use this BC to solve
oblique limits. The solutions of p’ and v’ for the case of reference (the second
order term of v’ is cancelled) are

szl—luw [fo+fs+ fat2(fr+f5+ [l (3:84a)
p’=6””“f§i§ﬁ[i§2§jé% (3.84b)
o 1 6pwuw - (f3 _/f4 +f5 — f8) — Uy — Sy Ve | - (384(3)

:1+3uw P

After computing the slip velocity and the density they are replaced into the
previous expression to obtain the unknown distributions.

3.3.3 Zoe & He boundary conditions

Zoe & He developed (1995) a complete set of BCs based on the reflection of
the non-equilibrium part. For the case of reference of figure where fa, fs
and f7 are unknowns, the generic equations for all of them are

fot fo+ fr=p"" = (fo+ fr+ fa+ fa+ fs + fs) (3.852)
fotfot fr=—(pu) + fi + f5+ fs (3.85D)
fo — fr=(pv)° + f3 — fa+ f5 — fs (3.85¢)

It can be observed how the first and second equations are redundant. Zoe &
He force bounce-back of the non-equilibrium part of the component normal
to the boundary to restrict the problem fo — f5¢ = fi — f{%. If density p°b
and velocity #° are known the equilibrium distribution is also known. The
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remaining unknown is easily calculated as fo = f1+ f5" — f7®. The equilibrium
values are replaced by the corresponding expanded expressions in terms of the
density and velocity (see equation |3.34). After solving the system the solution
is

fa=fH— ;(PU)OM, (3.86a)
fe =[5+ % (fs = fa) — %(pU)Obj + %(pv)Obj, (3.86b)
fr=fs — % (f3— fa) — %(pu)‘)bj — %(pv)‘“bj. (3.86¢)

The values p°?, (pu)°P and (pv)°P change depending on the type of BC. They
are known a priori. These values represent the restrictions imposed by each
BC. The most usual cases are described in the following lines.

e Moving wall: Moving walls force the non-slip condition and impermea-
bility. The velocity of the fluid is the same than the velocity of the wall
u°Pl = u,, and v°P = v,,. The density has to be corrected to accomplish
mass conservation. First and second expressions of the equation system
[3:85] relate the wall velocity normal to the surface with a variation of the
objective density p°P = [fo + f3 + fa +2(f1 + f5 + fs)] /(1 + ww).

e Pressure inlet: Pressure and density are related in LBM. Known pres-
sure means known density p°® = p™. For this particular case and
others when the equation for the first component of the momentum
and the equation of the density are linear dependent the normal ve-
locity is restricted. The example forces the first component to be u'™ =
[fo+ f3+ fa+2(fi + f5 + fs)]/p™ — 1. In their article Zoe & He also
make 0 the tangent velocity v™™ = 0.

e Velocity inlet: It is similar to pressure inlet. The redundancy between
the density equation and the equation for the first momentum compo-
nent links their values. The new density is given by the normal to the
limit p°P = [fo + f3 + f1 +2(f1 + f5 + f3)] /(1+u'™). The tangent com-
ponent is independent to the rest of variables. Its effects can be included
replacing directly v°Pi = i,

3.3.4 Boundary Conditions as an optimisation process

A complete new set of BCs has been developed for the in-house new software
LABMOTER, an acronym of Lattice Boltzmann from Motores TERmicos.
The motivation to develop it is universality and robustness. Universality be-
cause every BC can be satisfied solving the same equations. Only some re-
ference values and restrictions change. Robustness because the BCs can be
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applied for every geometry. Some BCs can not accomplish multi-restrictive
conditions in some special situations. For instance, when there is a vertical
wall and only the components with the same horizontal speed participate, the
equation for density and first momentum could be linear dependent. In this
situation forcing density automatically fixes velocity. The equation system be-
comes over-determined. It happens when the number of restrictions is larger
than the number of independent equations. The opposite and more usual si-
tuation is under-determined systems. The restrictions imposed by the BC can
be satisfied by infinite combinations of the components of the incoming dis-
tribution. Both problems have been successfully resolved. Under-determined
systems become determined when the Boundary Condition is solved as an
optimisation problem. The inversion algorithm for over-determined systems
returns the solution with lower quadratic error, exact values for determined
systems.

The development process of new sets of BCs usually consists on imposing
an arbitrary criteria to analyse their properties afterwords. In this thesis the
process has been inverted. The criteria is fixed at the beginning and the BCs
are the results. The procedure consists on an optimisation process where the
function to be minimised represents the criterion mathematically. The BCs
conditions are the constrains. The distribution components are the arguments
to be optimised.

The selected optimisation method is the multipliers of Lagrange. The pro-
cess starts with the definition of the minimisation function .#(f). Typical
minimisation functions are the square of the difference between the incoming
distribution at the BC £ with respect to other of reference !

(=35 (- )’ (387)

«

or its equivalent corrected-weighted form

F(f) =3 (fin - pren)?, (3.88)

PATEN
Once the minimisation function has been established it is time to include

the restrictions. Each restriction has to be a function equal to 0. Typical
restrictions are known density (pressure) p™

G(f)=p"=> fa=0 (3.89)

or known velocity «™

G(f) = pmi™ =Y Gafa =0. (3.90)
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Part of the distribution could be known a priori. The distribution is decom-
posed into the known part fX" and the incoming part fin

> fa= o+ > o (3.91)

ae{a|T-AT5€Q} ac{ali-—ATs¢Q}

The known portion is included in the equation system as part of the indepen-
dent term. Once the restrictions have been established they are added to the
objective function, each one multiplied by a new parameter \ called Lagrange

multiplier
Nr

LN = F(F") > MG(F) (3.92)
k=1
where k is the restriction index and Ngi the number of restrictions. A local
minimum exists when the variation respect each component of the distribution
and each multiplier is 0,

g}i =0 Vae{a—AZ; ¢ Q} and 0L _ 0 Vk. (3.93)

O
The number of unknowns of the resultant equation system is the number of
components of the distribution which participate in the BC Q™ plus the num-
ber of restrictions Ng. The most typical restrictions are in density and momen-
tum (velocity). The weighted equation system written in the form [.Z]xz = b
for these restrictions looks like

r wo—l 0 0 e ] Ce0 Cy0 Cz,0 T
0 wfl 0 1 cen cey1 e
0 0 ’(1)2_1 1 Cx2 Cy2 Cz2
L) = 1 1 1 ’
1 1 1 0 0 0 0
o0 Coi Coz 0O 0 0 0
Cy,0 Cy,1 Cy,2 0 0 0 0
L €20 Cz1  Czp2 0 0 0 0
" wo £
) e
3 wy " f3°
=4 1 5, b= R . (3.94)
>\O pm - Z f(xn
A (o)™ — 3 fin
Az (p“y)Tn -2 f(ll(ncy:a
A3 (puz)™ =32 ftlxmcz’a

Every coefficient matrix of this type can be divided in 2 x 2 blocks. The block
[1,1] is a square sub-matrix [Z] of size Q™ x Q™. It is the Hessian matrix of
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the minimisation function %

02F

[ ]J af;nafjln

(3.95)

The second block [1,2] is a sub-matrix [¢] of size Q™ x Ng. It contains the
derivatives of the restrictions with respect to each distribution component

_ 09,
= o

15 (3.96)

The other blocks [2,1] and [2,2] are [¢]T and a matrix of zeros [0] respectively.
The resulting equation system is then

ARG B o T

where m™ are the first (density) and second moments (velocity) of the in-
coming distribution. The equation system can be simplified multiplying by

=] e 1 (3.99)
resulting
R A EPRE O T A S

At this point the Lagrange multipliers are decoupled, and they can be solved
directly. Two small equations systems replace the original

" F T A = m -t and [F]F0 = [ [ (3.100)

Firstly the Lagrange multipliers are solved. Once their values are known they
pass to the right hand side. Then the distribution can be calculated.

Implementation

The inner region is surrounded by the one-cell thick zone which corresponds
with the BCs. Some of the components of the distribution at the boundary
can not be streamed because the source or the destiny does not exist. The
distribution which leaves the domain is lost whereas the distribution which
comes into the domain has to be created. How the incoming population is
depends on the type of BC and the population before streaming. The followed
strategy consists on overlapping over the boundary nodes artificial distribu-
tions which stream into the domain. This overlapping distributions are called
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incoming distributions f". The relation between the reference values (node of
the domain) and the outer values (overlapping nodes) is given by expression
[3:991 The selected minimisation function is the weighted one

1 in ref) 2
F(F) =) g — (= 1) (3.101)
whose Hessian matrix is [#];; = w;'d;;. The restrictions [¢] are known

density and first momentum. After building the coefficient matrix (and the
premultiplicative matrix for the right hand side) the equation system is
solved. The resultant expression is the product of a matrix [.#] and the vector
which contains the reference distribution and the disparity of momenta

(£} = L ™ = prt, (pil) ™ — (pid)™'}. (3.102)

The example proposed in figure has the following equation system

915
X 36 ref
9 0 01 -1 0 in Ie
i 3617
0 36 0 1 -1 1 o - .
0 0 3 1 -1 -1 in Pt =3 fa
1 1 1 0 0 0 A = a€{0,1,3,4,5,8}
-1 -1 -1 0 0 0 N plhult — 3 fkne
0 1 -1 0 0 0 >\pu «€{0,1,3,4,5,8}
Y . .
prug =3 Ay a
«€{0,1,3,4,5,8}

(3.103)
The decoupled form of the same system is
9 0 0 1 -1 0 in
0 36 0 1 -1 1 in
0 0 36 1 -1 -1 in
0 0 0 —-1/6 1/6 0 Ap
0 0 O 1/6 -1/6 0 Apug
0 0 O 0 0 —-1/18 Apu,,
95"
36 fef
36 f5¢f
pr = T - 3
- = 2€{0,1,3,4,5,8}  «c{2,6,7} . (3.104)

P = 3 fiten = 5 fre,

ae{0,1,3,4,5,8} a€c{2,6,7}

in, in kn ref
P Uy, _Zfa Cy,a_Zfa Cy,ax
«€{0,1,3,4,5,8} «€{2,6,7}
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It can be seen how A\, and A, are linear dependent. The equation system
becomes under-determined and inconsistent. There are several strategies to
apply when it happens. The algorithm which solves the equation is robust.
Over-restricted equations are resolved returning the solution with minimum
euclidean norm of the residual. When the density and the horizontal velocity
are consistent the error is zero. The first strategy is then forcing one of the
previous variables to be consistent with the restriction imposed by the BC. This
is the same strategy followed by Zoe & He to define their BCs. The second
option is to include the central (or more) component of the distribution into
the system. The reference value for this component should be féef = fin. The
inconsistency between A, and \,,, is absorbed by this component. The BC
is achieved but with modification of non-incoming populations. Both previous
strategies can be applied together. If he original equation system is consistent
the central distribution does not change.

p™ and @™ fix the BC type. They are the restrictions and they are known
at the beginning. The reference distribution fI! is used for tuning. Some
spacial cases returns the already known BC developed by other researchers.

Moving wall: modified bounce-back

In this thesis the bounce-back formulation has been extended to simulate mo-
ving walls. A particularity of moving walls in Lattice Boltzmann Methods is
that they can inject mass into the domain for normal velocities. In classical
CFD solvers like Finite Volumes the mesh is readjusted to be coherent with
the displaced geometry. On the contrary the lattice is fixed. It does not move
neither readjust the control volume. Only the nodes, discrete locations, can
be enabled and disabled in agreement with its immersion in the fluid phase.

The new BC has been developed following the optimisation procedure. The
restrictions differs from the generic form proposed in equation [3.3.4] Instead
of working with density and velocity, the wall forces mass and momentum
flux. As usual, the distribution can be divided in known fX* and unknown
fin components. The unknown components of the distribution f* come into
the domain, so all of them contribute to the incoming fluxes. The outgoing
fluxes are associated to some of the known components f<*. Every incoming
component fI* has its opposite outgoing counterpart f£®. The bar over the
index means opposite direction. The associated velocities satisfy the equality
Cop = —Cqx.

The restrictions to be considered are two. One of them is impermeability.
The mass flow rate through the wall has to be zero. The mass flow rate which



o4 CHAPTER 3. CALCULATION OF THE FLOW FIELD.

& Nl

Figure 3.5: Geometrical representation of the bounce-back boundary condi-
tion. The particles with velocity ¢ has a relative velocity with respect to the
wall €5 —,,. They return, in relative speed, with same velocity but with oppo-
site direction. In absolute magnitudes their velocity after collide is —Cg 4 21y,.
The wall sweeps an area equal to u, - 7.

leaves the domain through the wall per unit area and unit time is

it =" R [(En — i) - 7] (3.105)

ac{a|ZT-AZ5¢0Q}

The incoming flow has to be equal to satisfy the impermeability restriction, so

Goi=_ fa'a7i— D fa" (G — ) 7] = 0. (3.106)

ae{a|f-ATs¢Q}ac{a|F—ATs¢Q}

This is the first restriction to be satisfied.

The second restriction is known velocity. When a particle with velocity
impinges the wall it is bounced-back at ¢, + 2, (see figure . Taking the
average in time the mean speed is (Cg + Gy + 21y)/2 = . In other words,
the mean velocity satisfies the non-slip condition. The incoming momentum
flux is then

=) fE (G — 2) (G — ) - 7). (3.107)
ac{a|Z-AZ5¢Q}

The increment in speed is replaced in the lattice by an equivalent increment
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in mass to get the same momentum

D faCallo- ) = 3 £a" (Fa = 200) [(Fa = W) W] = 0. (3.108)

ac{a|Z-AZ5¢Q} ac{a|ZT-AZ5¢0Q}

The next step is to select the reference values. To be coherent with pure
bounce-back non-moving walls the reference values are the opposite distribu-
tion fref = fkn_ Tts physical meaning is the minimisation of the difference
between the inverse of the known distribution and the incoming distribution.

Free slip boundary condition

Free slip walls are free of drag forces. It is not usual in nature to find limits
like this. However they have a lot of practical applications. It is recommended
to delimit the domain with free slip walls in these situations:

e Symmetry. Every net flux through a symmetric limit is zero. The same
happens with slip walls. Symmetry is completely equivalent to a straight
free slip wall.

e Flow confinement. Some times it is needed to change the section or
the incident angle of the fluid flow without loss of mass. A good way to
do it without loss of energy is to channel the domain with free slip walls.
The flow can be reoriented by curved channels or a cascade of curved
blades. In similar way the flux can be accelerated by the reduction of
the cross section.

e Free of drag walls. Slip walls are not common in nature. However
could be interesting to assume this hypothesis in same special situations.

The procedure to calculate free slip walls is practically equal to the procedure
to calculate non-slip walls. The restriction about permeability is the same.
The mass flow rate through the free slip wall is zero

ST, it = > (@ — i) i) = 0. (3.109)

ac{a|f-AZs¢Q}ac{a|T-AZ5¢0Q}

The unique difference is the assumption about velocity. The particles with
velocity C5 has a relative velocity with respect to the wall ¢5 — #,,. They are
specularly reflected after strike the wall. In absolute magnitudes their velocity
after collide is ¢ — 2[(Cz — Uy ) - 7]7i. The wall sweeps an area equal to iy, - 7.
The free slip wall forces the normal velocity to be the same and keeps the
tangential velocity (see figure

S fe (i) = D R (@ — 2((Ea — ) - 7] 7] [(Ea — ) - 7] = 0. (3.110)

ac{a|Z-AZ5¢0Q} ac{a|T-AZ5¢0Q}
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Figure 3.6: Geometrical representation of the free slip boundary condition.

The reference values are the distribution before streaming f:¢f = fxi. Other
references can be selected.

Pressure inlet/outlet

Known pressure (or density in LBM) is one of the most usual BCs. Their used
is recommended for:

e Driving force. Two different pressure BCs in different locations create
pressure gradient. It drives the fluid to flow from the high pressure BC
to the low pressure BC. Limiting the domain with pressure BCs is highly
recommended when it is expected high pressure gradients in the solution.
An example is large constrains, such as porous media. All the flow have
to pass through a little cross section. When the flux is forced by the BC,
the speed at these points could be extremely large. As consequence the
simulation could diverge.

e In combination with velocity inlet/outlet. When there is a BC
which fixes net incoming flux (velocity inlet) is highly recommended the
existence of at least one pressure inlet or outlet. A domain completely
surrounded by fixed fluxes is over-restricted. There is a cumulative term.
Consequently the simulation diverges.



3.3. BOUNDARY CONDITIONS 57

e Outlet in external aerodynamics. In external aerodynamics the
velocity of the immersed body is known. The incoming flux is usually
imposed by a velocity inlet BC upstream, where the perturbations of the
immersed body are weak. To avoid over-restrictions the outlet, located
downstream, is a pressure outlet BC.

In LBM pressure is proportional to the lattice density. It means that at the
pressure inlet the density is known p'™. The velocity is a free parameter.
Several strategies can be applied. Copy the velocity of the cell before streaming
@™ = 3 faCa/ >, fo approximates zero gradient velocity. The reference
values can be the existent distribution f;ef = f, or the equilibrium f('ff = foa.

The generic expression solves the distribution.

Velocity inlet/outlet

Known velocity is another of the usual BCs. Their application is recommended
for

e Far field. In external aerodynamics forcing velocity upstream is the
best solution. It has to be located far enough to avoid being perturbed
by the presence of the immersed body.

e Forcing mass flow rate through a section. Known mass flow rate
through a cross section can be established forcing the mean velocity for
every cell in this area. This BC is very useful for internal aerodynam-
ics. Sometimes the domain is enlarged to get full-developed velocity
profiles. LBM is quasi-incompressible. It means that the density can
change slightly. Consequently forcing the velocity does not directly fix
the mass flow rate. There is a small error of the same order than the
velocity in lattice units.

Net mass flow rate can be driven by two couples of BC. Pressure drop (two
BCs with known pressure) and velocity inlet with pressure outlet. Pressure
drop is the appropriate solution for internal flows with large constrictions.
Otherwise the constrain could induce extremely high values of pressure (den-
sity) upstream and/or extremely low pressure downstream the obstacle. On
the contrary, when there are not any important restriction, moving the flow
by means of the pressure drop could produce extremely high velocities. When
it is not expected any important pressure drop the best option is to use a mix
of velocity inlet and pressure outlet.

The generic equation to solve BCs is used to impose velocity at the
boundary. The incoming velocity «'™ is known. The pressure can be estab-
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lished by different ways. The most usual is zero gradient, when pi* = Yoo fa-
The reference values can be the existent distribution fX¢f = f, or the equili-
brium fef = fed,

Total pressure boundary condition

Total pressure BC is a special case of pressure inlet where the velocity field
and the pressure field are coupled. The total pressure PE® for incompressible
flow is given by the Bernoulli’s equation

1
PP = pPh g §pph||ﬁph||2. (3.111)

This equation can be converted to lattice units resulting
14+ — I (3.112)
00 5 2 . .

For the total pressure BC the value of pg is known. From here different
strategies can be applied. The most usual is to keep the velocity of the cell
@™ =3 faCa/ >, fa- The new density is computed p'™ = po/(1+]||?/2¢2).
The distribution is obtained after applying equation The reference values

can be the existent distribution fi°f = f, or the cqulhbrlum fref = fea,

This BC can be used in replacement of the pressure inlet BC. It is more
robust against perturbations.

Pressure and velocity boundary condition

Both pressure, density in lattice units p™, and velocity @™ can be fixed at

the inlet. The generic equation [3.:3:4] can be applied to get the resultant dis-
tribution without any previous calculation. The reference values can be the
existent distribution f*f = f, or the equilibrium fr°f = f¢9. This BC is very
restrictive. Consequently, to avoid over-restrictions, two degrees of freedom
has to be included in the other limits. They can be introduced by a mix of
two different BCs (pressure and velocity BCs) or by a single zero gradient BC.

Zero gradient

Zero gradient BC is approximated by a direct copy of the population before
streaming fI* = f,. Interpolation can be used instead to get p'™ and @™ and
to improve the accuracy. Its use is not recommended. This BC is weakly sta-
ble. Its application can be considered for full-developed fluxes in downstream
direction.
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3.3.5 High order boundary conditions

All the previous BCs admit higher order approximations. A more expensive
and complicated formulation is able to capture the curvature of the walls and
approximate better their location. There is only one case when applying high
order could have a boomerang effect, the corners. A corner have infinite cur-
vature. As consequence improvement in accuracy is not guaranteed. Acicular
mullite, the material to be analysed in this thesis, is one of these exceptions.
The crystals are sharp needles with multiple edges.

The BC proposed by Guo, Zheng and Shi [IT] is second order accurate.
They decomposed the distribution into the equilibrium and non-equilibrium
parts. A fictitious node enforces the condition at the wall whereas the non-
equilibrium components are extrapolated by a first order tendency. Bouzidi,
Firdaouss and Lallemand [13] implement a similar technique for BGK operator
and moving walls. The formulation is a modification of bounce-back BC.
Instead of forcing the location of the bounced distribution to be coincident
with lattice nodes the position after streaming is generic. In a second stage
of the streaming step the population is redistributed among the surroundings
nodes.

3.4 Grid refinement

LBM works very well with uniform lattice. However uniform lattice is not
practical when the geometry or other phenomena present multiple scales. To
capture the detail it is required fine lattice. However large volumes of fluid
without any perturbation can be successfully solved with coarser meshes. Con-
sequently discretising whole the domain with the same lattice spacing is not
optimum. The lattice can be refined to be adapted to the required level of de-
tail. Several refinement techniques have been developed. Usually one or more
overlapping regions coexist in the interface between lattices. This is the case of
the algorithm developed by Neumann and Neckel [I4]. It combines refinement
with data arrangement to optimise memory locality. The framework Peano
[15] provides the second capability. Usually accurate interfaces between lat-
tices of different spacing requires interpolation. This task is computationally
expensive. Geier, Greiner and Korvink [16] propose to use bubble functions
for interpolation to obtain maximum performance. Their algorithm is second
order accurate. Other authors like Rohde et al. [I7] use extensive magnitudes.
Their work is focused on reducing computational effort. They argue that exten-
sive magnitudes avoid interpolation and scaling operations. The conservation
is obtained in a natural way. The negative counterpart is penalty in accuracy.
Yu, Mai and Shyy [I8] propose to discretise in blocks instead of refining locally.
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Arranged data are cache friendly and speed up the calculation in comparison
with random access. The refinement factor is generic. Each block can be
in contact with multiple lattices with different lattice spacing. Filippova and
Hénel [19] propose local refinement for BGK model. The transference between
lattices is realised across overlapping nodes. The single adjustable parameters
of BGK model is used to keep viscosity constant between lattices. They non-
equilibrium distribution has to be corrected during the transference from one
lattice to other. Similarly Chen et al. [20] transfer the distribution between
lattices. The difference is the formulation. They use extensive magnitudes
instead of intensive like density to avoid the conversion operations. Mass con-
servation is directly achieved using this formulation. Dupuis and Chopard [21]
also focus their research in performance improvement. The strategy is based
on simplifying the calculation in comparison with other techniques.

