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Abstract

Multi-Agent Planning (MAP) is a topic of growing interest that deals with the

problem of automated planning in domains where multiple agents plan and act

together in a shared environment. In most cases, agents in MAP are coopera-

tive (altruistic) and work together towards a collaborative solution. However,

when rational self-interested agents are involved in a MAP task, the ultimate

objective is to find a joint plan that accomplishes the agents’ local tasks while

satisfying their private interests.

Among the MAP scenarios that involve self-interested agents, non-cooperative

MAP refers to problems where non-strictly competitive agents feature com-

mon and conflicting interests. In this setting, conflicts arise when self-interes-

ted agents put their plans together and the resulting combination renders

some of the plans non-executable, which implies a utility loss for the affected

agents. Each participant wishes to execute its plan as it was conceived, but

congestion issues and conflicts among the actions of the different plans com-

pel agents to find a coordinated stable solution.

Non-cooperative MAP tasks are tackled through non-cooperative games, which

aim at finding a stable (equilibrium) joint plan that ensures the agents’ plans

are executable (by addressing planning conflicts) while accounting for their
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private interests as much as possible. Although this paradigm reflects many

real-life problems, there is a lack of computational approaches to non-coopera-

tive MAP in the literature.

This PhD thesis pursues the application of non-cooperative games to solve non-

cooperative MAP tasks that feature rational self-interested agents. Each agent

calculates a plan that attains its individual planning task, and subsequently,

the participants try to execute their plans in a shared environment. We tackle

non-cooperative MAP from a twofold perspective. On the one hand, we focus

on agents’ satisfaction by studying desirable properties of stable solutions,

such as optimality and fairness. On the other hand, we look for a combination

of MAP and game-theoretic techniques capable of efficiently computing stable

joint plans while minimizing the computational complexity of this combined

task. Additionally, we consider planning conflicts and congestion issues in the

agents’ utility functions, which results in a more realistic approach.

To the best of our knowledge, this PhD thesis opens up a new research line

in non-cooperative MAP and establishes the basic principles to attain the

problem of synthesizing stable joint plans for self-interested planning agents

through the combination of game theory and automated planning.
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Resumen

La Planificación Multi-Agente (PMA) es un tema de creciente interés que trata

el problema de la planificación automática en dominios donde múltiples agen-

tes planifican y actúan en un entorno compartido. En la mayoría de casos, los

agentes en PMA son cooperativos (altruistas) y trabajan juntos para obtener

una solución colaborativa. Sin embargo, cuando los agentes involucrados

en una tarea de PMA son racionales y auto-interesados, el objetivo último

es obtener un plan conjunto que resuelva las tareas locales de los agentes y

satisfaga sus intereses privados.

De entre los distintos escenarios de PMA que involucran agentes auto-interesa-

dos, la PMA no cooperativa se centra en problemas que presentan un conjunto

de agentes no estrictamente competitivos con intereses comunes y conflic-

tivos. En este contexto, pueden surgir conflictos cuando los agentes ponen en

común sus planes y la combinación resultante provoca que algunos de estos

planes no sean ejecutables, lo que implica una pérdida de utilidad para los

agentes afectados. Cada participante desea ejecutar su plan tal como fue con-

cebido, pero las congestiones y conflictos que pueden surgir entre las acciones

de los diferentes planes fuerzan a los agentes a obtener una solución estable

y coordinada.
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Las tareas de PMA no cooperativa se abordan a través de juegos no coopera-

tivos, cuyo objetivo es hallar un plan conjunto estable (equilibrio) que asegure

que los planes de los agentes sean ejecutables (resolviendo los conflictos de

planificación) al tiempo que los agentes satisfacen sus intereses privados en la

medida de lo posible. Aunque este paradigma refleja muchos problemas de la

vida real, existen pocos enfoques computacionales para PMA no cooperativa

en la literatura.

Esta tesis doctoral estudia el uso de juegos no cooperativos para resolver ta-

reas de PMA no cooperativa con agentes racionales auto-interesados. Cada

agente calcula un plan para su tarea de planificación y posteriormente, los

participantes intentan ejecutar sus planes en un entorno compartido. Abor-

damos la PMA no cooperativa desde una doble perspectiva. Por una parte,

nos centramos en la satisfacción de los agentes estudiando las propiedades

deseables de soluciones estables, tales como la optimalidad y la justicia. Por

otra parte, buscamos una combinación de PMA y técnicas de teoría de juegos

capaz de calcular planes conjuntos estables de forma eficiente al tiempo que

se minimiza la complejidad computacional de esta tarea combinada. Además,

consideramos los conflictos de planificación y congestiones en las funciones

de utilidad de los agentes, lo que resulta en un enfoque más realista.

Bajo nuestro punto de vista, esta tesis doctoral abre una nueva línea de investi-

gación en PMA no cooperativa y establece los principios básicos para resolver

el problema de la generación de planes conjuntos estables para agentes de

planificación auto-interesados mediante la combinación de teoría de juegos y

planificación automática.
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Resum

La Planificació Multi-Agent (PMA) és un tema de creixent interès que tracta el

problema de la planificació automàtica en dominis on múltiples agents plani-

fiquen i actuen en un entorn compartit. En la majoria de casos, els agents

en PMA són cooperatius (altruistes) i treballen junts per obtenir una solució

col·laborativa. No obstant això, quan els agents involucrats en una tasca de

PMA són racionals i auto-interessats, l’objectiu últim és obtenir un pla con-

junt que resolgui les tasques locals dels agents i satisfaci els seus interessos

privats.

D’entre els diferents escenaris de PMA que involucren agents auto-interessats,

la PMA no cooperativa se centra en problemes que presenten un conjunt

d’agents no estrictament competitius amb interessos comuns i conflictius. En

aquest context, poden sorgir conflictes quan els agents posen en comú els seus

plans i la combinació resultant provoca que alguns d’aquests plans no siguin

executables, el que implica una pèrdua d’utilitat per als agents afectats. Cada

participant vol executar el seu pla tal com va ser concebut, però les conges-

tions i conflictes que poden sorgir entre les accions dels diferents plans forcen

els agents a obtenir una solució estable i coordinada.
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Les tasques de PMA no cooperativa s’aborden a través de jocs no cooperatius,

en els quals l’objectiu és trobar un pla conjunt estable (equilibri) que asseguri

que els plans dels agents siguin executables (resolent els conflictes de planifi-

cació) alhora que els agents satisfan els seus interessos privats en la mesura

del possible. Encara que aquest paradigma reflecteix molts problemes de la

vida real, hi ha pocs enfocaments computacionals per PMA no cooperativa en

la literatura.

Aquesta tesi doctoral estudia l’ús de jocs no cooperatius per resoldre tasques

de PMA no cooperativa amb agents racionals auto-interessats. Cada agent cal-

cula un pla per a la seva tasca de planificació i posteriorment, els participants

intenten executar els seus plans en un entorn compartit. Abordem la PMA no

cooperativa des d’una doble perspectiva. D’una banda, ens centrem en la sa-

tisfacció dels agents estudiant les propietats desitjables de solucions estables,

com ara la optimalitat i la justícia. D’altra banda, busquem una combinació

de PMA i tècniques de teoria de jocs capaç de calcular plans conjunts esta-

bles de forma eficient alhora que es minimitza la complexitat computacional

d’aquesta tasca combinada. A més, considerem els conflictes de planificació i

congestions en les funcions d’utilitat dels agents, el que resulta en un enfoca-

ment més realista.

Des del nostre punt de vista, aquesta tesi doctoral obre una nova línia d’inves-

tigació en PMA no cooperativa i estableix els principis bàsics per resoldre el

problema de la generació de plans conjunts estables per a agents de planifi-

cació auto-interessats mitjançant la combinació de teoria de jocs i planificació

automàtica.
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Chapter 1

Introduction

Automated planning is the art of computing a course of action or plan which

achieves the goals of a task from an initial state. Planning has been tradi-

tionally regarded as a centralized process in which a single entity builds a

plan that satisfies the goals of the planning task (Ghallab, Nau, et al. 2004).

Multi-Agent Planning (MAP) is a research field which pursues the integration

of planning capabilities in intelligent agents (Weerdt et al. 2009). MAP deals

with the problem of automated planning in domains where multiple agents

plan and act together in a shared environment (Nguyen et al. 2009). This re-

search field is significant since it uses Artificial Intelligence (AI) techniques to

compute a joint plan that achieves the agents’ goals, which is used in different

strata of society like industry, market management, space exploration, video

games, e-science, or military applications (Clement 2005). The type of the

participating agents in a MAP task defines the cooperative, collaborative or

competitive nature of the MAP approaches. Agents can be classified as altruis-

tic or non-strategic, in which case they do not have private interests and all

1
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agents work together to solve a common task, and self-interested or strategic

agents, where each agent is mostly concerned with the accomplishment of its

individual planning task and it is usually motivated by the desire to maximize

its own utility. A MAP approach capable of attaining for the agents’ private

interests will imply a significant impact in the society since it would benefit all

involved entities, especially in industry contexts where the monetary profit is

the main objective.

The work in (desJardins, Durfee, et al. 1999) examines distributed planning

for non-strategic agents from two different perspectives; one approach re-

gards a MAP task as the process of formulating or executing a plan among a

number of participants; the second approach puts the focus on coordinating

and scheduling the actions of multiple agents in a shared environment. The

first approach has evolved to the so-called cooperative MAP, where multiple

agents plan cooperatively to achieve a common goal, irrespective of how the

goals, the knowledge and the agents’ abilities are distributed in the applica-

tion domain (Durfee 2001). On the other hand, the objective of the second

line is controlling the execution of multiple agents aimed at solving a common

task in order to ensure that the agents’ local goals are met in a global con-

text. This research line, commonly known as decentralized planning, is mostly

concerned with problems such as task decomposition, resource allocation or

reducing communication overhead in distributed coordination (Lesser et al.

2004).

When rational and self-interested agents are involved in a MAP task, the ob-

jective is to find a joint plan that accomplishes the agents’ local tasks while

retaining their private interests. In this scenario, common and conflicting inte-

rests are involved. That is, because conflict of interest arises when formulating

or executing their plans in a shared environment, every party usually looks for

an agreement which is as favorable as possible (cooperation). This type of pro-
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blems are better addressed with game theory, the study of mathematical mo-

dels of conflict and cooperation between intelligent rational and self-interested

agents (Von Neumann and Morgenstern 2007). The mathematical analysis of

game theory arises naturally when observing and analyzing a conflict from a

rational point of view. A game is thus a conflicting situation in which opposing

interests of individuals or institutions prevail. In this context, the decision or

strategy of one party influences the decision that the others will make, and

hence, the result of the conflict is determined from the decisions made (or

strategies applied) by all the parties. One objective pursued by game theory is

to predict a stable solution (equilibrium), a solution in which no agent will be

better off by changing its strategy unilaterally (Shoham et al. 2009, Chapters

3 and 12). In a MAP task with self-interested agents, game theory is necessary

to guarantee stable solutions that naturally emerge from the rational behavior

of agents, while still keeping their private interests instead of complying with

the authority of a centralized or external entity.

Among the different types of games, cooperative and non-cooperative game

theory apply to strategic management behavior, a key feature in self-interested

planning agents. In Cooperative Game Theory (CGT) agents compete but also

cooperate to improve utility by joining coalitions. Thus, the aim of CGT is to

predict which coalitions agents will form, the joint actions that groups take

and the resulting collective payoffs (Brafman et al. 2009; Dunne et al. 2010).

Non-Cooperative Game Theory (NCGT), in contrast, tries to predict the agents’

individual strategies and payoffs in order to find stable solutions without con-

tracting each other’s behavior since cooperation is self-enforcing. In a NCGT

scenario applied to MAP, agents do not create value by joining coalitions or

contracting others; each agent solves its planning task without communicat-

ing with the other partners and regardless of how the others solve their tasks.

When rational planning agents are strictly competitive, the MAP task is formu-
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lated as an scenario where agents directly compete against each other. The

goal of an agent in this setting is to defeat or hurt the other agents and hence,

the gains of an agent are precisely the losses of the other agents, and vice

versa. For instance, in a domain where several companies compete to attract

customers, the larger the number of customers for a company, the larger the

benefits for this company, and the lower the benefits for the rest of the com-

panies. Fully competitive approaches to MAP are known as adversarial MAP

and they are generally based on zero-sum games (Bercher et al. 2008; Sailer

et al. 2007).

There exist, however, other type of games inside NCGT, known as non-strictly

competitive games, which feature competitive and cooperative elements. This

type of game is regarded as a conflicting-interest coordination game, where a

conflict is a loss of utility to an agent when it applies its strategy alongside the

other agents’ strategies. From a game-theoretical perspective, a non-strictly

competitive game is addressed as general-sum game or non-zero sum game

(Shoham et al. 2009, Chapter 3) (Osborne et al. 1994), where the gains of an

agent are not the other agents’ losses and so there can be win-win situations.

Hence, agents seek to satisfy their private interests but not at the cost of

hurting others as in zero-sum games. In a MAP task, conflicts arise when self-

interested agents put their plans all together and the combination of plans

render some plans non-executable. Every partner wishes to execute its in-

dependently computed plan but interactions among the actions of the plans

prevent some agents from executing its plan as it was originally devised. This

compels agents to find a coordinated stable solution.

This PhD thesis pursues the application of non-strictly competitive games to

solve MAP tasks with rational and self-interested agents, a problem that has

been largely neglected in the literature. We will refer to this type of problems

as non-cooperative MAP tasks. Each agent calculates a plan for its planning
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task and subsequently all agents try to execute their plans in a shared envi-

ronment. Planning conflicts arise due to synchronization problems between

actions (simultaneous use of the same variable (Blum et al. 1997)) or because

the execution of some actions invalidates the conditions for the execution of

subsequent actions of other agents’ plans (potential clobbering actions be-

tween the plans of different agents (Cox et al. 2009)). Therefore, agents opt

for coordinating their plans in a game context while resolving conflicts, which

typically results in a loss of utility with respect to its standalone plan. Other-

wise, if all agents impose the execution of their plans, an unresolved conflict

will lead to non-executable plans and so agents will fail achieving the goals of

their planning tasks. In these problems, it is necessary to find a stable (equi-

librium) joint plan that ensures the agents’ plans are executable (by avoid-

ing planning conflicts) while accounting for their private interests as much as

possible. This paradigm reflects real-life problems like traffic flow regulation,

where agents have complementary interests because they all wish a smooth

driving avoiding collisions, but also conflicting interests due to the use of the

same roads, what may cause a decrease of the utility of their driving plan or

strategy.

While there has been some research in the field of non-cooperative MAP, this

is not a well-studied problem. The work in (Larbi et al. 2007) interleaves

planning and execution by defining a game where agents select the actions

to execute at each time step. The focus of this approach is to determine the

set of goals that are achievable by each partner but agents are not able to

make a long-term reasoning to achieve a given set of goals. The best-response

planning approach proposed in (Jonsson et al. 2011) solves congestion games

(Rosenthal 1973), a particular type of games where the payoff of each player

depends on the resources it chooses and the number of players choosing the

same resource. Conflicts managed in this approach are all due to the simulta-
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neous use of resources but other planning conflicts are neglected. All in all,

we can affirm there is a lack of computational approaches for non-cooperative

MAP to address the problem of building a stable joint plan.

This PhD thesis opens up a new research line in non-cooperative MAP and es-

tablishes the basic principles to attain the problem of synthesizing stable joint

plans for self-interested planning agents through the combination of game

theory and automated planning. The theoretical models presented in this PhD

thesis aim to address real-world problems that require coordination of a set

of self-interested planning agents. We propose two different models to tackle

this task from a twofold perspective. The first model assumes agents have

a set of precomputed plans and the objective is that each agent selects and

schedules one plan from the set such that the combination of all the schedules

yields a stable solution. In this first model, we focus on agents’ satisfaction

by studying different measures of optimality and fairness. The second model

considers agents with an unlimited set of plans, i.e., agents have planning ca-

pabilities to generate plans from their search space, so they can build their

plans on the basis of the others’ plans. This is not an infinite set since the

plans are limited by the costs and the search space of the agents. We also

improve efficiency by using a game-theoretical technique to iteratively com-

pute a stable solution. We study convergence to stable solutions, and we show

good complexity results under some assumptions. The theoretical models are

implemented and tested through several experiments in order to empirically

prove our hypotheses. The empirical evaluation of the models is a significant

contribution since it is not common in game-theoretic approaches.
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1.1 Objectives

1.1 Objectives

The main objective of this PhD thesis is to propose two models to solve non-

cooperative planning problems among self-interested agents that interact in a

shared environment. In the following, we present the objectives of this work as

well as the associated tasks tackled throughout this research and the resulting

contributions:

1. Review of the related work. We revise the literature regarding the main

topics of this research.

(a) Review of the basic concepts and related work of classical planning

and MAP with non-strategic agents.

(b) Review and analysis of the existing approaches that combine game

theory and planning.

2. Design of a game-theoretic model for agents with a limited set of pre-

computed plans:

(a) Definition of a theoretical model to obtain equilibrium solutions.

(b) Analysis of stable solution concepts, Pareto optimality, and fairness

to enhance the satisfaction of the agents in a game-theoretic setting.

(c) Development of algorithms to solve the non-cooperative MAP task.

(d) Analysis of computational complexity.

3. Design of a non-cooperative MAP model for agents with an unlimited set

of plans:
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(a) Definition of the theoretical model that allows agents to build their

plans on the basis of the others’ plans.

(b) Design of a mechanism for conflict handling that enhances conflict

solving.

(c) Extension of the model to deal with congestion games by designing

a mechanism to avoid congestion with delays.

(d) Analysis of the complexity of the task to find out under which con-

ditions it can be efficiently solved with the proposed model.

4. Implementation and validation of the two game-theoretic MAP models.

(a) Design and implementation of algorithms to schedule the actions of

the agents’ plans as a non-cooperative game (first model).

(b) Adaptation of an existing multi-agent planner to implement our own

non-cooperative multi-agent planner (second model).

5. Empirical evaluation of the two models to validate the hypotheses of this

PhD thesis in various non-cooperative MAP tasks.

(a) Experiments with planning domains adapted to a non-cooperative

setting that features planning conflicts among agents.

(b) Comparison of the approach presented in (Jonsson et al. 2011) and

analysis of upsides and downsides of our proposal.

(c) Experiments with domains that feature congestion.

(d) Specification and experimentation with a case study based on a real-

world problem that features electric and autonomous vehicles. This
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MAP task includes all the elements that self-interested agents must

tackle, i.e., conflicts, congestion, and individual cost functions.

(e) Analysis of the individual agents’ strategic behavior.

1.2 Document Structure

The remainder of this document is organized as follows:

• Chapter 2 analyzes the related work in non-cooperative MAP. First, we

review classical planning and MAP with non-strategic agents. Then, we

revise existing non-cooperative MAP approaches which present common

characteristics with the work of this PhD thesis. This chapter covers

objective 1.

• Chapter 3 presents FENOCOP (Fair Equilibria in NOn-COoperative Plan-

ning), the initial non-cooperative MAP model designed in the context of

this PhD thesis. FENOCOP is a game-theoretic approach that includes two

different games: the General Game, which considers the agents’ plans as

strategies and obtains equilibrium solutions, and the Scheduling Game,

where agents reason about how to schedule these plans in order to at-

tain executable joint solutions that are Pareto optimal and fair equilibria.

This model covers the objective 2 of the present work.

• Chapter 4 presents an empirical evaluation of FENOCOP, the model intro-

duced in Chapter 3. The two games of FENOCOP, the General Game and

the Scheduling Game, are fully implemented, which accounts for objec-

tive 4.a. We perform an experimental evaluation of the performance and

quality of the FENOCOP algorithms by means of different non-cooperative

MAP tasks, thus objective 5.a is totally covered.
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• Chapter 5 presents BRPS (Better-Response Planning Strategy), an ap-

proach for non-cooperative MAP where a set of self-interested planning

agents reach an equilibrium through better-response dynamics. BRPS

considers congestion and conflicts as part of the agents’ utility. We ana-

lyze the complexity of BRPS, studying under which conditions our ap-

proach behaves as a potential game. We deeply analyze convergence

to different equilibria, reporting positive complexity results under some

assumptions. This chapter attains the objective 3 of this PhD thesis.

• Chapter 6 presents a comprehensive experimental evaluation of BRPS,

the theoretical model introduced in Chapter 5. We compare our ap-

proach to BRP (Jonsson et al. 2011), a state-of-the-art best-response-

based model that presents many similarities with our approach. The ex-

periments include a congestion-based domain and several MAP domains

adapted from the Competition of Distributed and Multi-Agent Planners

(CoDMAP) (Komenda et al. 2016) benchmarks that feature planning con-

flicts. Additionally, we test a complex custom domain that includes both

congestions and conflicts. This chapter covers objectives 4.b and 5.

• Chapter 7 presents the concluding remarks of this PhD thesis, the future

research lines, and the author’s related research activities and scientific

publications.
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Chapter 2

Related Work

In this chapter, we present the background more closely related to the re-

search lines of this PhD thesis. Albeit there has been a rather intensive ef-

fort in investigation on Multi-Agent Planning (MAP), with some proposals fo-

cused on game-theoretic planning, there are hardly proposals that tackle non-

strictly competitive MAP tasks. We will refer to this type of MAP tasks as

non-cooperative MAP as indicated in the Introduction of this PhD thesis.

The assumptions adopted in MAP concerning the nature of the participating

agents give rise to a great variety of MAP paradigms that range from altruistic

planning, which assumes that agents are fully cooperative and do not have a

strategic behavior or private interests, to adversarial MAP, where agents are

self-interested and competitive. Figure 2.1 shows a hierarchy of MAP, where

the left branch depicts approaches that feature altruistic agents and the right

branch presents the research areas that deal with self-interested agents.
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Multi-Agent Planning (MAP)

Cooperative MAP Decentralized Planning Coalitional MAP Non-cooperative

Altruistic agents
Self-interested agents 

(game theory)

Non-cooperative MAP Adversarial MAP

cooperation coordination cooperative games non-cooperative games

non-strictly competitive competitive

Figure 2.1: Multi-Agent Planning hierarchy

The mainstream of MAP approaches that involve agents with no private inte-

rests (left branch of Figure 2.1) is the distributed resolution of a common MAP

task among multiple agents. Approaches that define non-strategic planning

agents are also characterized by putting the emphasis on the cooperation of

all the agents to solve a common task or on the coordination of the local plans

of the agents. In cooperative MAP, agents typically combine their efforts to

achieve a set of common goals. In decentralized planning, the objective is to

coordinate the agents’ plans in order to achieve their goals in a global context.

The right branch of Figure 2.1 includes the research lines that feature self-

interested planning agents. We can identify two main approaches. On the

one hand, addressing a MAP task as a cooperative game where agents form

coalitions that help them achieve their goals is known as coalitional MAP. On

the other hand, the application of non-cooperative games to MAP gives rise

to two types of tasks: strictly competitive and non-strictly competitive. This

PhD thesis is devoted to analyze non-cooperative MAP, the study of non-strictly

competitive games to solve MAP tasks.
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This chapter is structured as follows. Section 2.1 introduces the most impor-

tant concepts of classical single-agent planning as well as some related work

in cooperative MAP and decentralized planning, which are the most common

MAP approaches that deal with non-strategic agents. In Section 2.2, we first

describe the related work in coalitional MAP and adversarial MAP, and then

we analyze the existing non-cooperative MAP approaches. Finally, we present

the conclusions of this related work.

2.1 Planning with Non-strategic Agents

In this section, we briefly survey the main characteristics of single-agent plan-

ning approaches and MAP for non-strategic agents (left branch in Figure 2.1).

2.1.1 Classical Single-Agent Planning

In a classical planning model (Ghallab, Nau, et al. 2004), the world is repre-

sented through a finite set of states which are fully observable by the planning

entity. The world is deterministic, which means that the application of an ac-

tion over a state leads deterministically to a single other state. The world is

also static and hence, the state of the world does not change until an action

is applied. The planning process is carried out offline, so a planner does not

consider external changes that occur in the world. The actions have no du-

ration and numeric reasoning is not considered. Finally, the goals to achieve

are explicit and immutable. Even considering all these assumptions, this clas-

sical form of domain-independent single-agent planning is PSPACE-complete

(Bylander 1994).

In classical planning, a state of the world is defined through a finite set of

facts or literals that represents a situation of the world. A literal is an atom
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composed of a predicate symbol and a possible empty finite set of parameters

that denote objects of the world. The states of the world change through the

application of the planning actions. In general, a planning action is defined

as a set of preconditions that must be satisfied in a world state for the action

to be applicable in such state, and a set of effects which transform the world

state into a new one by adding and/or deleting literals. Hence, a planning task

is defined as T = 〈I,A,G〉, where I is the initial state of the world, A is the

set of actions, and G is the set of goals. A solution to a planning task T is a

plan or course of actions from the set A that when applied in I leads to a state

in which the goals G are achieved.

An important aspect in planning is how to represent all the components of

a task with an expressive language. One of the first planning languages is

STRIPS1 (Fikes et al. 1971), which has influenced most of the existing plan-

ners. STRIPS is a compact and simple model to specify planning domains. The

most widely extended version of STRIPS is the Planning Domain Definition

Language (PDDL) (Ghallab, Howe, et al. 1998), which has become the stan-

dard language within the planning community. There exist several versions of

PDDL: PDDL2.1 introduces time management and numeric capabilities (Fox et

al. 2003); PDDL2.2 adds derived actions and timed initial literals (Edelkamp

2003); and PDDL3.0 (Gerevini and Long 2005) introduces preferences, soft

constraints and state trajectory constraints. The latest version is PDDL3.1

(Kovacs 2011) that enriches the language with SAS+ -like task representa-

tions (Bäckström and Nebel 1995). PDDL3.1 introduces object fluents; i.e.,

state variables that are neither binary (true/false) nor numeric (real-valued),

but instead are mapped to a finite domain of objects. This representation is

mainly inspired by the Functional Strips formalism (Geffner 2000).

1Stanford Research Institute Problem Solver (STRIPS) language.
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There is a large variety of classical single-agent planners, many of which have

participated in the different International Planning Competitions (IPCs)2 held

to date. Single-agent planning systems are usually classified according to the

search space they explore and the direction of the search (Ghallab, Nau, et al.

2004).

Heuristic planning is one the most popular planning paradigms nowadays.

The key of the success of heuristic planners is the design of powerful state-

based heuristics. The Heuristic Search Planner (HSP) (Bonet et al. 2001) is

one of the first state-based systems which uses domain-independent heuristic

search. The additive heuristic of HSP is defined as the sum of costs of the indi-

vidual goals in G, where the cost of a single atom is estimated by considering

a relaxed planning task in which all delete lists of the actions are ignored.

The Fast Forward (FF) planning system (Hoffmann et al. 2001) uses the re-

laxed plan heuristic hFF , which is defined as the number of actions of a plan

that solves the relaxed planning task. FF works with a Enforced Hill Climbing

search, an strategy that searches exhaustively for nodes with a better heuris-

tic value than the previous best node. On the other hand, the popular Fast

Downward (FD) planner (Helmert 2006) introduces SAS+ planning represen-

tations. For each state variable, FD infers its associated Domain Transition

Graph (DTG), a structure that captures the evolution of the value of a variable

through the application of the actions. The heuristic function hDTG of FD uses

the DTG of the variables to estimate the distance or number of actions that

are required for a variable to reach a final value vf from an initial value vi. FD

alternates hDTG and hFF .

Most recent solvers draw upon the hFF heuristic and the FD planner due to

its remarkable performance. For instance, some significant optimal planners

are Fast Downward Stone Soup-1 (Helmert, Röger, et al. 2011), Selective Max

2http://icaps-conference.org/index.php/Main/Competitions
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(Domshlak et al. 2010) and Merge&Shrink (Helmert, Haslum, et al. 2014).

The LAMA satisficing planner (Richter et al. 2010) is a FD-based planner that

applies landmarks (facts that must hold at some point in every solution of a

planning task) to enhance heuristic search. LAMA reuses the multi-heuristic

search strategy of FD to alternate a landmark-based estimator and a variant

of the hFF heuristic.

In the last IPC-8 (Vallati et al. 2015) celebrated in 2014, 29 planners out of

67 in the deterministic track were built on top of the FD planning system

(Helmert 2006), including the winner of the sequential optimal track, SymBA*-

2 (Torralba et al. 2016). Similarly, the winner of the sequential multi-core

track, ArvandHerd (Valenzano et al. 2012), is a portfolio-based approach that

combines random-walk and best-first search by simultaneously using LAMA

(Richter et al. 2010) and Arvand (Nakhost et al. 2009) planners. IBaCoP2 (Ce-

namor et al. 2014) is another portfolio approach that was the winner of the

sequential satisficing track. This portfolio approach combines all 27 planners

from the sequential satisficing track of the IPC-7 plus LPG-td (Gerevini and

Serina 2002). Particularly, IBaCoP2 uses a classification model to configure

the planners combinations with predictive models. Therefore, it seems port-

folio approaches, which combine multiple planners to take advantage of their

strengths in different problems, is becoming an important trend in planning

since a significant number of these approaches were presented in the 2014

IPC-8 (Vallati et al. 2015).

Despite the success and great advances in heuristic planning, these planners

are limited to sequential plans, which has also motivated a great deal of in-

vestigation in Partial-Order Planning (POP) (Penberthy et al. 1992; Barrett

et al. 1994). The POP paradigm introduces an approach where the planner

maintains partial-order relationships between actions without establishing a

particular order between every pair of actions. POP is based on the least
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commitment principle (Weld 1994) which determines that decisions about the

order of the actions and the value of the variables are deferred as long as pos-

sible during the search process. The original POP formalism is designed as a

regressive search process.

Some recent works have proposed a reformulation of the classical regres-

sive POP algorithm into a forward-chaining search strategy (Coles et al. 2010;

Younes et al. 2003). This allows combining a partial-order reasoning with an

explicit representation of states. The main advantage of applying a forward

POP search is a critical turning point that permits these methods to effectively

apply state-based heuristic functions, which has given rise to remarkably ef-

ficient POP systems. Nowadays, planners that generate partial-order plans

are basically found in temporal planning like SGPlan (Chen, Wah, et al. 2006),

Temporal Fast Downward (Eyerich et al. 2012), DAEY AHSP (Khouadjia et al.

2013), YAHSP2 (Vidal 2011), POPF2 (Coles et al. 2010), OPTIC (Benton, Coles,

et al. 2012) and FLAP (Sapena et al. 2014).

It is also worth mentioning the Hierarchical Task Network (HTN) planning

paradigm, a formalism that solves a planning task by applying a successive

goal decomposition (Georgievski et al. 2015). The objective of an HTN planner

(Erol et al. 1994) is to perform a set of HTN tasks, being this a primitive

action or a task which is decomposable into smaller tasks. The input of an

HTN planner includes a set of actions and a set of methods to indicate how a

task can be decomposed. Hence, HTN progressively decomposes tasks until

only primitive or executable actions remain. HTN is widely used in practical

applications like decision support in forest fire (De La Asunción et al. 2005),

or generation of clinical treatment plans (Sánchez-Garzón et al. 2013; Fdez-

Olivares et al. 2011). Some of the most significant HTN planners are SHOP

(Nau, Cao, et al. 1999), its successor SHOP2 (Nau, Au, et al. 2003), and SIADEX

(Castillo et al. 2005).
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2.1.2 Multi-Agent Planning

A cooperative MAP task is defined as the collective effort of multiple agents

towards achieving a common goal. In the last few years, there has been signi-

ficant research in the field of cooperative MAP, partly motivated by the 2015

Competition of Distributed and Multi-Agent Planners (CoDMAP)3 (Komenda et

al. 2016). Cooperative MAP is applied to solve tasks which cannot be solved by

a single agent or that are better solved by cooperating (Durfee 2001). In the

former case, combining the abilities of the agents is needed in order to solve

a common task. For example, a task that involves various agents which are

spatially distributed (located in different geographical areas) or functionally

distributed (agents do not all have the same abilities) and some or all of the

agents are required to solve the planning task (Torreño et al. 2014b).

Privacy is one of the main motivations to adopt a MAP approach. Privacy

means coordinating agents without making sensitive information publicly avai-

lable (Tožička, Jakubŭv, Komenda, and Pěchouček 2016). Whereas this aspect

was initially neglected in former MAP solvers, the most recent approaches

tackle this issue through the development of robust privacy-preserving algo-

rithms (Štolba, Tožička, et al. 2016). The most common method is the obfus-

cation to occlude private information.

Among the existing MAP languages, Multi-Agent Planning Domain Definition

Language (MA-PDDL)4 stands out as the first attempt to create a standard

specification language for cooperative MAP tasks. MA-PDDL extends and

adapts PDDL3.1 (Kovacs 2011) to a MAP context, and allows for factored and

unfactored task representations. In a factored input, each agent receives the

3http://agents.fel.cvut.cz/codmap/
4Please refer to http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf for a complete

definition of the syntax of MA-PDDL.
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specification of its planning task, which includes the knowledge and informa-

tion the agent has on the task as well as the set of task goals which are shared

by all of the agents. Additionally, the representation of the individual tasks

includes information regarding agents’ privacy so as to define the data which

cannot be shared with other agents.

A large number of the planners that participated in the centralized track

of the 2015 CoDMAP compile a MAP task into a set of single-agent tasks.

The Agent Decomposition-based Planner (ADP) (Crosby, Rovatsos, and Petrick

2013), which was the winner of this track, uses a fully automated process that

inspects the multi-agent nature of the planning task and calculates an agent

decomposition that results in a set of decoupled local tasks. Then, ADP applies

a state-based centralized planning procedure to solve the MAP task. Similarly,

CMAP (Borrajo and Fernández 2015), MAPR (Borrajo 2013) and PMR (Luis et

al. 2014) follow a goal-allocation mechanism and obfuscation strategy to solve

the MAP task with single-agent planning technology. MAP-LAPKT (Muise et al.

2015) conceives a MAP task as a problem that can be transformed and solved

by a single-agent planner using the appropriate encoding. MADLA (Štolba and

Komenda 2015) is a centralized solver that runs one thread per agent on a

single machine and combines two versions of the hFF heuristic.

Other planners that apply a distributed agent search to solve the MAP task

participated in the distributed track of the CoDMAP. PSM (Tožička, Jakubŭv,

and Komenda 2015) follows a compact representation of local agents plans

into Finite Automata, called Planning State Machines (PSMs). This planner

makes public projections of PSMs and merges the public parts of individual

PSMs until obtaining a solution to the MAP task. PSM was the top performer

of this track, which was partly motivated by its efficient handling of agent

communications. MAPlan (Fišer et al. 2015) is a distributed approach that

implements a collection of state-space search methods and several local and
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global heuristic functions. This planner can be used in a single-machine or in

a distributed fashion by means of network message passing. Multi-Heuristic

Forward Multi-Agent Planning (MH-FMAP) (Torreño, Sapena, et al. 2015) is a

forward-chaining POP solver in which agents apply a distributed exploration

of the plan space. Agents locally compute plans through an embedded POP

component and they build a joint search tree by following an A* search scheme

guided by global heuristic functions.

The cooperative MAP research community has gained importance in the last

years and has established the base to attain MAP tasks through cooperation.

MAP, however, has also been an active research field within the Multi-Agent

System (MAS) community. The investigation of multi-agent planning in MAS

is principally motivated by the distributed nature of the tasks and systems,

and put the focus on the design of strategies to coordinate the plans of mul-

tiple decentralized agents. This activity, known as decentralized planning, is

mostly concerned with the coordination of local plans of the agents. There-

fore, in contrast to cooperative MAP, agents in this setting perform planning

independently and they do not directly cooperate to achieve their goals.

One of the most representative approaches to decentralized planning is PGP

(Durfee and Lesser 1991), a domain-specific approach where agents build

their partial global view of the planning problem. The search algorithm of

PGP finds local plans in the agents’ plan-space that are coordinated to meet

the goals of all the agents. Generalized PGP (GPGP) is a domain-independent

extension of PGP (Decker et al. 1992; Lesser et al. 2004) that separates the

process of coordination from local scheduling, which allows agents to reduce

communications by sharing more abstract information.

In a plan-merging process, agents achieve their goals more efficiently by join-

ing their efforts although this generates some bindings among the agents’
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plans. For instance, the planner proposed in (desJardins and Wolverton 1999)

defines a communication scheme where agents create partial views of sub-

plans, and then, an agent performs a centralized plan merging process to

solve the threats or conflicts. Similarly, other local-plan merging strategies

have been proposed in (Ephrati et al. 1995; De Weerdt et al. 2003; Cox et al.

2004).

Decentralized planning is also focused on avoiding interactions between the

agents’ plans by means of coordination methods (Boutilier et al. 2001), or

using distributed constraint optimization techniques (Cox et al. 2009).

In general, there has been a rather intensive research in decentralized plan-

ning related to the task of combining the local plans of the agents into a global

solution. Nevertheless, in planning scenarios where agents feature private in-

terests, the techniques of cooperative MAP or decentralized planning are not

suitable as the strategic behavior of agents is ignored.

2.2 Game-theoretic Planning Approaches

A rational self-interested agent is an entity which has its own description of

the states of the world it prefers, so that its behavior is motivated by this des-

cription (Shoham et al. 2009). The mathematical study of interaction between

rational self-interested agents is called game theory (Von Neumann and Mor-

genstern 2007; Myerson 2013; Osborne et al. 1994). The key issue in game

theory is that individuals pursue their own interests.

Coalitional or Cooperative Game Theory (CGT) has teams as the central unit,

rather than agents, and it is devoted to analyzing how agents work together

by forming coalitions (Brandenburger 2007). Specifically, CGT predicts which

coalition agents will form and hence the utility that agents will obtain. On the
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other hand, Non-Cooperative Game Theory (NCGT) is concerned with strate-

gic equilibrium and individual utility maximization given the actions of other

people. Practically speaking, NCGT deals with various equilibrium concepts

and it is based on a precise description of the game in question.

Within NCGT, we can distinguish between strictly competitive and non-strictly

competitive games. On the one hand, strictly competitive agents have opposed

interests, and hence, the goal of an agent is to defeat or harm the other agents.

This setting is represented by the so-called zero-sum games (Von Neumann

1928; Von Neumann and Morgenstern 2007). Two-player board games are

typically deployed in a strictly competitive setting such as Chess, Checkers,

Go, and so on, where a joint strategy that is better for one player is worse

for the other player. This formalizes the intuition that the interests of players

are diametrically opposed. On the other hand, non-cooperative games that

take place in non-strictly competitive settings feature agents that have some

complementary interests and some interests that may be completely opposed.

This type of games are defined as non-zero-sum games, also called general-

sum games, where the winnings and losses of all agents do not add up to

zero and win-win situations can be reached (Gillies 1959; Shoham et al. 2009,

Chapter 3).

In a planning setting, cooperative game theory is named coalitional MAP. Simi-

larly, non-cooperative game theory with strictly competitive agents is called

adversarial MAP. Finally, as we pointed out in the Introduction of this PhD

thesis, the approaches that feature non-strictly competitive planning agents

will be referred to as non-cooperative MAP.

In this section, we briefly analyze the planning approaches that feature self-

interested agents (right branch of Figure 2.1). We firstly present the most
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relevant approaches of coalitional MAP and adversarial MAP. Afterwards, we

present an overview of non-cooperative MAP approaches.

2.2.1 Coalitional MAP

CGT considers groups of agents which benefit by forming coalitions (Branden-

burger 2007). For instance, coalitional resource games are games in which

agents cooperate by joining resources to achieve mutually satisfying goals

(Dunne et al. 2010). This work explores equilibrium concepts like the core

(Banerjee et al. 2001) and Subgame Perfect Equilibrium (SPE) (Selten 1975),

and a negotiation strategy to form coalitions. Additionally, the work in (She-

hory et al. 1998) proposes methods for task allocation through coalition for-

mation among agents. These methods are applied in situations where agents

study which coalitions to form in order to achieve more goals.

CGT has been applied in planning scenarios to solve coalitional goal alloca-

tion problems. The Coalition-Planning Game (CoPG) proposal (Brafman et

al. 2009) extends STRIPS-like models of single-agent planning to a system of

multiple self-interested agents that may need to cooperate in order to achieve

their single associated subgoals, but are assumed to do so only in order to in-

crease their net benefit. The second approximation of this work is the Auction-

Planning Game (AuPG), where coalitions of agents compete for the achieve-

ment of a single goal which yields a monetary reward for the coalition. The

profit is always distributed among the coalition agents.

A later work in the line of CoPG was presented in (Crosby and Rovatsos 2011).

In this case, the proposed approach solves the so-called “safe” CoPG, a subset

of the CoPGs where no agent can benefit from making another agent’s plan

invalid. A single-agent planner based on the hFF heuristic is used to solve the

multi-agent problem.
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More recently, Hadad et al. 2013 presented a temporal reasoning mechanism

for self-interested planning agents. In this work, agents’ behavior is modeled

on the basis of the Belief-Desire-Intention (BDI) theoretical model of coope-

ration to compute joint plans with time constraints. The mechanism ensures

temporal consistency of a cooperative plan and it has been tested in real-life

scenarios.

2.2.2 Adversarial MAP

NCGT in a strictly competitive setting studies problems in which the self-

interested agents have opposed goals. These games are known as zero-sum

games (Von Neumann 1928; Von Neumann and Morgenstern 2007). Some

popular examples are two-player board games, the matching pennies game

(Mookherjee et al. 1994; Ochs 1995), or Rochambeau5 (also known as Rock,

Paper, Scissors), which provides a three-strategy generalization of the match-

ing pennies game. In a planning setting, a strictly competitive game, named

adversarial MAP, is interpreted as agents pursuing completely opposed goals,

e.g., one agent has to achieve the goal g and another one has to achieve ¬g.

Some adversarial MAP approaches focus on solving problems in non-determi-

nistic and unpredictable scenarios (Applegate et al. 1990). In this work, au-

thors present an architecture for adversarial planning in battle management

that involves control of several semi-autonomous intelligent agents; the need

to adjust plans dynamically according to developments during plan execution;

and the need to consider the presence of an adversary in devising plans.

(Jensen et al. 2001) presents universal adversarial MAP algorithms for non-

deterministic finite domains. These algorithms extend the family of ordered

binary decision diagrams and are applied to stochastic games.

5http://www.rpscontest.com/
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Another research line of adversarial MAP is devoted to board games or gene-

ral video games. (Sailer et al. 2007) propose a planning framework that uses

strategy simulation to achieve Nash equilibrium solutions. This framework is

applied to army deployment problems in real-time strategy settings in order

to improve strategic behavior of agents in modern video games. The works in

(Willmott et al. 1998; Willmott et al. 2001) present an adversarial HTN plan-

ning framework for goal-directed game playing. Particularly, this approach is

only applied to solve the well-known game of Go6.

Similarly to alpha-beta pruning (Knuth et al. 1975), (Bercher et al. 2008) pro-

pose a forward-chaining approach to adversarial MAP based on the AND/OR*

algorithm, which is guided by a heuristic evaluation function inspired by the

relaxed planning graph used in the calculation of the heuristic function hFF .

This approach is only applicable to two-player games.

In summary, in strictly competitive scenarios agents have opposed goals, they

seek to harm each other and only care about decisions that benefit them.

2.2.3 Non-cooperative MAP

Agents in a non-strictly competitive setting do not seek to harm each other

but, since they have complementary and contrary interests, their purpose is

to apply a collaborative strategy and conflict resolution process that aims to

accommodate all participants (win-win strategy). In this section, we first intro-

duce the type of problem we aim to solve with a typical example of general-sum

games (Myerson 2013; Osborne et al. 1994). Additionally, we show the map-

ping between the players’ strategies of a game and the agents’ plans in a plan-

ning context. Subsequently, we present the related work in non-cooperative

MAP to solve this type of problems and, finally, we introduce the main features

6http://www.usgo.org/way-go

25



Chapter 2. Related Work

of the models that will be presented in this PhD thesis in order to compare

them with the approaches in the related work.

Let us consider the well-known coordination game “the Battle of the Sexes”

shown in the payoff matrix of Table 2.1 (Shoham et al. 2009, Chapter 3) (Luce

et al. 1957, Chapter 5). The first number of each cell represents the uti-

lity obtained by the row player given the combination of strategies of that

cell. Similarly, the second number is the utility that the column player obtains

given the combination of strategies represented in the cell. In this game, two

players must decide where to go, to a rock music concert or to a pop music

concert. Each player would prefer to go to a different concert; that is, row

player prefers the rock music concert, and column player prefers the pop mu-

sic concert. However, both would prefer going to the same concert together

rather than to different ones, what explains that the utilities shown in Table

2.1 are 0 when each player goes to a different concert and over 0 when they

attend together to the same event. This is a general-sum game where the

self-interested agents coordinate their strategies so as to obtain the maximum

possible utility.

Table 2.1: Two-player coordination game in normal-form

Rock Pop

Rock 3, 2 0, 0

Pop 0, 0 2, 3

Let us now consider the strategies of the players as plans. From a planning

perspective, we assume the existence of a conflict when the players attend

different concerts, and hence the utilities for both are 0. In case both players

would go to the same concert, we assume that the player who goes to its non-

preferred concert will receive lower utility because the plan is more costly to
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perform. Two different Nash Equilibria (NE) (Nash 1951) can be obtained in

this game, namely, the combination of the strategies Rock, Rock, with utilities

(3, 2), or the combination of the strategies Pop, Pop, with utilities (2, 3). These

are the only stable outcomes from which agents would never deviate because

otherwise it would imply a utility loss.

In non-cooperative MAP, agents do not seek help from others to satisfy their

goals; i.e., they do not form coalitions with the purpose of building their plans.

There are several types of problems in non-cooperative MAP. In some pro-

blems, agents have to solve a MAP task and goal allocation is applied to

distribute the goals of the task while retaining the agents’ private interests.

Other problems feature multiple individual planning tasks. In this case, agents

are assumed to independently work on their own part of the planning problem,

and then, their plans have to be coordinated with others’. Similar settings

focus on determining the amount of goals each agent can solve of its own

planning task (soft goals), depending on the interactions with others’, through

non-cooperative games.

Non-cooperative MAP settings have been used for goal allocation (Nissim and

Brafman 2013). Agents have to obtain an optimal solution to a MAP task,

which means they have a common interest, while satisfying their private in-

centives. The objective is to determine the goals of the MAP task that will be

solved by each agent, while guaranteeing an optimal solution that maximizes

the sum of the agents’ utilities, i.e., utilitarian social welfare. Hence, when an

agent is bidding for a goal, a payment is applied to reflect the impact of each

agent’s participation on the other agents. This problem is solved with the

Vickrey–Clarke–Groves (VCG) mechanism (Vickrey 1961; Clarke 1971; Groves

1973). Other approaches use similar auction mechanisms to distribute goals

among agents (Van Der Krogt et al. 2005). In this work, agents bid for the
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goals to solve and the MAP task is tackled with single-agent plan repair sys-

tems.

MAP with self-interested agents is commonly regarded as a coordination pro-

blem in which several agents interact. Some approaches apply pre-planning

coordination and decompose a global task into individual sub-tasks that agents

can solve independently (Buzing et al. 2006). The underlying goal is to find a

minimal set of precedence constraints that guarantees autonomous planning.

The complexity of pre-planning coordination yields the problems intractable,

however, reasonable solutions can be obtained by adding some additional

constraints (Mors et al. 2005), or using approximation algorithms (Buzing et

al. 2006). A recent work in (Hrnčíř et al. 2015) presents an application for

ridesharing aimed at finding routes that travelers can share in order to save

costs. The solution proposed by this work ensures that each individual is bet-

ter off taking the shared ride rather than traveling alone.

In some MAP environments with multiple individual planning tasks, the aim

is to determine the goals that each agent solves (soft goals) depending on the

negative interactions with other agents. In (Galuszka et al. 2010), the authors

propose a STRIPS model that calculates a solution plan by doing the inverse

of the problem (the initial states of the agents are translated to soft goals, and

the original goal of each agent to its initial state). This model represents the

conflicts between the actions of the agents’ plans through a payoff matrix and

finds an equilibrium for the whole problem goals or a part of them.