Several requirements are necessary for compatibility between lattices. All
the physical properties have to be equal. The elapsed physical time from the
beginning has to be the same in both lattices. The particles have to travel
at the same physical speed to cover the same physical distance during the
same physical time step. The populations have to travel from one lattice to
other. The transference could be established by interpolation in time and
space. This strategy makes the simulation very expensive. The single way to
avoid interpolation is by integer refinement factors K € N. The immediately
coarser lattice spacing is K times larger than the fine lattice AzPh = KAzPh,
The velocity in lattice units is forced to be the same. As a consequence the
time step also scales with the lattice AtP? = K Atl;h. In other words, K time
steps of the finest mesh elapses the same physical time than a single one of
the coarsest lattice. This proportion between time steps has to be conserved
during the simulation.

Now it is time to see the relation between the lattice magnitudes in both
scales. It is already known how t. = Kty and . = K&, whereas the velocity
and the density are the same @, = @y and p. = py. The NS equation for the
coarsest scale can be scaled to the magnitude of the finest scale

0, (pit) + ¥z, - (pii @ 8) = ~¥z, - (pBII]) -
- 0 At = N =3 T
Vi, - {K <TC - 2) (vff ® pii + (Vz, ® pil) )] . (3.113)

Only the factor related with momentum diffusion changes. This factor can be
written in terms of the thinnest lattice. Both have to be equal

% (Tc - A;) —0 <Tf - A;) . (3.114)

The relaxation time of the fine mesh can be written in terms of the relaxation
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time for the coarse lattice and the refinement factor

1 At At
= — - — —. A1
Tf % (TC 5 ) + 5 (3 5)

Equal velocity and density for both scales automatically fixes equal equilibrium
distribution. However the non-equilibrium parts are different. Only the second

momentum is different to 0. It appears as TI(Y) = 07 (6 @pi+(V® pﬁ)T).
The quotient for each component is

oo T (%c ®pi+ (Vz, ® pﬁ)T)

g (%f ® pii + (Vz, ® pﬁ)T)

(3.116)

The relation between gradient operators scales with the physical lattice spacing
KVgz, = Vg, With p and @ equal for both scales the previous equation is
simplified to

(1)
II: Te
e Te (3.117)
chl) K

This relation is satisfied if each non-equilibrium component also scales with

the same relation
neq

Cc,&x TC
—— = . 3.118
= (3.115)
This method is used by Dupuis and Chopard [21]. Filippova and Hénel [19]
proposes an equivalent relation between relaxation times and non-equilibrium
parts.

After define this relation the equivalent collision steps have been success-
fully found. It is time to fix the stream step. There are two points of view
for streaming from one lattice to other (see figure . LBM can be seen as
a volumetric formulation. Every node is surrounded by a volume. When the
volume is divided the centroids of each sub-volume are not necessarily coinci-
dent with the parent centroid. Each volume is divided in an integer number
of sub-volumes. The population of the parent cell is distribute among the
descendent ones.

The second alternative is the nodal formulation. The nodes of the coarse
lattice are coincident with some of the nodes of the fine lattice. Extra nodes,
whose values are interpolated, are added along the frontier.

Each method has its own advantages and disadvantages. In volumetric for-
mulation, after refine the lattice each node of the coarse mesh is associated to
KP nodes of the fine mesh, where D is the dimensionality. The mass and mo-
mentum contained in the parent cell is directly transferred to the descendants
and wvice versa. Without any advance interpolation locality is maintained. On
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Figure 3.7: (left) Nodal mode. (right) Volumetric mode.

the contrary, nodal formulation is not totally local. Interpolation recovers data
from multiple surrounding nodes. As a consequence, advance algorithms are
required to ensure mass conservation. The number of nodes after refinement
also reflects the difference. It can be observed in figure how each divided
cell in volumetric formulation is always associated to the same number of chil-
dren cells. On the contrary, the number of new nodes in nodal mode is not
intuitive. The simplest example, a flat interface, only adds new nodes in be-
tween. The coarse nodes at the limits are only surrounded by a single fine
node in the direction of the interface. Consequently after refinement the line
where both lattices overlap contains K (N — 1) + 1 nodes of the fine cells. The
difference is larger if the frontier does not follow a straight line.

On the contrary interpolation is easier for nodal mode. The values at
the hanging nodes are weighted sums of the surrounding coarse nodes. In
volumetric mode the populations are directly transferred. If no interpolation
is considered then every children node contains the same distribution. Better
accuracy can be achieved if the fine nodes follows the tendency of the coarse
lattice.

LABMOTER, the software developed in Centro de Mantenimiento de Trans-
porte (CMT-Motores Térmicos) in the frame of this PhD, redistribute the
components following their first gradient. It is called the Piecewise Linear
Method (PLM). Its task is to reconstruct the continuous flow field from finite
volumes. This reconstruction technique is applied for each component of the
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distribution separately
fl=to+ @ -5 Vi (3.119)

Higher polynomials and other techniques can be used instead of improving the
interpolation. Omne problem of this method is the possibility of overestimat-
ing the value of the gradient. Couples of fine cells touching the coarse grid
alternates over-estimation and under-estimation of their values.

3.5 Software

Several solvers based on LBM have been developed or used for different pur-
poses. In this section these solvers are briefly described. It is explained the
reasons why they have been developed as well as their characteristics.

3.5.1 Test environment

The test environment is a D2Q9 solver exclusively created for development
purposes. 2D simulations are run with this application for validation, mea-
surement of the performance and robustness testing. Every new advance in
BCs and models has been tested in this environment. The implementation can
be also optimised by a collection of benchmarks.

A test environment has to be fast and simple. Simplicity is obtained by
a modular design. Every function is created to be as independent as possi-
ble. This strategy facilitates the incorporation, modification or replacement
of subroutines. By default the test environment collides and streams whole
the domain. There is periodicity for every direction. The streamed and the
collided populations for the same time step are in memory. The BCs can be
calculated from both distributions. They are applied afterwards, over-writting
the populations before being collided again.

Modular design is easy using C++. Every modulus is equivalent to a class.
In addition C++ also satisfies the second criterion, fast execution. This is the
reason why the test environment is written in this language. But there is a
candidate still better to run small simulations. The workstation is equipped
with a C2070 GPU. This device is manufactured by nVidia Corporation. They
also provides for free a library to run applications on the GPU, what is called
GPGPU. The name of this library is CUDA, an acronym of Compute Unified
Device Architecture. Running the simulations on the GPU accelerates the
calculation in more than an order of magnitude. It is a technique widely
extended in HPC.
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Thanks to this design every new improvement can be easily incorporated
and tested in few minutes. Just to have a general idea. The WALBERLA
framework, designed from the beginning for HPC applications, can solve five
million cells per second and core. The workstation can refresh around 120M
cells per second in total (D3Q19 scheme). The test environment, without being
exhaustively optimised, refreshes up to 495M cells per second (D2Q9 scheme).
Only memory alignment has been considered for optimisation. Random access
has an important penalty in performance in GPGPU applications.

The most usual case for testing LBM is the driven cavity since the simula-
tion of Hou et al. [22].

3.5.2 LaBMoTer

LABMOTER is an acronym of Lattice Boltzmann from Motores Térmicos. It
is a CFD solver based on LBM. It works with D3Q19 scheme. The objective
of this software was to be able to run a simulation of a sample of porous media
(filter) in the workstation. The simulation of porous media demands large
amounts of memory. In one hand, the smallest details such as interstices have
to be captured. In the other hand, the domain has to be large enough to
contain several of the greatest structures. This two scales are very different.
There is a big domain finely discretised. This is the reason for memory demand.

Before starting with the development two different opposed concepts have
to be taken into consideration, the objective and the limitations. The objective
is to simulate a filter. Its geometry is very complex and it demands a lot
of memory. The limitations are mainly determined by the computer. It is a
workstation with 128Gb of RAM and 24 threads (12 cores with multi-threading
technology). To take advantage of all the processor the code has to run in
parallel. For shared memory architectures, such as the workstation, a fast and
easy option to parallelise is OpenMP library.

With respect to the memory the following actions were considered to reduce
the demand as much as possible. The most important one is adaptive lattice.
It can save a lot of memory. At the beginning the coarse grid occupies whole
the domain. Accordingly to a criterion the cells can be divided into others in
a recursive way (volumetric formulation, see section . This strategy can
be applied, for instance, to capture the details of the geometry. Fine lattice is
used only where it is needed. One important characteristic is that LABMOTER
can adapt the lattice on the fly. Typical criteria are high gradient (in cell) of
a variable, threshold value or geometry. All of them have been implemented.
Mesh adaptation is the best way to reduce memory consumption without loss
accuracy.
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However this methodology has a negative counterpart. When a cell is di-
vided eight more are created. They are located at the end of an array. Conse-
quently memory alignment is broken. The location of the children cells become
chaotic. Indexes of neighbour nodes can not be calculated by arithmetic any
more. Only the first level is arranged. The children cells are indexed to their
parent an vice versa. The construction of the neighbourhood starts from the
first level. The next level is connected by the indexes to the children. Succes-
sive neighbours for different levels are found following the index to the correct
descendant. This is done in a recursive way. Each descendant can be divided
and have more descendants. Once the appropriate neighbourhood has been
calculated two different strategies can be applied. Each cell can be linked to
the surroundings by storing the indexes. The neighbourhood has to be cal-
culated only once. After that the stored links can be used to access directly
to the surrounding nodes. Storing the indexes demands as much memory as
a distribution. The second option is to calculate the indexes every time. It
saves the memory required to storage them. However a penalty in performance
has to be paid. Firstly the number of arithmetic operations increases. The
computational time increases accordingly. Secondly the indexes to children
are not aligned. It produces a lot of cache misses. Moving data is much more
expensive (not only in time, but also in energy consumption) than arithmetic.
Because the limiting factor is memory LABMOTER calculates the indexes each
iteration. It drastically slows the calculation down. WALBERLA, which uses
arranged storage, is up to 10 times faster than LABMOTER.

3.5.3 walLBerla

WALBERLA is the acronym of widely applicable Lattice Boltzmann from Er-
langen. It is a general purpose framework originally developed to work with
LBM. It can be used for other purposes like heat transfer. Its highest priority
is performance and scalability. At the same time the framework has to be easy
to use, modular and extensible. Each intensive differentiable task is executed
by a different piece of code called kernel. Different versions for the same task
exist. Each version contains a specific algorithm to adapt the solution to the
requirements. Accuracy, robustness and convergence are the typical criteria.
Computational time is the most usual magnitude to be minimised (maximum
performance). Different kernels solves the same physics with different degree of
accuracy, robustness and stability. In addition the algorithm has to be adapted
to the computer architecture to get maximum performance. The performance
of the algorithm can be sensible to the size of the problem too. Diving the
solver in kernels facilitates the adaptation to multiple scenarios (machine ar-
chitecture, size, accuracy...).

On the contrary to LABMOTER, WALBERLA has been designed to be run
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on the most powerful supercomputers [6]. Consequently high scalability and
performance are mandatory. The best performance is obtained for arranged
data. The data demanded for computations can be prefetched when their
location in memory is predictable. Prefeching consists on overlapping the
calculations with data transferences. This technique minimises cache misses
and improves performance. WALBERLA divides the domain in blocks. Each
block is a rectangular cuboid. Every cuboid contains a single lattice size. This
strategy provides arrange data for every block. However the lattice size can
not be adapted locally. What is done in practice is to refine the block entirely.
It is a compromise between refining the entire domain and local adaptation.
Full fine mesh consumes a lot of memory. Local adaptation deteriorates the
performance.

WALBERLA is prepared to work in the largest supercomputers. These ma-
chines have distributed memory. The best option for parallelise the code are
Message Passing Interface (MPI) libraries. This is a second reason to divide
the domain in blocks. The data of each block is only accessible by a single core.
High parallel programs have to distribute the workload among the computa-
tional resources in agreement with their characteristics to obtain maximum
performance. The computational load of each resource should be balanced.
In homogeneous systems the workload should be the same for every resource.
When a block is refined the number of nodes in it increases. It breaks the good
load balancing. The solution is to divide the block in a recursive way. When
a block is refined it is also divided. Each children block is a scaled version of
the parent. Every block always contains the same number of nodes and all of
them are equal in shape. Homogeneous load balancing is reached.

The good capabilities of WALBERLA have been widely demonstrated. Sev-
eral publications corroborates that such as [6]. Visit the WALBERLA web page
for more information.

3.6 Validation

3.6.1 3D driven-cavity

LABMOTER has been validated with two different cases. Both of them are
usually employed for this purposed or for calibration. One of them is the 3D
driven-cavity. The solution of this problem is well known. A lot of bibliography
of the solution exists, including the solution of DNS. Iwatsu et al. [23] dive
a complete description of the structures of cubic 3D driven cavity for several
Reynolds numbers. In a similar way Albensoede and Kuhlmann [24] calculate
several 3D driven cavities for multiple aspect ratio. Their solver based on
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spectral methods (Chebyshev-collocation) is validated up to Reynolds 1000.
Leriche and Gavrilakis [25] also use Chebyshev-collocation methods. They
calculate cubic driven cavities for several Reynolds.
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Figure 3.8: Dimensionless velocity components u,, and u, for axis (z,0,0) and
(0,y,0) respectively in 3D driven cavity at Re=1000.

Driven cavity is a purely academic problem. It has no application on in-
dustry. The simulation calculates confined fluid in a cubic box where one of
the walls moves at constant velocity and the rest are stopped. The Reynolds
number it is defined from the velocity of the moving wall and the size of the
domain. In this particular case it has been selected Re=1000. Considering the
domain as a unitary box of size 1x1x1 and the origin of coordinates located
in the middle of the domain, several proves have been located along the axis
(2,0,0) and (0,y,0). The second component of the velocity has been measured
for the first axis and the first component of the velocity for the second. Both
the results and the reference values are practically coincident

3.6.2 Circular cylinder in cross-flow

The circular cylinder with cross flow is the second case. As well as for the
driven cavity, a lot of bibliography exist about it. Another advantage are
the measurements. Circular cylinder in cross flow is one of the most studied
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cases in fluid dynamics. The flow field around it is something very easy to be
measured. For moderate Reynolds an instability appears passing the cylinder.
Alternate vortexes are detached creating the von Karméan vortex street. The
frequency of detaching of the vortexes is known and it is correlated with the
Reynolds number. A dimensionless number relates the frequency, the charac-
teristic length and the characteristic speed, the Strouhal number

St = [J;—D. (3.120)

The model is considered valid if the Strouhal number obtained in the simulation
approximates the measured values.

The simulation has been realised for Reynolds number equal to 250. The
period (and then the frequency) can be calculated comparing the solution at
two different times. One period is proportional to the distance between similar
structures. To convert distance to time it is needed to know the velocity of the
structures. This velocity can be easily obtained measuring the displacement
of a structure during a known time [3.9] The resultant Strouhal number after
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Figure 3.9: Flow field for an immersed circular cylinder. Volumetric render of
the vorticity in logarithmic scale after 15000 and 16000 iterations. Units in
diameters.

calculating the period and the frequency is 0.205. This value approximates very
well the expected value. The solver passes the validation test successfully.
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Chapter 4

Particle modelling

After achieve the stationary regime of the flow field the incoming particles start
to go into the domain. To obtain a realistic and representative behaviour the
set of particles has to replicate the typical populations measured during the
working conditions of a Diesel engine. This populations cover particles whose
diameter ranges from 30nm to several ym. The following sections describe how
the population is, the calculation of the trajectories and the techniques used
to obtain the parameters which govern their motion.

4.1 The Diesel particles

In Diesel emission context, a particle is every matter in liquid or solid state
dilute into the gas in normal conditions. The first step to provide a realistic
population of particles and consequently a good model is a good knowledge
base about them. This section describes the formation process and the sta-
tistical distribution. Both of them are equally important to understand the
properties to be used afterwards.

4.1.1 Formation process

The formation process helps us to understand some properties of the particles
such as their shape or their density in a direct way, or the drag coeflicient
and the diffusion coefficient in a indirect one. This process is very complex
to be described in detail at this document. In fact, it is still a leading edge
topic nowadays. However a brief introduction gives the hint to understand the

73
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distribution in size and the effect of the filter on it.

The formation process starts during the combustion. During the chemical
reaction the hydrocarbon chains reacts producing principally CO5 and water.
However traces of other chemical products could appear such as CO, NOy or
partially burned hydrocarbons. The precursors of the Diesel particles are the
last ones. During combustion some of the chains lost some hydrogen becoming
into unsaturated chains with double and triple links. If the process continues
the hydrogen vs carbon proportion is too small and the chain closes on itself
creating cyclic compounds, like benzene and other aromatics. Every cyclic
radical could find other radicals and combine. Consequently poly-cyclic com-
pounds start to grow up, becoming larger. This compounds are called PAH, an
abbreviation of Poly-cyclic Aromatic Hydrocarbons. In the limit this material
lost practically all the hydrogen and a graphene film is obtained. When several
films of graphene find each other van der Waals forces maintain them together
in a stack of graphite. Again, each piece of graphite attracts each other. When
several of these crystals gather together the resultant structure takes the shape
of a sphere. The inner pieces are randomly oriented in contrast with the outer
ones, whose normal points out the sphere. This outer layer creates a shell
around the agglomerate. This structure is already considered as a particle.
Because this type of particles are the master pieces to create the bigger ones,
they are usually called precursor particles. When several particles collide, they
can coalesce or they can aggregate. The coalescence of several particles results
into a new particle. The aggregation put several particles together, but the
shape of every particle is maintained. Its final shape is an aggregate of spheres.
Figure resumes the process.

4.1.2 Characterisation

There are no equal particles. Each one varies in size, composition and shape.
These differences are specially important for large aggregates. At this point
the geometry is chaotic and the parameters which resume their properties such
as the drag coeflicient present high uncertainty. Different measurements tech-
niques are summarised in the review written by Sorensen [I]. In this review it
is studied both geometrical properties such as fractal dimension and mobility
radius, an indirect measurement of the aerodynamic properties. Exact mea-
surements becomes very difficult and equivalent descriptors are used instead.
The reference pattern used for the equivalence is the spherical particle whose
density is 1000kg/m3. From this definition it is very easy to calculate the
equivalent aerodynamic diameter, probably the most important descriptor of
this field. Because of the small size of the particles, they can be considered
immersed into Stokes flow. The drag force Fp of an sphere of diameter D in
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Figure 4.1: Formation process of Diesel particles.

Stokes regime is
Fp = 37uDUs (4.1)

when it is immersed into a fluid with unperturbed relative velocity U, and
viscosity u. If the same sphere is also affected by a constant external force
like gravity, centrifugal force or electromagnetism (if the particle is electrically
charged) it will travel at constant velocity after a while. At this point the
forces will be in equilibrium, without the influence of the kinetic effects. If the
particle moves due to the gravity force, taking into account its density, the
total force is

gppmD?/6 — 3muDU,, = 0, (4.2)

where g is the gravity force per unit mass and p,, is the density of the particle.
The equivalent diameter can be obtain measuring its speed as

18U
Deg = | 2222 (4.3)
Peqd

Similar results can be obtained for other forces like centrifugal force or elec-
tromagnetic force. Accordingly to the aerodynamic diameter Diesel particles
are classified as:
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PM;: particles whose aerodynamic diameter is lower than 10um.

Fine particles: particles whose aerodynamic diameter is lower than 2.5um.

Ultrafine particles: particles whose aerodynamic diameter is lower than
0.1pm.

Nanoparticles: particles whose aerodynamic diameter is lower than 0.05m.

Once it is clear how the properties of the particles are measured it is time to
analyse how those measurements are. One of the most interesting measures
is the concentration of particles as a function of its aerodynamic diameter.
The typical population can be seen at figure It can be appreciated how
the distribution is the sum of three overlapping log-normal curves, each one
representing a different type of particles.

Nuclei mode: particles whose aerodynamic diameter is lower than 50nm. It
contains between the 50% and the 90% of the particles.

Accumulation mode: the population of this mode has an aerodynamic dia-
meter between 50nm and 1pm. It contains between the 80% and 95% of
the mass.

Coarse mode: particles whose aerodynamic diameter is larger than 1um.
The number of particles contained by this mode is negligible. However,
due to their size in comparison with other modes, the contained mass
can be representative enough to take this distribution into account.

4.2 Particle transport

Capturing particles is the main purpose of every filter. This magnitude can not
be quantified without knowing their trajectories. Consequently calculating cor-
rectly the trajectory becomes an important requirement of filter simulations.
Depending on the concentration the particles can be introduced in the formu-
lation as a dispersed phase to be solved with FEulerian formulation or discrete
elements to be tracked by a Lagrangian solver. The first approximation is ad-
equate when each discrete element (mathematical entity of the flow field to be
solved numerically) contains a representative population of particles. The dis-
persed phase can be approximated as a continuum medium. When the number
of particles per discrete element is very low continuum media is not valid any-
more. Lagrangian formulation is necessary to track each particle separately.
The case of interest is of the second kind. Trajectories of Diesel particles are
computed using Lagrangian formulation.
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Figure 4.2: Typical numeric and mass distribution of a Diesel particle popu-
lation respect to the aerodynamic diameter.

If the relative size of a particle with respect to lattice spacing is very low
the particles can be considered zero-dimensional. Otherwise 3D effects have to
be considered. Dietzel, Ernst and Sommerfeld [2] use both approximations to
simulated deposition. The first part of their investigation concerns to coupling
Lagrangian formulation of point-particles with LBM. The second part consists
on calculations of agglomerates with detail. The aerodynamic forces of real
geometries are calculated for several fractal dimensions, a magnitude which
quantifies how compact is an agglomerate. The solver to realise this work is
explained by Dietzel and Sommerfeld in a previous publication [3].