In (Bowling et al. 2003) a preliminary formalization of equilibrium in multi-

agent planning is introduced. MAP solutions are classified according to the

agents’ possibility of reaching their goals and the paths of execution (combina-

tions of local plans). However, this work has not been completely developed or

empirically tested. Similarly, the work in (Larbi et al. 2007) extends the classi-
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cal planning model to multi-agent scenarios where agents perform online plan-

ning. Each agent wants to achieve its goals, but since planning is interleaved

with execution, the feasibility of its actions is uncertain. Hence, agents decide

which action to apply at each time step through a non-cooperative game. A

“satisfaction profile” is defined to determine the possibilities that an agent has

to achieve its goals when applying each action.

Best-Response Planning (BRP) (Jonsson et al. 2011) is an approach specifi-

cally devoted to solving the so-called congestion games (Rosenthal 1973),

where the simultaneous use of a resource by multiple agents increases its

cost. BRP is also applied to some planning domains for self-interested agents

where convergence to equilibrium solutions is not guaranteed. In BRP, an ini-

tial conflict-free joint plan is calculated with the DisCSP cooperative planner

(Nissim, Brafman, and Domshlak 2010). Then, best-response dynamics, an

iterative process in which each agent proposes its best plan considering the

other agents plans, are applied in order to improve the initial solution. BRP is

able to synthesize stable joint plans, where all agents achieve their goals, with

remarkable performance in the presented experimental results with planning

domains adapted to self-interested agents.

Non-cooperative MAP tasks can be seen as the coordination of the agents’

plans to come up with an executable joint plan. Agents have both coopera-

tive interests (all agents want their plans fit together so as to ensure they are

executable) as well as contradictory interests (every agent wants the execu-

tion of its plan to prevail over the others’ in case of conflict). Since agents are

self-interested, stable (equilibrium) solution joint plans must be guaranteed so

that no agent will deviate from the solution. We can distinguish two different

views to tackle non-cooperative MAP tasks aimed at synthesizing stable joint

plans.
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Agents in (Jordán et al. 2015) (FENOCOP, Chapter 3) have a limited set of

precomputed plans that solve their planning tasks and the MAP task of syn-

thesizing a stable joint plan is solved with a two-game approach. One game

determines the plan that each agent will use by computing an equilibrium.

Each joint plan is scheduled through a second game where agents avoid plan-

ning conflicts by delaying the execution of their actions. Particularly, this

game computes equilibrium solutions that are also Pareto Optimal (PO) (Ar-

row 1963) and fair, thus satisfying agents as much as possible. This is a signi-

ficant novelty in the non-cooperative MAP literature. However, this approach

does not consider congestion issues, planning conflicts entail −∞ utility for all

agents, and the calculation of fair PO equilibrium solutions is a difficult task

to solve in larger problems.

It is crucial to use more efficient methods to deal with self-interested agents

in order to solve larger problems than in (Jordán et al. 2015). Additionally,

considering congestion issues and planning conflicts as part of the agents’

cost yields a more realistic approach than BRP (Jonsson et al. 2011). Better-

response dynamics can be used in a similar setting as BRP, thus providing

planning agents with an unlimited amount of plans, i.e., planning capabili-

ties in a MAP context. In this way, better-response dynamics with planning

agents allows them to perform an iterative process to find a stable joint plan,

while strategically avoiding conflicts and congestions. Moreover, the need

of an initial conflict-free joint plan provided by a cooperative planner in BRP

must be avoided since it would generate synergies between the agents, which

makes no sense in a non-cooperative setting. Finally, it is necessary to study

under which conditions convergence to an equilibrium is guaranteed in non-

cooperative MAP tasks, as well as the theoretical complexity. All these aspects

are attained in our BRPS model (Chapter 5).
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Table 2.2: Feature comparison of different approaches

BRP FENOCOP BRPS

Unlimited Plans Yes No Yes

Compute All NE No Yes No

Pareto optimal No Yes No

Fairness No Yes No

Congestion Yes No Yes

Conflicts as cost No No Yes

Joint Plan from scratch No Yes Yes

Complexity NP-hard NP-hard PLS-hard

Table 2.2 presents a comparison of the main features of BRP, and the two

models that we propose in this PhD thesis. All these approaches can solve

non-cooperative MAP problems, however, there are significant differences be-

tween them. We wish to highlight that FENOCOP is the only approach that

obtains PO and fair solutions among the computed NE. However, it does not

have an unlimited set of plans (i.e., planning capabilities to generate new

plans, but not infinite), which may restrict the amount of possible solution

plans, and it does not consider congestion issues. The BRPS approach is able

to synthesize joint plans from scratch while considering congestion and plan-

ning conflicts in the agents’ cost functions. This is an important feature that

provides the agents with a more realistic behavior to tackle with real-world

non-cooperative MAP problems. Additionally, BRPS has promising complexity

results under some assumptions.

Every non-cooperative MAP problem can be represented by an equivalent

non-cooperative game. The strategies of the game are the plans of the non-

cooperative MAP problem. However, computing plans is a hard task, and
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hence, this complicates the problem of computing equilibrium solutions since

the strategies in our games are plans or schedules that have to be genera-

ted. Finally, the planning perspective is adding to non-cooperative games a

realistic approach to solve real world problems where strategic planning is

required.

2.3 Conclusions

In general, there has been rather intensive research in planning and MAP

without self-interested agents. Additionally, there has been some research in

MAP approaches that feature self-interested agents such as coalitional MAP

and adversarial MAP. However, the combination of game theory with MAP in

a non-cooperative but not strictly competitive setting has been traditionally

neglected by the research community. In this sense, there are only a few

approaches which explore the impact of non-cooperative agents in a planning

setting.

Therefore, we find necessary to fill the gap and explore what can be done in

a new research line which we called non-cooperative MAP. We are convinced

that as well as cooperative MAP has become an important field in the multi-

agent systems and planning communities, a step forward must be done in or-

der to cover an important part of real-life MAP problems in which the implied

entities are represented by self-interested agents. Hence, game-theoretic so-

lution concepts, as well as MAP techniques must be applied to synthesize sta-

ble joint plans that efficiently solve non-cooperative MAP tasks.
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Chapter 3

FENOCOP: Fair Equilibria in

Non-Cooperative Planning

Among the many variants of problems studied in the area of Multi-Agent Plan-

ning (MAP), in this chapter we focus on non-cooperative MAP tasks. One first

consideration in this type of tasks is that agents are self-interested and seek

their own benefit. Secondly, agents independently synthesize their own plan to

reach their goals autonomously. Finally, since agents intend to execute their

plans in a shared environment, and thus, interactions that negatively affect

plans may arise, agents are willing to coordinate their plans in order to avoid

the potential planning conflicts during a joint execution.

Consider, for instance, several truck drivers, each one in charge of delivering

cargo. Interactions among their plans will appear if some of the truck drivers

simultaneously attempt to access one depot with capacity limitations, or if a

truck driver is unable to unload the cargo because the depot is already full.
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When agents act in their own interest, an agent may not stick to the agreed

plan if it has a better strategy, even at the cost of others. Stable outcomes

are needed to guarantee that self-interested agents do not deviate from the

agreed joint plan. We are also interested in outcomes that are fair, in order

to balance out the individual satisfaction of the agents. Therefore, we look for

stable outcomes that may also be good for all agents, i.e., strategies that are

Nash Equilibrium (NE) (Nash 1951), Pareto Optimal (PO) (Arrow 1963), and

fair. An outcome which is NE, PO and fair is desirable because no agent will

be willing to deviate from an equilibrium while Pareto optimality removes any

Pareto inefficient NE, and fairness guarantees a balance between the agents’

utilities.

The existing approaches in the research line of non-cooperative MAP like

(Larbi et al. 2007) and (Jonsson et al. 2011) do not properly synthesize a stable

joint plan and they do not consider Pareto optimality and fairness. In (Kameda

et al. 2012) two fairness measures are proposed in resource allocation called

Nash equilibrium based fair and Nash-proportionately fair. However, these

measures are proportionately based on a PO NE, which means that are at-

tached to a particular proportionality of any of the PO NE outcomes. In addi-

tion, that work is also in the context of resource allocation and not related to

MAP.

Non-cooperative MAP for self-interested agents is a problem in which plan-

ning and coordination are needed. Solving the whole planning problem is too

complex because it is PSPACE-hard (Bylander 1994) and its runtime grows

exponentially with the problem size. Since agents can solve their goals indi-

vidually, it is reasonable to solve each individual planning problem separately

an then coordinate them all by delaying conflicting actions in order to obtain

a feasible joint plan. Conflicts may arise because of mutually exclusive actions
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or because of the lack of applicability of an action in a planning stage. In this

chapter, we thoroughly investigate the properties of this approach.

The problem we aim to solve is as follows: we consider a group of agents,

each having one or more plans that attain its goals. Executing a particular

plan reports the agent a utility that depends on the makespan (finish time) of

the plan. Agents operate in a common environment, what may cause inter-

actions between the agents’ plans, thus preventing a concurrent execution.

Each agent is willing to execute the plan that maximizes its utility but it does

not know about the strategies of the remaining agents, how the plans will

integrate with each other, or the impact of coordination on its utility.

This raises two problems which we tackle with a dual-game proposal, named

Fair Equilibria in NOn-COoperative Planning (FENOCOP), thus splitting the

complexity of the problem. On the one hand, agents must strategically decide

which joint plan or plan profile (combination of one plan per agent) to execute.

Each agent must select the plan that maximizes its utility, which depends on

the initial utility of the plan and how the plan is scheduled. This is attained by

the General Game (GG).

On the other hand, given a plan profile, agents schedule their plans to avoid

conflicts, obtaining a set of executable schedule profiles as a result. Among

these schedule profiles, a fair, Pareto optimal and NE outcome is selected in

order to keep agents as satisfied as possible. This problem is solved with the

Scheduling Game (SG).

The non-cooperative MAP problem we aim to solve with FENOCOP could be

solved through a single-game approach. However, this would present seve-

ral drawbacks. On the one hand, combining all the possible schedules of the

agents’ plans for all the plan profiles is a computationally hard task. We ini-

tially tested and discarded this single-game approach due to its high complex-
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ity. On the other hand, it makes sense to divide FENOCOP into the GG and the

SG, since they solve problems of different nature. The GG is used to choose

which plan to execute, and the SG determines the best possible schedule for

each combination of the agents’ plans. Additionally, the SG can be used as

an independent framework and the GG can be used with different SG algo-

rithms, depending on the features of the problem. All in all, the separation of

FENOCOP in two problems makes our approach more versatile.

As it is usually assumed in game theory, the structure of the game, the ra-

tionality of the agents and the payoffs that each agent receives are common

knowledge. Agents do not have private information since their plans and sche-

dules are known to the other agents in both the GG and the SG.

The solutions of the GG are always NE, and the solution of each SG meets

three criteria: it is a NE, PO and fair joint plan. The idea of combining these

two games was first presented in our work in (Jordán et al. 2015). All in all,

our whole proposal, FENOCOP, contributes with several novelties:

• A general framework, called FENOCOP, that solves non-cooperative MAP

tasks for independent agents that plan autonomously. Agents calculate

a set of individual plans that solve their respective problems, and then

engage in a game to select a plan schedule that allows them to execute

their plans simultaneously in a common environment.

• A Scheduling Game that returns a NE, because an equilibrium concept is

needed to avoid that any self-interested agent deviates unilaterally, PO,

thus improving Pareto inefficient NE, and fair, which guarantees that the

least satisfied agent is as satisfied as possible.

• Three different algorithms that solve the SG. Two algorithms which en-

sure that the solution of the SG is Pareto optimal and fair, while the third
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algorithm, which obtains a Subgame Perfect Equilibrium (SPE) (Selten

1975), does not guarantee Pareto optimality nor fairness.

• A mechanism to explicitly handling conflicts among agents’ actions and

to update the plan utility according to the penalty. This is precisely the

objective of the SG and the key contribution that makes our model a

realistic approach to MAP with self-interested agents.

This chapter is structured as follows. Section 3.1 introduces the formal no-

tions related to the planning task of the agents. Section 3.2 presents an

overview of FENOCOP. Sections 3.3 and 3.4 outline the characteristics of the

two-level game approach; the top-level General Game and the internal Sche-

duling Game. Section 3.5 is devoted to explain the algorithms for solving the

Scheduling Game, and finally, we give some conclusions of this work in Section

3.6.

3.1 Planning Scenario

The problem we want to solve involves a set of n rational and self-interested

agentsAG = {1, . . . , n}, where each agent i ∈ AG has an individual task, which

is defined as follows:

Definition 3.1.1. Individual task of an agent. The task of an agent i ∈ AG

is a tuple T i = 〈Ii,Γi〉, where Ii describes the initial state of the task, and

Γi = {πi1, . . . , πil} is a finite set of plans that attain T i.

Our model is based on propositional STRIPS planning tasks. In this context, a

plan πi ∈ Γi is defined as a sequence of actions πi = [ai0, . . . , a
i
m−1]. An action

a ∈ πi is a triple a = 〈pre(a), add(a), del(a)〉: pre(a) is the set of preconditions

of a; add(a) and del(a) are two lists that denote the positive and negative
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effects of a, respectively. A state S is defined as the set of facts or literals

that describe a state of the world. An action a is executable in a state S if

pre(a) ⊆ S. Executing a in a state S yields a new state S′, such that S′ =

S \ del(a) ∪ add(a).

The execution of a particular plan πi ∈ Γi reports agent i a reward or utility.

In this planning scenario, every agent i ∈ AG wishes to execute the plan of Γi

that reports the maximal utility.

Definition 3.1.2. Plan profile. A plan profile is a collection of one plan per

agent denoted with the tuple Π = (π1, π2, . . . , πn), where πi ∈ Γi represents

the individual plan choice of agent i.

The actual utility that a plan πi reports to agent i depends on the concurrent

execution of πi with the rest of plans of the plan profile Π. Therefore, in this

problem, the objective of an agent i ∈ AG is to select a plan πi of Γi such

that, when scheduled along with the rest of agents’ choices in Π, it reports

maximum utility to i.

Definition 3.1.3. Schedule of a plan. The schedule of a plan πi ∈ Γi is a

temporal sequence of actions that results from interleaving the actions in πi

with an arbitrary number of empty actions ⊥. A plan schedule indicates the

action of πi to be executed at each time point.

We will denote by Υi = {ψi0, ψi1, . . . , ψix, . . .} the infinite set of all possible sche-

dules of plan πi. Given a particular schedule ψix, the finish time of the execu-

tion of ψix will be the time instant of the last action in ψix. In general, given

two plan schedules ψix, ψ
i
x+1 ∈ Υi, the finish time of ψix is assumed to be prior

or equal to the finish time of ψix+1. In the following, we will simply use the

notation ψi to refer to any schedule of Υi.
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The ideal schedule of a plan πi = [ai0, . . . , a
i
m−1], ψi0, consists in executing ai0

in the state at t = 0 or initial state Ii, and executing the subsequent actions

of πi at consecutive time instants. Thus, presumably, agent i will finish the

execution of πi at t = m− 1, the time of the last action scheduled in ψi0 (aim−1).

However, since agents execute their plans simultaneously in a common envi-

ronment, conflicts that prevent agents from executing the ideal schedules of

their preferred plans may arise. In case that a conflict compromises the ideal

schedule ψi0 of a plan πi, agent i may select an alternative schedule, ψix, which

will comprise a number of empty actions ⊥ that will help solve the conflict.

The introduction of empty actions obviously entails a delay in the finish time

of the plan execution, which in turn entails a loss of utility. The purpose of

delaying actions is to avoid conflicts and ensure the executability or feasibility

of a plan schedule.

Example 3.1.1. Given a plan πi = [ai0, a
i
1, a

i
2, a

i
3] of agent i, possible sche-

dules for πi are: ψi0 = (ai0, a
i
1, a

i
2, a

i
3), ψi1 = (⊥, ai0, ai1, ai2, ai3), ψi10 = (ai0, a

i
1,⊥,

ai2,⊥, ai3), ψi19 = (ai0, a
i
1,⊥, ai2,⊥,⊥, ai3), etc. Particularly, ψi0 is the earliest plan

execution of πi (finishing at t = 3); ψi1 completes the execution of πi at t = 4,

ψi10 at t = 5 and ψi19 at t = 6.

The ultimate objective of the agents in AG is to come up with a combination of

plan schedules (one per agent’s plan) that is jointly executable. Since the plan

choices of the agents may affect each other’s utilities, the model proposed

in this chapter is a non-cooperative game-theoretic approach that solves the

problem of finding a conflict-free (feasible) schedule profile which guarantees

that the agents’ plans of a plan profile Π are executable.

Definition 3.1.4. Schedule profile. Given a plan profile Π = (π1, π2, . . . , πn),

a schedule profile of Π, sΠ, is a combination of one schedule per plan in Π;

that is, sΠ = (ψ1, ψ2, . . . , ψn), ψi ∈ Υi.
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A schedule profile sΠ = (ψ1, ψ2, . . . , ψn) induces a sequence of joint actions. A

joint action is a tuple At = 〈a1, a2, . . . , an〉, where ai is the action of ψi sche-

duled at time instant t. In other words, At collects the actions of the plan

schedules in sΠ (one action per agent in AG) that agents intend to execute at

time t.

Example 3.1.2. Given a schedule profile sΠ = (ψ1, ψ2, ψ3), At = 〈a1
2,⊥, a3

3〉 is

the joint action to be executed at time t, where agent 1 wants to execute its

action a1
2, agent 2 executes the empty action and agent 3 executes its action

a3
3.

Joint actions are applied over joint states. The initial joint state of the problem,

I, is defined as the union of the inital states of the agents in AG; that is,

I = I1 ∪ . . .∪ In. A joint action At is executable in a joint state S if no conflict

arises at the time of executing the actions of At. We identify two types of

conflicts in At:

• Precondition conflict. One condition for At to be executable in a joint

state S is that ∀a ∈ At, pre(a) ⊆ S. It may happen that the execution of a

joint action prior to At leads to a joint state S where some precondition

of an action a of At does not hold. In this case, we say a precondition

conflict occurs and, consequently, At is non-executable.

• Mutually exclusive (mutex) conflict. This happens when two actions a

and a′ of At cannot be simultaneously executed at time t due to a mutex

relationship as identified in the GraphPlan approach (Blum et al. 1997).

Particularly, two actions a and a′ are said to be mutex if:

– They have inconsistent effects; i.e., add(a) ∩ del(a′) 6= ∅.

– They interfere with each other; i.e., pre(a) ∩ del(a′) 6= ∅.
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Hence, if none of the above conflicts appears in At, then we say At is exe-

cutable. The result of applying an executable joint action At = 〈a1, a2, . . . , an〉

in a joint state S is a new joint state S′ = S\(
n⋃
i=1

del(ai)) ∪ (
n⋃
i=1

add(ai)). When

At is not executable, this may be fixed by delaying the action(s) in conflict

through the introduction of empty actions in the corresponding schedule pro-

file.

Definition 3.1.5. Feasible (conflict-free) schedule profile. A schedule

profile sΠ = (ψ1, ψ2, . . . , ψn) is feasible if and only if every joint action At of

sΠ is executable.

Example 3.1.3. Let us assume that two agents 1 and 2 want to execute the

plan profile Π = (π1 = [a1
0, a

1
1, a

1
2], π2 = [a2

0, a
2
1, a

2
2]); a possible schedule profile

is sΠ = (ψ1 = (a1
0,⊥,⊥, a1

1, a
1
2), ψ2 = (⊥, a2

0, a
2
1, a

2
2)). Additionally, sΠ is a feasible

schedule profile if every joint action is executable (the joint actions for sΠ are

A0 = 〈a1
0,⊥〉, A1 = 〈⊥, a2

0〉, A2 = 〈⊥, a2
1〉, A3 = 〈a1

1, a
2
2〉, A4 = 〈a1

2〉).

Given a plan profile Π = (π1, . . . , πn) and an associated schedule profile sΠ =

(ψ1, . . . , ψi, . . . , ψn), the maximum number of empty actions in the schedule ψi

of an agent i, is limited by the sum of the actions of the other agents’ plans in

Π, denoted by λiΠ:

λiΠ =

πj∈Π∑
j 6=i

|πj | (3.1)

If we consider a problem where the number of schedules of a plan πi associ-

ated to a plan profile Π is not limited by λiΠ, it is possible to find additional

schedule profiles by adding more empty actions. Any additional schedule pro-

file of a non-limited problem will report less utility to (at least) some agent i

because it would include a number of empty actions larger than λiΠ. Therefore,

we can conclude that the additional schedule profiles that can be formed in
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a non-limited planning problem are weakly Pareto dominated by the schedule

profiles of the original problem limited by λiΠ.

Example 3.1.4. Given a plan profile Π = (π1 = [a1
0, a

1
1, a

1
2], π2 = [a2

0, a
2
1, a

2
2]),

λiΠ = 3 for both agents, i = {1, 2}. A schedule with more than 3 empty ac-

tions for any agent is useless since the maximum number of empty actions

necessary to address the conflicts is 3. For instance, the schedule profile

sΠ = (ψ1 = (a1
0, a

1
1, a

1
2), ψ2 = (⊥,⊥,⊥, a2

0, a
2
1, a

2
2)) introduces 3 empty actions

in ψ2 and so all the joint actions in sΠ include a single action (A0 = 〈a1
0,⊥〉,

A1 = 〈a1
1,⊥〉, A2 = 〈a1

2,⊥〉, A3 = 〈⊥, a2
0〉, A4 = 〈⊥, a2

1〉 and A5 = 〈⊥, a2
2〉).

Thus, given a plan profile Π, if a feasible schedule profile cannot be obtained

by means of λiΠ empty actions for every agent i ∈ AG, introducing more empty

actions than λiΠ in the plan schedule of any agent will not yield a feasible sche-

dule profile for Π. In this case, we say that all the schedule profiles for Π are

unfeasible. Particularly, an unfeasible schedule profile is due to a precondition

conflict because mutex conflicts are always solvable by introducing empty ac-

tions. However, even introducing λiΠ empty actions in all the schedule profiles,

it may not be possible to find a joint state S in which all the preconditions of

an action in a joint action At are satisfied.

Definition 3.1.6. Utility of a plan schedule. The utility function ui : Υi → R

returns the utility of a schedule ψi of a plan πi for agent i. For a given πi, the

difference of utility of two plan schedules ψix and ψix′ , x
′ > x, is given only

by the difference in their finish execution times. The latter the finish time,

the less utility. Consequently, by default, the ideal schedule ψi0 of a plan πi is

the schedule that reports agent i the maximal utility and the rest of schedules

of Υi will have a lower utility accordingly to their finish time. An unfeasible

(non-executable) schedule profile reports each agent i ∈ AG a utility ui = −∞.
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In this section, we have introduced and formalized all the components that are

necessary for the specification of our game-theoretic approach FENOCOP.

3.2 Overview of FENOCOP

FENOCOP (Fair Equilibria in NOn-COoperative Planning) is our computational

framework for the resolution of conflicts in non-cooperative MAP. As described

in Section 3.1, the problem we aim to solve involves a set of self-interested

planning agents, AG, where each agent i independently works on its individual

task T i by calculating a finite collection Γi of plans (strategies) of different

utility that solve T i.

Every agent i wishes to execute the ideal plan schedule ψi0 of the maximum

utility plan πi. On the other hand, given that this is a non-strictly competitive

environment, agent i also wants to make its course of action ψi0 compatible

with the rest of the agents’ proposals of a plan profile and thus ensure that

every agent is able to execute a plan that achieves its task.

Conflicts may appear when the plan schedules of multiple agents are put to-

gether to execution in a shared environment. A conflict between two partic-

ular plan schedules ψix and ψjy entails that either agent i or agent j cannot

execute its plan. When this happens, one or both agents must switch to a dif-

ferent schedule so as to avoid the interference. Assuming agent i selects a new

schedule ψix′ , some actions of ψix will be delayed in ψix′ through the inclusion

of empty actions in order to solve the conflict, which in turn implies a delay in

the finish time of the execution of agent i. If the new schedule ψix′ entails a

significant loss of utility, agent i may select a different plan from Γi that, when

scheduled with the rest of agents’ plans, brings higher utility. Hence, agents
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must find together a feasible schedule profile sΠ that ensures the executability

of the plans while satisfying the private interests (utility) of the participants.

A rational way of solving the conflicts that arise among a set of self-interested

agents with potentially conflicting interests implies modeling the problem as a

non-cooperative game. FENOCOP is a non-cooperative dual-game mechanism

guided by a top-level game called General Game (GG), which leverages an

internal game called Scheduling Game (SG). Particularly, the GG of FENOCOP

works as follows:

1. It generates the Γ1× . . .×Γn plan profiles that result from combining the

strategies of the n agents in AG.

2. For every plan profile Π, the GG calls to the SG to calculate a schedule

profile sΠ. The outcome sΠ returned by the SG is a Nash Equilibrium

(NE), Pareto-Optimal (PO) and fair solution. A solution that meets these

properties is desirable because 1) it is a stable outcome from which no

agent will be willing to deviate; 2) a PO outcome outperforms any Pareto-

inefficient NE; and 3) a fair solution guarantees a balance among the

agents utilities.

3. From the set of feasible or unfeasible schedule profiles {sΠ1
, sΠ2

, . . .} cal-

culated by the SG, the GG returns a stable s∗Π, a NE solution that guar-

antees 1) the plan schedules of all the agents in AG are executable; and

2) no agent will deviate from its course of action in s∗Π because no agent

can do better by unilaterally changing its strategy. In the case that the

schedule profile for every plan profile is unfeasible then the task is un-

solvable. That is, there is not an executable combination of the agents’

strategies.
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Since agents operate in a non-strictly competitive environment, the GG is de-

signed as a general-sum game or non-zero sum game (Shoham et al. 2009)

(Osborne et al. 1994). In this type of games there can be win-win situations be-

cause, unlike competitive games, general-sum games feature situations where

one decision agent’s gain (or loss) does not necessarily result in the other de-

cision agents’ loss (or gain).

Plan-profile matrix

General Game

Scheduling Game

Agent j

Agent i

Payoff matrix (schedule profiles)

Utility matrix

General Game

Figure 3.1: An iteration of FENOCOP

Figure 3.1 shows graphically an example of FENOCOP for two self-interested

agents i and j, each having two strategies Γi = {πi1, πi2} and Γj = {πj1, π
j
2},

respectively. The two upper matrices represent the GG in normal or strategic

form. This form is given by the two sets Γi and Γj of agents’ strategies (plan-

profile matrix on the left), and two real-valued utility functions defined on Γi×

Γj , representing the payoffs to both agents (utility matrix on the right). The

bottom matrix represents the internal Scheduling Game. The SG is actually

the game that computes a stable, PO and fair schedule profile sΠ for each plan

profile Π. Thus, for each cell in the plan-profile matrix, the GG invokes the

SG, which returns the utility received by each agent with sΠ. For instance,

in Figure 3.1, the SG is called to compute a feasible schedule profile for Π11,
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selecting the outcome sΠ11
= {ψi1, ψ

j
2}, which is then stored in the utility matrix

of the GG. Note that the top left cell of the payoff matrix denotes an unfeasible

schedule that reports a utility value −∞ to both agents. Once the utility values

of all plan profiles are stored in the utility matrix, the GG returns a stable

solution s∗Π.

The key novelty of FENOCOP with respect to other game-theoretic approaches

like (Bowling et al. 2003; Larbi et al. 2007) is the introduction of a planning

algorithm in the form of a game, the Scheduling Game, to compute the payoffs

of the plan profiles. Specifically, these two works propose a framework equiva-

lent to our top-level GG, but there is no indication on how to actually achieve

a feasible schedule profile that accommodates the plans of all the agents.

3.3 The General Game

The top-level game of FENOCOP, called the General Game (GG), aims to select

a stable (NE) schedule profile among the combinations of the agents’ strate-

gies. The GG is then modelled as a non-cooperative general-sum game repre-

sented in the normal-form. This type of game is defined by its players (agents),

the strategies or plans among which they can choose, and the payoffs they will

each receive for a given strategy. Formally, the GG is defined as follows:

Definition 3.3.1. General Game (GG). The GG is a general-sum game with

an associated triple (AG,Γ, u), where:

• AG = {1, . . . , n} is the set of n rational and self-interested agents, the

players of the GG.

• Γ = Γ1 × . . . × Γn represents a finite set of combinations of the agents’

strategies or plan profiles. A plan profile is a set of plans of the form

Π = (π1, π2, . . . , πn), where πi ∈ Γi for each agent i ∈ AG.
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• u = (u1, . . . , un) is a set of utility functions, where ui : Υi → R is the real-

valued payoff function for agent i. ui(ψi) is the utility that a particular

schedule ψi of plan πi reports to agent i.

We must note that the payoff that a particular strategy or plan πi reports to

agent i depends on how πi is combined with the rest of plans of the plan profile

Π; i.e., the actual utility is given by the schedule profile sΠ = (ψ1, . . . , ψi, . . . ,

ψn) returned by the SG. sΠ will determine the specific plan schedule ψi for

each agent i, which in turn determines the utility obtained by agent i in the

plan combination, ui(ψi).

In order to create the utility matrix of the GG, agents launch Γ1 × . . . × Γn

instances of the SG, one per plan profile Π, and the SG computes a schedule

profile sΠ along with the utility that sΠ reports to each agent. Once all the

agents’ utilities are in place, solving the GG means to compute the final solu-

tion s∗Π. This schedule profile constitutes a NE stable solution from which no

agent will benefit from invalidating another agent’s plan schedule.

The structure of the game, the rationality of the agents and the payoffs that

agents’ receive are common knowledge in the GG, as it is commonly adopted

in game-theoretic approaches in which all information is public.

3.4 The Scheduling Game

As described in Section 3.2, the Scheduling Game (SG) is invoked for each

combination of strategies or plan profile Π = (π1, . . . , πn) of the GG in order

to retrieve a feasible (executable) schedule profile sΠ that satisfies stability,

Pareto optimality and fairness, if such a schedule profile exists. The SG is

structured around the following two stages:
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1. Synthesis of schedule profiles. The SG computes the schedule profiles

that coordinate the agents’ strategies of the plan profile Π. The resulting

payoff matrix (see bottom matrix in Figure 3.1) contains the utilities that

the schedule profiles report to each participant.

2. Schedule profile selection. Agents solve the game in order to select a

stable, PO and fair outcome.

In the first stage of the SG, agents coordinate their plans to guarantee that

they are executable in a shared environment. Given a schedule profile sΠ,

agents verify that each joint action At ∈ sΠ is executable; otherwise, empty

actions (⊥) are introduced in At in order to solve the conflicts that prevent

At from being executable in a state S. The introduction of an empty action

defers the execution of an action of At to a later time step t′ > t. The number

of empty actions that an agent i can introduce in a plan schedule ψi ∈ sΠ is

delimited by λiΠ, and hence, there is a finite number of schedule profiles for

any given plan profile Π.

After synthesizing the schedule profiles for Π, the self-interested agents jointly

select an outcome that maximizes their utilities by taking into account the plan

schedules of the other participants. Since a conflict between a subset of plan

schedules renders the whole schedule profile unfeasible, every agent i re-

ceives a utility ui(ψi) = −∞ for its plan schedule ψi in an unfeasible schedule

profile. For this reason, we can affirm that the loss of utility of an agent is not

the utility gain of the other agents; and so, the SG is a non-strictly competitive

problem modelled as a general-sum game. Formally:

Definition 3.4.1. Scheduling Game (SG). The SG is a general-sum game

defined by an associated tuple (Π,AG,ΨΠ, u), where:
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• Π = (π1, . . . , πn) is a combination of plans or plan profile for which the

SG must find an executable schedule profile sΠ.

• AG = {1, . . . , n} is the set of n rational and self-interested agents or

players.

• ΨΠ = Ψ1
Π × . . . × Ψn

Π is the set of schedule profiles for the plan profile

Π = (π1, . . . , πn) represented in the payoff matrix (see Figure 3.1), where

each agent i has a finite set of strategies Ψi
Π = {ψi0, ψi1, . . . , ψik}, where

Ψi
Π ⊂ Υi, the possible schedules of its plan πi ∈ Π.

• u = (u1, . . . , un) where ui : Υi → R is a real-valued payoff function for

agent i. ui(ψi) is defined as the utility of the schedule ψi ∈ Ψi
Π when

executed in a schedule profile sΠ = (ψ1, . . . , ψi−1, ψi, ψi+1, . . . , ψn). If sΠ

is unfeasible, then ui(ψi) = −∞ for all agents.

The set of plan schedules, Ψi
Π, that agent i uses to combine its plan πi ∈ Π with

the rest of plans of Π is a finite subset of Υi. Considering, as stated in Equation

3.1, that the number of empty actions of any plan schedule ψi is limited by λiΠ,

the number of plan schedules in Ψi
Π is given by all the combinations that can

be formed with the actions in πi and up to λiΠ empty actions.

3.5 Solving the Scheduling Game

This section is devoted to explain three different solving algorithms for the

SG. First, we motivate the relevance of three well-known solution concepts

in non-cooperative game-theory; namely, Nash equilibrium, Pareto Optimality

and fairness. Next, in Section 3.5.2, we present two key properties of the SG

that will strongly contribute to guarantee the solution concepts of a schedule

profile. The following two subsections explain the normal-form and extensive-
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form SG algorithms, respectively. Both algorithms follow the two stages of

the SG presented in Section 3.4 and compute solutions that meet the three

aforementioned concepts. Additionally, Section 3.5.5 presents an alternative

algorithm to obtain a solution to the SG which is a Subgame Perfect Equili-

brium (SPE) (Selten 1975). A SPE is also NE but it does not necessarily ac-

complishes the Pareto optimality and fairness conditions. Finally, last section

introduces a problem example of the SG.

3.5.1 Solution Concepts in Non-Cooperative Games

Nash Equilibrium. A Nash Equilibrium (NE) or stable solution reflects the

best response of an agent taking into account the responses of the rest of

agents. In an equilibrium, no agent can benefit from deviating unilaterally

from a joint solution. In the SG, a NE outcome is a schedule profile in which

an agent cannot improve its utility unless another agent changes its plan sche-

dule. Since a SG can have several NE outcomes (feasible or unfeasible sche-

dule profiles), we introduce a second criterion to choose among them, Pareto

optimality.

Pareto optimality. When considering the idea of optimality in multi-agent

planing, cooperative planners focus on the optimality of the joint plan or util-

itarian social welfare, which is typically based on the cost of the actions. In

situations where agents are given payments for their participation and opti-

mal solutions are computable, a Vickrey-Clarke-Groves (VCG) (Vickrey 1961;

Clarke 1971; Groves 1973; Nissim and Brafman 2013) payment can ensure

that the globally optimal plan is also stable. Otherwise, such a globally opti-

mal plan may be very unattractive for some individuals.

Instead of pursuing global optimization, we focus on finding a schedule profile

for which we know that there is no other schedule profile that is at least as
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good for all agents, and strictly better for one. This best equilibrium schedule

profile is called a Pareto Optimal (PO) schedule profile and reflects a situation

where no agent can be better off without making at least one agent worse off.

Fairness. Fairness is a criterion that applies to the satisfaction of the agents

with their individual utilities. More precisely, an outcome is fair if it maximizes

the minimum utility received by any agent; i.e., the least satisfied agent is as

satisfied as possible. Basically, the idea is to analyze the schedule profiles in

terms of the individual satisfaction of the participants in order to ensure a

proper balance of the agents’ utilities.

The egalitarian principle in ethical theory asserts that all the individuals should

enjoy equal benefits from the society (Rawls 1971). As long as there is a posi-

tive trade-off between the utility of different individuals, the egalitarian princi-

ple leads to the same social choices as the maxmin principle, which maximizes

the utility of the most unfortunate individuals of a society (egalitarian social

welfare) (Myerson 1981). In this way, a resource allocation amongst agents

in multi-agent systems is considered fair if it is egalitarian (Chevaleyre et al.

2006; Endriss et al. 2006).

In the context of the SG, egalitarian social welfare guarantees that the least

satisfied agent has the minimum possible delay. Given a set of NE and PO

schedule profiles for a plan profile Π, denoted by ΩΠ ⊆ ΨΠ, we define a fair

schedule profile ŝΠ ∈ ΩΠ as the schedule profile that results from the applica-

tion of the max-min utility criterion over ΩΠ:

ŝΠ = arg max
sΠ∈ΩΠ

( min
i∈AG

ui(sΠ)) (3.2)

The schedule profile that maximizes the utility of the agent which has less

utility among the schedule profiles of ΩΠ is selected as the fair solution ŝΠ of
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the SG. More than one fair solution can be found if several schedule profiles

with the same max-min utility exist in ΩΠ.

3.5.2 Properties of the Scheduling Game

The SG features two properties that can be enunciated as follows:

• Monotonicity. A SG is said to be monotonic if the utility ui(ψi) of any plan

schedule ψi ∈ Ψi
Π decreases according to the number of empty actions

⊥ in ψi, and if the schedule profile is feasible. In other words, given

two plan schedules ψix and ψix+1, if ψix+1 has more empty actions than

ψix, then ui(ψix) > ui(ψix+1). In Definition 3.1.6, we stated that the loss

of utility of a plan schedule is only dependent on the finish time of the

schedule (except for conflicts). Consequently, every SG is monotonic.

• Order. A SG is ordered if the strategies of the agents are ordered by

decreasing utility in the game. More precisely, if the game is monotonic,

for an agent i ∈ AG, the strategies of Ψi
Π are ordered from 0 to λiΠ empty

actions.

We note that the utility in the SG is only influenced by conflicts and empty ac-

tions. Additionally, one agent does not influence another agent’s utility except

through the conflicts.

Proposition 3.5.1. In a SG, if the schedule profile formed by the ideal sche-

dule ψi0 of each agent i is feasible, then this schedule profile is the only out-

come of the SG which is both NE and PO.

Proof. The schedule profile composed of the ideal plan schedules returns the

highest utility, ui(ψi0), for each agent i, and has no empty actions. If such a

schedule profile is feasible then this will be a stable and PO outcome because
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all agents obtain their highest utility. This schedule profile will also be unique

because any other schedule profile will have less utility for at least one agent,

since the SG is monotonic.

Theorem 3.5.1. In an ordered monotonic SG, any PO schedule profile is a

NE.

Proof. Given that the schedule profiles ΨΠ of the SG are in decreasing utility

order (order property), which decreases with the number of empty actions

(monotonicity property), a feasible schedule profile sΠ with maximum utility

for an agent i is PO if, for any other feasible schedule profile s′Π with the

maximum utility for the agent i, the utility of the other agents is not higher

than their utility in sΠ. In this situation, all the agents in AG are in best

response; and thus, sΠ is a PO NE schedule profile.

By contradiction, suppose a change in strategy of an agent j from a PO profile

increases its utility: if j does not reduce its empty actions, but then the utility

is not increased, so it must be reducing its empty actions. In this latter case, if

a conflict is introduced, its utility is decreased to−∞, so this is a contradiction.

If no conflict is introduced, the strategy profile we started with would not be

PO to begin with because i’s utility is not changed and j’s is improved, this is

a contradiction again. So j cannot change its strategy to increase its utility, so

the PO schedule profile is also a NE.

In an ordered monotonic SG we only need to seek PO outcomes because a PO

outcome sΠ is always a NE, which guarantees that no agent will be willing to

deviate from its strategy in sΠ. Therefore, any potential solution of the SG is a

PO NE schedule profile. In contrast, in the well-known Prisoner’s dilemma, the

situation is the opposite, all the outcomes are PO except for a single outcome

that is a NE.
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In the SG, not every NE schedule profile is necessarily PO and it can actually

be an unfeasible outcome. In the example of Table 3.1, the top left cell is a

NE with utility ui(ψi) = −∞ for both agents. This happens because there is

no better response for those strategies (all the cells that involve the optimal

strategy ψi0 for any agent i are unfeasible outcomes with ui(ψi0) = −∞). For

this reason, a solution of the SG must not only be a NE, but also PO.

Table 3.1: SG example in normal-form for two agents

ψ2
0 ψ2

1 ψ2
2

ψ1
0 −∞, −∞ −∞, −∞ −∞, −∞

ψ1
1 −∞, −∞ −∞, −∞ 9, 8

ψ1
2 −∞, −∞ 8, 9 8, 8

Corollary 3.5.1. If there is at least one feasible schedule profile for an or-

dered and monotonic SG, there will be at least a PO NE solution for the game.

The definition of Pareto optimality establishes that a schedule profile sΠ =

(ψ1, . . . , ψn) is PO if it is not Pareto dominated by any other schedule profile

s′Π = (ψ1′ , . . . , ψn
′
); that is, ui(ψi) ≥ ui(ψi

′
), ∀i ∈ AG and ui(ψi) > ui(ψi

′
) for

some i ∈ AG. From this definition, it can be drawn that every game must have

at least one such optimum (Shoham et al. 2009, Chapter 3). Given that any PO

outcome is a NE according to Theorem 3.5.1, if at least one feasible schedule

profile exists, there is a PO NE solution for the SG.

3.5.3 Normal-Form SG Algorithm

Given an ordered monotonic SG, the normal-form algorithm obtains all fair

PO NE feasible schedule profiles (solutions) of the game. Particularly, this

algorithm generates (in the worst-case) all the possible schedule profiles by all

the combinations of the schedules of the agents in a decreasing utility order.
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In this case, the strategies of each agent are the possible schedules of its plan.

The idea is to generate each schedule profile and check its feasibility. Hence,

for each schedule profile, agents know their utility and the others’ utility since

the game structure and rationality of the agents is common knowledge. The

algorithm applies a Breadth-First Search (BFS) where each node of the search

tree represents a specific schedule profile sΠ = (ψ1, . . . , ψn). The algorithm

can be summarized as follows:

1. The root node of the tree is a schedule profile that contains the ideal or

highest-utility plan schedule for each agent; i.e., sΠ = (ψ1
0 , . . . , ψ

n
0 ).

2. The feasibility of a schedule profile is checked at the time of expand-

ing the node. If sΠ results unfeasible, its children nodes are genera-

ted. A successor node changes the plan schedule of a single agent

in sΠ by its next plan schedule in decreasing order of utility; for ins-

tance, the children of (ψ1
0 , . . . , ψ

n
0 ) are (ψ1

1 , ψ
2
0 , . . . , ψ

n
0 ), (ψ1

0 , ψ
2
1 , . . . , ψ

n
0 ) ...

(ψ1
0 , ψ

2
0 , . . . , ψ

n
1 ). In case that sΠ is feasible, the algorithm applies the

PO and fairness conditions over sΠ in order to check whether or not sΠ

Pareto dominates and is fairer than any previous feasible node.

3. The search concludes when there are no more nodes to be expanded. At

this point, the algorithm returns the set ŝΠ, which comprises the nodes

of the tree that represent NE, PO and fair solutions.

Figure 3.2 shows an illustrative example of the BFS tree. This example in-

cludes three agents (named 1, 2, and 3), each having three different plan

schedules (ψi0, ψi1 and ψi2, for each agent i). The numbers in squares are the

node identifiers and the pa labels indicate the pivot agent of the node (see

details below).
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Figure 3.2: BFS tree with all the schedule profiles for 3 agents and 3 schedules per

agent

Algorithm 1 details the normal-form SG procedure. The initial schedule profile,

consisting of the ideal schedule of each agent, is added to a queue (lines 1-

3). The parameter sΠ.pivotAgent represents the agent whose plan schedule is

changed in sΠ with respect to its parent node. sΠ.pivotAgent is used to prevent

the generation of repeated or Pareto dominated nodes. The maxMinBound

parameter stores the maxmin utility of ŝΠ for fairness purposes, and maxUAgi

stores the maximum utility of agent i. Both parameters are initialized to −∞

(lines 4-6).

The while loop of the algorithm iterates until the queue of schedule profiles is

empty. An iteration of the procedure extracts a schedule profile sΠ from the

queue and verifies its fairness. sΠ is fair if the minimum utility obtained by an

agent in sΠ (min uj(ψj), where ψj ∈ sΠ) is greater or equal than maxMinBound

(line 9). Otherwise, sΠ is discarded.

Next, the feasibility of sΠ is checked by means of the conflicts(sΠ) func-

tion (line 10). Depending on the result of this verification, different tasks are

performed:
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• sΠ is feasible (lines 11-17). The Pareto optimality of sΠ is analyzed by

checking that ui(sΠ) > maxUAgi for at least one agent i in AG (line

12). If this condition holds, sΠ is confirmed as PO because the agents’

schedules are processed in decreasing utility order. Otherwise, sΠ is dis-

carded. If sΠ is fairer than the schedule profiles in ŝΠ, (that is, min uj(sΠ)

> maxMinBound), sΠ is stored as the single fair solution in ŝΠ. Other-

wise, sΠ is added to the ŝΠ set (lines 14-17).

• sΠ is unfeasible (lines 18-22). The successor nodes of sΠ are generated

and added to the queue. A successor node changes the plan schedule

ψix of an agent i by ψix+1, the next schedule of the agent in decreasing

order of utility. The for loop (line 19-22) iterates (using the index i) from

the pivot agent (stored in sΠ.pivotAgent) to agent n, generating a total of

n− i+ 1 successor nodes.

The successor nodes of a feasible schedule profile sΠ are not generated be-

cause they would be Pareto dominated by sΠ. This conclusion is easily drawn

by the monotonicity property, which ensures that the utility of the pivot agent

in a successor node is always lower or equal than the utility of its parent sche-

dule profile while the plan schedules of the rest of agents are kept unchanged.

This pruning mechanism is correct and it does not remove any solution since,

as we showed in Theorem 3.5.1, any PO schedule profile is NE, and hence,

there is no need of generating Pareto dominated schedule profiles. All in all,

Pareto dominance allows for a meaningful pruning of the BFS search tree.

Complexity of the Normal-Form SG Algorithm

The normal-form algorithm develops a search tree with a maximal branching

factor of |AG|. For instance, in the example of Figure 3.2, which includes

3 agents, up to three successors per schedule profile are generated (exclud-
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Algorithm 1: Normal-form SG algorithm

1 sΠ=
n⋃

i=1
ψi

0;

2 sΠ.pivotAgent = 1;

3 add sΠ to queue;

4 maxMinBound = −∞;

5 for i=1,. . . ,n do

6 maxUAgi = −∞;

7 while ¬(empty queue) do

8 extract sΠ from queue;

9 if min uj(ψj), ψj ∈ sΠ ≥ maxMinBound then

10 if ¬ conflicts(sΠ) then

11 for i=1,. . . ,n do

12 if ui(sΠ) > maxUAgi then

13 maxUAgi = ui(sΠ);

14 if min uj(sΠ) > maxMinBound then

15 maxMinBound = min uj(sΠ);

16 ŝΠ = ∅;

17 add sΠ to ŝΠ; break;

18 else

19 for i=sΠ.pivotAgent,. . . ,n do

20 s′Π = (ψ1, . . . , ψi
x+1, . . . , ψ

n); ψi
x ∈ sΠ; ψi

x+1 ∈ Ψi;

21 s′Π.pivotAgent = i;

22 add s′Π to queue;

23 return ŝΠ;

ing repeated nodes). The maximal depth of the search tree is determined

by the sum of schedules of all agents in AG, which is formally defined as

m =
∑
i∈AG

|Ψi
Π|.

Given the previous considerations, the normal-form SG algorithm presents

a worst-case exponential time and space complexity that can be denoted as
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O(|AG|m). In practical terms, several mechanisms are applied in order to al-

leviate the complexity of the algorithm, as illustrated in Figure 3.2:

• The successors of a feasible and PO schedule profile are never generated

because the order and monotonicity properties of the SG ensure that

all the successors of a feasible PO schedule profile are always Pareto

dominated by their parents.

• Cycles in the search tree are controlled in order to prevent the appear-

ance of repeated nodes. For instance, in Figure 3.2, the node (ψ1
1 , ψ

2
1 , ψ

3
0)

does not appear as a successor of node 2 because it is already included

in the subtree of node 1 (see node 5 in Figure 3.2).

• Pareto dominance is also checked among nodes of different subtrees.