An important part of the calculation of filtering process is particle trans-
port. The trajectory has to be calculated accurately to predict how many
particles cross the filter. Capture the particles is the purpose of the filter and
This magnitude defines As it has been seen in the previous section the parti-
cle size to be included in the simulation goes from aerodynamics diameters of
some tens of nm to several pm. Several physical phenomena affect the parti-
cle motion, such as Brownian motion, inertial forces, continuity of the media
among others. The dominant effects depend on the particle size. Some of
them, like Brownian motion, only affects the trajectory of small particles. On
the contrary, inertia is only important for large particles. The following effects
have been considered:
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e Trajectory calculation technique. The number of particles to be calcu-
lated simultaneously in the domain is relatively low. Consequently each
particle has to be simulated independently instead of use the statistical
description of its population. The Lagrangian formulation solves better
this type of problems. See section for more details.

e Drag Force. It is considered Stokes regime around the particle. The
validity range of this hypothesis is explained in detail at section
The most important parameter related with drag force is particle size.
Fluid mechanics of rarefied flows is slightly different to continuum media.
The drag force of small particles, immersed in this type of fluids, has a
deviation with respect to Stokes flow for continuum media. The deviation
is modelled by a correction factor.

e Particle-Fluid interaction. When the drag force slows down the particle
then the particle also pushes the surrounding fluid. Depending on the
particle size the drag force could be negligible or not. Furthermore, if
the particle is very large, the aerodynamic effects on the surrounding
air could be extended along several lattice points. In fact, due to the
complexity of the geometry, each agglomerate has to be considered as a
porous particle, so some flux crosses it. How the particle interacts with
the surrounding fluid is explained in section [4.2.3

e Brownian motion. The particles diffuse in the air. The counterpart in
discrete formulation of the Fick’s law is the Brownian motion. Because
the particle size differs a lot the Brownian motion can be extremely
strong for nanoparticles, and it can be negligible when the aerodynamic
diameter is several um long. The section explains the ranges where
Brownian motion has to be taken into account and the techniques used
to calculate it depending on the particle size.

4.2.1 Trajectory calculation

There are two ways for solving differential equations. In one hand, the Eulerian
formulation. A control volume is fixed and the differential equation is solved
inside considering the net flux across its limits. In the other hand is the
Lagrangian formulation. Instead of counting how many particles goes in and
out the control volume, each particle is calculated separately, following its
trajectory and the interactions with the surrounding particles. In general way
the first formulation is appropriate when the number of particles inside the
volume is large enough to be statistically representative. Otherwise continuum
solutions are achieved when the real phenomenon is discrete. The second
formulation generally works better when the number of particles is very low
and the physics to reproduce with the simulation is discrete.
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Typical concentrations before the Diesel Particulate Filter (DPF) are around
10® part./cm3. The order of magnitude of the domain size is Imm3. As result,
the upper threshold for the number of particles in the domain is around 10°
particles, a reachable enough value for a computer if each particle is calcu-
lated separately. Another interesting value related with the concentration is
the number of particles per lattice node. Each node contains the information
of the surrounding volume, approximately 1pym. It means that each node con-
tains 10~* particles on average. Only one cell in every ten thousand contains
the centre of a particle, reason why the particles have to be considered as a dis-
crete field. As resume, the total number of particles to be simulated is clearly
reachable. They can be calculated one by one. Their low concentration per
cell bans the use of statistics. As conclusion the most appropriate formulation
is the Lagrangian.

The next step is to specify the equation which describes the particle motion.
Supposing it as zero-dimensional, only the three translational degrees of free-
dom have to be considered, resulting in the three-component vector expression

mpfp = ﬁD + ﬁB + ﬁg—&-b, (44)

where m,, is the particle mass, :'Ep is the second derivative of the location of
the particle with respect to time (acceleration) and Fp, Fg and F_"g+b are the
drag force, Brownian force and gravity together with buoyancy forces respec-
tively. This equation of second order can be decomposed in two of first order
introducing the particle speed #, as a variable

mpﬁp = ﬁD + ﬁB + ﬁg—i—by ﬁp = j?p. (45)

Solving for the first derivative is immediate. The Runge-Kutta method is used
for integration. The LBM is a second order method as well as the interpolation,
which is a second order too. Taking this into account the best option is to use
a second order time integrator, which is as accurate as the interpolator and the
method and does not increase the complexity and the resources consumption
required by higher orders. Defining the vector of independent variables ¢ =
{Z,1,} and its derivative in time as q= {5, ﬁp} it is very easy to set out
the equality J = f (@) from expression The first approximation to the

derivative is Ry = f(¢). The second approximation is quite similar, &3 =

f(@+ AtRp). The next step can be easily approximated as ¢(t + At) = ¢(t) +
At(Ro + R1)/2.

4.2.2 Drag force

The aerodynamic drag is the projection of the resultant force on the opposite
direction to the relative motion between an immersed body and the surroun-
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ding fluid due to their difference in velocity. It is usually very difficult calcu-
lating it algebraically, reason why a semi-empirical non-dimensional coeflicient
is usually employed. This coefficient, by definition, is the result of dividing
the total drag force Fp between the dynamic pressure q = p||@,||?/2 (i, is the
relative speed defined as the difference @y — ,) and a reference area S. It is
called aerodynamic drag coefficient Cp

L
FD = CD§P||“THQS- (46)

Recovering the notation and writing it in vector form the equations becomes

= 1 U,
FD = 7SCDp (ﬁr ﬁr)+ (47)
2 ! A

But the aerodynamic drag coefficient can also depends on the velocity and
the properties of the fluid. Some hypothesis can be applied to simplify the
expressions of the force or to make negligible some of them. The range of
validity of an hypothesis is called regime. Two sets of hypothesis delimits
the regimes of this context. The first one is related with inertial and viscous
effects. The indicator is the Reynolds number Re. The second set depends
on the ratio between the characteristic scale of the immersed body and the
separation between the molecules of the fluid. The indicator is the Knudsen
number Kn. Both indicators are dimensionless numbers and their use is very
extended in fluid dynamics. The Reynolds number, defined as

UsoL
Rey, = pT"’, (4.8)

it is strongly related with the chaos in the flow field and the fluid patterns
of the flow. Very low Reynolds means high viscosity effects in comparison
with the kinetic ones. Any perturbation is damped and the flow practically
follows the wall of the immersed objects without detachment. This regime is
called Stokes regime and it is in fact the case of the Diesel particles. Other
regimes are the laminar regime, when the Reynolds number is moderate, and
the turbulent regime, when the Reynolds number is very high. In laminar flows
there are some detachments in regions with high curvature, but the resultant
structures are coherent and predictable. In turbulent flows the kinetic energy
of the fluid is very high and any perturbation could be amplified and produce
chaotic structures.

The other interesting regime indicator for the study of Diesel particles is
the Knudsen number. It is defined as the quotient between the mean free path
A, the mean distance between two consecutive collisions of a molecule with
others of the same fluid, and the characteristic scale of the problem

Kn=\/L. (4.9)
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It represents the limit where the continuum hypothesis for the flow field is
not valid anymore. High Knudsen number means very low concentration of
particles so the space between collisions is much longer than the immersed
object. It happens when the pressure is very low or when the object is very
small. This regime is called high vacuum regime or free molecular regime.
For moderate Knudsen number the regime receives the same name than the
dimensionless number, Knudsen regime. The concentration of molecules is high
but it is not high enough to achieve the equilibrium distribution, so the NS
equation are not valid yet. However LBM can calculate this regime. The last
regime, when the mean free path is much lower than the characteristic scale, is
the continuous regime. The smallest Diesel particles are several tens nm thick.
The mean free path is the same order of magnitude long. As consequence,
to calculate the drag coefficient of the particles correctly, the effects of the
Knudsen number have to be taken into account.

Now it is time to specify the drag coefficients for the case of interest. The
equivalent spherical Diesel particle (see section is moving into a fluid at
Stokes regime and in continuum or Knudsen regime depending on its diameter.
The motion equation for an spherical particle immersed in Stokes flow is

Myt = 3mpuCedy (i — ,) (4.10)

where C, is a constant depending on the Knudsen number to correct the non-
continuum effects. The premultiplicative terms of the right hand side of the
previous expression can be put together to form a time constant

mp

= — 4.11
Td 3mpuCed, (4.11)
getting
ou, t
= — . 4.12
at T4 (uf up) ( )

The velocity of the particle for a uniform velocity flow field is obtained by
solving the differential equation

up(t) = us + (up(0) — uy) exp (=t/7a). (4.13)

How fast the particle gets the fluid velocity is dictated by the time constant
74. Large values of 7; means large inertia and consequently the particle needs
a lot of time to achieve the velocity of the fluid. In the limit, if 74 is extremely
large, it can be considered the movement of the particle as independent of the
flow field. This case does not appear in the Diesel particle context. On the
contrary, low values of 7, are representative of viscous-dominant motion. The
particle follows the flow field. Its trajectory can be approximated accurately
by a pathline. For time non-dependent flow fields and in the absence of other
forces the trajectory of this type of particles can be calculated during the
post-processing stage.
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4.2.3 Particle-Fluid interaction

If the flow slows down the particle, the particle reacts pushing the fluid. It is
a direct consequence of the Newton’s third law. The particle motion and the
flow field is then intrinsically coupled. Coupling the particle movement with
the flow field solver slows down the calculation, so it is very interesting to see
when decoupling has no consequence in the accuracy of the solution. There are
two situations when the particle-fluid interaction can be considered negligible:

e The particle is so small that its characteristic linear momentum is in-
significant compared with the linear momentum concentrated in a node
of the lattice, m,U, < psh3Us. The presence of particles does not mod-
ifies significantly the local flow field.

e The viscous effects are so strong in comparison with the kinetic and ex-
ternal forces that the particle is forced to follow the pathline. In this
situation the particle gets immediately the velocity of the surrounding
flow. Consequently, because the drag force depends of the relative ve-
locity of the surrounding fluid with respect to the immersed object and
this is zero, the drag force is also zero.

For the rest of cases decoupling can affect both the trajectories and the flow
field, specially if the particles are large and they are immersed in high gradient
regions. Depending on the size of the particle, this force can affect a single
node or a set of them. When the perturbation of the particle affects multiple
nodes all of them contributes to the drag force. The reaction force is also
shared among the affected area.

How the force is distributed along the surrounding nodes is dictated by a
Kernel function W(:E',g) Z is the location of a generic point of the domain
and E is the location of the centre of mass of the particle which perturbs the
fluid. The objective of the Kernel is weighting the contribution of each node

to the total drag of the particle as well as the reaction forces.

One of the most typical Kernels is the Gaussian Kernel

E_ )2
K(Z,€) = (2m0) P2 exp (_M) (4.14)
202
where D is the number of dimensions. The Kernel is in fact the Gaussian
distribution. However, instead of calculating the contribution of every cell by
integration, the Kernel is evaluated for every location of the surrounding nodes
K (i"i,g). It gives to each node a different weight depending on the distance
to the centre of the particle E The total contribution of all the weights is
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not normalised to one. Then each evaluation is divided by the sum of all
evaluations. It returns the weight for the i-th node of the lattice

The computational cost of the Kernel can be reduced deleting the premulti-

plicative constant
LA £— 7|2
K(Z,§) = exp (—” 202” : (4.16)

However its cost is still very expensive for two reasons. Firstly the exponential
function needs a long time to be evaluated in comparison with others such
as multiplication or addition. Secondly the function returns values different
to zero everywhere. Truncating the function for larger distances from the
particle solves the second problem. However a better solution is to replace the
exponential by a piecewise-defined polynomial.

A novel efficient Kernel is proposed for performance improvement. The

Kernel approximates the Gaussian distribution. It have several peculiarities:

e It is symmetrical respect to 0.
e It is continuous in value and first derivative.

e The polynomial depends on even powers of the distance. It saves com-
putational cost avoiding the use of the root square.

Three trams have been considered to approximate the Gaussian distribution.
The last one is zero constant. Considering z =||Z—&||/o, the first and second
ranges take the form y = a + bz? + cz*. The generic equation is then

ag + boz? +cozt  Va €0, 2)
y(z) =< a1 +b122 + 12t Vo € [20,21) (4.17)
0 Vz € [21,00)

There are eight unknowns {ag, bo, co, a1,b1, c1,z0,21}. The values of these
constants have to minimise the quadratic error with respect to the Gaussian
distribution. The function to be minimised is

/ — exp(2? /2)) (4.18)
0
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The constrains are continuity in value and first derivative

ao +bozd + cozg = ay +b122 + 12y Continuity at zg, (4.19a)
ay+bi2i+c1zi =0 Continuity at z;, (4.19b)
2bozo + 40028’ = 2b129 + 40128’ Derivative continuity at zg, (4.19¢)
20121 +4e1 28 =0 Derivative continuity at z;. (4.19d)

Applying the Lagrange multipliers technique the unknowns are solved. The
new Kernel approximates the Gaussian distribution with minimum quadratic
error

1.0000 — 0.451722 + 0.0643792* V= € [0, 1.6895),
K(2) =4 05367 —0.127122 + 0.0075232* V= € [1.6895, 2.9064),  (4.20)
0 Vz € [2.9064, 00).

Figure [£.3] shows both the exponential and the polynomial approximation as
well as the difference between them. The Kernel models the distribution of the

2.50 — 1.00
e x 100 | K(2)
125 075 F
0.00F 0.50
125 0.25
2,50 — 0.00 L '

0 1 2 z 3

Figure 4.3: (blue) Gauss Kernel, (green) polynomial approximation and (red)
error.

drag force in space. Instead of being concentrated in a single point, the particle
interacts with an extended region. The intensity which the particle interacts
with depends on the distance. The total drag force has to be identical to the
drag force produced by the equivalent sphere in a homogeneous medium

Fp = 3wirpCed,(ii; — i) (4.21)

where w; is calculated for every node of the surrounding lattice. The reaction
force for each of these nodes is the corresponding component of the sum but
with opposite direction.
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4.2.4 Brownian motion

Brownian motion is the random movement of immersed particles produced
by impacts with the molecules of the surrounding fluid. It is the discrete
counterpart of the Fisk’s law

9¢ 0%¢
5 =753 (4.22)
The Green’s function for the previous equation is
er) = N S G Gt Y
Gz, t;6,7) = ArP(t — 1)) exp ( 19G-1) (4.23)

This equation is the solution of continuous media after the diffusion of a single
spot located at { and time 7. An equivalent distribution has to be obtained
after computing the location of multiple particles using Lagrangian formulation
In other words, the normalised Green function is the probabilistic field for
the location of a single particle & at time ¢ originally located at 5 at time 7. The
next position of the particle can be modelled by random samples extracted from
this probabilistic density distribution. It is, in fact, a Gaussian distribution
centred in the expected location with standard deviation o = vV22At. This
formulation was originally introduced by Einstein in 1926 [4].
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Figure 4.4: (Left) Particle density concentration after simulating Brownian
motion of 1M particles from the same origin after 1000 iterations. (Right)
Difference between the result and the Green’s function for the Fick’s law.

The diffusion coefficient of the particles in the fluid 2 can be estimated
from the drag coefficient and Knudsen number

g=tTe, (4.24)
Cp

The drag coefficient for a sphere is Cp = 3mud), in Stokes regime.
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Temporal scale disparity. Multi-step Brownian motion

The Brownian motion can be very important for very small particles. When
the Brownian displacement for a lattice time step At is several times bigger
than the lattice spacing the final location can not be directly calculated. The
time step has to be refined to achieve accurate results. The covered distance
by a single particle will be less than 30 = 3vV2Z2At with a 96% of probability.
This distance has to be less or equal to the lattice spacing. If it is not, the
time step is divided in multiple sub-steps

Ng; = [3\/;@7&} . (4.25)

The trajectory of the particle is completely refreshed for every sub-step, in-
cluding drag force and other effects. The new random generator for Brownian

deviation has a standard deviation of o = /29 At/Ng,.

4.3 Computed generated particles. Ballistic co-
llision.

The Diesel particles have been described by means of their equivalent aerody-
namic diameter. This magnitude summarises the aerodynamic behaviour of
the entire population correctly. However in addition to the aerodynamics there
are other effects to take into account. Brownian motion is an important term
for the smallest particles. 3D effects have to be considered for largest particles.
Consequently the real distribution is needed. The aerodynamic equivalency is
not valid in this context.

The Diesel particles can be approximated as agglomerates of spheres. The
agglomeration process is simulated by a new solver developed ad hoc for this
purpose. The relation between the real geometry and the aerodynamic equiva-
lence can be found by studying the aerodynamics of the resulting agglomerates.
Several assumptions have been considered to create the population. The first
and probably the most important hypothesis is free regime. There is no fluid
to interact with the particles. They moves freely accordingly to Newton’s laws.
Other important assumption is the shape of the precursors. They are supposed
to be perfect spheres. This hypothesis approximates very well the reality.

Understanding the particle agglomeration process is of great interest for
industry. Diesel soot is formed by agglomerates of particles indeed. But also
nano-particles synthesis is affected by this phenomenon. Wang and Sorensen
[1, 5] measure the gyration radius of aggregates and their diffusion coefficient
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by light scattering. The measurements are used to calculate the fractal dimen-
sion for several Knudsen numbers. Similar results are obtained from simula-
tions. Eggersdorfer and Pratsinis [6] study the morphology of agglomerates
generated from polydisperse particles. They generate agglomerates employing
multiple algorithms. The objective is to quantify the effects of the precursor
size into the final geometry. They extend their work [7] to study the agglomer-
ation process for continuum, rarefied and free molecular regimes. Their work
is a complete study about agglomeration and also includes aggregation and
sintering. This study is extended for larger agglomerates by Goudeli, Eggers-
dorfer and Pratsinis [8]. The investigation continues with evolution in time
[9). Morgan et al. [I0] simulate generation of Diesel particles. The geome-
try of resultant populations is statistically studied. They correlate different
geometrical descriptors such as fractal dimension, projected area, number of
precursors, etc. Dekkers and Friedlander [11] generates the agglomerates by
Brownian motion of the precursors. They used the results to find the relation
between the fractal dimension with the Knudsen number.

In the following lines it is explained how the solver calculates the agglom-
erate motion and formation.

4.3.1 Theoretical background
Particle generation

The agglomerates are chaotic and the chaos begins with the size of the primary
particles. Because each precursor is considered as a sphere only the radius is
needed to describe its geometry. The population of precursors follows a log-
normal distribution in size.

Any population of particles with different mass and velocity gets the equi-
librium distribution with time. The equilibrium distribution is the Maxwell-
Boltzmann distribution. The Maxwell-Boltzmann distribution relates the ve-
locity distribution with the mass of the particles. Concretely the standard
deviation in velocity is related with the particle mass .#. If oy is the standard
deviation in velocity for particles with unitary mass, the generic standard de-
viation is ¢ = o1/vV.4. A particle four times heavier than the reference is
twice slower. The Maxwell distribution is the combination of three Gaussian
distributions, one for each component of the speed. The probabilistic density
distribution is

g2\ P/2 = 22
pat() = (771) e (<) (4.26)

where ¢ is the mean velocity. For ideal gases o1 = kpT. All of these is
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for equilibrium. However, for the sake of simplicity, the same distribution in
speed has been considered. If it is wanted, the effect of the particle mass can
be taken into account after generating the velocity population. It suffices with
scaling the velocity by the factor coming from the previously generated mass
respect to the mean value

& = (8 — W)\ Moot | M + 1. (4.27)

Independently of the initial distribution, the population tends to equilibrium
with time. For long enough simulations the solution will be independent of
the initial conditions.

The particles can also rotate. To simplify the calculus each single particle
has been created without rotation. However initial distributions can be con-
sidered if it is wanted. The methodology is similar to create the population
of linear speeds. Again, if in addition the uniqueness of each particle is con-
sidered the rotational speed has to be corrected, this time by the effect of the
moment of inertia.

Initial condition. Distribution in space.

In the previous section it is explained how the particles are created. Now it
is time to described how the created particles are located. The simplest case
is the cuboid domain. The location can be directly specified by three random
samples of uniform distributions.

However the box is not the generic case. If the domain is discretised by
tetrahedrons then each one has to contain the appropriate number of particles.
Supposing n as the number of particles per unit volume, the particles in the
i-th volume is N; = n - V;. The result is not usually an integer. Taking the
floor of this value as the number of particles to be created inside the i-th
volume underestimates the total number of particles. Just as an example, if
the concentrations of particles is 999 per unit volume and the unitary volume
is divided by 500 equal elements then each element will contain only 1 particle
returning a total of 500 particles when 999 are expected. To solve this problem
a random sample y coming from a uniform distribution and bounded by the
interval [0, 1] is added before taking the integer part

Ni=|n-Vi+x]. (4.28)

With this procedure the final number of particles in the total volume will be
closer to the expected valuelT]

1The spatial distribution of particles for low values of Nj; is more uniform, preventing
clustering and empty spaces, what in statistical terminology is called “reducing the occur-
rence”.
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Once the number of particles in each element is known it is time to locate
them inside. The first step is to select one of the vertexes ¥y of the tetrahedron.
Then three edges are selected following a path. The four vertexes are linked
by the vectors €y = U7 — Uy, €1 = U — U1 and €5 = U3 — Uh. To locate the
particle in the tetrahedron three random samples from uniform distribution
X0, X1 and x2 are needed. Calculating the final location requires knowing the
values of three scaling factors

T = 89€y + S1€1 + $2€5. (429)

Two different things have to be taken in consideration. In first place the scale
factor s; depends on the previous scale factor sg, and the last scale factor
so depends on both sy and s;. Secondly the probability to obtain a specific
value is not uniform for the scale factors s; and s;. The procedure to compute
them is as follows. The first random sample fixes a section of the tetrahedron
parallel to the opposite face of the first vertex. Because the section scales
linearly from O to the last area the Probability Density Function (PDF) has to
scale accordingly. A transformation of x¢ to x{ is needed. Considering that
both distributions have to be equivalent

X0 X0
/dX: /2)(* dx*. (4.30)
0 0

Solving the integrals returns how xg = /Xo. With this simple operation the
first scale factor is obtained so = y/Xo. The procedure to calculate the second
factor is similar. The only difference is that the section has been already scaled
by the previous scale factor, so s1 = so,/X1 = y/Xox1- This procedure is also
valid for the hyperspace if the i-th component is not the last one s; =[], \[(Xz)
The last sample is equally probable, so it is not required the intermediate
transformation to . That is, the last scale factor is sp_1 = xp—_1 Hiiff VXGi-
For the 3D case the factors are

S0 = v/X03 81 = 80/ X13 S2 = S1X2- (4.31)

Once the scaling factors have been calculated the location can be easily com-
puted from expression [£.29]

Inlet boundary condition: reservoir of particles

When there is a reservoir next to the domain a net incoming flux appears from
it. The incoming flux of particles with speed ¢ per unit area and unit time
injected by the reservoir can be easily calculated as

¢n. =npdf(@)é-dAst V& -dA > 0. (4.32)
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Two conclusion can be obtained from expression Firstly, the Probability
Density Function of the tangent components does not change. Secondly, the
number of incoming particles and consequently their speed is fixed by the
expression[£:32] It modifies the original distribution multiplying by the velocity
and rejecting the outgoing particles. Considering the Gaussian distribution as
PDF the equatlon- 4.32| becomes for the normal speed ¢, = ¢- 71, where 71 is the
normal to the wall 7 = 0A/||6A],

- 270 202

on(Cn) = ! exp (_(cn—cmo)Q) Cn Ot A. (4.33)

The uniform distribution has to be converted into a new one proportional to
the flux given by equation As every Cumulative Distribution Function
(CDF), the values are limited by the interval [0,1], so the first step is to find
the constant 1/K which forces the integral

= /exp < — o, 0)2) Cnden = 1. (4.34)

This integral is valid for every sample so it has to be calculated only once. The
value of the constant is

2
s Cn Cn
K= 1/50071,0 {erf <\/§’g> + 1] + 0% exp (—20’8> . (4.35)

The number of incoming particles AN during a time step At in a section AA
is obtained by the integration of equation [4.33] along the entire population
of normal speeds ¢,. It can be easily observed how the integral of the c,-
dependent terms is K from equation so the total flux of particles which
cross an area AA during a time step At is

AN =

K AtAA. 4.36
T (4.30)
Again, to take in consideration the decimal part, a random sample from a uni-
form distribution y is added. After this step the integer part can be extracted

AN = K AtAA + XJ (4.37)

7=

This operation is done each time that the number of incoming particles is cal-
culated. The expression that converts a sample from the uniform distribution
Xi into a sample of normal velocity ¢, ; is

1 (€ — Cnyo)? B l
I /exp <%‘2 Cn dcnf/dx. (4.38)
0



4.3. COMPUTED GENERATED PARTICLES. BALLISTIC COLLISION.91

Solving again this equation it is obtained the relation which returns the equiv-
alence

™ Cn,i — Cn Cn,i — Cn 2
\/;Ucn,o {erf (’\/50’0> - 1} —o?exp <(’202’0)) =K(x; —1).