Let us suppose that the node 1 of Figure 3.2, (ψ1
1 , ψ

2
0 , ψ

3
0), is a feasible

schedule profile, in which case the subtree of this node would not be

generated. The schedule (ψ1
1 , ψ

2
1 , ψ

3
0), which is Pareto dominated by node

1, would not either be included in the subtree of node 2, (ψ1
0 , ψ

2
1 , ψ

3
0),

because the generation of the successors of a node sΠ goes from sΠ.pivot-

Agent to n. Since the pivot agent of node 2 is agent 2, its two successors

represent a change in the plan schedules of agent 2 and 3, respectively,

leaving the schedule of agent 1 unchanged; i.e., ψ1
0 . Consequently, no

successor with ψ1
1 will be generated as a descendent of node 2 even

though the subtree of node 1 is not created.

Despite the usage of pruning mechanisms in the BFS tree, the normal-form

SG algorithm is a costly procedure that entails exploring most of the schedule

profiles in ΨΠ in order to find a feasible PO and fair solution. Moreover, the

branching factor of the search tree is determined by |AG|, which significantly

impacts the performance of the algorithm when the number of agents is in-

creased.
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3.5.4 Extensive-Form SG Algorithm

In this section, we propose a completely different approach to solve the SG

which relies in modeling the problem as an extensive-form tree (Shoham et al.

2009, Chapter 5). The extensive-form algorithm poses the SG as a multi-round

sequential game where agents play in turns and incrementally build feasible

schedule profiles. This algorithm also obtains all fair PO and NE solutions

searching for efficient schedule profiles (Pareto optimality) that present an

equitable distribution of the loss of utility caused by the existence of conflicts

(fairness).

The extensive-form game is based on a binary tree where agents incrementally

generate the schedule profiles for Π action by action. Thus, the branching

factor of the tree remains constant regardless of the number of participating

agents. This algorithm executes a Depth-First Search (DFS) where a tree node

represents the action choice of an agent given the actions introduced in its

predecessor nodes.

We note that the extensive-form game is a perfect-information game where

agents know the actions and payoff of the other agents. The game structure

and agents’ rationality is common knowledge. The extensive-form tree can be

seen as a simulation of the execution of the plan profile. The execution at time

t + 1 only takes place when every agent has moved at time t, so that players

observe the choices of the rest of agents at t. In contrast, the game at time t

represents the simultaneous moves of the agents at that time. Simultaneous

moves can always be rephrased as sequential moves with imperfect informa-

tion, in which case agents would likely get ’stuck’ if their actions are mutex;

that is, agents would not have the possibility of coordinating their actions.

Therefore, simultaneous moves at t are also simulated as sequential moves as

if agents would know the intention of the other agents. In essence, this can be
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interpreted as agents analyzing the possibilities of avoiding the conflict and

then playing simultaneously the choice that reports a stable solution. Obvi-

ously, this means that agents would know the strategies of the others at time

t (the actions applied until t), what seems reasonable if they are all interested

in maximizing their utility.

Unlike other games where the agents’ strategies are always applicable, in

planning it may happen that an action a of a plan is not executable at time t

in the state resulting from the execution of the t − 1 previous steps, this is a

precondition conflict. In such a case, the schedule profile is discarded. On

the other hand, ⊥ is only applicable at t if at least any other agent applies a

non-empty action at t . The empty action is also applicable when the agent has

played all the actions of its plan.

Figure 3.3 presents an illustrative example of the tree which includes two

different agents, AG = {1, 2}. The top left square represents the plan profile

of this particular SG, Π = (π1 = [a1
1, a

1
2], π2 = [a2

1, a
2
2]), where preconditions

and effects of the actions are shown above and below the nodes, respectively.

The nodes of the tree are numbered according to the order in which they are

visited by the DFS search. The nodes introduced by agent 1 are depicted in a

darker color than those of agent 2. Using this example, we can summarize the

behavior of the extensive-form SG algorithm as follows:

1. From the root node, agent 1 generates two successors that represent

its possible initial choices, either introducing the first action of its plan,

a1
1 ∈ π1, or an empty action ⊥ (nodes 1 and 10). At the next level, agent

2 expands node 1 and generates two successors with actions a2
1 ∈ π2 and

⊥ (nodes 2 and 6). Next, agent 1 responds by expanding node 2, incor-

porating actions a1
2 and ⊥, respectively. Specifically, the lines labelled as

t = 0, t = 1, etc., delimit the levels of the game; that is, the first game
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Figure 3.3: SG extensive-form tree example

level comprises the nodes up to t = 0, which represent the choices of

the joint action A0; the third and fourth level of the tree represent the

second game level (t = 1) whose nodes represent the formation of A1;

and so on.

2. For each node, the presence or absence of conflicts is verified to en-

sure that only feasible schedule profiles are generated. In Figure 3.3, a

precondition conflict is detected when agent 1 expands node 2 to insert

the action a1
2 (the precondition p ∈ pre(a1

2) does not hold in the corre-

sponding joint state because of the negative effect ¬p of a2
1). This node

is discarded because it does not yield a feasible schedule profile and the

algorithm generates the other successor (node 3).
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3. Clearly, the intermediate nodes of the tree represent schedule profiles

under construction. When a leaf node that contains a fair PO schedule

profile is generated, this solution is stored in ŝΠ and it is used as a bound

to prune further branches. Given a node nd that represents a partially

built schedule profile, we apply an optimistic estimation of the maximum

utility that can be obtained from nd by assuming that the expansion of nd

up to a solution leaf node does not contain empty actions for any agent.

Subsequently, the utility of the estimated solution, say s∼Π, is compared

to the utility of the bound. If s∼Π is unfair or Pareto dominated by the

bound, the node nd is pruned. Otherwise, nd is expanded.

For example, node 5 in Figure 3.3 corresponds to a feasible schedule

profile sp1 ∈ ŝΠ with associated utilities u1 = 9 and u2 = 10. This allows

us to prune the following partially built schedule profiles: 1) node 8 be-

cause the schedule profile sp2 derived from node 8 is unfair compared to

sp1; 2) node 9 because the resulting schedule profile sp3 is Pareto dom-

inated by sp1; and 3) node 11 because the expansion of this node would

lead to a schedule profile, sp4, as good as sp1 (the other schedule profiles

sp5 and sp6 are Pareto dominated by sp1).

4. The algorithm returns the solutions of the SG when the search is con-

cluded; in our example, ŝΠ = {sp1} is the solution found.

The extensive-form algorithm resembles an alpha-beta search. On the one

hand, a node of the tree represents the move of a player after the moves

of its opponents in the preceding levels of the tree. On the other hand, the

generation and evaluation of the tree are performed simultaneously and the

DFS search ensures that a feasible schedule profile is reached as soon as

possible, which will be later used to prune the tree.
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The extensive-form algorithm expands first the schedule profiles with fewer

empty actions (monotonicity property) with the aim to promptly reach a good

solution bound. As it occurs in the alpha-beta expansion, the sooner a good

bound is reached, the more pruning is applied. On the other hand, note that

if the leftmost branch is not pruned, this would represent the ideal schedule

of all agents. In short, the DFS expansion together with the chronological

backtracking ensures a rational tree expansion, making agents generate first

the solutions that report them higher utility (order property).

Complexity of the Extensive-Form SG Algorithm

The extensive-form structure is a binary search tree, whose maximal depth is

given by the total number of actions of the longest possible schedule profile for

the input plan profile Π, which is formally defined as |s−Π | =
∑
πi∈Π

|πi|+
∑
i∈AG

|λiΠ|.

In other words, each joint action At ∈ s−Π includes only one non-empty action

for a single agent. We can thus define the complexity of the extensive-form

tree algorithm in the worst-case scenario as O(2|s
−
Π |). This is the time and

space complexity, since the complete tree could be built and explored in the

worst case. We note that the search does not stop when a first solution is

found.

However, in practical terms, a substantial part of the tree is pruned in most

cases with the best bound found so far and stored in ŝΠ, thus reducing the

overall complexity of the algorithm.
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3.5.5 Extensive-Form SPE Algorithm

Similarly to the extensive-form SG presented in Section 3.5.4, this algorithm

explores an extensive-form tree via DFS. Instead of ensuring Pareto optimal-

ity or fairness, this algorithm computes a Subgame Perfect Equilibrium (SPE).

This is also a perfect-information extensive-form game that represents the si-

multaneous moves of the agents at each time step as sequential moves. Hence,

agents are able to avoid conflicts and never get stuck in a conflict by a simul-

taneous move.

In this algorithm, we apply the SPE (Selten 1975) (Shoham et al. 2009, Chap-

ter 5), which is a solution concept that refines a NE in perfect-information

extensive-form games by eliminating those unwanted NE. The SPE of a game

are all strategy profiles that are NE for any subgame. By definition, every SPE

is also a NE, but not every NE is SPE. The SPE eliminates the so-called “non-

credible threats”, that is, those situations in which an agent i threatens the

other agents to choose a node that is harmful to all of them, with the intention

of forcing the other players to change their decisions, thus allowing i to reach

a more profitable node. However, this type of threats are non credible because

a self-interested agent would not jeopardize its utility.

A standard method to find a SPE in a finite perfect-information extensive-form

game is the backward induction algorithm (see (Shoham et al. 2009, Chapter

5) for more details and references of this algorithm). This algorithm has the

advantage that it can be computed in linear time in the size of the game tree,

in contrast to the best-known methods to find NE that require time exponential

in the size of the normal-form. In addition, it can be implemented as a single

depth-first traversal of the game tree. We consider the SPE as an adequate

solution concept for the SG since SPE reflects the strategic behavior of a self-

interested agent taking into account the decision of the rest of agents to reach
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the most preferable solution in a common environment. However, we must

note that in this algorithm, although the solution is a SPE, which is a subset of

the NE of the game, it is not necessarily PO and/or fair. These latter properties

are not considered in this algorithm since it is an initial version that we used

in (Jordán et al. 2015).

The SPE solution concept also has some limitations. First, there could exist

multiple SPE in a game, in which case one SPE may be chosen randomly. Se-

cond, the order of the agents when building the tree is relevant for the game

in some situations. Consider, for instance, the case of a two-agent game. The

application of the backward induction algorithm would give some advantage

to the first agent in those cases for which there exist two different schedules

to avoid a mutex (delaying one agent’s action over the other or vice versa).

In this case, the first agent will then select the solution that does not delay

its conflicting action. Notice that in these situations both solutions are SPE

and thus equally good from a game-theoretic perspective. Any other conflict-

solving mechanism would also favor one agent over the other one depending

on the used criteria; for instance, a planner would favor the agent whose delay

returns the shortest makespan solution, and a more social-oriented approach

would give an advantage to the agent whose delay minimizes the overall wel-

fare. In order to alleviate the impact of the order of the agents in the SPE

solution, agents order is randomly chosen in the tree generation.

We give now a brief explanation of how backward induction will obtain a SPE

solution of the SG in the previous tree example of Figure 3.3. If we apply

the backward induction algorithm to this extensive-form game, it returns the

schedule profile sp1, or its equivalent sp4. This schedule profile reports the

highest possible utility for agent 2, and a penalty of one unit for agent 1. Let’s

see how the backward induction algorithm obtains the SPE in this example.

The payoffs of sp1 are back up to node 2, where they will be compared with
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the values of node 6. The schedule profile sp2 is backed up to node 6 because

agent 1 is who chooses which solution goes up between the ones that come

from nodes 7 and 9. Then, in node 1 agent 2 chooses between node 2 and

node 6 and hence, sp1 is chosen. In the other branches, in node 12 sp4 will

prevail over sp5, and then, when compared in node 11 with sp6, the choice of

agent 1 is sp4. Finally, agent 1 chooses at node 0 between sp1 and sp4, both

with the same payoffs, and so both are equivalent SPE solutions. If the tree is

developed following a different agent order, the SPE solution will be the same

in this particular case.

This algorithm has also pruning mechanisms to avoid generating branches

that do not produce SPE solutions. A branch is pruned if the estimation of the

maximum utility solution of the branch is strictly lower than any other already

computed solution (that would be confirmed as SPE at the end of the process)

which act as bounds. In other words, any Pareto dominated solution by an

already computed solution is pruned since it would never be a SPE. In the

example tree of Figure 3.3, the branches of node 9, node 14, and node 15 are

pruned. We note that the pruning annotations of Figure 3.3 do not correspond

to the pruning mechanisms that the extensive-form SPE algorithm applies.

Complexity of the Extensive-Form SPE Algorithm

The worst-case time and space complexity of this algorithm is the same as

the complexity of the extensive-form SG algorithm, O(2|s
−
Π |), where |s−Π | is the

longest possible schedule profile for the input plan profile Π. The pruning

mechanisms reduce the overall complexity of the algorithm. However, we

note that the pruning of this algorithm is different from the pruning of the

extensive-form SG algorithm, and hence, the performance may be also slightly

different in practical terms.
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3.5.6 Problem Example

We introduce a planning problem of a factory with several depots connected

by tunnels. In this problem, the agents are the trucks of the factory, which load

and unload their packages in the depots. The tunnels are bidirectional but only

one truck at a time can traverse a tunnel. So when a truck enters a tunnel any

other truck must wait until the first truck exits. This is a simplification of a

real-world problem.

The actions of this domain are: (enter ?truck ?tunnel), (exit ?truck ?tunnel), (load

?truck ?package ?depot), (unload ?truck ?package ?depot). The action enter has a

precondition (available ?tunnel) and an effect (not (available ?tunnel)). The exit

action has an add effect that restores the availability of the tunnel. Therefore,

the actions enter and exit are the only ones that can generate conflicts between

the agents.

truck1

depot1 depot2 depot3

tunnelA tunnelB

truck2 truck3

Figure 3.4: Depots and tunnels problem example

Figure 3.4 presents the scenario of the described planning problem where we

assume there are three depots, depot1, depot2, and depot3. depot1 and de-

pot2 are connected by tunnelA ; and tunnelB connects depot2 with depot3.

We have three agents, truck1, truck2 and truck3, which are initially located

in depot1, depot2 and depot3, respectively. There are three packages in the

initial state: package1 is loaded into truck1, package2 is in depot2 and, pack-

age3 is loaded into truck3. Agents have the following plans:
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• π1 = [a1
1 = (enter truck1 tunnelA), a1

2 = (exit truck1 tunnelA), a1
3 = (unload

truck1 package1 depot2)].

• π2 = [a2
1 = (load truck2 package2 depot2), a2

2 = (enter truck2 tunnelA), a2
3 =

(exit truck2 tunnelA), a2
4 = (unload truck2 package2 depot1)].

• π3 = [a3
1 = (enter truck3 tunnelB), a3

2 = (exit truck3 tunnelB), a3
3 = (enter

truck3 tunnelA), a3
4 = (exit truck3 tunnelA), a3

5 = (unload truck3 package3

depot1)].

The utility of the earliest schedule for every agent i is ui = 10, and each

empty action decreases the utility in one unit. The feasible schedule profiles

sp1 to sp4 represented in Table 3.2 are the only ones which are PO NE (ΩΠ)

for this planning problem with utilities: u(sp1) = (10, 9, 8), u(sp2) = (7, 10, 7),

u(sp3) = (10, 7, 10), u(sp4) = (5, 10, 9). Table 3.2 shows the joint actions of

all the schedule profiles. We use > to represent that an agent has already

executed all the actions of its plan.

The feasible schedule profile sp1 is the final fair solution ŝΠ of the SG because

it is the only one that accomplishes the three criteria: sp1 Pareto dominates

any other solution with lower utility for any of the agents (it is also NE in

the SG), and it is the only one fair, which maximizes egalitarian social welfare

(max-min utility), thus satisfying the most disadvantaged agent. In case of

using a global measure like utilitarian social welfare, both sp1 and sp3 would

be valid solutions as the global utility of both is 27. However, agent 2 in sp3 is

more disadvantaged than in sp1, where all agents are more satisfied.

A game-theoretic approach is needed in this context because agents are self-

interested and hence, they would deviate from any non-NE schedule profile if

they could take profit. In such case, agents might end up in a conflict, thus

obtaining a utility of −∞.
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Table 3.2: Schedule profiles of the example

sp ψi A0 A1 A2 A3 A4 A5 A6 A7 ui

sp1

ψ1 a1
1 a1

2 a1
3 > > > > 10

ψ2 a2
1 ⊥ a2

2 a2
3 a2

4 > > 9

ψ3 a3
1 a3

2 ⊥ ⊥ a3
3 a3

4 a3
5 8

sp2

ψ1 ⊥ ⊥ ⊥ a1
1 a1

2 a1
3 > > 7

ψ2 a2
1 a2

2 a2
3 a2

4 > > > > 10

ψ3 a3
1 a3

2 ⊥ ⊥ ⊥ a3
3 a3

4 a3
5 7

sp3

ψ1 a1
1 a1

2 a1
3 > > > > 10

ψ2 a2
1 ⊥ ⊥ ⊥ a2

2 a2
3 a2

4 7

ψ3 a3
1 a3

2 a3
3 a3

4 a3
5 > > 10

sp4

ψ1 ⊥ ⊥ ⊥ ⊥ ⊥ a1
1 a1

2 a1
3 5

ψ2 a2
1 a2

2 a2
3 a2

4 > > > > 10

ψ3 a3
1 a3

2 ⊥ a3
3 a3

4 a3
5 > > 9

3.6 Conclusions

In this chapter, we presented FENOCOP, a game-theoretic approach for non-

cooperative agents that want to execute their plans in a shared environment.

Each agent generates a collection of plans that attain its individual task, and

takes part on a game that allows the participants to jointly select a feasi-

ble schedule profile that guarantees the concurrent execution of their plans.

FENOCOP includes two different games: the General Game (GG) is a general-

sum game in which agents select the schedule profile to execute among the

set of executable combinations of their plans. The generation of a feasible

schedule profile for each combination of the agents’ plans is taken care of by

means of the Scheduling Game (SG). In the SG, agents study how to schedule
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their individual plans in order to ensure their executability. Agents address

conflicts by delaying the execution of their actions while trying to maximize

their utilities.

Whereas the solutions of the GG are guaranteed to be Nash Equilibria (NE),

the outcomes of the SG hold two additional solution concepts: Pareto opti-

mality allows to return the best outcome among the stable feasible schedule

profiles of a SG, and fairness maximizes the utility of the least satisfied agent.

The satisfaction of these concepts maximizes the quality of the schedule pro-

files among which the GG selects the solution of the planning problem.

We provide three algorithms to solve the SG problem. The first algorithm re-

presents the SG as a normal-form game to compute the solutions that accom-

plish the three aforementioned criteria taking advantage of the monotonicity

and order properties. Similarly, the second algorithm uses these properties

but it builds an extensive-form tree which represents the SG in a different way.

The third algorithm is also an extensive-form tree but it computes Subgame

Perfect Equilibrium (SPE) which are a subset of the NE of the SG. However,

there is no guarantee of Pareto optimality or fairness in this algorithm. In the

next chapter, we make an empirical evaluation of these algorithms to analyze

the different properties and how they behave experimentally to solve the SG

problem. Furthermore, we also evaluate the complete FENOCOP model.

In conclusion, we defined an approach that realistically addresses the non-

cooperative multi-agent planning problem. FENOCOP leverages the utilities of

self-interested agents and promotes the individual satisfaction of the partici-

pants through a set of algorithms which aim for the generation of solutions

that are stable, Pareto optimal and fair.
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Chapter 4

FENOCOP Experimental

Evaluation

This chapter is devoted to experimentally analyze the performance of our

FENOCOP (Fair Equilibria in NOn-COoperative Planning) framework. We make

a comprehensive empirical evaluation of the Scheduling Game (SG) algorithms

in order to assess their performance in different domains. In the case of the

extensive-form SPE algorithm, which does not guarantee Pareto optimality

and fairness, we analyze the properties of the obtained solutions.

We also evaluate the complete FENOCOP framework, which combines the Ge-

neral Game (GG) and the SG. Particularly, we compare the solutions obtained

by FENOCOP against a classical centralized planner. The main goal of this com-

parison is to prove that the outcomes of FENOCOP are Nash Equilibrium (NE),

Pareto Optimal (PO) and fair solutions, since FENOCOP pursues satisfying the
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agents’ self-interest, in contrast to a centralized planner, which only optimizes

a global measure without considering agents’ private interests.

The contents of this chapter are organized as follows. Section 4.1 describes

the implementation of the FENOCOP framework. In Section 4.2, we intro-

duce the experimental setup of the tests performed in this chapter. Section

4.3 presents a comparative analysis of the three SG algorithms introduced in

Section 3.5 of the previous chapter. In Section 4.4, we compare the game-

theoretic solutions of FENOCOP with the results of a centralized planner. Fi-

nally, in Section 4.5, we discuss the results and draw some conclusions on the

experimental analysis.

4.1 FENOCOP Implementation Details

FENOCOP is implemented as a framework that combines the General Game

(GG) and the Scheduling Game (SG). Agents in FENOCOP receive a factored

description of the problem to solve; that is, each agent receives its own pro-

blem file, encoded with the Planning Domain Definition Language (PDDL).

Then, each agent i individually computes a set of plans Γi via the LPG-td

(Gerevini and Serina 2002) planner. These plans constitute the strategies of

the GG, and hence, the plan profiles of the GG, which represent the cells of the

normal-form GG (see Figure 3.1), are obtained as combinations of the plans of

Γi for each agent i ∈ AG.

For each plan profile Π, a SG is solved using one of the algorithms of Section

3.5. Once all the SG instances are solved, the resulting utilities are compiled

in the payoff matrix of the normal-form GG. The GG is finally solved by means

of the Gambit tool (McKelvey et al. 2014), which computes all the Nash Equi-

librium (NE) solutions of the payoff matrix.
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The SG algorithms are developed as specified in Section 3.5 using our own

software. We implemented and integrated several methods to parse the re-

sulting plans of LPG-td, to check the feasibility of the schedule profiles, to

generate the corresponding search trees of the different SG algorithms, to

compute the solutions of each SG algorithm, and to process the input and out-

put of Gambit. The only external tool integrated in FENOCOP is Gambit, since

it is a robust and fully-tested software to efficiently compute NE solutions.

4.2 Experimental Setup

The benchmarks of this chapter contain problems of two different planning

domains:

• Transport domain. This domain is inspired by the well-known zenotravel

domain of the International Planning Competitions (IPC)1. Agents are

travel agencies that organize their fleets of airplanes to deliver pas-

sengers to different destinations. Some of the airplanes are resources

shared by the agents; when two or more agents try to use the same

plane at the same time, a conflict arises.

• Space domain. This is an adaptation of the IPC rovers domain. Agents

are Mars rovers that navigate through a network of waypoints, analyze

samples and communicate the results to a lander, which acts as a com-

munication center. Conflicts arise when agents attempt to analyze the

same sample or to simultaneously communicate with the lander.

In these benchmarks, the utility that a plan schedule reports to an agent i ∈

AG depends on the makespan or finish time of such a schedule. Formally,

we define the utility that an agent i obtains from a plan schedule ψi ∈ Π as

1http://icaps-conference.org/index.php/Main/Competitions
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ui(ψi) = −|ψi|. Therefore, given a schedule profile sΠ = (ψ1, . . . , ψi, . . . , ψn),

the utility of an agent i is a value between −|πi| and −(|πi| + λiΠ), depending

on the number of empty actions of ψi (the schedule of its plan πi within sΠ).

4.3 Scheduling Game Results

The purpose of this test is to evaluate the performance of the three SG algo-

rithms presented in Section 3.5 of the previous chapter; namely, the normal-

formSG algorithm (Section 3.5.3), the ext-formSG procedure (Section 3.5.4)

and the ext-formSPE algorithm (Section 3.5.5). Section 4.3.1 presents the

performance results regarding coverage, computation time and memory con-

sumption of the SG algorithms. We also show how the normal-formSG and

ext-formSG algorithms achieve fairer results than the ext-formSPE version of

(Jordán et al. 2015) in Section 4.3.2.

The problems of the benchmark comprise one plan πi per agent forming a

plan profile Π = (π1, . . . , πi, . . . , πn). We used the planner LPG-td (Gerevini

and Serina 2002) to generate the individual plan of each agent in Π. All the

problems were run on a single machine2 with a 30-minute timeout.