(4.39)
Solving for ¢, ; algebraically is not possible. An iterative method such as
bisection or Newton-Raphson has to be applied. When a new particle coming
from the reservoir goes into the domain the tangent components to the wall are
two samples of the Gaussian distribution. The normal component is obtained
generating a random sample from a uniform distribution x; and replacing and
solving equation [4.39] Once the speed of the particle is known, it is time
to set its location. The origin of the particle is somewhere in the triangle-
shaped area AA. The exact location of the origin can be generated randomly
applying equation [£:29] Firstly two edges are calculated from the coordinates
of the vertexes €y = U1 — Uy and €; = U — ¥;. The final location is the sum of
this two vectors scaled by the corresponding scale factors

fo = 5050 + 5151. (440)

The scales factors are obtained from two random samples xo and y; extracted
from a uniform distribution bounded by the interval [0,1]. Uniform probability
is obtained when the scales factors are sqg = V/Xo and s1 = sgx1. Now the point
where the particle goes into the domain is known. But it covers a distance
during a time shorter than the time step. The probability to go into the
domain is not time dependent, it is uniform. As consequence this time can
be generated randomly by the multiplication of the time step by a sample
extracted from a uniform distribution. Consequently the particle is yAt old.
During this time the particle covers a distance of ¢Aty. The final location is
then

T = Zp + xAtc. (4.41)

Mechanical properties of agglomerates

Each agglomerate is considered as a rigid body without restrictions. Six De-
grees of Freedom (DoF) are enough to explain the motion of this type of bodies.
Three of them specify the location and other three specify the orientation. The
way a rigid solid interacts with forces and moments is governed by its prop-
erties, mass and inertial matrix. In this context the precursor is the simplest
sample. It is just an spherical particle. Considering the particle of radius
r made of uniform material whose density is p, the mass m and the inertial
matrix respect to its centre of gravity [I°] are

3 2
m = prr3, I?j = gmr2§ij. (4.42)
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Here §;; is the Kronecker’s deltaﬂ When the centre of mass is not coincident
with the origin of coordinates the inertial matrix [I] becomes

Where d is the distance from the origin of coordinates to the centre of gravity.
An agglomerate is composed by several of these precursors. The addition of
the inertial properties of each precursor returns the inertial properties of the
agglomerate. The first step is to calculate the total mass as the sum of the
masses of its N precursors

N
m =" "m,. (4.44)
n=1

It is wanted to calculate the inertia matrix respect to the centre of mass

N

- 1 -

79 = g MpZLem,n- (4.45)
n=1

me9

Finally the inertial matrix [I°] is obtained after adding all the contributions

N
a 2
=% [5mnr§ +my, (dop + di2 + dgi)} 8ij — MnTinwj . (4.46)

n=1

where d is the relative location of the centre of the precursor respect to the
centre of mass of the agglomerate. Both the total mass m and the inertial
matrix [I] are used to calculate two magnitudes of interest, the angular and
linear momentum p’ and E, defined as

p=mi;  L=[, (4.47)

where # is the linear velocity and & the angular velocity. Consequence of the
third Newton’s law, both the linear and angular momentum are conservative
magnitudes in absence of external forces. Independently of the interaction
among the bodies of the same set these magnitudes evaluated over all members
of the group do not change.

Gyration radius

One of the parameters most widely used to characterise an agglomerate is the
gyration radius Ry(7) around a generic axis 7. The square of the gyration

2The Kronecker’s delta 0;; takes value 1 when i = j and 0 when i # j.
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radius around an axis 7 (which contains the centre of mass) is defined as the
quotient between the inertia around this axis over the total mass

R2(F) = I(F)/m. (4.48)

This is the gyration radius calculated from 2D photographies obtained by mi-
croscopy, when a projection is used in the absence of the 3D structure. In this
case the vector 7 follows the line of sight of the camera. With the 3D structure
available a generic inertia matrix can be calculated. By diagonalisation the
inertia matrix can be decomposed in the product

1] = [RI[A][R]™ (4.49)

where [A] is a diagonal matrix which contains the eigenvalues of the iner-
tia matrix and [R] the rotation matrix whose columns are the corresponding
eigenvectors. Each of the eigenvalues is one of the principal components of the
inertia matrix A;; and it is associated with the eigenvector r; which follows
the i-th principal direction. The eigenvalues are sorted in increasing order. A
gyration radius exists associated to each principal direction

2
R2, = \ii/m. (4.50)

The difference between the main gyration radii is related with the asymmetry
of the agglomerate. When A1 =~ Agg ~ A33 the agglomerate is spherical. If
A11 + Aoo =~ N33 the agglomerate is planar. Finally, if A\j; < Aog ~ A3z the
agglomerate is lineal. The inertia moment respect to the centre of mass is
related with the inertia moment respect to the main axes by the expression

21y = A11 + A2 + Ass. (4.51)

A gyration radius associated to the moment of inertia respect to the centre of
mass can be calculated from the previous values as

R2 o= In/m = (A1 + Asz + As3)/2m. (4.52)

This value is related with the expected value calculated from the 2D projection
of an agglomerate (obtained from 2D photographies). The expected value for
the inertia projected on a generic axis is E[I(7)] = (A11 + A22 + Az3)/3. Then
the observed 2D expected gyration radius is related with 24 ¢ by the expression

3E[R:(7)] = 2R}, (4.53)

Considering spherical particles the inertia matrix using Einstein convention is

4 2
L = gwai K{)RZ + xivk> Sij — xn:cn]} (4.54)
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where R,, is the radius of the n-th precursor, Z, is its relative location with
respect to the centre of mass, p is the density of the materiaﬂ and 6;; is the
Kronecker’s delta. Every inertia moment has been calculated following the
expression @ When R, < Ry the inertial contribution of the spherical
shape of each precursor is negligible and the expression can be approximated
by

4

Lij = gWPRi (xi,kéij — Tninj) - (4.55)

This approximation is usually employed to calculate the gyration radii by
other authors. The total mass is calculated as the sum of the masses of each
precursor

4
m= gﬂ'pRi. (4.56)

Fractal dimension

Agglomerates present self-similarity between different scales. The dependency
of the agglomerate size (gyration radius Ry o) with the number of precursors
n, follows an exponential law

ny = ky (Rgo0/Rp)"7 . (4.57)

Here ky is a premultiplicative constant, R, is the precursor characteristic radius
and Dy is an exponent called fractal dimension of the agglomerate. It is an
indirect measurement of the compactness of the agglomerate. There is a self-
similarity relation between scales. The proportion of filled regions is constant
independently of the level of detail.

The value of the fractal dimension of the resultant population can depend
on the flow regime and the generation algorithm. Meakin [I2] studied multiple
algorithms and analysed the results. He shows how the interaction between
the aggregates can determine its shape. Similarly Dekkers and Friedlander
[11] study the fractal dimension of computer generated particles. They created
them by Brownian motion. No interaction force has been considered in this
thesis for the generation process.

3The density of the material is not needed to calculate the gyration radius. In such cases
it is recommended to replace p by 37 /4 to reduce the number of required operations.
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Agglomeration

The agglomeration is the process which fuses two or more agglomerates into a
single one. Solving this problem is as easy as solving the equations

N N
N i, =mf@ and S [IG, A+ mady A, = 17757 (4.58)
n=1 n=1

where the relative location Jn is the distance from the new centre of gravity
Zf to each of the old ones &,,.

Collision

The collision process is usually calculated from the coefficient of restitution Cg.
It relates the relative velocity of one particle respect to other @;; = @; — @;
projected into the normal 77 to the surface of the i-th body before #;; and after
u;; the collision

;- = —Cg (U - 7). (4.59)
In an indirect way, the coefficient of restitution is a characteristic of the mate-
rial which measures the amount of energy remaining after an impact between
two rigid bodies. When the coefficient of restitution is 1, the energy after the
impact is conserved. On the contrary, if the coefficient of restitution is 0, the
energy dissipation is maximum. Usually the collision process is solved by the
calculation of the momentum exchange. However, due to robustness reasons, a
methodology based on energy has been implemented. The kinetic energy of a
body is the sum of its kinetic energy due to translation plus the kinetic energy
due to rotation

o %mmm %QT 1. (4.60)
Accordingly to the second thermodynamic law after the collision of two agglom-
erates the remaining energy has to be lower or equal than at the beginning
> E,>> E. If the collision solver is based on momentum exchange the in-
equation could not be accomplished due to numerical errors. On the contrary,
if the total energy after collision is imposed and then the momentum exchange
is calculated, the over-energising effects are completely avoided. How much
energy is lost in the process is fixed by the square of the restitution coefficient.
When this value is 0 the remaining energy, a minimum, is the energy contained
in the fused agglomerate. The agglomerate is obtained solving the equation
system proposed in equation[4.58 On the contrary, if the value is 1, the energy
is conserved. The intermediate values are obtained from expression

E*=C% (E-E') +Ef (4.61)
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where no superscript means before collision, the superscript / means after the
agglomeration process and * means after collision. If & is the impact point
and cﬁl and cﬁz the relative location of the same point respect to the centre of
gravity of each colliding agglomerate then it can be calculated the velocity of
this point for both particles

@ =i +@ Ad,  and @ =iy + Dy Adb. (4.62)

The next step is to calculate the normal. Because the agglomerates are formed
by spheres the normal is something very easy to be calculated. Once it is known
which spheres are in contact the normal is computed as the distance between
the centres of the colliding precursors divided by its own modulus

= (25 — ) /125 - 7. (4.63)
It has to be noticed how the particles only collides if the intersecting precursors
are getting closer. Mathematically the condition for collision is

(@ — @) -7 < 0. (4.64)

The distance to the precursors can be also used to calculate the impact point.
If the collision is compute at the end of each time step and not at the middle
of it there is an intersection region instead of a single contact point. A fast
approximation can be easily calculated as

= (Tl + b)) /() + ) (4.65)
where r{ and r} are the radii of the colliding precursors. The collision produces
an impulse AP in the point Z* coming from a force whose direction follows the
normal (no friction), so the vector form is A P7i on the first agglomerate and the
negative counterpart in the second one. Because the impulse is not necessary
aligned with the centre of gravity of each agglomerate it also produces varia-
tions in the angular momentum AL; = d1 AAP7i and AL, = —d2 ANAPT. The
linear and angular velocities after collision can be calculated from the previous
values as

T — 0 =m{'APR  and & — & =[] (cﬁl A APﬁ) . (4.66)

The total post-collision energy can be expressed as a second order function of
the impulse magnitude AP.

2E* = ag + 2a; AP + ag AP? (4.67)

The parameters are
ag = mqUq - U1 + matls - Uy + 1 [Il]bvl + Wy [IQ]CUQ, (468&)
a1 =Ty 7B —To - T+ - (dy AT) — @By - (dy A7), (4.68b)

ay =mit +myt + (dy AR)L]) TN dy AT 4 (do A7) [Io) " (dy AT, (4.68¢)
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The solution of the second order equation is

—ay £ /a3 — (ag — 2E%)ay
as '

AP = (4.69)

Once the impulse is known the linear and angular velocities of the agglomerates
after the collision are calculated by the equation

Collision vs. agglomeration probability

When two agglomerates are in contact they can collide and change their motion
or they can fuse to create a larger agglomerate. A criterion decides the way
to be followed. For the studied cases this criterion is based on the energy
absorbed during the collision. If the agglomerates fuse the link formed at the
contact point has to absorb all the energy excess. Consequently it is expected
that the probability to fuse the impinging agglomerates is higher when the
energy to be absorbed by the new link is low. On the contrary, if the energy to
be absorbed during the fusion process is too high is much more probable the
collision than the agglomeration. Coherently to the previous observations a
probability function is proposed to decided when an agglomerate collides and
when it fuses

p(85)= 1+ (280120 =80l

ﬂloglo(AEo)

The logarithmic scale is mandatory to force agglomeration when the energy
to be absorbed during the impact is zero. Here AFE /5 is the energy when the
probabilities to collide and fuse are the same and AF,, is the parameter which
controls how abrupt is the transition. When AF, is small the zone around
AFE; /; where collisions and agglomerations coexist is also small. In the limit,
when AE, ~ 0, the probability function Z(AEFE) is the unit step function.
All the impacts whose absorbed energy for agglomeration is lower than AFE /;
results in fusion whereas greater values ends in collision.

(4.70)

Once the probability function is known a random sample from a uniform
distribution x decides when the impinging agglomerates fuse and when they
collides. The criterion to collide is evaluated every time that two agglomerates
are in contact by the condition Z(AE) > .

4.3.2 Algorithms: impact detection

An agglomerate is formed by spherical precursors. The number of these pre-
cursors can differ a lot from one agglomerate to other. For the studied cases,
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this number goes from a single particle in the simplest case to tens of thousands
for the largest particles or even more. In other words, there is a discrepancy
in scale, complexity and consumption of computational resources. Multi-scale
interactions are the curse of computational parallelisation due to the bad load
balance among processors. A little portion of the total number of interactions
consumes most of the resources. The number of operations required to detect
when two agglomerates are close to each other is of order &(N?), where N is
in this context the number of agglomerates in the domain.

When proximity is detected it is time to check if the collision exists. During
this process the distance between precursors of different agglomerates is cal-
culated one by one. The brute force algorithm required to detect impact is
proportional to the product of the number of precursors of each colliding ag-
glomerate (N1 Ny) ~ 0(N?). Here N; and N, are the number of precursors
of each agglomerate and its product is the number of binary combinations (a
precursor from the first agglomerate can collide with every precursor of the
second one). Consequently large variations of concentration and size of ag-
glomerates are penalties to load balance. In this work several algorithms are
applied for the same purpose depending on these variables for optimising. The
computer used for calculations is a workstation, a shared memory machine.
OpenMP is the library used for parallelisation. The algorithms have been
adapted in consequence.

Two of these algorithms are the proximity detector and the contact detec-
tor. Both of them have as purpose to decrease the order of their original brute
force counterparts. The reduction goes from order &(N?) to (N log(N)).
Divide and conquer algorithms are the responsible of this improvement. They
are detailed in the following lines.

Proximity detector

Testing when the collision happens is a very expensive task, even if an advance
and optimum algorithm is used instead of the brute force one. The complexity
of this process grows with the size of the agglomerates to be tested. It becomes
prohibitive if this number is very large or if they are formed by a great number
of precursors. The fastest way to prevent such huge demands of resources is
just to skip the search of impacts by means of a rejecting criterion. For this
purpose each agglomerate has been surrounded by an sphere centred in the
centre of mass of the own agglomerate. The collision could happen if and only
if the surrounding spheres to the colliding agglomerates intersect each other.
The radius R of each sphere has to be big enough to contain whole the volume
of the agglomerate

R = max (||Z; — Zom|| + 71), (4.71)
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where Z; is the location of the centre of the i-th precursor, r; its radius and
Zem 18 the centre of mass of the agglomerate. Larger improvements could be
achieved if smaller circumscribed spheres are used instead. However important
differences between both spheres can only be observed in large sparse agglom-
erates, uncommon in this context. The penalty to be paid for the calculation
of the optimum sphere counteracts the advantages of its use. Consequently
and for the sake of simplicity the algorithm to find the optimum sphere has
not been implemented and the circumscribed sphere centred in the centre of
mass has been used instead.

Two agglomerates are considered candidates to collide when the surroun-
ding spheres intersect each other. It happens when the distance between the
centres of mass is lower than the sum of their radii

(Ry + R2)? > || Zemn — Zema|” - (4.72)

Using this criterion the computational time is drastically reduced. However the
procedure is still very expensive, specially when the number of agglomerates
is very large. Each agglomerate can collide with every other. The number
of times the criterion has to be evaluated grows proportionally to the square
of the number of agglomerates. However full comparison is not necessary. A
divide and conquer strategy reduces again the complexity of the algorithm to
order O(N log N), where N is the number of agglomerates in the domain.

The divide and conquer algorithm starts from the division of the original
domain in several regions. At this moment the regions are equal (cubes) and
structured but more advanced algorithms can be used if wanted. Each of this
regions is surrounded by a sphere whose radius is the distance from the centre
of the sub-domain to the furthest corner. If the sub-domain is cubic the radius
of its surrounding sphere is R%)LC = \/ghgicc /2, where hg}&c is the length
of the sub-domain. Once the domain is divided it is time to select which
agglomerates intersect them. The condition to include an agglomerate in a
sub-domain is similar to the criterion to select when two agglomerates could
collide (see equation . An agglomerate is included in the sub-domain if
the surrounding spheres intersect each other. The condition is satisfied when
the sum of the radii is less than the distance between the centres

2
(Reg + BSkc) 2 IEDec — e (4.73)

Each of these sub-domains can be calculated by a different core. The cost
of this operation is M N, where M is the number of sub-domains and N the
total number of precursors. Resulting of the decomposition there are M parts
with N© ~ N /M agglomerates each. The computational cost required to

4The reason to use the square instead of directly the magnitude is to avoid the compu-
tationally expensive calculation of the square root.
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solve one of these parts is V %, Once the domain has been divided in regular
blocks, each block can also be divided recursively into self-similar but smaller
sub-blocks following a geometrical progression with each step. The common
ratio k which relates two levels of refinement hg‘)&c = khg)&c is the inverse of a
positive integer number called refinement factor K = 1/k. With this strategy
each block is divided in K3 sub-blocks. The computational cost of solving
each block tens to zero with its size, and the computational cost to divide the
I-th level is the number of blocks M K3! of each level times the computational
cost of dividing a single block NM ~1K =33 The total cost per level is linear
and it does not depend of the level itself NK3. Because this operation has
to be repeated for each level and the number of required levels L scales with
the logarithm of the number of agglomerates L o loggs(N) the number of
operations is proportional to M N + K3 N log s (N). It corresponds with order
O (N log(N)).

All the behaviour described before works under the assumption of punc-
tual agglomerates. However the incorrectness of this hypothesis has negative
consequences on the performance. Volumetric agglomerates can occupy sev-
eral blocks. During the simulation some of the resulting agglomerates extend
over large parts of the domain. As a result, if two of this particles interacts,
that interaction could be evaluated multiple times resulting in a penalty of
consumption of computational resources.

Impact detection

Once the possibility of collision has been confirmed the algorithm for impact
detection takes place. As usual, if the sum of the radii of the precursors is
greater than the distance between the centres the collision exists

2 - - 2
(ril +Ti2) > ||(,E22 - ‘T741|| : (474)

Each i;-th precursor of the first agglomerate could collide with every is-th
precursor of the second. Consequently N N5 operations are necessary. The
resources demand grows with the square of the agglomerates size. One way to
reduce the number of required operations is to take advantage of the spheres
which delimit the area of influence around an agglomerate. Every precursor of
the second agglomerate candidate to collide with the first agglomerate has to
be contained, at least partially, in the sphere which surrounds the first particle.
This condition can be used as filter, a precursor of the second agglomerate can
collide with the first particle if and only if

(Ry +73,)° 2 |Tema — Tl (4.75)

otherwise any combination of the is-th precursor of the second agglomerate
with every precursor of the first agglomerate is not a candidate to collide and
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it can be rejected. The same procedure can be done in the opposite way. How-
ever using both conditions at the same time is only functional for interactions
between large agglomerates. For small-large or small-small interactions it is
better to delimit the volume with the smallest sphere (usually the volume of
influence of the smallest particle is contained in the volume of influence of the
largest one).

The number of required operations can be still great after rejecting the
furthest precursors. Similarly to previous section a divide and conquer algo-
rithm has been implemented to accelerate the calculus. Taking the surrounding
sphere as reference the volume is divided recursively reducing the population
contained in each block. When the number of required operations is under a
threshold (product between the number of precursors of the first and second
agglomerate contained in the block) every possible combination is calculated

with expression

(a)

Figure 4.5: Collision detection algorithm. (a) Division of the domain in blocks.
(b) Recursive division of each block in sub-blocks. (c¢) Looking for impact
candidates. (d) Detection of intersection between areas of influence. (e) Dis-
carding precursors of the largest agglomerate if they are outside of the area
of influence of the smallest agglomerate. (f) Recursive division of the area of
influence for the smallest agglomerate and impact detection.
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4.3.3 Non-dimensional descriptors for populations

Several hypotheses with respect to precursor populations reduce the complex-
ity of the simulation. The precursors are supposed to be spherical, they follow
a log-normal distribution in size and Maxwellian in velocity, both of them
uncorrelated, their concentration is considered uniform in space and the dis-
crimination between collision and agglomeration after contact is controlled by
an error function dependent on the energy absorption required for agglomera-
tion. Then the collision between precursors is controlled by seven parameters:

e concentration of precursors n,
e velocity deviatiorﬂ Cos

e characteristic precursor radius r, (the median of the log-normal distri-
bution),

e deviation of the logarithm of the precursor radius log(r,),

e agglomeration energy absorption for equal probability between collision
and agglomeration AFE /o,

e deviation of the logarithm of the agglomeration energy absorption of the
probability function log(AE,),

e the restitution coefficient for impacts Cr (see section for more de-
tails).

Dimensionless parameters replace the previous magnitudes. The adimension-
alisation is carried out taking as reference the characteristic precursor radius
T, the deviation of the speed ¢, and the density of the material p. Every
other magnitude can by scaled by a combination of them. From now in ad-
vance every dimensionless magnitude will be denoted by the superscript *. A
generic variable ¢ is related with its dimensionless counterpart ¢* by the scale
factor S as ¢ = Sq*. For example, the dimensionless radius is r* = r/r,, the
dimensionless velocity ¢* = ¢/c, and the dimensionless time t* = tc, /r,,. The
rest of the magnitudes can be adimensionalised in analogous way.

Two advantages come with adimensionalisation. Firstly it is gained in
generality. It can be taken advantage of self-similarities to join in a single
dimensionless result multiple combinations of physical analogous values. The
results become independent to any physical scale. The other advantage is the
reduction of the number of variables. Some of the physical magnitudes are

5The collision formulation is based on the relative speed so it is insensible to the mean
velocity of the Maxwellian distribution.
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joined into a single non-dimensional parameter. As a result the number of
required experiments to complete the sensibility study is reduced. For the
case of interest, two of the seven variables becomes constant in dimensionless
space, the characteristic precursor radius 7, = 1 and the velocity deviation
for each direction ¢ = 1. Because the complexity of the sensibility analysis
grows exponentially with the number of variables this little reduction saves an
important amount of computational effort. This is what is called the course
of dimensionality.

Non-dimensional descriptors sampling: Latin-Hypercube

The described agglomeration process is almost stochastic. Most of the param-
eters which control the process, from the precursors generation to the discrimi-
nation between collision and agglomeration, are generated by random sampling
accordingly to PDF. Consequently dispersion is expected in the solution. The
same combination of input parameters returns a population of outputs instead
of a single value. This is an inconvenient for sensibility analysis. The dis-
crepancies between two samples could be explained by the differences in the
inputs but also by the natural discrepancy due to chaos (populations instead of
single values). Under these conditions the number of required simulations has
to satisfy two criteria. Firstly, it has to be large enough and variate enough
to cover the effects induced by every input parameter. Secondly, the number
of samples has to be large enough to obtain a characteristic population or,
in other words, the number of samples has to be large enough to smooth the
effects of the uncertainty. If it is not possible the use of spectral methods to
characterise the uncertainty, like this case, sampling is the alternative. Multi-
ple options exist. Latin-Hypercube has been considered the best option for the
studied case. This method covers the whole range of variability of the input
variables and reduces the occurrence in comparison to other techniques like
Monte-Carlo sampling, avoiding clustering of samples and empty spaces.

Several variations of the Latin-Hypercube algorithm exist. In this article
the simplest case has been implemented. The samples of every input parameter
g are bounded by an interval (Gmin, Gmaz). Once the interval has been estab-
lished it is time to decide how many samples M are required. The interval is
divided in M equal-probable subintervals of length Agq = (¢maz — @min)/M.
Then the m-th subinterval is (¢min + (m—1)Aq, Gmin + mAgq). A random sam-
ple is extracted from a uniform distribution for each interval and variable. At
this time there are M input values to run M simulations, sorted in increasing
order. To obtain correct results the input parameters have to be uncorrelated.
It does not happen if they are sorted. The next step is breaking the order with
random permutations. Once each combination is uncorrelated it can be used
as input for each simulation.
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4.3.4 Simulations

Space and time dependence are studied. Two sets of simulations have been
done. For time dependence simulation, a periodic domain is studied keeping
the same precursors from the beginning. How the agglomerate population
changes in space is studied by the simulation of a region connected to a reservoir
of precursors.

Variations of agglomerate populations in time

Starting for an initial population of free precursors into a full-periodic domain
this simulation shows how the population of agglomerates changes in time.
The population of precursors follows a log-normal distribution in size and the
velocity is characterised by a Maxwell’s distribution. The simulation finishes
when the number of agglomerates is lower than 128. One of the results can be
seen in figure [4.6

The simulation set covers 128 cases, each one generated randomly using the
Lattice-Hypercube technique. The random samples are uniform distributed
and they cover 5 variables. The table shows the variables and their limits.

Variable Mathema-tlcal L(-)W?I' Uprar
expression Limit Limit
Concentration logio( n ) -6.0 -5.0
Restitution coefficient log,o(1—C%) -3.0 0.0
Variation of particle size logio( o5 ) 0.1 1.0
Collision/Agglomeration
discriminant logio( AE2 ) 0.0 4.0
Collision/Agglomeration logo( AE, ) 0.1 15

coexistence area

Table 4.1: Parameters and their variations in the study.

After simulating every case the final populations have been compiled and
represented. Figure [1.7] shows the relation gyration radius vs. number of pre-
cursors per agglomerate. It can be seen how there is no dependence of the
agglomerate structure with respect to any of the variables of the study. Every
agglomerate is located in the surroundings of the same tendency line indepen-
dently of the input parameters of the simulation. The fractal dimension which
relates the number of precursors with the gyration radius of the agglomerates
has been obtained in a similar way to other researchers [5]

ny = ky (Ry/Ro)"™’ (4.76)
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Figure 4.6: Population of agglomerates at the end of a simulation.

except two little differences. Usually it is considered the agglomerate much
larger than the precursor. Under this hypothesis the precursors can be consi-
dered as point masses. This simplification is valid only for large agglomerates,
when the size of the agglomerate is much larger than the size of a single pre-
cursor. However this is not truth when the agglomerate is made up of few
precursors. To avoid the distortion to unrealistic results for small agglomer-
ates the 3D effects of every single precursor has been considered. The second
modification is introduced for the approximation of the tendency line. Other
authors calculate the tendency line applying directly mean least squares. The
samples presented here are not equally distributed. Consequently some re-
gions contributes differently depending on the local concentration of samples.
A weighting function is proposed to compensate these effects. Every tram of
samples with respect to the number of precursors has to contribute equally
for the tendency calculation. To achieve this objective the proposed weight-
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ing function has to be the inverse of the concentration. The first step is then
to obtain the concentration as a function of the logarithm of the number of
precursors. It is propose to use a set of points where the values of the concen-
tration will be known, called nodes from now in advance. The values between
nodes are calculated by interpolation. Every n-th sample contributes to the
concentration function by the kernel
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Figure 4.7: Relation between the gyration radius and the number of precursors.
Population of samples (black spots) and tendency line (blue continuous line)
with thresholds (blue dashed line) for 95% of confidence interval (blue area).

K(f, gn) = €xXp [7(5 - 5n)2/202] (477)

where ¢ = log(n,) in this context. The addition of every contribution returns
the concentration function

p(&) =D exp [—(§ — &)?/207] (4.78)

The values of the i-th node is then

p(&) = exp [~ (& — &n)?/207] (4.79)

The presence of a sample affects the surroundings of &,, depending on the value
of 0. The main objective of ¢ is to smooth this noise getting a smooth and
continuous density function p(€). The larger the value of o, the smoother
solution. Once the density function is calculated it is time to compute the
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weighting function. The weighting function is defined as the inverse of the
density function for every node w; = 1/p;. The intermediate values w(§) can
be interpolated by Tayloring the surrounding nodes and solving the resultant
equation system. Being A&; = & — &, the value of w; can be approximated as

w; = Z 5! 85( )w(é). (4.80)
n=0

The series is truncated at the desired order NV

N

A in n

wi=Y" 5! O w(E) + O(AEN). (4.81)
n=0

Employing N + 1 nodes where the weighting function is known and solving the
resultant equation system the approximation of w(§) and its first N derivatives
are obtained

1 SA&  (SA&)? -+ (SAL)Y w(§) Wo

1 SAL  (SAL)? - (SAL)Y Rw(€)/25? — ) ws

1 SAEy (SAEy)? - (SAE0N | | aNw(e/nsy w
(4.82)

The multiplicative factor 1/N!S¥ is included in the solution. It can be ob-
served how the values to be solved are 3?7 w(&)/N'SY instead of obtaining
directly the derivative. In first place, including N! as part of the unknown
reduces the number of required operations. Secondly, the inclusion of both N!
and S as part of the unknown improves the condition number of the matrix,
reducing the numerical error and the number of iterations needed to converge.
S is a scale factor which satisfies 1 = SAE;. The interpolation is the first com-
ponent of the solution. Figure shows the density function and its inverse,
the weighting function, in random units. It can be observed how their values
are symmetric in logarithmic scale (the mirror line is not located at 0 because
the functions have been normalised after the calculus).

Once the weighting function has been established the weight for each ag-
glomerate can be calculated as a function of the number of precursors. The
obtained results are the weights to be used to calculate the tendency line. The
employed method is the weighted mean least squares. Applying the weighted
mean least squares method, the results of the previous step are the weights to
be used to compute the tendency line. However there is still a problem. After
plotting the samples (see figure two regions can be distinguish. When the
agglomerates are formed by a low number of precursors the gyration radius is
dominated by the 3D effects of the precursors (precursor size). On the con-
trary, when the hypothesis of point precursors becomes realistic, the tendency
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Figure 4.8: Density function (blue), filter (red), weight (dashed green) and fil-
tered weight (solid green) in random units as function of number of precursors.

is dominated by the agglomerate morphology. We are interested on the study
of the morphology, so the first part of the population has to be filtered to avoid
the disturbance of the results. A logistic curve is the responsible of this task

F(&) = {1 +exp[-5(6—2.3)]}". (4.83)

The filtered weight is obtained by the multiplication of the filter by the inverse
of the density of samples w(&) = f(£)/p(§). Applying the weighted mean least
squares method with this new weight the fractal dimension is corrected to take
more in consideration large particles.

But the fitting line does not approximate perfectly the population of par-
ticles. There is uncertainty. Several agglomerates with different number of
particles can return the same gyration radius. To describe properly the entire
population the uncertainty has to be quantified. This is done by the study of
the distribution of the residuals. The residual of each sample is calculated as
the difference between the expected value given by the tendency line and the
real value of the sample

en = log(ny,,) — log[f,(Ry,, )] (4.84)

In similar way to the job done to create the density function, a kernel func-
tion [£.77] is applied to calculate the contribution of each sample around each
residual. With this strategy the error distribution function is smoothed. In
addition, to obtain congruent results with previous work, the error function
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has to be weighted equally than mean least square method

N o 2
pdf(e) = % > i(log(ny,,)) exp {(62;?)} :

n=1

(4.85)

The total area can be obtained by the integration of the previous equation. The
function is a PDF so the value under the curve is unitary. The premultiplicative
factor K can be calculated

K = 7 > " (log(ny,,)) exp {—(6;;2")1 de. (4.86)

Both the PDF and the CDF are represented in figure

2.0 = 1.00
a I
= a
© ] Residual PDF
.54 0.75
[ ] Residual CDF
1.0 050
05— 025}
0.0 —  0.00 —
1.0 0.5 0.0 0.5 log(ny/fy) 1.0
[ [ w Nog .o (np/iy) |
’-0.4 0.2 0.0 0.2 Bo(nr/ p)().4

Figure 4.9: Probabilistic Density Function (blue) and Cumulative Distribution
Function (green) of residuals with respect to the logarithm of the number of
precursors per agglomerate (continuous shaded line) and its best fitting normal
distribution (dashed line)

Evolution of the number of agglomerates in time

The evolution of the number of agglomerates with time has been approximated
starting by a modified exponential decay

Ny = Np,0 €XP {— (t/To)’B(t)} . (4.87)
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The exponent S(¢) has been included to take into account the effects of the
agglomerate growth. After plotting the exponent, calculated by the expression

B =log[—log (n,)] /log (t/70), (4.88)
some properties have been observed (see figure [4.10)):

e At the beginning, when there are only precursors (agglomerates with a
single precursor), the decaying quantity follows the conventional law. In
other words, 5(0) = 1 (See detail of figure [4.10).

e The value of S(t) decays asymptotically to a fixed value tli}m B(t) = co.

The asymptotic behaviour has been established including an exponential
in the approximation 5(t) = co+(1—co) exp(—(¢/71)**). This expression
satisfies both the present and the previous conditions.

e At intermediate times there are a lot of discrepancies between the cases.
Sometimes the decaying velocity increases until a local maximum to de-
crease afterwards. Other times 3 decreases monotonically. A power law
is a good candidate to emulate every behaviour. An approximation of 3
which satisfies every condition is

jo=asfa-aria (L) oo (1)]. s

The evolution of the number of agglomerates in time can be approximated by
the equation [4.87] Each simulation returns a different set of optimum-fitting
constants. The followed criteria to fit the function is the minimisation of the
mean quadratic error of exponent 3 with respect to the dimensionless time
t* = t/To,

tend

! [5 (t*) - B (t*)]2 dt*, (4.90)

:t*

end

¢

where t?, , is the dimensionless simulated time. The figure resumes the
results. The error in the number of precursors is bounded by the interval -0.015
and 0.003 times the initial number of precursors. The next objective is to find
the relation between the fitting parameters and the variables which control the
physics.

It is supposed that every fitting factor is linear-dependent on the random-
generated physical parameters. The approximation for every case is stored in a
matrix [Y], where [Y], ; contains the i-th fitting factor of the n-th simulation.
Similarly the values of the physical parameters are stored in the matrix [U].
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Figure 4.10: Measured exponents (continuous lines) and their approximations
(dashed lines) as a function of dimensionless time. The results around 1 has
been rejected due to large errors produced by a removable discontinuity (in-
determinate form 0/0 of equation [4.88)).

The first step to find the relation is to normalise both [Y] and [U]. If N is the
number of samples, then the mean value for each component is

Ui = E(y;) = NZym (4.91)

The standard deviation o can be also calculated as

o*(y)) =E [(yi,n —E(y;) } ~ Z Yin —7)°. (4.92)

After calculating these two parameters the samples can be normalised as

Ui = Wi — Ui) /o (ys)- (4.93)

Every normalised variable has mean value 0 and standard deviation 1. Some-
thing to take into consideration is the anomalous points. Here a sample is
considered anomalous if one of the absolute values of the normalised compo-
nents exceeds 3. When it happens the anomalous sample is rejected and the
normalisation process is recomputed. This process is iterative and it finishes
when no more samples are rejected.
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Figure 4.11: In red tones, evolution of the number of agglomerates with time
(continuous line) and the approximation (dashed line). In blue tones, error of
the approximation defined as the difference between the measured values and
the expected values.

The next step is the orthogonalisation. Working with orthogonal vari-
ables is usually cheaper. The information extracted during the process can
be used to detect over-fitting. In addition, when over-fitting is detected, the
number of independent variables can be reduced, simplifying some of the cal-
culations. About the physical parameters, they have been generated randomly
using Lattice Hypercube. Orthogonality is one of the properties of the samples
generated by this method, so no transformation is required for this dataset.
On the contrary, the fitting parameters are not orthogonal. A set of orthogonal
intermediate variables will replace them. The orthogonalisation process starts
with the calculation of the correlation matrix [X]. Considering the dataset [Y]
the correlation matrix can be calculated as

] = 91717, (4.94)

Two sets of samples [Y]; and [Y]; are orthogonal between them if they are
not correlated, [X];; = 0. In other words, the variables are orthogonal if their
correlation matrix is diagonal. Consequently the orthogonalisation process
consists on diagonalising the correlation matrix. This task can be done by

eigendecomposition
(2] = VIV~ (4.95)

[A] is a diagonal matrix whose component )\;; is the i-th larger eigenvalue of [Y]
and [V] is the matrix whose i-th column contains the eigenvector associated
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with this i-th eigenvalue. If the eigenvectors are unitary [V]~! = [V]T. Pre-
multiplying the equation by [V]T, postmultiplying by [V] and replacing
[X] from equation the expression

VITYITIY]IV] = [A) (4.96)

matrix of [Y,] = [Y][V] (see equation If the correlation matrix is a
diagonal matrix the variables are orthogonal, so [Y] ] contains the orthogonal
transformed samples of the fitting parameters.

is returned. It can be observed how the diagonal matrix [A] is the correlation
i

In some situations the lowest eigenvalues could be some order of magnitude
smaller than the greatest one (ill-conditioned correlation matrix). It is a sign of
over-fitting. Under this conditions a truncated decomposition can approximate
very well the original matrix. It consists on replacing the lower eigenvalues by
0. Every substitution reduces in one the number of intermediate variables.
This reduction could be of great interest, specially if the number of variables
is very large, when the curse of dimensionality becomes the limiting factor.

Here the truncation has been used to avoid over-fitting. The square of the
deviation magnitude of the fitting parameters is the sum of all eigenvalues. It
is desired to kept at least the 95% of the variability, so the sum of the survival
eigenvalues over the sum of all of them has to be at least 0.95. Denoting the
truncated transformation by the superscript /

% N
AL if ZALJ—/ZAM < 0.95,
j=1 j=1

i N
0 if DAL /Y AL > 0095
j=1

j=1

(4.97)

The eigenvalues have to be sorted in decreasing order. The eigenvectors as-
sociated to the deleted eigenvalues disappear (columns of [V]), so [V'/] is not
square anymore. The filtered correlation matrix [Af] is reduced to the diag-
onal matrix with contains only the kept eigenvalues. The resultant matrix of
samples [Yf ] = [V][V¥] contains less variables (lower number of columns).

Finally it is time to find the relation between the transformed sets of phys-
ical parameters and fitting factors. This relation is

[U1(F] = [v{] (4.98)

Multiplying by [[7 7 and taking advantage of its orthonormal properties the
resulting expression is .
[F] = [©1"[v{] (4.99)

In other words, the function which relates both sets of samples is the cross-
correlation.
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At this time the deterministic part is well characterised. It is time to
describe the stochastic contribution. This information has to be extracted
from the residuals (or errors, if there are extra experiments). Consequently
the first task to do is to calculate the residuals:

[R] = [Y] - [O][F]IV/]T. (4.100)

The linear model has been approximated by mean least squares, so the resid-
uals are already centred. Only it is needed to scale by the standard deviation.
Again, the normalised residual population [R] is not necessary described by a
set of orthogonal variables. In a similar way to the work done with the fit-
ting factors the correlation matrix is decomposed (see expression in the
diagonal matrix with the eigenvalues and the matrices with the eigenvectors.
If some of the eigenvalues are very small the transformation can be truncated
(see expression . As it has been seen before, each eigenvalue is the square
of the standard deviation of the population for each orthogonal direction. The
final model for the normalised variables including uncertainty is

j = L[F] [VJ]T +X1 [A§]1/2[V£}TDiag(ER) (4.101)

where ):{ 1 is a vector of random samples extracted from a population whose
mean value is equal to 0 and its standard deviation is equal to 1.

For the case of interest the number of independent fitting factors is four
(with the 95% criterion). It means that the other two are dependent, linear
combination of the others. The obtained eigenvalues of the correlation matrix
are

[Ay] = diag([ 2.94 1.41 0.72 0.67 0.08 0.02 ]). (4.102)

The starting four are conserved. The truncated eigenvector matrix is

—0.3870 —0.5196 —0.5192 —0.0165 —0.1287 —0.5421
02188 —0.0790 —0.2600 0.7079  0.6141  0.0011
0.7841 —0.4610  0.1967  0.0170 —0.2745 —0.2416
—0.1203  0.0490 —0.1009  0.6217 —0.7107  0.2853
(4.103)

Vi =

The coefficient matrix for normalised parameters is

—0.7253  0.2203 —0.1552 —0.2720 —0.1672  0.0513
—0.0636 0.0029 —0.0158 —0.0039 —0.0935 0.0075
[FIVIT = | —0.0250  0.0479  0.0328 —0.0177 —0.0603  0.0481
—0.5500 —0.7054 —0.6701 —0.0079 —0.4651 —0.6843
—0.1652  0.0240 —0.0425 —0.0273 —0.1486  0.0143
(4.101)
This matrix is the cross-correlation matrix®l It can be observed how the dom-
inant factors are usually log;,(n) and log;,(AE;/2). The concentration affects

6 After considering negligible two of the six fitting factors this matrix is an approximation
to the cross-correlation matrix instead of the cross-correlation matrix itself.
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principally 79. The energy, when the probability to collide and agglomerate is
the same, affects every variable except ¢y. ¢; is practically uncorrelated with
any variable. It means that this parameter is practically insensible to the in-
puts and its variability is part of the physics. In other words, this variable is
chaotic and it has to be expressed by means of a PDF.

o, = 0.490

> I

Figure 4.12: Histograms of the residuals for each variable and the best fitting
normal distribution. The values of the deviations of the residuals o, are given
as a function of the deviations of the measured populations o.

Once the linear model is fitted it is time to characterise the uncertainty.
The residual populations and the best fittings to the normal distribution are
shown in figure The orthogonalisation process returns the eigenvalues

[Ag] = diag([ 2.15E-2 1.36E—2 8.26E—-3 1.93E-3 1.26E-3 2.94E—4 ).