The problems of this test feature 2, 3 or 4 agents. The 2-agent and 3-agent pro-

blems include from 1 to 6 different resources (planes in the Transport domain

and samples in the Space domain). We created various problem configurations

accordingly to the percentage of resources that are shared among the agents

(25%, 50%, 75% or 100%). These four variants combined with a maximum

number of 6 resources yield 24 different planning settings. For each plan-

ning setting, we generated 10 random problems with 2 and 3 agents, totaling

240 problems for each number of agents. In the case of 4-agent problems,

2Intel Core i7-3770 CPU at 3.40GHz, 8 GB RAM.
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the number of available resources ranges from 1 to 8, which results in 320

problems.

4.3.1 Performance Results

We used three different measures to compare the results of the normal-formSG ,

ext-formSG , and ext-formSPE algorithms: the coverage or number of solved

problems, the computation time, and the memory consumption of each algo-

rithm.

Table 4.1: Problems solved by the normal-formSG , the ext-formSG , and the ext-

formSPE algorithms

normal-formSG ext-formSG ext-formSPE

|AG| Domain Solvable Solved Partially Unsolved Solved Partially Unsolved Solved Partially Unsolved

2
Transport 164 164 (100%) 0 0 164 (100%) 0 0 164 (100%) 0 0

Space 240 240 (100%) 0 0 234 (97.5%) 0 6 (2.5%) 226 (94.2%) 8 (3.3%) 6 (2.5%)

3
Transport 127 92 (72.4%) 0 35 (27.6%) 127 (100%) 0 0 127 (100%) 0 0

Space 236 236 (100%) 0 0 216 (91.6%) 19 (8.0%) 1 (0.4%) 212 (89.8%) 23 (9.8%) 1 (0.4%)

4
Transport 53 18 (34.0%) 3 (5.6%) 32 (60.4%) 51 (96.0%) 2 (4.0%) 0 51 (96.0%) 2 (4.0%) 0

Space 297 34 (11.4%) 216 (72.7%) 47 (15.9%) 118 (39.7%) 179 (60.3%) 0 213 (71.7%) 84 (28.3%) 0

Global results 1117 784 (70.2%) 219 (19.6%) 114 (10.2%) 910 (81.5%) 200 (17.9%) 7 (0.6%) 993 (88.9%) 117 (10.5%) 7 (0.6%)

Coverage. Table 4.1 collects the coverage results of the SG algorithms, clas-

sified by domain and number of agents. The table shows the percentage of

solved, partially solved and unsolved problems for each setting. A problem is

said to be solved if the search space is exhausted within the 30-minute time-

out and so all the problem solutions are found. If the time limit expires before

the search space is exhausted and at least one solution is returned, we say the

algorithm partially solves the problem. Otherwise, if no solution is found, the

problem is not solved by the algorithm (unsolved problem).

Before running the tests, we executed all the problems without a time limit

to verify which problems are solvable (see column Solvable of Table 4.1). A

problem is unsolvable if any of the SG algorithms exhausts the search space
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without finding a feasible schedule profile. As shown in Table 4.1, 1117 out

of 1600 problems in the benchmark were found to be solvable. Note that

the frequent appearance of conflicts in the Transport domain leads to more

unsolvable problems than in the case of the Space domain.

We can observe in Table 4.1 that the algorithms are rather sensitive to the

number of agents in the game. The approaches solve most of the problems

with 2 and 3 agents, except for the 3-agent Transport setting, where normal-

formSG fails to solve 27% of the problems. However, the performance of the

methods clearly degrades with 4 agents: normal-formSG solves only 34% of

the Transport problems and 11% of the Space problems, respectively. On the

other hand, ext-formSG and ext-formSPE show a good performance in the

Transport domain, but 60% of the Space problems are only partially solved by

ext-formSG and 28% in the case of the ext-formSPE algorithm.

Table 4.1 also shows that all methods obtain better figures in the Space do-

main. This is explained because in the Transport domain a large number of

conflicts appear due to the airplanes that are shared by the travel agencies,

thus increasing the overall complexity of the game.

Considering the complexity results of the SG algorithms, clearly the 2-agent

setting constitutes the sweet spot of the normal-formSG approach, because

this algorithm explores a tree which is not as deep as the extensive-form tree.

Since the branching factor of the normal-formSG method is given by the num-

ber of agents, |AG|, its performance significantly degrades in the 3-agent pro-

blems and, most notably, with 4 agents, where it is clearly outperformed by

the extensive-form approaches. Particularly, it only solves 34% of the Trans-

port problems and 11% of the Space instances. Nevertheless, normal-formSG

obtains in general good results, solving almost 70% of the tasks and partially

attaining 20% of the instances.
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In contrast, the ext-formSG and ext-formSPE approaches are proven to scale

up much better due to the reduced branching factor of the tree and the effec-

tiveness of their pruning mechanisms. In fact, these approaches solve (com-

pletely or partially) more than 99% of the benchmark, only failing to generate

a solution for 7 problems. Particularly, the ext-formSG algorithm solves 81.5%

and partially solves 17.9% of the tasks, and the ext-formSPE solves 88.9% of

the tasks and partially solves 10.5%.

The difference in the coverage results of the approaches is also explained by

the fact that the normal-formSG does not leverage the appearance of the same

conflict in similar schedule profiles. The extensive-form algorithms exploit bet-

ter this situation because they generate the schedule profiles incrementally.

Hence, once a conflict is detected, the unfeasible branch is directly discarded,

thus saving a significant amount of computation time.

Computation time. Figure 4.1 compares the computation time required by

the SG algorithms. Each data point in the graphs represents the average com-

putation time (in milliseconds) for problems whose input plan profiles have

the same number of actions. For instance, a value of 10 on the horizontal axis

represents the plan profiles that contain a total of 10 actions. Note that a data

point of 1800000 ms in Figure 4.1 (30 minutes) indicates that the timeout was

reached in the execution of all the corresponding plan profiles; in other words,

these tasks were partially solved.

In general, the size of the plan profiles in the Transport domain is significantly

lower (up to 11, 19 and 27 actions, depending on the number of agents) than

the Space domain (with a maximum of 36, 54 and 83 actions, respectively).

None of the SG algorithms was able to solve the largest instances of the Trans-

port domain because of the large amount of conflicts among agents and the

size of the problems.
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(c) Transport domain, 3 agents
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(d) Space domain, 3 agents
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(e) Transport domain, 4 agents
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Figure 4.1: Computation time results of the SG algorithms
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In the Transport domain, the extensive-form algorithms clearly outperform

the normal-formSG , as shown in Figures 4.1(a), 4.1(c) and 4.1(e). This fact

becomes more evident in large instances that involve 3 and 4 agents. As noted

above, the normal-formSG algorithm is particularly sensitive to the number of

agents because this parameter determines the branching factor of the search

tree. The performance of the ext-formSG and ext-formSPE algorithms is not

so dependent on the number of agents because these algorithms always build

a binary tree. ext-formSG and ext-formSPE solve most of the instances of the

Transport domain in less than a minute, and scale up significantly better than

normal-formSG .

Regarding the Space domain, the normal-formSG approach presents the most

stable behavior (see Figures 4.1(b), 4.1(d) and 4.1(f)). In this domain, ext-

formSG and ext-formSPE take a significantly higher amount of time to con-

verge in some problems. The reason is that, in this domain, these algorithms

are unable to effectively prune the tree due to the relative lack of conflicts,

which results in a large search space to explore. Moreover, ext-formSG par-

tially solves a high amount of tasks (particularly in the 4-agent setting), which

explains the 30-minute values in Figure 4.1(f). In contrast, the computation

times of the normal-formSG approach are significantly lower because the or-

der property of the SG is better exploited in this approach. This, together with

the low number of conflicts of the Space domain, makes the normal-formSG a

very efficient approach to find feasible schedule profiles in this domain.

All in all, although the normal-formSG method slightly outperforms the ext-

formSG and ext-formSPE algorithms in domains that have a low number of

conflicts, the extensive-form algorithms present in general a more consistent

behavior and they are particularly suitable for problems with a large number

of conflicts. The differences between the ext-formSG and ext-formSPE algo-

rithms are not really significant since both methods are very similar, except
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for the pruning mechanisms applied by each algorithm and the additional the-

oretical properties met by ext-formSG (the solutions of ext-formSPE are not

guaranteed to be Pareto optimal and fair).

Memory consumption. Figure 4.2 shows the memory consumption for 3

agents in Transport and Space domains. The memory consumption results

are less relevant in the Transport domain since the amount of problems solved

is low. However, the ext-formSG algorithm presents a more stable behavior

and it consumes less memory than the other approaches in most cases. The

pruning applied to unfeasible branches with conflicts reduces significantly the

tree expansion of both extensive-form algorithms, which is reflected in the

results of the Transport domain.
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Figure 4.2: Memory consumption of normal-formSG , ext-formSG , and ext-formSPE

for 3-agent problems

On the other hand, the normal-formSG algorithm has an almost constant mem-

ory consumption in the Space domain as it can be seen in Figure 4.2(b), while

the extensive-form algorithms increase their consumption as the problem size

grows. The normal-formSG approach takes advantage of the order property

of the SG and, since the Space domain features a low number of conflicts, the
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expansion of the normal-formSG search tree is lower than the extensive-form

trees of the other algorithms. We note that the trees and nodes of normal-

formSG and extensive-form algorithms are representing different elements.

In the first case, each node is a schedule profile which is checked for feasi-

bility, while in the extensive-form trees each node represents an action that is

repeated more than once in different branches of the tree. Since the Space do-

main features few conflicts, the pruning techniques applied by the extensive-

form algorithms lose effectiveness, which explains why these approaches con-

sume more memory than the normal-formSG .

4.3.2 Quality Comparison

In this section, we make a quality comparison between the solutions of the

ext-formSG approach with respect to the SPE solutions of the ext-formSPE .

Whereas both approaches yield stable solutions, the ext-formSG also guaran-

tees Pareto optimality and fairness. Therefore, the purpose of this test is to

assess the quality of the ext-formSPE solutions in terms of Pareto optimality

and fairness.

Table 4.2 shows the percentage of solutions of the ext-formSPE which are

PO and fair with respect to the ext-formSG (which always yield PO and fair

solutions) for the set of solved problems that did not reach the time limit.

Since both normal-formSG and ext-formSG obtain the same solutions, we used

the ext-formSG approach to perform these tests because it is more efficient.

Regarding the ext-formSPE approach, since the priority order of the agents

is important, it has been chosen randomly in each problem to fairly compare

this approach with the ext-formSG .

Column Probs of Table 4.2 shows the number of solved problems out of the

initial set (240 problems for 2-3 agents and 320 for 4 agents) for which none of
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Table 4.2: Percentage of PO and fair solutions obtained with the SPE approach

ext-formSPE

|AG| Domain Probs PO Fair

2
Tra 164 158 (96.3%) 185 (96.3%)

Spa 226 221 (97.8%) 193 (85.4%)

3
Tra 127 120 (94.5%) 115 (90.6%)

Spa 206 205 (99.5%) 124 (60.2%)

4
Tra 51 42 (82.4%) 42 (82.4%)

Spa 118 118 (100%) 56 (47.5%)

Global results 892 864 (96.9%) 688 (77.1%)

the approaches ext-formSPE and ext-formSG reached the time limit. Columns

PO and Fair show the percentage of the ext-formSPE solutions which are PO

and fair with respect to the ext-formSG solutions.

In general, most of the SPE solutions are PO with respect to the SG solutions,

except for the 4-agent Transport problems, where the percentage decreases

to 82.4%, as shown in Table 4.2. However, the results of the SPE solutions

regarding Pareto optimality can be considered satisfactory for most cases.

Globally, 96.9% of the SPE solutions are PO.

As shown in Table 4.2, the percentage of fair solutions of the ext-formSPE

with respect to the ext-formSG is significantly higher for the Transport do-

main than for the Space domain. This is because the Transport domain has

more conflicts and there are fewer possible solutions, and hence, there are

many problems in which ext-formSPE and ext-formSG yield the exact same

solution. However, in the Space domain, where there are more possible solu-

tions, the percentage of fair solutions of the ext-formSPE decreases. Another
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interesting result is that the percentage of fair solutions decreases as the num-

ber of agents increases. Globally speaking, only 77.1% SPE solutions are fair.

4.4 FENOCOP Results

In this section, we perform an evaluation of the global planning task when

agents have several plans in their sets Γi, which requires executing both the

GG and the SG of FENOCOP. Particularly, we want to compare the quality of

the FENOCOP solutions against the solutions of the centralized planner LPG-td

(Gerevini and Serina 2002) with respect to Pareto optimality and fairness. We

must first point out a couple of observations:

1. The PO and fair schedule profiles returned by the normal-formSG or ext-

formSG algorithms for each plan profile are stored in the utility matrix

of the GG (see the illustrative example in Figure 3.1). Then, we solve

the normal-form GG and we return a solution that is a NE. However, this

does not guarantee that the solution returned by the GG is PO and fair

with respect to the other possible outcomes of the GG. Consequently, we

must check if the NE solutions returned by the GG satisfy the PO and

fairness solution concepts.

2. In LPG-td, we used the standard objective function that minimizes the

number of actions so the planner returns the best possible global solution

with respect to this optimization criterion. Since a centralized planner

does not individually reason on the plan of each agent but on the global

plan as a whole, solutions may exhibit a non-equitable distribution of

the utilities. This is precisely the key point of comparison between the

FENOCOP and LPG-td solutions.

85



Chapter 4. FENOCOP Experimental Evaluation

Table 4.3: Solution plans obtained by FENOCOP and the centralized planner LPG-td

LPG-td FENOCOP

u1 u2 u3 PO Fair u1 u2 u3 PO Fair

tra1 -8 -4 -5 7 7 -5 -3 -5 3 3

tra2 -5 -4 -5 3 3 -5 -4 -5 3 3

tra3 -3 -4 -6 3 7 -4 -4 -4 3 3

tra4 -4 -5 -4 3 3 -4 -6 -3 3 7

tra5 -4 -4 -3 3 3 -4 -4 -3 3 3

tra6 -3 -4 -3 3 3 -3 -4 -3 3 3

tra7 -5 -4 -3 3 3 -5 -4 -3 3 3

tra8 -3 -3 -5 7 7 -3 -3 -4 3 3

tra9 -3 -5 -5 7 7 -3 -3 -5 3 3

tra10 -5 -3 -6 7 7 -4 -3 -5 3 3

tra11 -4 -5 -5 7 7 -3 -4 -5 3 3

tra12 -3 -3 -4 3 3 -3 -3 -4 3 3

tra13 -3 -5 -3 3 3 -3 -5 -3 3 3

tra14 -4 -3 -4 3 3 -4 -3 -4 3 3

tra15 -5 -3 -4 7 7 -4 -3 -3 3 3

tra16 -4 -4 -4 7 7 -4 -3 -4 3 3

tra17 -4 -4 -4 7 7 -4 -3 -4 3 3

tra18 -10 -6 -12 7 7 -7 -6 -4 3 3

tra19 -4 -4 -4 7 7 -4 -3 -4 3 3

tra20 -5 -3 -7 7 7 -4 -3 -5 3 3

Global 45% 40% 100% 95%

FENOCOP is the result of integrating a variety of tools, including existing tech-

nologies and explicitly designed resources. The input parameters of FENOCOP

are the planning tasks of the agents, which are encoded as STRIPS tasks (Fikes

et al. 1971). We run LPG-td for solving each planning task and the solution

plans are stored in the set Γi of each agent. For each combination of plans or

plan profile Π, an instance of the SG is launched and solved with one of the
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SG algorithms presented in Section 3.5. Once the utilities of the SG solutions

are saved in the normal-form matrix of the GG, the NE solutions of the GG are

computed by means of the Gambit tool (McKelvey et al. 2014). Finally, from

the set of stable solutions, we select a PO and fair outcome (if any) as the final

solution of the task.

This benchmark includes 20 3-agent problems from the Transport domain.

Transport was chosen for this test as it is the most challenging domain in

our SG benchmark, giving rise to complex instances with a wide variety of

conflicts. For FENOCOP, a benchmark problem was encoded as an independent

STRIPS task per agent and each task was solved with LPG-td. For running LPG-

td as a centralized planner, we encoded each benchmark problem as a single

global planning task. We used the standard objective function of minimizing

the number of actions in both configurations of LPG-td.

Table 4.3 collects the experimental results of this test. Columns labeled with

ui show the utility of the three agents in both configurations. Note that, as in

the SG test, the utility that a plan schedule ψi reports to an agent i is defined

as ui(ψi) = −|ψi|. PO and Fair columns indicate whether or not the plans

satisfy Pareto optimality and fairness.

The results clearly prove that FENOCOP is the superior approach when it

comes to attain a feasible solution that is also efficient (PO) and represents

a balance of the agents satisfaction (equitable loss of utility). As shown in

Table 4.3, all the FENOCOP solutions are PO and all but one are fair. Note

that the solution of tra4 is unfair because the least satisfied agent (agent 2

with u2 = −6) would be more satisfied with the utility of the LPG-td solution

(u2 = −5).

As expected, less than half of the solutions of LPG-td when run as a centralized

planner are PO and fair. Since the planner decisions are based on global
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optimization and non-individualized reason, most of the outcomes are non-

efficient and unfair. This is interpreted as a solution that reports a low degree

of satisfaction to the involved parties.

Another key advantage of FENOCOP is that, as opposite to centralized plan-

ners, we ensure the generation of a stable (Nash Equilibrium) solution. Let us

illustrate this through a 2-agent example problem based on the Transport do-

main. The task features two travel agencies (agents) that must organize each

a trip for a passenger (p1 and p2, respectively). Passenger p1 starts at city c1

and wants to travel to c2, while p2 is at c2 and wants to visit c4. Aircraft a1 is

located at c3 and a2 is at c2.

Table 4.4: Individual agents’ plans synthesized by FENOCOP for the example Transport

task

Time π1
1 π1

2 π2
1 π2

2

0 fly a2 c2 c1 fly a1 c3 c2 board p2 a2 c2 fly a1 c3 c2

1 board p1 a2 c1 fly a1 c2 c1 fly a2 c2 c1 board p2 a1 c2

2 fly a2 c1 c2 board p1 a1 c1 fly a2 c1 c4 fly a1 c2 c3

3 debark p1 a2 c2 fly a1 c1 c2 debark p2 a2 c4 fly a1 c3 c4

4 debark p1 a1 c2 debark p2 a1 c4

Utilities u1(π1
1) = −4 u1(π1

2) = −5 u2(π2
1) = −4 u2(π2

2) = −5

FENOCOP generates two individual plans per agent, as shown in Table 4.4

(π1
1 and π1

2 for agent 1, and π2
1 and π2

2 for agent 2). The inherent utilities of

these plans are also displayed in Table 4.4. The SG is invoked with the four

possible combinations of plans (Π11 = (π1
1 , π

2
1), Π12 = (π1

1 , π
2
2), Π21 = (π1

2 , π
2
1)

and Π22 = (π1
2 , π

2
2)) in order to generate four feasible schedule profiles that

are stable, PO and fair.

The utilities of the resulting feasible schedule profiles are reflected in the GG

utility matrix of Table 4.5, which shows that the solution chosen by FENOCOP is
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Table 4.5: GG utility matrix of the example Transport task

π2
1 π2

2

π1
1 -7, -4 -4, -5

π1
2 -5, -4 −∞, −∞

the schedule profile that combines π1
2 and π2

1, with associated utilities u1 = −5

and u2 = −4. Despite having the same sum of utilities as the schedule profile

that combines π1
1 and π2

2 (-9 units), the solution chosen by FENOCOP is the only

NE of Table 4.5, since no agent would benefit from unilaterally deviating from

this strategy.

We solved this example problem with LPG-td, and the returned solution was π1
1 ,

π2
2 (see Table 4.5). As previously stated, a centralized planner, such as LPG-td,

optimizes a global metric (in this case, the number of actions of the plan). For

this reason, LPG-td considers the solution that combines π1
2 and π2

1 as good

as the combination of π1
2 and π2

2 , since they equally minimize the objective

function of LPG-td. Hence, LPG-td returns any of these solutions indistinctly.

Since the LPG-td solution for this example problem is not a NE, the agents

could deviate from this outcome and execute their alternative plans instead,

which could potentially cause conflicts that would endanger the executability

of the plans.

We can thus conclude that FENOCOP is an appropriate approach to solve the

non-cooperative planning problem. Our approach not only guarantees the se-

lection of a Nash Equilibrium solution for the task, but also guarantees that

the solutions hold the Pareto optimality and fairness properties in most cases,

as empirically demonstrated. In contrast, centralized planners focus on the

optimization of global magnitudes, failing in most cases to attain a stable,
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PO and fair solution that properly balances the utilities of the self-interested

agents.

4.5 General Discussion on the Results

We experimentally validated the algorithms that address the Scheduling Game

(SG) problem. We also implemented the overall FENOCOP framework by com-

bining the General Game (GG) together with the SG. The Nash Equilibrium

(NE) solution of the GG is obtained by means of the Gambit tool (McKelvey

et al. 2014).

The results of the SG algorithms reveal that the ext-formSG and ext-formSPE

approaches scale up significantly better than the normal-formSG approach,

thanks to their steady branching factor and the effectiveness of their pruning

mechanisms. In contrast, the normal-formSG algorithm performs slightly bet-

ter than ext-formSG in small instances that involve a reduced amount of con-

flicts among agents. The solutions obtained by the ext-formSPE algorithm are

Pareto Optimal (PO) in most cases, but usually are not fair. While the Subgame

Perfect Equilibrium (SPE) is generally shown as a good equilibrium concept,

it is not enough to guarantee Pareto optimality and fairness as the normal-

formSG and ext-formSG algorithms do. Summarizing, it is recommended to

use the normal-formSG algorithm in domains that feature few conflicts and

the ext-formSG when there are more conflicts, while the ext-formSPE is not

suitable since it does not guarantee PO and fair solutions.

Regarding the FENOCOP results, we confirmed that, as expected, our approach

is more effective than a centralized planner at satisfying the agents’ interests

and fairly balancing their utilities. In contrast, centralized planners focus on
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optimizing some metric of the planning task as a whole, being unaware of the

presence of self-interested agents with independent objectives.

4.5.1 Limitations of the Model

FENOCOP follows a two-level game scheme which separates the problem of se-

lecting an executable plan combination from the generation of the executable

schedule profiles. This division aims to reduce the computational complexity

of the task. However, one can observe that, even with this decomposition, the

task we aim to solve has exponential complexity, which limits the applicability

of FENOCOP to problems of a relatively restrained size.

Furthermore, FENOCOP is limited by the initial set of precomputed plans of

each agent, which makes the approach less versatile neglecting the ability of

the agents to react to the other agents’ plans. From a planning perspective,

agents with the capacity to build new plans online would be more complete,

thus increasing their problem-solving skills.

For this reason, as a future work, we intend to focus on the synthesis of indivi-

dual plans. FENOCOP assumes that each agent has a pre-calculated collection

of plans and schedules their actions until all the combinations of agents’ plans

fit together. We believe that the complexity of this costly problem could be

significantly alleviated if we equip each agent with the appropriate resources

to synthesize a response that directly fits with the rest of agents’ plans. Our

goal, therefore, is to study the state of the art in multi-agent planning in or-

der to come up with a planning technique that allows an agent to synthesize

plans that can be directly integrated with the rest of agents’ proposals, thus

overcoming the costly task of combining pre-existing individual plans via the

delay of individual actions.
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This is precisely the purpose of BRPS, the second approach to non-cooperative

MAP presented in the context of this PhD thesis, which is introduced and

thoroughly analyzed in the next chapter.
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Chapter 5

BRPS: Better-Response

Planning Strategy for

Self-Interested Agents

In some real-life planning problems, agents need to act strategically in order

to achieve their goals. Imagine two agents that plan to use a one-capacity

resource simultaneously, forcing one of them to wait until the resource is re-

leased. Instead, they could come up with a coordinated plan resulting in a

better-utility outcome for both and preventing them from conflicts, conges-

tion, and delays.

The non-cooperative MAP problem we aim to solve can be seen as a general-

sum game in which agents are self-interested and non-cooperative, but they

are willing to collaborate to achieve a stable (equilibrium) conflict-free joint

plan that ensures their plans are executable. The problem of finding a plan for
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each agent that accommodates their interests into an equilibrium outcome is

called in this chapter the Interaction Planning Game (IPG).