(4.105)
The last two eigenvalues are small enough in comparison with the largest one
to be neglected. The eigenvectors associated to the preserved eigenvalues are

042 054 047 009 —0.04 055
| 004 002 —038 069 058 0.21
=1 063 032 023 029 —055 0.26 (4.106)

-0.62 029 033 -029 0.59 0.00

After operating with the resultant matrices the linear approximation which
relates the physical parameters with the fitting parameters is takes the form
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y = [Molx + [ A1)+ ¢

IOEI?S-TO) logio( n ) % _(1)222
1C0 0 10g10( 1- 012? ) X; 059
Y= c s L= lOglo( gs ) a§: , €= 0.37 )
! IOg ( AEl 2 ) X3 ’
Qo 1 10( AE/ ) X4 0.52
a 9810 7 0.57

—1.02E+0 —-2.94E-2 -397E-2 -1.99E-1 -1.69E-1
2.99E-2 1.28E—-4 7.33E-3 —2.46E-2 2.36E—3
—1.22E-2 —4.06E—4 291E-3 —-135E—-2 —242E-3
—2.76E-2 -1.31E—-4 -2.03E-3 -2.07E—4 -2.01E-3 |’
—1.55E-2 —-284E-3 —-6.30E-3 -1.11E-2 —-9.99E-3
1.40E-2 6.73E—4 1.48E—-2 —4.80E—-2 2.84E-3

781E—2  567E—-3 —7.30E—2 —3.46E—2
1.50E—2 3.50E—4 5.39E—3  2.38E—3
1.02E-2 —6.62E—3 —3.06E—3  2.14E—3

L] = 406E—3  2.39E—2 7.79E—3 —3.78E—-3 |- (4.107)
—1.17TE-3  127E-2 -9.35E—3  4.83E—3

3.44E-2 1.02E-2 1.02E-2 2.45E-5

(o) =

Figure shows the simulated population and a generated population for
the same physical parameters. The abscissa axis represents the expected value,
the approximation returned by the linear model. The ordinates are the mea-
sured values and the random generated population resulting from expression
4.107] when the uncertainty is added to the expected value. The distributions
considered to generate the stochastic contribution are normal with mean 0 and
deviation 1.

Several observations are required to be taken into account about figure
4. 1o

e Some slight non-linearities have been observed for 7 and «;. The mea-
sured samples follows a curve instead of a straight line. This non-linearity
is not big enough to invalidate the model. However the discrepancy be-
tween the expected values and the data has been included as part of
the uncertainty. The non-linear effects, deterministic in origin, become
stochastic in the model.

® ¢, ag and more specially ¢; present high uncertainty. The cloud covers
large vertical distance (deterministic and stochastic) in comparison with
the horizontal one (purely deterministic).

e The population of figure [£.13 has been created supposing normal distri-
bution of the residuals. This assumption is not necessary true. More
realistic populations can be generated when the PDF is obtained from
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Figure 4.13: Measured population (blue circles) and generated population (in-
verted green triangles) vs. the expected value for each fitting parameter in
normalised magnitudes. The measured anomalous points are squares in red
and their approximations are represented by black triangles. The dashed line
represents ideal fitting. The arrows point out samples located outside of the
limits.

the histograms of the residuals. This option requires much more sam-
ples than the calculated for this study. One case when this hypothesis
is not true is the population generated for cg. This normal distribu-
tion underestimates the concentration at the middle in detriment of an
overestimation at the edges.

4.3.5 Evolution of the number of agglomerates in space.
Generating solid phase.

The objective of the simulation in space is to create porous media by the
agglomeration of particles in ballistic regime. The resulting porous medium
is expected to be equivalent to depositions of particles on the walls. The
properties of the generated material can be characterised by fluid dynamics
simulations. The macroscopic physical properties can be obtained by measur-
ing mass flow rate and pressure drop when the fluid crosses through it. In the
following lines it is explained how a porous media formed by agglomeration of
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spheres is created in ballistic regime.

Simulation setup

It is wanted to create a block of porous media to characterise the properties
of depositions of agglomerates on walls. Several aspects have to be taken into
consideration.

e It is wanted to study only the effects of pure porous media material, so
no solid wall can exist.

e The size of the sample has to be large enough to dilute the effects of
anomalies.

e The thickness of the material has to be large enough to get uniform
statistical properties.

e Impermeable lateral BCs could channelise the fluid. This effect is avoided
by means of periodicity between lateral limits.

All of these aspects have to be accomplished to get an acceptable sample of
the material. Periodicity is the most easy and intuitive condition. Two of the
three directions have to be periodic. It means that every particle in the domain
also exists in every period. A particle can collide with other agglomerate in
the domain but also with the agglomerate in the neighbour period.

Periodicity also fixes the moment when a particle becomes solid phase.
Because a particle exists multiple times, one per period, it can collide with
itself. When it happens the particle becomes a new solid. A peculiarity of
the solid with respect to a particle is rotation. A particle can rotate. The
solid phase does not. It is infinite. Consequently it has only three degrees of
freedom for translation.

Once a particle becomes a solid its precursors are moved to the first period
for every time step. This can be done because the inertia matrix is not needed
anymore. This strategy reduces the radius of the circumscribed sphere and as a
direct consequence improves the performance. The physics of the solid phase
continues to be equal with respect to collisions with other solid phases and
agglomerates, but with infinite inertia matrix (no rotation). When a particle
impinges the solid phase it impinges in every period. So the mass to take
into consideration to calculate the acceleration of the solid phase is the mass
contained in the first period.

With respect to the other BCs, one of them communicates with a reservoir
of precursors (precursor inlet) and the other is just an output. The particle
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inlet injects precursors from an equilibrium distribution with mean velocity 0
(see section . The agglomerates which go beyond the outlet leave the
domain. This fact is closely related with the minimum length of the domain
required for the simulation. If the domain is too short, every particle will
be lost before forming any solid phase. Consequently very large domains are
required for the simulations.

But this is not the single problem related with the movement of particles
and the solid phase. The particles are only injected from the inlet. The solid
phase is always impinged on the same side. Due to the momentum exchange
the solid phase becomes faster and faster with every collision. At the end
it is one of the fastest objects in the simulation and leave the domain too
soon, being too small to be a candidate for porous media simulation. This
problem is solved by imposing a drag force proportional to the velocity for
every solid phase F = Cpuse. It slows down the object till compensate the
momentum exchange produced by the impacts of agglomerates against it. The
drag coefficient has to be large enough to keep the solid phase in the domain
but not too large to grow till the inlet. An approximation of the terminal
velocity us, can be estimated from equation

oo

AAmpn/pdf(cm) (3 — Uso) deg = CplUoo (4.108)
0

where AA is the front area of the domain (size of the inlet), m, the expected
mass of the precursors and n the concentration. The left hand side is the
relative momentum inlet with respect to the solid phase. The right hand side
is the momentum change due to drag force. Both of them are compensated
(no acceleration term) in the previous equation.

Simulations

A unique simulation has been run. The parameters which controls the physical
behaviour are listed in table

A peculiarity of fractal geometries is self-similarity between different scales.
The resulting porous media is one this geometries. The auto-correlation of this
type of structures is never zero. There is always a coherent structure as big
as the domain independently of the detail level. The replacement of the most
energetic agglomerations by collisions has as objective to reduce this effects
at large scales and avoid the existence of non-physical structures, when the
resistance of the material is not strong enough to keep the form of biggest
structures without collapsing. 200 radii have been considered big enough to
dilute the 3D effects of the precursors. Pressure drop through the porous media
is dominated by the lowest scales.
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Magnitude Symbol value Units
Domain size Q 200 x 200 x 9600  Tref X Tref X Tref
Time step At 0.05 Tret/Ou
Density of the material p 1.0 p
Energy lost for impacts AFE 5% -
Reference radius of precur- log;,(7ret) 0.0 -

sors

Deviation of the log-normal  log,, (o) 0.13 -
distribution in radius

Mean speed of the reservoir 7 0.0 Ou
Speed deviation at the reser- Ou 1.0 Ou

voir

Concentration n 5x1073 particles rr_e?
Damping factor for solid Cp 5.0 POUT2
phase

Table 4.2: Setup to simulate the generation of solid phase.

To give time enough to the solid phase to be created the domain is 9600
radii long in streamwise direction. A rich concentration of precursors has been
considered for the same reason. The damping factor has been selected to keep
the solid phase in the domain at the same time that it grows up. The energy
loss during the collision is very low, 5%. It differentiates the simulation from
simple ballistic growing by addition, when every impact fuses the colliding
agglomerates.

The simulation has been run in the work-station described before for few
days. At the end a large solid phase formed by more than half million particles
was created. The results and the evolution of the simulation are detailed in
next section.

Results

The simulation can be divided in three different stages. At the beginning there
is no solid phase. The agglomerates grows up with the distance from the inlet.
After a while some of the agglomerates becomes very large and they start to
collide with their periodic copies. At this points several solid phases coexist.
The most lagging solid phases receive all the impacts of incoming agglom-
erates. The collisions accelerate them. On the contrary the most advanced
agglomerates are not pushed by any impact and only the damping factor acts
on them. As consequence they slow down. At the end due to the difference in
speed the phases hit each other to be fused into a bigger one. This is the third
stage of the simulation, when a big solid phase is continuously growing and it
occupies most of the domain. The three stages of the simulation (starting part
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of the domain) are represented in figure for the sake of understanding.

Figure 4.14: Circles: detail of the incoming particles (left), agglomerates (mid-
dle) and solid phase (right). Bars: simulation after 9 (bottom), 16 (middle)
and 32.55 (top) time units. The domain is cut and zoomed to show more
details.

The resultant material has large holes and clusters. The pressure drop is
expected to be dominated by the thinnest of these holes.

4.3.6 Conclusion

A simulator for ballistic agglomeration processes has been created. Both colli-
sion and agglomeration can happen after contact. A probabilistic discriminant
has been proposed to decide when two impinging agglomerates collide or when
they fuse. The returned probability to collide or agglomerate depends on the
energy absorption required for the fusion process. The agglomeration is less
probable when the energy to be absorbed is large.

The size of the agglomerates covers several orders or magnitude, from the
agglomerate formed by a single precursor to large agglomerates whose size
is comparable to the size of the domain. The computational parallelisation
becomes very difficult under these conditions. Two different divide and con-
quer strategies have been applied together. In first place the whole domain
is divided in blocks recursively for each time step. The search of collisions
starts when the number of agglomerates contained in each block is lower than
a threshold. Two agglomerates are candidates to collide if their regions of
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influence (circumscribed spheres) intersect each other. An agglomerate can be
formed by thousands of precursors. Trying to locate the contact point precur-
sor by precursor checking all the combinations is prohibitive. For this reason
the precursors of the largest agglomerate which are outside of the area of in-
fluence of the smallest agglomerate are rejected. A second divide an conquer
algorithm is then applied, reducing recursively the number of combinations.
Each combination is checked when the number of required operations is under
a threshold.

Two sets of simulations have been lunched. One to see the evolution in
space, one to see the evolution in time. From the resultant populations the
fractal dimension Dy has been calculated. It relates the gyration radius of the
agglomerate R, over the gyration radius of the typical precursor R, ¢ with the
number of precursors n, as n, = ky(Ry/R,0)Pf. After fitting the equation
the obtained fractal dimension is 1.90 and the logarithm of premultiplicative

constant log,o(k,) is —0.5470:2% for 95% of confidence interval.

The simulations of the evolution in time demonstrate how the agglomer-
ation process is dominated by the initial concentration of precursors and the
capability of the material to absorb the energy after an impact. A modified
decaiment model has been proposed to explain the evolution of the concentra-
tion of agglomerates with time. The model includes six fitting parameters on
which only four are linearly independent. The relation between the physical
magnitudes, which includes properties of the material and initial conditions,
and the fitting parameters have been established. In addition to the determin-
istic model, four stochastic variables have been introduced to explain the large
natural variability observed in the results of the simulations.

A second experiment creates solid phase from deposition of agglomerates.
An agglomerate is considered solid phase when it collides with its copy of the
neighbour period. At the beginning multiple solid phases exist. The solid
phases closest to the inlet receive most of the impacts from the incoming
agglomerates and accelerate. Because the lagging solid phases shield the most
advanced against collisions the furthest solid phases slow down. At the end
the solid phases collide among them creating a large single one.

The resultant structure keeps the fractal behaviour of the agglomerates
(figure . The largest structures are always of the same order than the
domain independently of the scale. Consequently the surrounding flow field is
expected to be also correlated. No domain size independent behaviour can be
achieved with this model. It is needed structural analysis.

The solid phase can collapse when it is subjected to high structural loads.
The collisions can not only fuse the colliding agglomerates, they can also break
them into smaller pieces. The largest holes disappear creating more compact
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solid phases with free moving agglomerates in the interior. This task is very
hard to be developed so it is included in possible future works.
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Chapter 5

Filter simulations

There are several antecedents of filter simulations at micro-scale level. Sukop et
al. [1] calculate porous media for multiphase fluids. They compare the simula-
tion with real X-ray measurements for the same sample. As usual, LBM is used
to calculate the flow field. Hayashi and Kubo [2], in addition to simulations
at macro-scale level, compute the flow field through bed of spheres. The pro-
cedure followed by Hayashi and Kubo is similar to the procedure described on
this thesis. At the beginning they create the geometry of the micro-structure.
It is a bed of spheres that mimics a filter made of silicon carbide. The flow
field is computed using LBM. Once the flow field is solved they compute the
trajectory of particles and deposition. Bernsdorf, Brenner and Durst [3] also
calculate the flow field through a a bed of spheres. They validate the numeri-
cal results with experiments. Rong, Dong and Yu [4] calculate bed of spheres
too. Unlike the previous case, the spheres are of multiple sizes. They follow a
distribution. Rong, Zhou and Yu [5] extend the study to uniform population of
ellipsoids. Yamamoto and his team [6],[7], 8] [, 10, 111 12] also solve the flow field
using LBM. However, they obtain the micro-structure by X-ray tomography.
In addition to the flow field and depositions they also simulate regeneration.
Stewart et al. [I3] also simulate the entire filtering process. The geometry is
also obtained by tomography. The simulated filter is made of acicular mullite.
The objective of the work is to predict the filter behaviour: pressure drop
during filter loading and deep of soot penetration in the substrate. Stewart et
al. also study the effects of tangential velocity upstream the porous wall.
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5.1 Simulation setup

There are several parameters to take into account before calculating any sim-
ulation. These parameters are related with the domain size and the resolution
of the discretisation. To simulate correctly porous media the domain has to
be large enough to be statistically representative and to dilute the effects of
the BCs With respect to the resolution of the discretisation, it has to be fine
enough to capture the details of the geometry. The first part of this chapter is
dedicated to explain the procedure to do a quality filter simulation. The pro-
cedure can be used to validate the quality of the simulation or to prepare the
previous setup. The geometry is created by procedural generation. It mimics
the micro-structure of the wall of a Diesel filter made of acicular mullite.

5.1.1 Geometry generation

The geometry to be calculated mimics a filter made of acicular mullite. The
micro-structure of this material is composed of very long, interconnected crys-
tals (like needles). They form randomly-distributed radial aggregates. The
origin, where the crystals grow from, will be called seed of the aggregate from
now. Furthermore there are not two equal crystals. Their length, thickness,
orientation, location... are random.

Accordingly to the previous description a population of crystals has been
created following the process described in in section It is assumed that
the crystals have been synthesised from a block of material whose thickness is
200pum. That is, the porous media is 200um thick and located between the y
coordinates -100pm and 100pum. That means that every seed will be contained
in this interval. A uniform random distribution has been considered for every
direction. The concentration of aggregates per mm? is 50,000.

Once the origin of every aggregate is located, the crystals have to be cre-
ated. A normalised crystal is scaled to obtain its final length and thickness.
For the sake of simplicity random uniform distributions have been considered
for both the length and the thickness. The minimum length for the crystals
is 10pum and the maximum 100um. To avoid the creation of very anomalous
shaped crystals the thickness is not generated directly. The aspect ratio de-
fined as the thickness over the length is used instead. It is limited from 0.01
to 0.05 times the length. The number of crystals for each aggregate may also
change. Samples from a uniform distribution between 1 and 64 have been used
to specify this parameter.

Because the crystals do not grow by the same length in each of the two
directions their centres diverge from the seed of the aggregate. The distance
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between them is called eccentricity. This effect is modelled again by a uniform
distribution. Same as for the thickness of the crystals, the eccentricity has
been modelled relative to the length. In this case the value is limited from -0.7
to 0.7 times the length.

Once the crystal is scaled and off-centred it has to be oriented. Before
any modification the principal axis follows the X axis. To achieve the final
orientation two consecutive rotations are applied. Firstly, the elevation, a
rotation around the Y axis bounded by the interval [—m/2,7/2]. Secondly,
the azimuth, a rotation around the Z axis bounded by the interval [—m, 7]. A
uniform distribution per steradian can be achieved by a uniform distribution
for the azimuth. However, the same type of distribution can not be used
for the elevation, otherwise an over-concentration appears at the zenith. To
compensate this effect a uniform distribution bounded by the interval [-1,1] is
created to be modified. Once the population is generated the arcsin() operator
is applied to each random value, resulting in the elevation sample.

5.1.2 Detection of the smallest scales: fractal dimension
of the interface

When the domain is discretised the resolution of the discretisation has to be fine
enough to capture the smallest details. In porous media analysis the smallest
details are provided by the interface between solid and fluid. In other fields like
turbulence the smallest scales are the fluid structures instead of the geometry
of the BCs. One way to measure the level of detail is the fractal dimension.
The interface is a surface so its fractal dimension is two [14]. Higher values
appear when the discretisation is too coarse and the elements include entire
small structures.

One of the more widely extended techniques to measure the fractal di-
mension is the box-counting algorithm. Block, Vonbloh and Schellnhuber [15]
propose this efficient method to calculate the fractal dimension numerically.
It returns the Minkowski—Bouligand dimension Z);p. The technique consists
on dividing the domain into cubic cells with h long edges. After dividing the
domain it is counted how many cells N contain part of the interface. The
Minkowski-Bouligand fractal dimension is defined as the derivative of the log-
arithm with respect to the logarithm of the scale

S = i, D -

Applying the I’'Hopital rule, the limit can be approximated by the derivatives
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respect to h of the numerator and the denominator

s = i, - ) 52

The derivative of a generic function f(h) respect to h can be approximated
numerically as 9y, f(h) = Ah=Y[f(hiv+1) — f(h;)]. Consequently the Minkowski
dimension can also be approached numerically for each scale h; as 25, 5(h;).
Then the expression becomes

In (N (hit1)) = In (N (Ri))
In (hi—i-l) —1In (hz) '

The approximation tends to the original definition when the scale h; tends to
be zero

Prp(hi) = =

(5.3)

@]\/[B: lim @X/[B(hz) (54)
hiHO

This is consistent with the limit definition of expression . An approach
is considered good when the Minkowski dimensions is insensitive to the scale
hit1. To take advantage from the logarithms the sequence of h; is considered
geometric. The common ratio of the progression r is the inverse of a positive
integer number R, called the refinement factor, so r = 1/R and h; = rh;_1 =
r*hg. Then the equation is simplified to

I[N (hi) /N (hi-1)]

9IT/IB(hl) - 11’1(7“)

(5.5)

The calculation of the Minkowski dimension is as follows

1. The domain is divided into cubic cells whose sides are hg long.

2. Some cells contain the fluid phase, some cells contain the solid phase and
the rest contain both the solid and the fluid phase. The number of cells
of the latter type is counted getting N (ho).

3. The starting cell size hg is divided by an integer number R, obtaining
hy.

4. The cells where the fluid and the solid phases coexist are divided into
R? cubes.

5. Again, some of the new cells contain the solid phase, others contain the
fluid phase and the rest contain the interface. The number of cells which
contain the latter type gets N(hq).

6. The first approximation to the fractal dimension Zj;5(h1) can be ob-
tained from hg, hi, N(ho) and N(hy) applying the equation (5.5)).
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7. Applying the points 2 to 6 over the obtained result we can get 73, 5(h2),
P 5(hs) and so on. The process is finished if Z5,5(hi) ~ Z5;5(hit1).
Then it is considered Z5;5(hi) ~ ZmB.

Operating on volumes the value of the fractal dimension is bounded 2;,5(h;) €
[0,3].

This methodology is applied to measure the fractal dimension of the crystal
surface. This study begins at a single cell that takes up the whole domain.
Each cell is 11 times recursively divided into 8 cells to create the octree mesh
which covers the entire interface with a refinement factor R = 2. It means
that the starting cell, the unique one in level 0, contains 233 cells of level 11.

Statistically speaking, a single cell is not representative at all. A large num-
ber of samples are needed to obtain a good approximation of &5, 5. The bigger
the number of samples, the better the approximation. It is then important to
know where is the limit when the number of samples starts to be representa-
tive. A self-similar geometry with known fractal dimension has to be analysed
with the same procedure than the studied case for validation. The simplest
case of self-similar surface is just a plane. It always looks like equal indepen-
dently to the scale and its dimension is 2. Consequently a random-oriented
plane was inserted into the octree mesh. The results of the preliminary study
can be seen at figure [5.1] as one of the reference cases. Three refinement levels
(22 cells) are needed to obtain a good approximation to the real value of the
dimension. Any result coming from a lower level is not reliable. The analysis
of the chaotic geometry has to be done taking into account this limitations.

The interface is a surface, that is, its dimensionality is two. As consequence
the expected fractal dimension gets this value for high refinements. Therefore,
behaviour and structures of larger scales are analysed in this section. Depend-
ing on the crystal density the geometry can either be analogised to a bunch of
randomly distributed needles (low density of crystals) or a porous media where
the fluid phase is delimited by the gaps between the crystals (high density of
crystals). This is why several concentrations of structures have been checked.
Concretely 2, 5, 10, 20 and 50 thousand structures per unit volume (mm?).
The figure shows the results of this study. Depending on the scale and the
concentration different values for each dimension can be observed.

1. Lattice spacing grater than the porous media thickness. It has
been simulated a film of porous media where its thickness is lower than
its extension. When the cell size is much larger than the layer thickness
the solid phase is meshed as a plane. The lattice can not capture any
detail of the micro-structure. As a consequence for a scale of the same
order or larger than the porous media thickness the expected value of
the dimension is 2, the dimension of the wall. This value can not be seen
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Figure 5.1: Fractal dimensions &5, 5 for each scale h; for several concentration
of acicular structures.

at figure because the number of cells larger than the wall thickness is
not large enough to be representative. There is a single cell of this size
and it always contains the solid phase.

2. Lattice spacing of the same order than acicular structures. The
porous media contains several cells across its thickness. However the cell
sizes are too big to capture any detail. As consequence, specially for
very dense micro-structures, a lot of cells enclose part of the interface.
It means that most of the cells are divided. If it happens the dimension
increases abruptly till values close to 3 for very dense geometries.