In this chapter, we aim to solve the same non-cooperative MAP problem as

the one proposed in Chapter 3, but using a different setting. There is a set of

rational self-interested agents which want to solve their local planning tasks

in a shared environment. However, in this case, agents are able to compute

plans during the game, which means they have an unlimited number of plans,

in contrast to the model of Chapter 3 where agents have a set of precomputed

individual plans. We note that the unlimited set of plans means that agents

have planning capabilities to generate different plans and not an infinite set

of plans, since this set is limited by the plans cost and the search space of each

agent. This feature makes the problem more complete in terms of planning

since agents would be able to come up with any plan from their search space

that achieves their goals. This is a more realistic setting. We also propose a

different formalization of the planning scenario due to the characteristics of

this new model.

The exponential complexity and lack of scalability of FENOCOP, the model pre-

sented in Chapter 3, motivated the new model of this chapter. In this new

model, agents have an unlimited amount of plans (i.e., the ability of building

individual plans) and we can take profit from this feature to apply an alterna-

tive game-theoretical technique. We use better-response dynamics to obtain

only a NE of the problem. Better-response dynamics is a process in which

agents iteratively propose new strategies (plans in our case) that improve their

utility. This process finishes when no agent is able to propose a new plan that

improves its utility, in which case all agents are in their best response, that is,

a NE. One of the problems of the former model is the complexity of calculat-

ing all NE (usually a subset due to refinements of the approach). We believe

that it is not necessary to obtain all NE of our MAP task with self-interested
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agents. However, we would not be able to guarantee Pareto optimality or fair-

ness if we do not calculate all NE of a problem. All in all, our aim is to have

an efficient approach to tackle with realistic problems, even at the cost of not

guaranteeing PO and fair solutions.

Furthermore, we consider congestion interactions, a feature not included in

the former model of Chapter 3 which is really important in the game theory

literature and representative of real-world problems. Congestion arises when

multiple agents use a resource simultaneously thus increasing the cost of us-

ing it. A typical example of congestion is traffic flow, where a congested road

is more costly to its users (agents) since their pace is slower and the fuel

consumption increases.

Finding stable multi-agent plans can be done using the Best-Response Plan-

ning (BRP) proposed in (Jonsson et al. 2011). This approach solves congestion

planning games by applying plan improvements starting with an executable

initial joint plan. The best-response dynamics show a remarkable experimen-

tal performance but conflicts between the agents’ plans are not considered as

part of the agents’ cost, so convergence and strategic behavior in scenarios

that feature planning conflicts are not guaranteed. The theoretical approach

in (Jordán et al. 2015) and Chapter 3 presents a combination of two games

that computes all the existing equilibria of a joint plan where a conflict be-

tween two plans entails −∞ utility for all agents. As we mentioned before, the

limitations of this approach are that agents have a limited amount of precom-

puted plans, congestion situations are not considered and the complexity of

the task renders the calculation of all the equilibria intractable.

In an IPG, planning conflicts are considered as part of the agents’ costs. This

is an important novelty since it allows the agents to reason about them. In

better-response dynamics, where each agent proposes its individual plan, it is
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necessary to include conflicts as part of the agents’ costs to iteratively avoid

them, thus achieving a feasible joint plan. In fact, managing conflicts in this

way is more accurate since a conflicting situation is not the same with a single

conflict, which is nearer to a feasible joint plan, than having multiple conflicts.

The plan of an agent i can provoke a conflict to the plan of another agent j;

but, if this conflict does not affect the feasibility of i’s plan, an IPG could end

up in an equilibrium in which agent j cannot execute its plan. However, in

(Boolean) games with a third party that taxes or rewards agents to incentivize

them to avoid conflicts, such conflicts can be resolved by a so-called taxation

scheme (Nisan and Ronen 2007; Wooldridge et al. 2013). In this work, we

show how taxation can also be used for the IPG.

In this chapter, we propose a Better-Response Planning Strategy (BRPS) to

solve the IPG. Our approach guarantees convergence to equilibrium joint plans

for self-interested planning agents in a setting in which interactions among the

agents’ plans arise.

Agents in BRPS play the IPG using better-response dynamics. Each agent only

is able to see the current proposed plans of the other agents, that is, the

plans included in the current joint plan. Hence, each agent uses its planning

machinery to build a plan that solves its task but considering the interactions

with the other agents’ plans. Agents only share the public part of their plans,

that is, the information that may affect the others. The private information

is occluded in the plans they propose in the joint plan. Therefore, while the

structure of the game and the existence of the agents is common knowledge,

agents ignore the possible strategies of the others as well as their goals.

This chapter is organized as follows. Next section presents the planning pro-

blem in which all elements that affect the agents’ utility are defined. Sec-

tion 5.2 formalizes the planning problem as a game-theoretic approach, the
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IPG, and we show the complexity of the task as well as under which conditions

the IPG is a potential game. In Section 5.3, we present BRPS, the better-

response planning strategy to solve the IPG, and we analyze the convergence

to equilibrium solutions. Finally, the last section presents the conclusions.

5.1 Planning Scenario

Our planning scenario consists of a set of n individual, rational and self-interes-

ted agents, denoted by AG = {1, . . . , n}, where each agent must synthesize a

course of action or plan that satisfies its individual goals. Agents design their

plans independently of each other and they wish to execute them simulta-

neously in the same context. Since no agent considers any other’s actions

when designing its plan, interactions (conflicts and congestions) may arise at

the time of executing the plans. In order to avoid this, agents get engaged

in a process to coordinate their plans before execution and come up with a

joint plan in which every individual plan is executable. This coordination may

entail modifications in their originally designed plans. Hence, the objective of

an agent is to obtain a minimal-cost plan that satisfies its goals while avoiding

interactions, such as conflicts and congestions, with the rest of the agents’

plans.

For the sake of clarity, we briefly name all the agents costs which are pre-

sented in this section: the cost of an agent plan is costP ; the cost of solving

congestion or conflicts by delaying the execution of plan actions is defined as

costS; costG represents the cost of being in congestion, and costU is the cost

of being in conflict.

Our scenario is modeled as a classical planning problem in a deterministic

fully-observable environment. The states of the world are modeled through
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a finite set of state variables, V, each of them associated to a finite domain,

Dv, v ∈ V, of mutually exclusive values that refer to the objects of the world.

Assigning a value d to a variable v ∈ V generates a fluent 〈v, d〉, indicating

that the variable v takes the value d. A state of the world S is a total variable

assignment over V which comprises a fluent for each v ∈ V. The planning

scenario is also defined by a set of actions A that agents in AG can execute

and a set R of resources or world objects that are used by the actions in A.

Each agent has its own view of the world which may be totally or partially

shared with the other agents.

The planning task of an agent i ∈ AG, T i, is defined as follows:

Definition 5.1.1. The planning task of an agent i ∈ AG is a tuple T i =

〈Vi, Ii,Ai,Gi〉. Vi is the set of state variables known to agent i. Since agents

work in the same context, variables can be shared by two or more agents, i.e.,

Vi ∩ Vj 6= ∅. Div ⊆ Dv is the set of values of variable v ∈ V that are known to

agent i. Ii is a set of fluents that defines the information of the initial state

known to agent i. I = I1 ∪ . . . ∪ In is the initial joint state of all agents in

AG with the private information of the agents occluded. Ai ⊆ A is the set of

planning actions or performable operations of agent i. Ai and Aj may contain

common actions depending on the agents’ capabilities. Ri ⊆ R is the set of

resources that agent i uses in the preconditions of the actions in Ai. A given

resource r ∈ R may be simultaneously used by the actions of two or more

agents; i.e. Ri ∩ Rj 6= ∅. Gi is the set of goals of agent i. Goals of different

agents are disjoint sets (Gi ∩ Gj = ∅) and they must not contradict each other

in order to ensure an executable joint plan. An agent is assumed to solve its

assigned goals individually, without any assistance or synergy.

A planning action or performable operation of an agent i is defined as follows:
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Definition 5.1.2. A planning action of Ai is a tuple αi = 〈pre(αi), eff(αi),

costA(αi), resA(αi)〉, where pre(αi) and eff(αi) are partial variable assign-

ments that represent the preconditions (atomic formulae of the form v = d)

and effects (atomic effects of the form v := d) of αi, respectively; and costA(αi)

is a numeric value that denotes the cost of executing αi. An action αi uses a

possibly empty set of resources resA(αi) ⊆ R.

An action αi is executable in a state S if pre(αi) ⊆ S. Executing αi in S

leads to a new state S′ as a result of applying eff(αi) over S. An effect 〈v, d〉

assigns the value d to the variable v, adding the fluent 〈v, d〉 to S′ and removing

any fluent from S that contradicts 〈v, d〉 (i.e., fluents of the form 〈v, d′〉, where

d′ ∈ Dv and d′ 6= d).

Agents develop solutions for their associated tasks in the form of partial-order

plans. An agent will come up with a partial-order plan that solves its goals

which it will attempt to coordinate with the plans of the other agents. The

following concepts and definitions are standard notions of the POP paradigm

(Penberthy et al. 1992; Ghallab, Nau, et al. 2004), which have been adapted

to state variables. Additionally, definitions also account for the local views of

the agents’ tasks.

Definition 5.1.3. A partial-order plan of an agent i ∈ AG is a structure

πi = 〈∆i,≺〉, where ∆i ⊆ Ai is a nonempty subset of the actions of agent i and

≺ is a strict partial order on ∆i.

Every strict partial order is a directed acyclic graph. Two unordered actions

αij and αik of a plan πi can be executed in any order. Moreover, αij and αik could

also be executed in parallel if the agent has the capability to do so. A plan πi is

executable if every topological sort of πi is executable (Penberthy et al. 1992).
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Definition 5.1.4. A partial-order plan πi = 〈∆i,≺〉 is executable in the ini-

tial state of the agent Ii, if for any topological ordering 〈αi1, . . . , αim〉 of the

actions in ∆i, α1 is executable in Ii and any other αij is executable in the state

resulting from the execution of the preceding action αij−1.

The set of topological sorts of πi (linear ordering of a directed acyclic graph)

determines a discrete time step for the actions in πi. Particularly, the time

step of an action αi in πi is set as the earliest time over every topological sort

of πi. Accordingly, the time step assigned to each action in πi is consistent

with the set of orderings ≺ of πi. The finish time of a plan πi is defined as

the last time step t at which any action of πi is scheduled. The time step of an

action αi in a plan πi is defined as time(αi, πi):

time(αi, πi) =

 0, @βi ≺ αi

max(time(βi, πi)) + 1, ∀βi ≺ αi
(5.1)

Figure 5.1 shows πi, a partial-order plan of an agent i composed of four ac-

tions. The time step of action αi1 is 0, and the time step of actions αi2 and αi3 is

1, meaning that the two actions can be concurrently executed by the agent but

necessarily after αi1 because of the ordering constraints. The last action of the

plan is αi4, which it has to be executed after αi2 and αi3 due to the orderings.

Once this action is executed, agent i will achieve its goals Gi. Thus, the finish

time of this plan, i.e., the time at which the goals are achieved, is t = 2.

Definition 5.1.5. A solution plan for the planning task T i of an agent i ∈ AG

is an executable partial-order plan πi where all the goals Gi are achieved.

The utility of a solution plan to an agent i is measured as the utility that the

achievement of Gi reports to i. Any plan which not achieves all the goals

Gi is not considered. Consequently, two different solution plans πi1 and πi2,
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!1
!3
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ii

i

t = 0 t = 1 t = 2

Figure 5.1: An example of partial-order plan for an agent i

that achieve all the goals in Gi, will have the same utility to i. Thus, agents

distinguish among solution plans by the cost of performing the plans, denoted

as costP (πi). The cost of a plan measures two aspects:

• Cost of the actions in πi. Each action of the plan is associated to a cost

(costA(αi)), which may denote a monetary cost, a cost in terms of re-

sources necessary to carry out the action or any other cost measure that

diminishes the benefit of achieving Gi with πi. The particular cost of an

action to an agent will depend on the context, infrastructure or policy of

the agent. For example, the cost of delivering some goods will be higher

for agent i than agent j if the vehicle fleet of i is older and less efficient

than the fleet of j.

• Finish time of πi. Time can also play an important role in the cost of a

plan. For some agents, achieving the goals sooner or later will have a

different impact in the agent’s utility. If two plans πi1 and πi2 have the

same action cost, agent i will most likely prefer the one that finishes

earlier. Likewise, the relevance of the finish time of a plan to an agent

will depend on the individuality of each agent.
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In summary, the term costP (πi) is a value that indicates the effort that agent

i must invest to perform πi. costP (πi) weighs all the relevant parameters to

agent i, representing how costly is for agent i to realize plan πi.

A joint plan is the combination of one plan πi for each agent i ∈ AG in which

interactions between the agents may appear:

Definition 5.1.6. A joint plan is a tuple Π = 〈π1, π2, . . . πn,≺AG〉 where ≺AG
is a set of inter-agent orderings over the actions of the partial-order plans of

the n agents.

For simplicity, we refer to a joint plan as Π = 〈π1, π2, . . . , πn〉, the combina-

tion of the individual plans of the n agents. And we use the notation Π−i =

〈π1, . . . , πi−1, πi+1, . . . , πn〉 to denote the joint plan of all agents but i. Given πi

and Π−i, the aim of agent i is to integrate πi in Π−i and come up with a joint

plan Π.

An inter-agent partial ordering is an ordering constraint between two actions

αi and βj of different agents, i and j, used to address interactions such as

conflicts and congestions. The inclusion of an inter-agent ordering of the form

αi ≺ βj implies that βj will be scheduled at least one time step after αi. This

ordering may increase the finish time of the plan πj of agent j, thus affecting

its cost costP (πj).

The time step of an action α in a joint plan Π is defined as shown in the follow-

ing equation, where the base case of the recursive function is when the time

step of all the immediate predecessor actions is 0:

time(αi,Π) = max
∀β: β≺α ∨ β≺AGα

time(β,Π) + 1 (5.2)
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Given a plan πi and Π−i, the aim of agent i is to integrate πi in Π−i and come up

with a joint plan Π. Ideally, in the absence of any external factors, performing

the plan πi would cost costP (πi) to agent i. However, integrating πi in Π−i

to come up with a joint global plan may incur some additional cost due to the

interactions (conflicts or congestions) with the other agents. Therefore, agent

i examines how costly it is to integrate πi in Π−i is.

An interaction can be a conflict or a congestion. A conflict may prevent the

execution of an action in a plan thus making it unfeasible which is undesirable

for agents. A congestion only increases the cost of the implied actions for a

simultaneous use of a resource.

5.1.1 Conflict Interactions

In our context, the plans of the agents are executed in the same environment

and thereby conflicts between the actions of the agents’ plans may arise when

building a joint plan Π. A pair-wise inter-agent planning conflict or just conflict

is a situation between two agents in which executing an action of one agent

in some specific order may prevent the other agent from performing one of its

actions.

In a partial-order plan, a precedence relation α ≺ β may be imposed by the

supporting effect of α (v := d ∈ eff(α)) to the preconditions of β (v = d ∈

pre(β)). We will denote such a causal relationship as α ≺〈v,d〉 β.

Definition 5.1.7. Let πi, πj be two plans of agents i and j, respectively, in a

joint plan Π. A conflict is defined as a tuple c = 〈γi, αj , βj〉 where αj ≺〈v,d〉
βj ∈ πj and γi ∈ πi such that v := d′ ∈ eff(γi), and it does not hold γi ≺AG αj

or βj ≺AG γi.
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Definition 5.1.7 states a situation in which agent i jeopardizes the execution of

πj (outgoing conflict for i) and, inversely, πj is affected by agent i (incoming

conflict for j). Under a POP paradigm, this interaction is interpreted as the

action γi is threatening the causal link αj ≺〈v,d〉 βj; likewise, it amounts to

an inconsistent effect and an interference mutually exclusive relationships

(Ghallab, Nau, et al. 2004). That is, in order to avoid this conflict interaction

γi cannot be executed after αj and before βj nor at the same time than αj or

βj .

Both agents involved in a conflict can adopt the role of conflict solver and

attempt solving it by introducing an inter-agent ordering (if possible) which

orders their respective actions after the conflicting actions of the other agent.

An agent is only allowed to solve a conflict as long as the newly introduced or-

dering relation is consistent with the rest of orderings of Π (≺AG) and the plan

of the other agent remains unaltered. That is, a conflict is solvable by any

solver agent as long as it does not introduce an incoming inter-agent ordering

in the plan of the other agent. This is the key issue that determines the cooper-

ative behavior of self-interested agents; agents seek their own benefit but not

at the cost of provoking conflicts to others because this would have a negative

impact in all involved agents. Particularly, given a conflict c = 〈γi, αj , βj〉:

• agent i can solve this outgoing conflict if it is able to order its action γi

after βj; i.e., adding βj ≺AG γi to the joint plan.

• agent j can solve this incoming conflict if it is able to order its action αj

(and subsequently βj which goes after αj) after γi by adding γi ≺AG αj

to the joint plan.

We must also note that solving a conflict between two agents will not cause

any further conflict in the plans of the rest of agents. The theory underpin-

ning the POP paradigm guarantees that new conflicts will only appear in case
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new actions are inserted in the agents’ plans. However, if there are several

conflicts in a plan when integrating it in a joint plan, solving a conflict may

provoke another conflict to be unsolvable. Therefore, an agent should analyze

the way to minimize the number of conflicts in which it remains.

Integrating πi in Π−i implies that agent i must successively analyze its incom-

ing and outgoing conflicts with the rest of agents. When an incoming ≺AG is

set to an action γi of πi, the time step of γi and its successors must be now

calculated with time(γi,Π) over every topological sort that comprises the sets

≺ and ≺AG of πi. Consequently, the finish time of πi can be delayed, which

has an impact in the integration cost of agent i. Therefore, fixing a solvable

conflict will impose an extra cost to the solver agent due to the possibly delay

in the finish time of the plan. The delay cost caused by solving the inter-agent

conflicts is included in costS(πi,Π−i).

From the perspective of an agent i, an unsolvable conflict is a situation in

which agent i is not able to order its action(s) to solve a conflict. This may

happen by one of the following reasons:

• Given an outgoing conflict c = 〈γi, αj , βj〉, agent i cannot order γi after

βj because it already exists an ordering γi ≺AG αj or γi ≺AG βj and

hence, adding βj ≺AG γi would yield in a cycle of orderings which is not

allowed because it is not consistent.

• Given an incoming conflict c = 〈γj , αi, βi〉, agent i is not able to add

γj ≺AG αi because it already exists an ordering αi ≺AG γj or βi ≺AG γj

and this would yield in a joint plan with inconsistent orderings. Similarly,

agent i cannot order αi after γj if the action αi represents one of the

values of the initial state Ii.
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Our approach also accounts for unsolvable conflicts and charges the agent ac-

cordingly in order to encourage the agent to deviate from a conflicting situa-

tion and select a strategy that guarantees a feasible joint plan, if possible:

• An unsolvable incoming conflict 〈γj , αi, βi〉 of agent i compromises

the feasibility of πi and agent i will receive a cost penaltyi.

• An unsolvable outgoing conflict 〈γi, αj , βj〉 of agent i affects the fea-

sibility of πj . However, the execution of πi is not compromised in this

situation. Since the IPG is a general-sum and non-strictly competitive

game, an agent is taxed if its plan provokes an unsolvable conflict. We

use a taxation scheme (Nisan and Ronen 2007; Wooldridge et al. 2013)

to impose a taxi to agent i for obstructing the execution of the plan of

another agent j.

In order to ensure a conflict-free solution joint plan Π∗ (see Definition 5.1.9),

the cost of a joint plan with unsolvable conflicts must surpass the cost of any

Π∗ because it is the worst outcome for any agent. Then, the value of penaltyi

and taxi should be a sufficiently large value that makes πi be a non-affordable

strategy to encourage agent i to deviate from πi. Since any conflict has the

same relevance from the perspective of finding a Π∗, both penaltyi and taxi are

set to a value cci that exceeds the cost of the worst possible Π∗. In practice,

calculating cci is computationally prohibitive so penaltyi and taxi are assigned

a large integer constant CONF_COST. Note that cci is not set to ∞ because

we need to count the number of conflicts to assure convergence to an equili-

brium with better-response dynamics, as we will explain in the next sections.

Thereby, the cost charged to an agent i for unsolvable conflicts is defined as:
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costU(πi,Π−i) = penaltyi ∗ confIn(πi,Π−i) + taxi ∗ confOut(πi,Π−i) =

= cci ∗ (confIn(πi,Π−i) + confOut(πi,Π−i)) (5.3)

where penaltyi, taxi, and cci are the same constant value CONF_COST for

agent i, and the functions confIn(πi,Π−i) and confOut(πi,Π−i) return the

number of incoming and outgoing unsolvable conflicts of plan πi in the joint

plan Π−i, respectively.

costU is a factor which depends on the number of unsolvable conflicts that

agent i encounters when integrating πi into Π−i. In our planning scenario,

unsolvable conflicts are translated to cost in order to have a total cost func-

tion which determines how good an agent’s plan is with respect to the other

agent’s plans. Particularly, the number of unsolvable conflicts is a key factor

since a large number of conflicts denotes a plan that is far away from be-

ing executable and so it will be less desirable to the agent. Since the aim of

this planning scenario is to consistently reflect the “cost to reach a solution”,

unsolvable conflicts are also interpreted as a cost factor so as to guarantee

convergence to a NE (as we will explain in the next section). This treatment

of conflicts is significantly different from the approach (Jordán et al. 2015),

where the existence of one conflict is interpreted as −∞ utility regardless of

the number of conflicts.

A symmetric unsolvable conflict is a conflict which is unsolvable by both

agent i and agent j, since none of them is able to add an ordering between

their affected actions because it will compromise the consistency of the joint

plan orderings.

Figure 5.2 shows a complete example of a symmetric unsolvable conflict. As

we can observe in Figure 5.2(a), both agents i and j use the same precondition

v = p that comes from their respective initial states Ii and Ij , which can be
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(a) Two unsolved conflicts
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(b) One symmetric unsolvable conflict

Figure 5.2: Symmetric unsolvable conflict example

seen as an initial joint state I = Ii ∪ Ij . Both agents modify the value of the

variable v as an effect of their respective actions αi and βj . This provokes two

conflicts: c1 = 〈βj , Ii, αi〉 and c2 = 〈αi, Ij , βj〉. In c1, βj endangers the execu-

tion of αi because its effect changes the value of v, which is used by αi at time

step t = 0. Similarly, the conflict c2 makes the execution of βj not feasible.

Therefore, from the perspective of agent i, the conflict c2 is solvable adding

βj ≺AG αi, which allows agent j to execute βj because the precondition v = d

is not in danger. Now the situation is represented in Figure 5.2(b) with the

conflict c2 solved by agent i. However, c1 is an unsolvable incoming conflict

for agent i since it is not possible for i to add the ordering βj ≺AG Ii because

the initial state Ii cannot be ordered after any action. From the perspective of

agent j, c1 is an unsolvable outgoing conflict because it is not allowed to intro-

duce αi ≺AG βj since it would provoke a cycle thus violating the consistency

of the orderings in the joint plan. Thereby, the situation represented in Figure

5.2(b) is a symmetric unsolvable conflict because none of the agents can add

an ordering to solve it.

Summarizing, we refer to the different types of conflicting situations that can

arise as follows:
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• Solvable conflict . An agent i is able to order its affected action(s) after

the other agent’s action(s) to solve the conflict. The possible cost rise by

the delay of the execution of the actions of i is reflected in costS(πi,Π−i).

• Unsolvable conflict . It is a conflict that cannot be solved by agent i be-

cause it is not able to order its affected action(s) after the other agent’s

action(s) because the orderings of the joint plan would be inconsistent.

An incoming or outgoing unsolvable conflict implies a cost which is con-

sidered in costU(πi,Π−i).

• Symmetric unsolvable conflict. It is a conflict in which none of the

two involved agents is able to solve it. A conflict like this is not solvable

and hence, one of the agents should change its plan in order to find a

conflict-free joint plan.