3. Lattice spacing of the same order than the crystal thickness.
The results of 25,5 for this scales are different depending on whether
the wall is almost empty or filled with solid phase. This is related with
the aspect ratio of the crystals, which is very high (length much larger
than thickness). As consequence a single crystal could be seen as a one-
dimensional object if the reference scale is larger than its thickness. One
example of this can be seen at figure where one of the reference cases
is a cylinder. This is the reason why Z;,5 can take values lower than
two when the density of crystals is very low. In the other hand, when
the porous media is very dense, most of the interstices are too thin to be
capture by the cell size. As consequence most of the contained volume is
interpreted as interface. That is the reason why denser structures need
stronger refinements to achieve value 2 in its dimension.

4. Lattice spacing much lower than the crystal thickness. No more
details exist for lower scales than the crystal thickness. When the lattice
spacing decreases beyond this value, the dimension shows what the solid-
fluid interface really is, a surface. That is the reason why the expected
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dimension value is something around 2 and why it has been chosen as the
criteria for the upper bound of the minimum lattice spacing. The little
discrepancies between the obtained value and the theoretical one is the
incapability of the refinement to reproduce each interstice. In spite of
this inconvenience the fluid flow through the unsolved holes is negligible
as it could be observed during the mesh independent study.

5.1.3 Grid dependence study

To estimate the effects of the spatial resolution on the discretisation error, a
grid study has been conducted. The original cell size of 2~ %mm is halved four
times down to 27 '°mm. To avoid using four times as many time steps with
every increase of resolution acoustic scaling and adaptation of the relaxation
times A, and A, are applied as depicted in Table This way, the number of
time steps is doubled resulting in an increase of workload by a factor of 16 for
every increment of resolution. In light of the results (cf. Fig. the use of a
resolution of 27mm is considered to be a good compromise between accuracy
and computational complexity.

Magnitude Case 0 Case1l Case 2 Case3 Case4

dx [mm] 276 277 278 279 2710
dt [ s] 28 2-9 9-10 911 9—12
time steps 4,000 8,000 16,000 32,000 64,000
Ae 1.902 1.814 1.660 1.418 1.099
Ao 0.0976  0.186 0.340 0.582 0.901

flow rate [I/s]  0.350 0.157 0.116 0.099 0.094
rel. deviation 2724% 67.3%  229% 5.7% --

Table 5.1: Parameters which change during the grid study and the resulting
flow rates. All Parameters refer to the finest grid level. The relative deviation
states the difference of the flow rate result to the solution of the finest grid
used.

5.1.4 Cross-correlations and autocorrelations for the micro-
structure and the velocity

The cyclic cross-correlations and cyclic autocorrelations are calculated over
the periodic solutions along the periodic directions X and Z. The solution is
smoothed by including every plane XZ which contains solid phase. For each
Y, the FFT is applied on the fluid phase field and on every velocity component



132 CHAPTER 5. FILTER SIMULATIONS

0.4
m [l/s]

0.3

0.0
6 7 8 9 10 —logy(h)

Figure 5.2: Grid study evaluating the flow rate through the porous medium
using different spatial resolutions.

to obtain the spectra f(x,y, z), getting one spectrum per plane and variable

f(Kzyy, k) (f denotes a generic field). The cross-correlation of two fields f and

g is calculated easily applying the equation getting (f * g)(kz,y, -). Then
each spectrum is integrated along the Y direction getting a single spectrum
per variable

> 9) (ks ) = / (T 9)(kasys ) dy. (5.6)

Before any transformation of the correlations from the spectra to the phys-
ical domain the mean value is subtracted. That is, the first component for
every variable with wave numbers x,=0 and x,=0 is assigned the value 0,
(f *9)(0,0) = 0. Then the cross-correlations and autocorrelations are recov-
ered in the physical domain (f * ¢g)(Az,Az) applying the IFFT. However,
they are not normalised. The inverse of the square root of the autocorrela-
tions at zero displacement (f g)l/ 2 is used as a normalising factor to get
(f *g)(Az, Az). Then the values are bounded by the interval [-1, 1].

The minimum domain size has to contain at least one of the largest chaotic
identities. Omne of this identities includes both the phase field and also the
affected surrounding flow field. Consequently, before any simulation a good
estimation about the size of a single structure is required. Every identity cor-
relates with itself, so it is expected to see strong correlations of the phase field
for small displacements. If a clear pattern for a displacement exists in the
autocorrelation, then there is an overlap of the structure with itself. It means
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that the structure is at least as large as this displacement. On the contrary, if
there is not a clear pattern and the solution for the autocorrelation of the phase
field is clearly noisy, the displacement is larger than the identity. The domain
is large enough then, to contain at least one structure. These autocorrelations
can be calculated before any simulation and they are very fast to do. However,
it is a necessary but not sufficient condition. The effects of the solid phase are
extended to the surrounding area of the flow field. Consequently, the displace-
ments for noisy autocorrelations of the flow field are expected to be larger.
This validation has to be checked after the simulation as a post-processing
task.

An exemplary case was run following the procedure described above in
which the flow field through a porous wall is analysed. The domain is 0.5x1x0.5mm
long and the minimum cell size is 2~ " mm. The wall is supposed to be infinite
but it has been replaced by a periodic approximation. It is extended along x
and z directions and it occupies the centre of the domain in y direction. The
analysed variables are the phase field and each component of the velocity field.
Figure [5.3] shows the normalised results. Taking into account the isotropy of
the porous medium the correlations with Z are not plotted. Those results are
equivalent to the X correlations but rotated by 90 degrees.

Figure 5.3: Normalised autocorrelations and cross-correlations of the phase
and the velocity components. Because the porous medium is isotropic the z
component is not shown (similar to  but turned ninety degrees).
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As expected, a correlated region can be observed at the middle for all the
autocorrelations. It is a circle centred in the origin for the phase field and
uy, and an ellipse in the case of u, (and w,). This also provides information
about the characteristics of the geometry and the flow field. A circle indicates
isotropy whereas an ellipse suggests a preference direction. Its size before
the noisy solution reflects the range affected by a single structure. Then it
can be concluded that the identity for the geometry is around 40pm long for
all directions, which is the same order of magnitude than half of the length
of a single crystal. Something similar happens with the autocorrelation of
uy. The range is approximately circular, again, meaning that u, has always
the same influence on itself independent of the direction X or Z. However, the
affected area is much larger. The range is around 100um, the maximum crystal
length. It demonstrates how the fluid structures surround the solid structure.
With respect to u, and u,, they are not isotropic. The major radius of the
ellipse created by the correlation, is aligned along the velocity components.
That means that the velocity of one point induces the same velocity in the
neighbourhood. The maximum range is again 100um.

The cross-correlations are also interesting to analyse. Especially important
are the cross-correlations between the phase field and the velocity. They can
show how the solid phase influences the velocity. It can be seen how the phase
field and the perpendicular component y are correlated till displacements of
50pum. It is more or less the same radius of influence than the solid phase
autocorrelation. However, no pattern can be observed when the solid phase is
correlated with the velocity cross-components. As conclusion, the solid phase
has no preference to induce velocity in any perpendicular direction.

The domain extension is appropriate for the simulation. It is more than
twice the most restrictive criterion, the autocorrelation of u,,.

5.1.5 Influence of the peripheral boundary conditions

A simulation can be very sensible to the BCs (BCs). A good selection can
make the difference between an accurate and an unrealistic solution. Every BC
approximates the relation between the computational domain and the outer
region. The better the approximation, the more accurate the solution. Porous
media are no exception. The goal is the simulation of flow crossing a porous
wall when it is subjected to a pressure gradient. The wall is supposed to be
infinite across the XZ plane for y = 0. The thickness where the seed points are
located is 200pm, between y=-100um and y=100pm. For this case the correct
BCs are fixed pressure at y = —oo and y = oco. For the sake of simplicity
of BCs an approximation is used instead. The fixed pressure BCs are moved
closer to y=-500pm and y=500um as is shown in figure . Of course some
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Figure 5.4: Boundary conditions for porous media simulations: (1) pressure
or velocity inlet, (2) wall, (3) periodicity or symmetry, (4) pressure or velocity
outlet.

little perturbations are not taken into account at these locations, but they are
small enough to be neglected.

Something similar happens in X and Z directions. The real wall is infinite.
Obviously an infinite wall can not be simulated so it is replaced by a sample of
it. There is only one exception: the periodic domain. In this case the periodic
BCs are exact, so the simulation of the sample coincides with the simulation
of the infinite domain. When the wall has no periodic pattern then other BCs
are needed to close the sample. Because the flux has to be conserved across the
wall the total flux across the BCs has to be zero. The simplest and one of the
most widely used BC is mirror or slip-wall. Contrary to the previous case, it
produces strong perturbations at the surrounding area because this behaviour
is unnatural across the wall. The flow at this region is forced to be tangential.
If the fluid is artificially oriented then the solution at this region is wrong.
Consequently the results at this area has to be rejected for post-processing
tasks and analysis. Only the core of the domain is valid. That is what we call
“measurement region”.
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The geometry generator permits periodic solid phase to be compatible with
the periodic BCs. Both the periodic BCs and the free-slip impermeable BCs
(mirror) have been compared. The domain size and the cell size used for the
simulations comply with the restrictions forced by the previous studies. Figure

-2.0 -1.5 -1.0 -0.5 0.0
%IOglo (”ﬁfs - ﬁsz)

Figure 5.5: Volumetric render of the logarithm of the energetic norm of the
error. (Left) Top view. (Right) Lateral view.

shows the module in log scale of the difference between the speed obtained
from the simulation under the impermeable BC @y, and the periodic one .
White space indicates no difference, while red opaque colours indicate high
differences. The black semitransparent regions show average differences. It is
very easy to see how the impermeable BCs perturb the area at the perimeter.
The strongest perturbations are at the boundaries and their effects decrease
with the distance from the domain limits. Using an error threshold of 1%, it
can be concluded that the solutions for both BCs are the same, around one
correlation length from the wall. The effect can also be observed upstream and
downstream from the porous medium. The lateral view of figure shows it
as smooth dark areas before and after the solid phase. The extension of the
affected region is also around one correlation length up and down from the solid
phase. As conclusion the closest threshold for the pressure BCs (upstream and
downstream BCs) is located at one correlation length from the more prominent
part of the solid phase.

The white space located far away from the solid phase means low difference
in the net flux through the porous medium between both BCs. The domain
is thick enough to dilute the perturbations produced by the presence of the
unnatural limitations. Otherwise an uniform grey colour would appear instead.
Because the affected area does not touch the centre and the net flux is almost
the same for both simulations it can be concluded that the ducting effect
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produced by the impermeable BCs has no consequences on the net flux.

The area distorted by the presence of the impermeable BCs should not be
considered for local analysis purposes. The flux is forced to take an unnatural
direction at this region. As a consequence, only the inner part is valid. We
call this region the “measurement area”. It is very interesting to see how its
extension does not depend on the depth (Y direction) of the porous medium.
It is constant with respect to this variable. It can be concluded that the
limitation for the thickness of the domain is only related to the size of the
structures of the porous media. Consequently the aspect ratio of the domain
is not a parameter to take into account. The length in the pressure gradient
direction and the thickness of the domain are independent variables. Only the
size of the largest structure fixes their limits.

Measurement region

The measurement region is the inner region of the domain where the fluid pat-
tern is not perturbed by the lateral BCs. It can be estimated by the simulations
of a periodic domain with and without periodic BCs. Considering the periodic
case as reference the difference between the two cases returns the error. At
the limits the error has the same order of magnitude than the studied variable
itself. It can be easily understood considering that the normal component to
the limit does not exist for free-slip BCs. The error becomes smaller when
the distance to the wall increases. The measurement area begins when the
error is smaller than the threshold used as criteria. For the sake of simplicity
we decided to use as measurement area the inner region of a parallelepiped
concentric to the domain whose maximum error is lower than 1% times the
reference velocity in every point.

5.2 Analysis of the results

There is no experimental setup which the results could be compare with. The
scale of the problem is too small to capture any local detail in the flow field.
Only macroscopic properties could be easily measured. Even so validation of
macroscopic results requires the simulation of measured samples. Obtaining
3D micro-structures of porous material is very expensive and requires special
installations like a synchrotron. Consequently the validation of the code has
been realised in a different way. It has been studied the tendency of the
relation between the pressure drop and the mass flow rate. If the simulations
are correctly done the macroscopic results have to fit the theoretical results of
Darcy equation.
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Figure 5.6: Pressure vs. velocity results for the same geometry. The fitting
curve is represented by the continuous line. Magnitudes in logarithmic scale.

The simulation setup accomplishes the requirements imposed by the pre-
vious section. It is simulated a wall made of porous material. Lateral BCs
are periodic as well as the micro-structure. The flow is driven by a pressure
jump between the upper and lower limits of the domain. Several simulations
are calculated for different pressure drops. Concretely the simulated values
are 16, 256, 512, 1024, 4096 and 16384 Pa. It can be observed how the pres-
sure jump follows a geometrical regression where some of the values have not
been calculated. The covered range for this validation is larger following this
procedure. Inertial effects are expected for the highest pressure. Forchheimer
correction 2.2 considers the deviation from the linear behaviour due to this
phenomenon.

The mass flow rate across the domain for every calculated pressure drop
are showed in figure [5.6f With the results it is also plotted the fitting line
obtained by least squares. It can be observed how the samples are practically
aligned with the exception of the last one, when inertial effects take place.

Once the tendency has been validated it is time to analyse one of the
cases with detail. Concretely the selected case is the simulation with 16kPa of
pressure drop. No large difference has been observed with respect to the rest
of cases with the exception of some fluid patters before and after the wall. The
observations of this case can be extrapolated to the rest.

Figure[5.7)shows a cut plane of the solution for 16kPa. It can be observed in
the results how the pressure gradient is not uniform across the porous media.
The material can be described as a collection of pores connected by interstices.
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Pores are like caverns in the porous medium. The flow is practically stopped
there and the pressure is almost uniform in its interior. On the contrary the
interstices, restrictions in the way of the fluid, concentrates the pressure drop
and accelerates the flux.

Figure 5.7: Results of an slide for 16kPa of pressure drop. (left) Pressure field.
(right) Velocity magnitude field.
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Chapter 6

Conclusions and future
works

6.1 Conclusions

The thesis is focus on the analysis of the filtering capabilities at micro-scale
level of DPF. Several models and solvers have been successfully developed to
reproduce the required multi-physics. Each physical phenomena have been
developed independently and included in a module. This strategy facilitates
the validation of each part without any influence of the rest.

The developing process has been set out as an optimisation problem where
the objective to be optimised is to advance as much as possible. The reason for
this approach is the complexity of the simulations. It is unreachable for a single
thesis. This kind of simulations includes fluid dynamics of the air through
the filter, particle motion, particle deposition and regeneration. Regeneration
was ruled out from the beginning. With respect to the rest of the models,
deposition could not be developed on time. Fluid dynamics and particle motion
have been successfully validated.

Every optimisation process is subjected to restrictions. In this context the
restrictions are the available resources, which are limited, and the quality of
the results. Simulating a filter is computationally expensive. It has to be
realised in a workstation, where the number of cores and the available memory
are limited. For this specific application memory consumption is specially
important. It is the most limiting factor. The algorithms have been adapted
in consequence. Their design is a compromise solution between calculation
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speed and memory consumption.

The research realised for this thesis contributes to science in two different
ways. One of them is mathematics. The algorithms optimises the calculation
and gives maximum performance. The other is knowledge related with the
filtering process. Setup for porous media calculation with minimum computa-
tional cost, correlations and models of agglomerates or flow field in the interior
of a chaotic micro-structure are three examples.

6.1.1 Geometry generator

The first task to do when it is wanted to measured the properties of a porous
material is to obtain a sample of it. The micro-structure can be obtained by
tomography or imaging reconstructions when the material and the facilities are
available. The cost of these techniques is usually very expensive. The alterna-
tive is to create the geometry computationally. A tool for this purposed has
been developed successfully. It is based on procedural generation techniques.
The result mimics the micro-strucuture of a filter made of acicular mullite.
Each crystal is characterised by a set of parameters. These parameters are
random samples extracted from statistical populations.

6.1.2 Fluid Solver: Lattice-Boltzmann Method

Once the geometry is available it is time to calculate the flow trough it. Sev-
eral solvers based on lattice Boltzmann techniques have been developed. One
of these solvers is the test environment. It has been developed to be run in
the GPU. It returns maximum performance. The simulations are calculated
in minutes. The main purpose of this application is to test any advance before
being included in the main solver. The Lattice Boltzmann solver LABMOTER
is the most advance tool developed in this thesis. This application includes
adaptive refinement for both the geometry and the solution. It has been de-
signed to be run in the workstation. The source code has been written in
Fortran for maximum performance. HPC techniques have also been applied
for the same purpose. LABMOTER has been successfully validated with two
reference cases, the 3D driven cavity and an 3D infinite circular cylinder at
Reynolds 250. Part of the research has been realised in collaboration with
the department Lehrstuhl fiir Systemsimulation (LSS) of Friedrich-Alexander
Universitdt Erlangen-Niirnberg (FAU). This department, directed by profes-
sor Ulrich Riide, develops WALBERLA framework. This is the third tool whose
purpose is calculating the flow field. WALBERLA is designed to be run in the
most powerful supercomputers. Its objective is to obtain maximum perfor-
mance. It is widely validated and its range of applicability is very extensive.
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This thesis contributes to the development of Lattice-Boltzmann Meth-
ods in two different ways. Boundary conditions in LBM are usually under-
restricted. There are more unknowns than restrictions. Consequently there
are infinite combinations of discrete distributions able to satisfy each bound-
ary condition. The opposite case could also happens if the number of compo-
nents in contact with the boundary is very low. A new technique to develop
boundary conditions for LBM has been successfully tested. Each boundary
condition is considered as an optimisation problem. The magnitude to be
optimised depends on the criterion of the developer. Performance, accuracy
and robustness are the most common. The type of boundary conditions im-
poses the restrictions, usually density (pressure) or velocity, or a combination
of them. Lagrange multipliers are applied for the optimisation problem, re-
sulting an equation system. The uniqueness and existence of the solution are
not guaranteed. A robust algorithm able to work with over-determine systems
is required. It returns the best approximation to the solution with minimum
euclidean norm, exact solution if the system is determined. This algorithm
is computationally expensive (the computational cost is similar to other BCs
if the inverse of the equation system is kept in memory) but it is robust for
every case. Its main advantage in addition to its robustness is the absence of
conditional flow controls.

The experience of developing applications based on LBM with different
strategies also provides important information about performance. Maximis-
ing performance without loss of accuracy was a design criterion from the be-
ginning. This is the reason why LABMOTER incorporates local adaptive re-
finement for both the solution and the boundary conditions. However after
its development it was discovered how the interpolations and the communica-
tion between different lattices deteriorate the performance. In addition local
refinement breaks the coherent arrangement of the data in memory. It slows
down the calculation speed even more. WALBERLA framework solves this is-
sue using block refinement instead of local refinement. The number of nodes
for each sub-block is always the same, keeping good load balance in parallel
computation. The negative counterpart of this strategy is an increment in
the number of cells. However the advantages outweigh the disadvantages. A
deeper improvement is reachable by vectorising the collision step. Vectorised
operators are able to operate with arrays instead of scalars with the same fre-
quency. Consequently it is possible to calculate and array of nodes in the same
time than a single one. It is recommendable consistent memory alignment to
obtain maximum performance. Calculations in the GPU are specially sensible
to this paradigm, where the improvement could be of one order of magnitude
or even more. This is in fact how the test environment works.
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6.1.3 Optimum setup

Obtaining good results is only possible with a good setup. Domain size, dis-
cretisation and boundary conditions are the most conditioning factors. To
minimise the computational cost the domain size has to be minimised, the
lattice spacing maximised and the boundary conditions have to be as realistic
as possible. It has been simulated the pressure drop of an infinite wall made of
porous material. The domain takes the shape of a box. Two of the boundary
conditions force the flux through the porous media. The rest (lateral BCs)
communicates the simulated sample with the rest of the material. There are
several ways to delimit the sample. The most appropriate one is periodicity.
This boundary conditions requires periodic geometry. These is an advantage of
the procedural-generated micro-structures in comparison with measured micro-
structures. Forcing periodicity in a generated geometry is something very easy
to do. On the contrary is very difficult to find pure periodic micro-structures in
nature. If it is not possible to use periodic boundary conditions the second op-
tion is symmetry. Symmetry artificially channelises the flow. It is important to
known how deep penetrates the influence of the lateral boundary conditions to
take it into consideration with non-periodic geometries. The influenced region
can never touch the core. It has been demonstrated how the influence distance
is proportional to the correlated distance. Autocorrelation has also been used
to calculate the size of the largest coherent structures. The correlated distance
duplicates the size of the structures. The domain has to contain several of this
structures to be statistically representative. The last factor to be analysed
in the setup is lattice spacing. To reduce the computational effort the lattice
spacing has to be maximised preserving the accuracy. Two procedures have
been used to calculate the appropriate lattice spacing. The fractal dimension
of the interface takes value two (a surface) when the resolution is good enough
to capture the smallest details. It has been used the box-counting algorithm for
this purpose. The result has been corroborated with a lattice-size independent
study. Multiple resolutions have been applied to solve the same geometry, a
reduced version of the definitive one. The resolution is considered appropriate
when finer lattices have no influence in the solution.

6.1.4 Fluid field solution

The previous described setup has been used for the final simulation. The
results provide very interesting information about the flow field and the micro-
structure. It has been discovered how the flow field in the interior of the filter
can be approximated by pores connected by interstices. It can be seen by
the patterns of the pressure and velocity fields. The pressure drops in the
interstices whereas it is uniform in the pores. It has been visualised with a
volumetric render whose opacity is proportional to the pressure gradient. The
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results of the velocity field show a similar pattern. The highest velocities are in
the interstices. Unlike the pressure field in the interior of a pore, the velocity
field is not uniform. High velocity regions connect the interstices creating vessel
patterns, specially for high speeds. It has also been discovered how most of
the mass flow rate crosses through the same interstice. It can be visualised
tracing the path-lines. It means that the mass flux is dominated by the largest
interstices whereas the lowest have not practically effect.

6.1.5 Particle Motion

Once the flow field is successfully solved the particles can be injected in the
domain. The size of Diesel particles are not directly measured. They are cha-
racterised by the equivalent aerodynamic diameter. This magnitude explains
the aerodynamics of the particles perfectly. However it is not applicable when
other effects have to be considered. This is the case of the smallest and more
numerous particles. Brownian motion dominates their trajectory. The data are
in equivalent aerodynamic units. However Brownian motion requires physical
units. It is necessary to find the equivalence. For such purpose two different
solvers have been successfully developed. Diesel particles can be approximated
by aggregates of spheres. The first solver simulates the aggregation process
returning populations of particles. The second solver calculates the aerody-
namics of the generated particles. Unfortunately it is not finished.

Ballistic Agglomeration Simulator

The simulator of the aggregation process is based on ballistic collisions. Ad-
vance divide and conquer algorithms have been developed ad hoc to accelerate
the calculation. In addition, when there is an impact between agglomerates,
they can fuse to create a bigger one or they can collide. Both cases follows the
Newton laws. Usually the formulation to calculate the post-collision velocities
are based on the restitution coefficient. It explains the difference in speed be-
fore and after collide. This option is the most typical. However it presents
numerical problems due to round-off errors for very small denominators. It in-
troduces extra energy in the system and makes the motion unnatural. A novel
formulation developed in this thesis has been successfully implemented. In-
stead of using the restitution coefficient and calculate directly the post-collision
the new technique is based on energy. Every impact produces an impulse. This
impulse is unknown at the beginning. On the contrary the post-collision en-
ergy can be easily calculated and written in terms of the unknown impulse.
Consequently the impulse can be obtained solving a second order equation and
choosing the appropriate solution. Once the impulse is known the linear and
angular velocity can be refreshed. The energy has a second purpose. It has
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been used to calculate the discriminant responsible to decided when the collid-
ing agglomerates fuse and when they collide. It is expressed as a probabilistic
function. The probability to collide or fuse depends on the energy absorption
required for fusion. Omnce the probability is calculated a random sampled is
extracted from a uniform distribution between 0 and 1. If the value is larger
than the probability the agglomerates collide, otherwise they fuse.

Analysis of Generated Particles

The solver has been used for two different purposes. The first and design
reason is to obtain a representative population of particles. The second ap-
plicability is generation of porous media created by depositions. The first set
of simulations has been done starting from a population of spherical particles
in full-periodic domain. The size of the precursors is randomly generated ac-
cordingly to a statistical population. Their velocity is initialised in a similar
way. The simulation finishes when the number of particles is less or equal than
128. Several magnitudes of the results are evaluated. The agglomerates are
self-similar for large scales. Their compactness can be quantified by means of
the fractal dimension Dy. This magnitude has been calculated returning the
value 1.9. It relates the number of precursors n, of an agglomerate with its
gyration Ry radius as n, = k, (Ry/ Ro)P!. The pre-multiplicative factor kp
presents a lot of variability. This uncertainty has been quantified and include
in the model. In addition the evolution of concentration of particles with time
has been also studied. A decay equation has been modified to include the
effects of agglomerate growing. It depends on the initial concentration of pre-
cursors, restitution coefficient, variation of precursor radii, energy absorption
for equal probability between fusion and collision and overlapping energy ab-
sorption range for coexistence of fusion and collision. Random combinations
of these parameters have been created by means of Lattice-Hypercube tech-
niques. Each combination is used as input for the corresponding simulation.
The evolution in time in the number of particles is saved to fit the modified
decay equation. Each combination is associated with the resulting fitting pa-
rameters. After simulate every case the results can be used to find a model
able to explain the fitting parameters by means of the inputs. However the ag-
glomeration process presents natural variability. It has a chaotic component.
The effects of chaos can be seen in the residuals, too high to be neglected.
The model has to include uncertainty. Four stochastic variables are added to
the model. As consequence every combination of inputs returns a probabilistic
distributions of fitting parameters.
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Agglomerate Shell Generation

The agglomerates are modelled by spheres. However to calculate the aero-
dynamics it is needed to know where is the surface. A novel algorithm has
been developed for this purpose. It is based on meta-spheres. This strategy
consists on replacing every sphere by a potential. The original geometry can
be recovered as an iso-surface of this potential. This technique rounds the
intersections between spheres, making the geometry more realistic. Several
points are located on the iso-surface. The separation among the points is uni-
form. The surface can be constructed using Delaunay triangulation. Some
more improvement is required to be fully operative.

Model for deposition structure

The agglomerate solver based on ballistic collision can be also applied to create
porous media resulting of depositions. The simulation is realised in a very
long box-shaped domains. The domain is periodic along the two shortest
directions. The third direction is connected to a reservoir of precursors in
one of its sides (inlet) and to an empty space (outlet) in the other. When
an agglomerate collides with its twin of the neighbour period it becomes solid
phase. Unfortunately the resultant geometry can not be used to characterise
deposits of particles for Diesel filters. However it can be considered as the
starting point of the definitive solver. Realistic solutions are only possible if it
is also considered fracture models for agglomerates and deposits.

Aerodynamics of agglomerates: Direct Simulation Monte Carlo

Now it is possible to relate the number of precursors (particle mass) with
the gyration radius (particle size). The following step is to find the relation
between the number of precursors and the equivalent aerodynamic diameter.
This model allows the capability to convert the measurements of the bibliog-
raphy, given in equivalent units, to physical units. Relating the aerodynamic
properties and the real geometry is only possible by means of simulations. For
such purpose a new solver has been developed. Conventional CFD techniques
like Finite Volumes or the solver developed to compute the flow field of the
porous media based on lattice Boltzmann Methods are accurate for continuous
flows. However the size of the precursors is comparable to the mean free path.
Consequently a new solver able to calculate rarefied flows is required. The most
appropriate option is an application based on DSMC. The solver has been suc-
cessfully developed, including a new wall boundary condition. The boundary
condition is regulated by two parameters. The calibration has been done sim-
ulating laminar Couette flow. For validating purposes the drag of a sphere has
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been successfully calculated. Unfortunately the wall boundary condition for
triangulated surfaces could not be implemented on time. Consequently find-
ing the relation between the geometry of the agglomerates and the equivalent
aerodynamic diameter is one of the most important future works. The process
to be realised is analogous to the method followed to find the relation between
the gyration radius and the number of precursors of an agglomerate.

Particle Tracker

The algorithms to calculate the trajectory of the particles have been success-
fully developed. The starting point is the model to calculate the path-lines.
Path-lines and trajectories overlap if the flow field does not depend on time
and if the inertial effects are negligible in comparison with the drag force. The
range of applicability of this model is reduced. Including the mass extends
the applicability interval. The middle range of the particle population can be
successfully tracked with this model. However the smallest particles are also
affected by Brownian motion. Brownian motion is the discrete counterpart of
the Fick’s law for diffusion. This equivalence has been used to validate the
model. Sometimes the displacement due to Brownian motion is too long. If
the covered distance during a time step is longer than the cell size the Brow-
nian motion is decomposed in several sub-steps. With respect to the largest
particles, they can be several cells thick. The drag force and its corresponding
reaction force are calculated by a kernel function. In addition, the reaction
force could be high enough to disturb the flow field around them. The sta-
tionary hypothesis is not valid under this condition. Fluid field and particle
tracking are couple.

6.2 Future works

Perfection does not exist. Every developed model, solver and algorithm of
this thesis can be improved. However there are some points where inverting
effort for improvement could be more effective. In addition some parts of the
thesis are unfinished. In the following lines it is explained how some of the
most relevant research can be concluded, improved, adapted or expanded. The
explanation summarises the knowledge provided by four years of experience.

6.2.1 Solvers, models and algorithms

An algorithm has to be effective and efficient. Efficiency is usually measured in
terms of performance (maximum calculation speed or scalability) or consump-
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tion of resources (minimum required memory or energy consumption). The
definition is usually related with the available resources or with a magnitude
to be optimised. Effectiveness is defined by the objective of the algorithm, the
reason of its creation. It measures the quality of the results. An algorithm is
effective if it accomplishes its purpose. The most typical variables to quantify
effectiveness are accuracy (simulation), robustness or limited computational
time (real time applications). An improvement in one of these factors usually
penalises others. The election of the best options is then a compromise solu-
tion. In the following lines it is exposed some alternatives to the algorithms
used in this thesis and their potential improvements.

Lattice Boltzmann Solver

The first version of the solver LABMOTER has been developed to be run in
a shared memory machine. One of its more important capabilities is adaptive
refinement. The lattice around the geometry or in the high gradient regions can
be made finer to capture the details. This strategy saves memory without loss
in accuracy. The refinement of the lattice is done locally. This has a penalty
in performance. Firstly the communication between coarse and thin lattices
requires interpolation, which is a very expensive operation. The contact area
between lattices can vary with time and be very extensive.

One advantage of the modern processors is the capability to overlap calcu-
lations and memory transfer, what is called prefetching. It reduces drastically
the cache misses and consequently it has beneficial effects in performance.
There is a requirement for prefetching to be effective. The location in memory
of the data has to be known a priori. Local refinement breaks the coherent
arrangement of the data. Knowing their location is more difficult and prefetch-
ing becomes less effective. The addition of all the previous effects slows down
the solver. Even so using refinement is advantageous in comparison with full
fine lattice.

The domain in LABMOTER is stored in memory as a single block. To be
able to run in distribute memory machines the domain has to be divided in
multiple blocks. This is in fact how WALBERLA framework works. Each block
is calculated by a single computational thread. To get maximum performance
each blocks contains a single lattice. In other words, refinement is done for
entire blocks instead to be local. This is done in a recursive way creating octree
structures, where each children contains the same number of nodes than the
father. Preserving the number of nodes keeps good load balance. It makes the
algorithm highly parallelisable. In addition the data in each block is arranged.
The access is fast and prefetching applicable. Performance increases in one
order of magnitude.
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Additional improvements in the performance can be obtained vetorising
the arithmetic operations. This is the strategy followed to developed the test
environment. This technique is specially useful to calculate with the GPU,
when the performance improvement is more than an order of magnitude. The
improvement for the CPU is not so drastic. However it can doubles the cal-
culation speed. The modern CPUs are able to apply the same arithmetic
operation on data arrays simultaneously. How long is the array depends on
the CPU architecture. This type of operations are called SIMD, an acronym
Single Instruction, Multiple Data. The inverted time to calculate the entire
array is approximately the time required to calculate a single scalar.

It is proposed to developed a new solver LABMOTER 1.0 which includes
these strategies to improve drastically the performance.

Ballistic agglomeration simulator

The size of the particles is heterogeneous. The range of precursors per agglom-
erate goes from a single one to ten of thousands. Calculating collision between
agglomerates requires to know where is the exact location of the impact. The
algorithm which detects the collision points is divided in two different stages.
The first stage calculates proximity. Once proximity is confirm the second
stage calculates the contact point. The agglomerates are circumscribed by
spheres. Two agglomerates are considered candidates to collide if the circum-
scribed spheres intersect each other. Every combination of agglomerates has
to be tested. The cost of the computation is quadratic. Two different strate-
gies are used depending on the number of agglomerates in the domain. The
brute force algorithm is the best option for low number of particles. The cost
grows quadratically. When the number of agglomerates excesses a thresh-
old the algorithm to be applied follows a divide and conquer strategy. The
computational cost is reduced from quadratic to & (N log(N)). The domain is
recursively divided creating an octree structure. This decomposition is created
every iteration.

The method to find the location point once a couple of agglomerates are
candidates to collide is similar. The algorithm to be applied when the agglom-
erates are small is the brute force version. Again, the order of the second phase
is quadratic. A second divide an conquer algorithm divides the agglomerates
to find the location of the collision point. As well as the other divide and con-
quer algorithm the order is reduced to &(N log(N)). Again the decomposition
is done for every iteration.

It is propose as a future work to create and maintain the octree mesh. The
current algorithms are designed to run in share memory machines. Keeping the
mesh allows the distribution of the computational load among different nodes.
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In addition both the proximity detection and collision detection can be unified.
It can drastically reduce the heterogeneity and accelerate the calculation.

Triangulation of the surface of the agglomerates

Obtaining the shell which surrounds the agglomerates have been partially de-
veloped. The procedure consists on using meta-spheres. A potential field cre-
ated by kernels is used to generate the shell which encloses the agglomerate.
An iso-surface of this potential corresponds with the surface of the agglomer-
ate. The location of the vertexes along the surface is uniform and it is correctly
computed. Once the vertex are located it is time to create the triangles. De-
launay triangulation is the selected tool for this purpose. Unfortunately some
of the generated triangles are not part of the geometry. The opposite could
also happens. The shell could present some holes where a triangle should ex-
ist. Some algorithms have been developed to correct the false positives and
to close the holes. However they only correct the geometry partially. More
advance algorithms are required. It is proposed as a future work to develop
these algorithms.

Improvement of the micro-structure deposits

The current model creates micro-structures with self-similarity relations. Its
fractal dimension is expected to be coincident with the fractal dimension of
the agglomerates generated by ballistic collision. It means that large micro-
structures have proportional empty spaces. In the real world these micro-
structures collapse. The links between precursors can break. Modelling this
effect reduces the size of the empty spaces. It is purposed as future work to
developed a model of rupture when two agglomerates collide.

Direct Simulation Monte-Carlo

The development of the CFD solver based on DSMC is not finished. This
is the tool designed to calculate the aerodynamics of the agglomerates. The
formulation has been successfully validated. However it is still required to
develop the boundary conditions for triangulated surfaces.

The solver can be improved and its capabilities extended. More advance
collision operators can be implemented to gain in performance. In addition
the arithmetic can be optimised from the computational point of view. At this
moment the solver does not include adaptive refinement. It is propose as a
future work to improve the algorithms of the solver and extend its capabilities



152 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

including adaptive refinement. Developing the boundary condition for trian-
gulate surfaces is mandatory. Otherwise it is not possible to calculate the drag
force of the agglomerates.

The agglomerates are not symmetrical. The orientation is aleatory. The
aerodynamic forces tend to orientate the agglomerate to minimised the drag.
Implementing moving walls could help to calculate minimal drag force. The
agglomerate has to be free to rotate and been oriented with the wind. It is
proposed to implement moving walls to calculate minimum drag instead of the
drag aligned with the initial orientation.

6.2.2 Extra simulations
Deposits characterisation

The ballistic agglomeration simulator can be used to create the micro-structure
of deposits. To obtain realistic results it is needed to previously develop the
rupture model (see section [6.2.1)). Once the micros-structure is created and
its surface triangulated the flow field trough the deposits can be simulated.
The scale of the details is similar to the length of the mean free path, so the
simulation has to be realised with the DSMC solver. The results can be used
to characterised the material. The macroscopic properties such as porosity
and permeability can be obtained following the same procedure of this thesis
to analyse acicular mullite. Then the deposits can be integrated in the filter
simulation as a porous phase.

Deposits as porous phase

Once the deposits are well characterised they can be included in the filter
simulation as a porous phase. The Darcy equation has to be converted to
Lattice Boltzmann formulation just like it is done with NS equation. It is
also required to model the growing of the deposits and the behaviour of the
interface fluid-deposit.

Aerodynamic characterisation of particles

Direct-Simulation Monte-Carlo can be used to calculate the aerodynamics of
the particles. The number of simulations has to be large enough to be repre-
sentative. Correlations between the drag force and the real size of the particles
can be use to create a model in analogous way to the work done in section|4.3.4
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This model relates the the physical size, required for Brownian motion, with
the equivalent aerodynamic diameter. The measured populations are usually
given in equivalent units. This tool can be used to convert the measurements.

Simulations of other micro-structures

This thesis is focused on the simulation of acicular mullite. There are Diesel
Filters made of other materials. The topology of these materials can be very
different. It is proposed as future work to simulate other micro-structures
following the same procedure. In addition other procedural-generation algo-
rithms can be developed to mimic the corresponding materials. The study
of the optimum setup can be used to corroborate and generalise the results
obtained in this thesis.

Simulations with oriented crystals

All the simulations of this thesis calculate isotropic material. Under this hy-
pothesis the permeability tensor can be replaced by a scalar. It could be
interesting to recover the macroscopic properties of anisotropic materials. It
is propose to modify the crystal generator to create oriented structures and its
posterior analysis. Several simulations are required instead of a single one to
analyse every direction. It is also necessary to calculate the auto-correlation
for the third direction too. The best option for the analysis of this type of ma-
terials is calculating a 3D sample instead of a fragment of wall. Consequently
is advantageous to create a full-periodic geometry and to developed a new
boundary conditions. This new boundary condition has to satisfy periodicity
in speed and force net mass flow rate or pressure gradient.

Geometry depending on depth

All the simulations of this thesis analyse pure chaotic micro-structure of aci-
cular mullite. The properties of the material are statistically uniform. It is
propose to modify the geometry generator to create depth-dependent mate-
rial. The most appropriate magnitude to be modified is crystal length. The
results can be compared with the results of uniform materials and find some
equivalence.
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Relation between macroscopic properties and micro-structure

In this thesis a new model has been developed to relate the number of precur-
sors of an agglomerate with its gyration radius. Similarly a second model is
able to predict the evolution of the concentration of agglomerates with respect
to time. A third model is proposed as a future work to relate the physical size
of the particles with its aerodynamic properties. The same methodology can be
used to predict the macroscopic properties of a material from the parameters
which control its micro-structure. The auto-correlation and cross-correlation
could be also variables to take into account for both correlating and being cor-
related. Several simulations of variable versions of the geometry are proposed
as future work to find this relation between.
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List of Symbols

A.1 Acronyms

List of acronyms

BC Boundary Condition
BGK Bhatnagar-Gross-Krook
CDF Cumulative Distribution Function
CFD Computational Fluid Dynamics
CMT-Motores Térmicos Centro de Mantenimiento de Transporte
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DDR Double Data Rate
DNS Direct Numerical Simulation
DPF Diesel Particulate Filter
DSMC Direct Simulation Monte-Carlo
DoF Degrees of Freedom
FAU Friedrich-Alexander Universitdt Erlangen-Niirnberg
FFT Fast Fourier Transforms
FVM Finite Volume Method
GPGPU General-Purpose computing on Graphics Processing Units
GPU Graphics Processor Unit
HPC High Performance Computing
IFFT Inverse Fast Fourier Transforms
ITWM Fraunhofer Institute for Industrial Mathematics
LBM Lattice Boltzmann Method
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LES
LSS
MD
MPI
MRT
NPNL
NS
OpenMP
PAH
PDF
PM
RAM
SIMD
SRT
TRT

UQ

APPENDIX A. LIST OF SYMBOLS

Large Eddy Simulation

Lehrstuhl fiir Systemsimulation
Molecular Dynamics

Message Passing Interface

Multiple Relaxation Time
Northwest Pacific National Laboratory
Navier-Stokes

Open Multi-Processing

Poly-cyclic Aromatic Hydrocarbons
Probability Density Function
Particle Matter

Random Access Memory

Single Instruction, Multiple Data
Single Relaxation Time

Two Relaxation Time

Uncertainty Quantification

End of list of acronyms

A.2 DMathematical symbols

The square [ replaces a generic variable.

List of symbols

Roman symbols

kg
PvB

Boltzmann constant

Minkowski-Bouligand fractal dimension

Fractal dimension
Diameter

Diffusion coefficient
Energy

Force

Drag Force
Unitary Matrix
Knudsen number
Angular momentum
Pressure

Reynolds number
Strouhal number
Temperature
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Polynomial coefficients
Acceleration

Area

Microscopic velocity
Drag coefficient
Restitution coefficient
Correction factor
Number of dimensions
Distance

Botzmann distribution
Buoyancy force
Brownian force

Gravity force

Frequency

Function to be minimised
Restriction function
Gravity constant

Green’s function

Lattice spacing
Pre-multiplicative constant
Refinement factor

Kernel function
Characteristic length
Linking function

Discrete independent variable
Mass

Discrete independent variable
Normal vector

number of sub-time steps for Brownian motion
Number of precursors
Natural numbers

Linear momentum
Dynamic pressure

Mass Flux
Autocorrelation of f
Eigenvector

Radius

Gyration radius

Real number

Rotation matrix

Scale factor

Reference Area

Time

Macroscopic Velocity
Characteristic velocity



Greek symbols
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weight
Centre of Mass
Normalised independent statistical variable

II Momentum flux tensor
Q Collision operator
X Random sample
oon Kronecker’s delta
€ Infinitesimal
€ Error
K Permeability
K1 Inertial permeability
KO Runge-Kutta intermediate step
K Wave number
A Lagrangian multiplier
A Eigenvalue
A Mean free path
1 Dynamic Viscosity
10) Porosity
10} Phase field
T Quotient between perimeter and diameter of the circle
p Density
o Standard deviation
T Relaxation time
0 Temperature
T4 Characteristic time
£ Spatial displacement
& Angular velocity
Operators

f Array (bold variable)
[O] Upper integer
[k Complex conjugate
Ox0d Crosscorrelation
O Deviation
vAO Curl
A Increment
V.0 Divergence of
Voo Gradient of
0.0 Partial derivative with respect to x
o0/0x Partial derivative with respect to z
O Time derivative
0 Second time derivative
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erf(00)
1]
t

Dl% 5 DiDlDlDiSEII:I C
® . . >/[-j\ |
O DiDlDlDlv

Subscripts

Uo

Superscripts

01ed
[Jneq
(e
Din
Dkn
Dout
|:|Ph
Dref

End of list of symbols

Error function

Lower integer

Fourier transform

Infinite

Integral with respect to x
Magnitude

Matrix

Tensor

Normalised variable
Component of opposite direction
Order of

Cross product

Dot product

Internal tensor product
External tensor product
Root square

Tensor power

Vector

Reference value

Relative to the a-th component of the distribution
Relative to the coarse level

Relative to divide and conquer algorithm

Relative to the fine level

Restriction Index

Relative to the particle

Relative magnitude

Relative to time

Relative to the wall

Relative to equilibrium
Relative to non-equilibrium
Equivalent

Relative to incoming variables
Known value

Objective value

Magnitude in physical units
Reference value
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Dictionary

A

azimuth, angle of: angle formed between the line of sight projected into the
horizontal plane and the north.

E

elevation, angle of: angle formed between the line of sight and the horizontal
plane.

Equivalent aerodynamic diameter: Given a generic-shaped particle, the
equivalent aerodynamic diameter is the hypothetical diameter of a spherical
particle with the same motion in Stokes regime with density 1000kg/m?3.

Equivalent particle: Given a generic-shaped particle, its equivalent coun-
terpart is a spherical particle of density 1000kg/m?® whose motion in Stokes
regime is the same than the original one.

N

nadir: point of minimum elevation located vertically below the observer.

P

prefetching: Computational technique which consists on overlapping data
transfer and calculations to reduce computational time.
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vV

voxel: is the homogeneous in density non-divisible unit of volume which com-
pounds a 3D image.

Z

zenith: point of maximum elevation located vertically above the observer.

End of list of dictionary
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