5.1.2 Congestion Interactions

On integrating πi in Π−i, it may exist actions of different agents that use one

resource r at the same time t. This is called congestion.

A congestion game is defined by players and resources, and the utility of the

player depends on the resources and the number of players choosing the same

resource (Rosenthal 1973). In our case, certain items in V are defined as

resources or congestible elements (R) so that a congestion is produced when

two or more actions associated to the same time step define a formula v =

d, v ∈ R in their preconditions. Moreover, the cost of a congestion may differ

across the agents involved in it, which makes our approach more realistic.

Definition 5.1.8. A congestion arises when one or more actions of a plan πi

being integrated in a joint plan Π−i are simultaneously executed at time t with

actions of the other agents’ plans in Π−i that use one same resource r ∈ R.
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The simultaneous usage of a resource r is related to a particular time t. The

discrete time model in our scenario (as defined in Equation 5.2) is represented

with the set N of natural numbers. We define the function # : PL×N×R → N,

where PL is the set of all possible joint plans, as a counting function that

returns the total number of actions that use one resource at a time in a joint

plan. Specifically, given a joint plan Π, #(Π, t, r) returns the number of actions

that use the resource r at time step t:

#(Π, t, r) =

n∑
j=1

m∑
k=1

αjk ∈ π
j : time(αjk,Π) = t ∧ resA(αjk) = r (5.4)

A congestion among several actions at a time means a more costly realization

of these actions, either monetary or because of a later finish time of the plan if

the agent avoids the congestion by deferring its congested action(s). Given an

action αi such that resA(αi) = r and time(αi,Π) = t, the original cost value of

αi, costA(αi), will be increased by a factor that depends on the value #(Π, t, r)

and how this increment impacts the cost of agent i. We define Cir : N → R

as the cost function of resource r for agent i accordingly to the number of

times that r is simultaneously used. Therefore, the congestion cost incurred

by agent i when integrating its plan πi in Π−i is defined as:

costG(πi,Π−i) =

finish(Π)∑
t=0

∑
r∈R
Cir(#(Π, t, r)). (5.5)

Similar to conflicts, a congestion can be addressed with inter-agent orderings.

Given an action αi scheduled at time t that uses resource r, the congestion

is avoidable by agent i by setting a precedence relation λ ≺AG αi with all

the actions λ in congestion with αi. Addressing a congestion of an agent’s

plan with inter-agent orderings may imply that the finish time of the plan is

modified, thus yielding in a cost rise for the agent. The possible delay cost
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caused by this relation in the finish time of πi is accumulated in costS(πi,Π−i)

as well as the solvable conflicts. On the other hand, if the agent remains on

congestion it also implies a cost rise in the function costG(πi,Π−i). Therefore,

depending on the cost impact for the agent it would prefer to address the

congestion or remain on it.

5.1.3 Cost of Integrating a Plan in a Joint Plan

As explained above, solving a conflict or addressing a congestion with inter-

agent orderings will most likely impose an extra cost to the agent whose plan

πi is being integrated in Π−i. In both cases, the cost rise for the agent i is

reflected by the function costS(πi,Π−i). The cost of remaining on congestion

is measured by the function costG(πi,Π−i). And costU(πi,Π−i) gathers the

cost for the unsolvable conflicts. Therefore, the total cost of agent i when

integrating a plan πi in a joint plan Π−i is defined as the cost of the plan

itself costP (πi) and all the costs provoked by solved and unsolved conflicts

and congestions:

costTotal(πi,Π−i) = costP (πi)+

+ costS(πi,Π−i) + costG(πi,Π−i) + costU(πi,Π−i) (5.6)

The function costTotal(πi,Π−i) returns a value which represents how bad or

costly the plan πi is to agent i under the context of Π−i. The utility of a plan

can be measured as the opposite of its cost, as it is commonly adopted in game-

theoretic approaches. In our case, the net utility ui that a plan πi reports to

agent i will be the utility of achieving Gi minus costTotal(πi,Π−i).

Finally, a conflict-free joint plan is considered a solution joint plan for the

planning scenario of the tasks of the agents.
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Definition 5.1.9. A solution joint plan for the planning tasks
⋃
i∈AG T i of all

agents in AG is a conflict-free joint plan Π∗ where costU(πi,Π−i) = 0,∀i ∈ AG.

If this condition holds then it is guaranteed that Π∗ achieves
⋃
i∈AG Gi.

5.2 Interaction Planning Game

An Interaction Planning Game (IPG) is a general-sum or non-zero-sum

game to solve the planning scenario presented in Section 5.1. A general-sum

game is a game in which agents’ aggregate gains and losses can be less than

or more than zero, meaning that agents do not try to minimize the others’

utilities (Gillies 1959; Shoham et al. 2009, Chapter 3). In an IPG, agents are

self-interested but not strictly competitive so the aim of an agent is to seek an

individual plan that does not provoke any conflict that would negatively affect

its utility as well as the others’ utilities. Specifically, a conflict between two or

more plans will render the plans non-executable, which is the worst possible

outcome for the agents because it prevents them from fulfilling their planning

tasks. In this section, we present the elements that define an IPG.

Each agent i has a task T i to solve. In other words, an agent i has to generate

a plan πi with its actions Ai to solve all its goals in Gi. An IPG is defined as

follows:

Definition 5.2.1. An Interaction Planning Game (IPG) is a tuple 〈AG, T , u〉,

where:

• AG = {1, . . . , n} is a set of n rational self-interested planning agents.

• T =
⋃
i∈AG T i is a multi-agent planning task in which each agent i has to

solve its own task T i.
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• u = (u1, . . . , un) where ui : πi,Π → R is a real-valued payoff function for

agent i defined as the utility of a plan πi that solves task T i when it is

integrated in a joint plan Π = 〈π1, . . . , πi−1, πi, πi+1, . . . , πn〉.

The strategies of an agent i in the IPG are the possible plans that it can build to

solve its own task T i. We note that agents only reveal their plans when playing

their strategies (plans). Additionally, each agent only shows the parts of the

plan that are public since they may affect to other agents, while it occludes its

private information when sharing the plan with other agents (we give further

details about how to solve the IPG using better-response dynamics in next

section). Therefore, the game structure and the other players’ existence is

common knowledge, but the rationality and particular utility of each agent

are private information.

An IPG solution must be a joint plan such that the individual solution of each

agent within the joint plan cannot be improved; otherwise, agents would keep

on altering the "solution", thus leading to instabilities and conflicts during the

plan execution. Our goal by modeling this as a game is to guarantee a stable

solution in which no agent has a reason to change its strategy. Then, the aim

of each agent in the IPG is to select its best-utility strategy according to the

strategies selected by the others; that is, all agents must be in best response in

an IPG solution, which by definition is a NE (see (Shoham et al. 2009, Chapter

3) for more information and examples).

Definition 5.2.2. An IPG solution is a solution joint plan Π∗ (as specified

in Definition 5.1.9) which is a NE of the IPG. An IPG solution is a conflict-free

joint plan in which the plan of each agent is in best response with respect to

the other agents’ plans.
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The complexity of finding a NE in the IPG is PPAD-hard (Polynomial Parity

Arguments on Directed graphs). This complexity class was introduced by

Christos Papadimitriou in (Papadimitriou 1994). A solution to a PPAD pro-

blem is known to exists, but it may be hard to find it. Moreover, Chen and

Deng shown in (Chen and Deng 2006) that computing a NE, even in a 2-player

game, is PPAD-complete unless P = NP . However, there are some exceptions

in which for some restricted games, such as zero-sum games, a NE can be

computed in polynomial time using linear programming (Shoham et al. 2009,

Chapter 4).

Theorem 5.2.1. Computing a NE for an IPG is PPAD-hard even for single-

action plans.

Proof. This proof uses a reduction from general-sum finite games. It is known

that finding a sample NE for these games with two or more players is PPAD-

complete (Shoham et al. 2009, Chapter 4). For this class of games, any stra-

tegy of any player/agent i can be translated to a task T i of the IPG. This is done

in polynomial time since a direct mapping of the strategies of any general-sum

game can be done to single-action plans of the IPG.

Each of these plans, when combined with the other agents’ plans, forms a joint

plan which has the utility ui for each agent i of the corresponding outcome of

the original general-sum game, so we will have the set of all joint plans that

solve the multi-agent planning task T of the IPG.

We have equivalent games since any general-sum game can be mapped to an

IPG because, in fact, it is a general-sum game. Now, a NE of the IPG can

be translated in polynomial time to a NE of the equivalent general-sum finite

game, since the strategies and outcomes are the same.
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This proof is based on the premise that if a NE of the IPG could be computed in

polynomial time, then a NE of any general-sum finite game would be computed

in polynomial time and thus, the problem of computing a NE would be in P .

This is a contradiction because it is already known that computing a NE for

a general-sum game with two or more players is PPAD-complete (Chen and

Deng 2006), unless P = NP which is unknown but unlikely. From this we can

conclude that even if generating plans for individual agents is easy (single-

action plans), finding a stable solution is PPAD-hard.

We analyzed the complexity of the IPG from the game-theoretic point of view.

Now, we analyze the complexity from a planning perspective since the agents

that participate in the IPG must have the ability of building plans and schedule

these plans in their best possible way to obtain the best cost.

In the general case, propositional STRIPS planning is PSPACE-complete (By-

lander 1994), as well as SAS+ (Bäckström and Nebel 1995), for both satis-

ficing and optimal planning. Therefore, there is no polynomial algorithm for

classical planning unless P = PSPACE, and planning is not polynomially re-

ducible to any problem in NP unless NP = PSPACE. We note that there is

no formal proof for the equalities P = PSPACE and NP = PSPACE, but

the general belief is that they are false. Nevertheless, planning complexity

varies depending on the planning domain. For instance, Helmert 2003 proved

that a non-optimal plan can be obtained in polynomial time for a transport do-

main without fuel restrictions, but bounded (length) plan existence is always

NP-complete.

Cost-optimal planning has proven more difficult to solve in practice than propo-

sitional STRIPS planning. The existence of zero-cost actions in the domains

may result in long plans which are hard to find (Richter et al. 2010; Ben-

ton, Talamadupula, et al. 2010). In addition, the same problem happens if
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action costs have big differences even without zero-cost actions (Wilt et al.

2011). Cost-optimal planning remains W[2]-hard for all domains (Aghighi et

al. 2016). Using parametrized complexity analysis, propositional STRIPS plan-

ning is also W[2]-complete when parametrized with plan length (Bäckström,

Jonsson, et al. 2015).

Theorem 5.2.2. The IPG is PSPACE-hard even with just one agent.

Proof. In this proof, we make a reduction from single-agent planning to an

IPG. Let us take any single-agent planning problem which can be represented

as a planning task T i of an agent i. We can construct an instance of the IPG

for agent i with its task T i and AG = {i}, this step is directly applicable, so it

can be done in polynomial time. Then, solving this IPG is only about computing

single-agent plans that solve T i. The IPG solution obtained from this IPG is a

plan with a specific utility ui, which can be translated directly to a plan that

is a solution to the initial single-agent planning task T i. The later translation

is made in polynomial time since it is a direct mapping of the plan as it is

obtained in the IPG.

Since it is known that planning is PSPACE-complete in the general case, we

can ensure that planning for an IPG is PSPACE-hard.

We have defined all the elements to calculate the value of the function costTotal,

which determines the utility of each agent in any situation. Now, we introduce

the class of potential games and we analyze under which conditions the IPG is

a potential game.

As we mentioned before, Rosenthal 1973 presented a class of games called

congestion games. Monderer et al. 1996 found a more general class named

potential games. A game is potential if there is a function on the strategies

of players such that each change in a player’s strategy changes the function
116



5.2 Interaction Planning Game

value in the same way as the player’s change in utility. For such a poten-

tial function, each local optimum is a Pure strategy Nash Equilibrium (PNE)

(Voorneveld et al. 1999). This class includes some well-studied network-based

games. Some interesting properties of potential games are the existence of

pure equilibria, the guarantee of convergence with best-response dynamics,

and bounded price of anarchy with the potential function method (Roughgar-

den 2005). In contrast to an exact potential function, an ordinal potential

function does not track the exact change of utility of the players but it tracks

the direction of such change.

For the IPG, we define the following ordinal potential function which maps

every strategy profile or joint plan to a real value:

Φ(Π) =
∑
i∈AG

costTotal(πi,Π) (5.7)

Any unsolvable conflict causes a huge cost increase cc to the involved agents

(a penalty to the affected agent, and a tax to the provoking agent). Since

this cost increase is the constant value CONF _COST , which is higher than

the cost of any conflict-free plan, it is straightforward to see that agents will

always avoid unsolvable conflicts if they can do so. No agent can benefit from

being in an unsolvable conflict or provoking it to improve its individual cost,

no matter their individual cost functions. In other words, a conflict increases

the cost of the involved agents as well as the potential function Φ. Therefore,

regarding unsolvable conflicts and how they are taxed in the IPG, the potential

game property always holds.

Usually, congestion games have a universal cost function which expresses the

congestion caused by the use of the resources of the game. These games

are potential if congestion affects all agents similarly. When agents have in-
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dividual payoff functions, a game is not potential anymore as it is proven in

(Milchtaich 1996). Since switching strategies usually means a change in plan

costs, it may be profitable for an agent to change its plan to a much cheaper

one that introduces more congestion to others. Under these conditions, the

potential game property cannot hold because the potential function is unable

to track the improvement of the agent if the losses of the other agents are not

compensated. Agents in the IPG have individual costs that affect them differ-

ently for their plans (costP ), for solving congestion or conflicts (costS), and for

congestion (costG).

However, the IPG is a potential game if one of these two sufficient conditions

are accomplished: (a) congestion is costless, or (b) agents plans cost are null

and congestion affects all agents similarly.

Theorem 5.2.3. The IPG is a potential game with its associated ordinal po-

tential function Φ if for all agents in AG:

(a) congestion is costless (costG = 0), or

(b) the cost of executing a plan is null (costP = 0) and congestion affects

all agents similarly.

Proof. The ordinal potential function Φ maps every strategy profile to a real

value and it satisfies the following potential game property: Given a joint plan

Π = 〈π1, . . . , πix, . . . , π
n〉, if and only if πiy is an alternate plan/strategy for

agent i, and Π′ = 〈π1, . . . , πiy, . . . , π
n〉 6= Π, then Φ(Π) − Φ(Π′) > 0 and

ui(πiy,Π
′) − ui(πix,Π) > 0. In other words, if the current state of the game is

Π, and an agent i switches its strategy from πix to πiy, the improvement of i is

tracked by Φ.

Regarding congestion, in the case (a) in which congestion is not considered, it

is straightforward to see that any utility improvement of an agent by switching
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its plan will be reflected in the potential function Φ and it would not cause any

cost increase to other agents. In the case (b), congestion affects all agents

similarly and the cost of executing any individual plan is null. Hence, an agent

incurring in a congestion is as much affected as the other involved agents,

and similarly, if an agent avoids a congestion, the other involved agents also

increase their utility. Therefore, the potential game property holds in both

cases (a) and (b) regarding congestion.

Unsolvable conflicts imply a cost increase of cc to the involved agents, which

is higher than any conflict-free plan cost. If an agent i improves its utility by

avoiding a conflict, then the potential function Φ will decrease 2cc, once for

each of both agents involved in the avoided conflict. Note that any modifica-

tion of a plan (increase in costS by solving a conflict) or switching to another

plan to avoid a conflict always implies a cost decrease for the involved agents

which is tracked by Φ. Hence, the potential game property always holds re-

garding conflicts in both cases (a) and (b).

For potential games, convergence to PNE by best/better response is guaran-

teed (Monderer et al. 1996). Although the IPG is not always a potential game,

it still shares many similarities. We make an analysis of convergence of the IPG

in Section 5.3.3. Furthermore, in Chapter 6, we describe experimental results

that aim to evaluate convergence properties by better-response dynamics in

concrete domains that do not meet the conditions from the above Theorem

5.2.3. We note that the IPG is designed to be applicable to a wide range of

real problems and this is the reason why we considered all the elements in the

agents cost functions, which makes our model more complete.
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In the following section, we take advantage of the potential game properties

of the IPG in order to compute a PNE with better-response dynamics. We also

analyze what happens when the IPG is not a potential game and we show that

there still are positive properties.

5.3 Better-Response Planning Strategy

In this section, we explain the Better-Response Planning Strategy (BRPS)

approach which is applied to solve the IPG. In the following subsections, we

present the BRPS process, its search procedure, we prove the convergence of

BRPS to a PNE, and we make a discussion about the complexity of BRPS in the

IPG.

5.3.1 BRPS Process

Better-response dynamics draw upon the properties defined for best-response

dynamics. Particularly, we know that any finite potential game (Monderer

et al. 1996) will converge with best-response dynamics to a PNE regardless

of the cost functions (e.g., they do not need to be monotonic). Moreover,

it is not even necessary that agents best respond at every step since best-

response dynamics will still converge to a PNE in a finite number of steps as

long as agents deviate to a better response (Shoham et al. 2009, Chapter 6).

Additionally, a better-response strategy can be implemented by an agent by

randomly sampling another plan until one is found with a lower cost than the

current plan’s and hence, it does not require that the agent knows the cost of

every plan in its search space (Friedman et al. 2001). In our planning context,

we use better response instead of best response since agents do not need to

find the best plan in each iteration which may be computationally intractable.
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However, the task is already hard for an agent, as we pointed out in Theorem

5.2.2.

Our BRPS is a process in which each agent i iteratively revises its plan πix in

the joint plan Π to switch to another plan πiy which integrated in Π−i reports

a better utility than πix for i. Before starting the process, an arbitrary order

between the agents in AG is established. Moreover, an empty joint plan Π = ∅

is set. During the process, agents must better respond in each iteration. If

an agent i is not able to come up with a better-cost plan, it does not change

its plan. When no agent modifies its plan within a complete iteration because

none of them can better respond, the better-response strategy has reached a

convergence point in which the current joint plan is a PNE.

Table 5.1: Example of two agents with conflicts. PNE in bold

π2
1 π2

2 π2
3 π2

4

π1
1 −2cc1−1,−2cc2−1 −cc1−1,−cc2−2 -1, -3 −cc1−1,−cc2−4

π1
2 −cc1−2,−cc2−1 -2, -2 -2, -3 −cc1−2, −cc2−4

π1
3 -3, -1 -3, -2 -3, -3 −cc1−3, −cc2−4

π1
4 −cc1−4, −cc2−1 −cc1−4, −cc2−2 −cc1−4, −cc2−3 -4, -4

Let us take a simple IPG example with two agents (1 and 2) and four plans

per agent (π1
1 to π1

4; and π2
1 to π2

4). Table 5.1 represents an IPG example in its

normal-form in which costP (π1
1) = costP (π2

1) = 1, costP (π1
2) = costP (π2

2) = 2,

costP (π1
3) = costP (π2

3) = 3, and costP (π1
4) = costP (π2

4) = 4. The cells in Table

5.1 are the 16 joint plans which can be generated by the combination of the

agents’ plans along with the utility for each agent. The terms cc1 and cc2 de-

note the cost of the penalty/tax that agents 1 and 2 are charged, respectively,

for the unsolvable conflicts in each joint plan. Table 5.1 shows 7 solution joint

plans and the ones in bold are PNE. Assuming the BRPS process may arrive to

the joint plan 〈π1
4 , π

2
4〉 with utilities (-4,-4), BRPS will not yield a different joint
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plan because no agent is able to come up with a better plan without conflicts

given the plan of the other and thereby none of them can improve its utility.

The joint plan 〈π1
4 , π

2
4〉 is PNE but it is not a PO solution whereas the rest of

PNE plans are all PO solutions. Consequently, better-response dynamics can-

not guarantee PO solutions.

From the agents perspective, the BRPS process works as follows:

• An arbitrary order of agents in AG is established. BRPS incrementally

builds an initial joint plan, Π = 〈∅, . . . ,∅〉, Π = 〈π1,∅, . . . ,∅〉, Π =

〈π1, π2,∅, . . . ,∅〉 and so on following the established order. This con-

struction follows a similar procedure as explained below except that

agent i has no previous upper cost bound.

• In one iteration, an agent i performs the following steps:

1. it analyzes the cost of its current plan πix in the joint plan as specified

in Equation 5.6 and sets upperi = costTotal(πix,Π
−i).

2. it starts a planning search process to obtain a different plan, say πiy,

that achieves Gi. During search, a tree, where nodes represent an

incrementally integration of the actions of πiy within Π−i, is created.

Every node is evaluated according to Equation 5.6 and if the cost is

greater or equal than upperi then the node is pruned. Otherwise,

when the node already holds all of the actions of the plan πiy and if

costTotal(πiy,Π
−i) < upperi, then the search stops because a better

response has been found. In this case, Π′ = 〈π1, . . . , πiy, . . . , π
n〉 is

returned.
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3. in case the search space is exhausted and no better plan is found

(we note plans are pruned by upperi), agent i does not change its

plan πix in Π since i is in best response.

• When no agent in AG modifies its plan in a complete iteration, better-

response dynamics has reached a convergence point and the current

joint plan is a PNE.

5.3.2 Search Procedure

From a planning perspective, it is worth noting that an agent i does not pre-

compute the complete set of plans that solve the task T i. An agent in BRPS

implements an individual A* search procedure that allows the agent to dy-

namically generate progressively better responses and integrate them into

the current joint plan.

In one iteration of BRPS, agent i calculates upperi = costTotal(πix,Π
−i) as the

cost of its current proposal in the joint plan, removes πix, and autonomously

launches an A* search to find and integrate a better response πiy into the

joint plan. The root node of the search tree contains a joint plan which is

defined as the composition of Π−i and an empty partial-order plan of agent i:

πiy0
= 〈∆i = ∅,≺〉. We will denote such a combination as Π−i ◦ πiy0

.

At each level of the search tree, a node incorporates one action over its parent

node and inter-agent conflicts are solved, if possible. Given the root node

Π−i◦πiy0
, its successor nodes will contain Π−i◦πiy1

, where πiy1
= 〈∆ = {αi1},≺〉;

a successor of Π−i ◦ πiy1
will be Π−i ◦ πiy2

, where πiy2
= 〈∆ = {αi1, αi2},≺〉; and

so on until a node which contains Π−i ◦ πiy is found. In other words, each node

of the tree successively adds and consistently supports a new action until a

node that contains a complete plan πiy that achieves Gi is found. Note that the
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inter-agent orderings inserted in each node do not introduce any synergies

between agents since, as explained in section 5.1, these elements are merely

used for conflict and congestion resolution.

The search is aimed at finding a plan for agent i without conflicts. The proce-

dure finishes once a conflict-free better response is found. If the agent finds

a node that contains an element in conflict, the search keeps running until a

conflict-free plan is found or the search space is exhausted. During search,

the upperi cost bound is used to prune nodes that would not yield a solution

better than the current one.

The heuristic search of BRPS draws upon some particular planning heuris-

tics (Torreño, Sapena, et al. 2015) that enable agents to accelerate finding a

conflict-free outcome. Assuming that the current plan of agent i in a joint plan

is πi and that the best-cost plan of agent i integrated in Π−i has a total cost

of C?, i might need as many iterations as costTotal(πi,Π−i)− C? to reach the

optimal solution, improving one unit cost at each iteration. However, the com-

bination of heuristic search and the upper cost bound helps guide the search

towards a better-response outcome very effectively.

5.3.3 Convergence to an Equilibrium

Better-response dynamics in an IPG may converge to a PNE joint plan which

might possibly contain conflicts. In this section, we analyze the type of con-

flicts that may lead to this situation and we show that in the absence of those,

BRPS converges to an IPG solution. We also analyze convergence in the non-

potential version of the IPG.

Every potential game has at least one outcome that is a PNE, and better-

response (or best-response) dynamics always converges to a PNE in any finite
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potential game (Shoham et al. 2009, Chapter 6) (Nisan, Roughgarden, et al.

2007, Chapter 19).

Corollary 5.3.1. Better-response dynamics in an IPG always converges to a

PNE if the potential game property holds.

As we explained in Theorem 5.2.3, the potential game property with the po-

tential function Φ only holds under some assumptions. However, we must

note that even without those assumptions and thus having the cost functions

of the agents as defined in Equation 5.6 (costTotal, where the agents consider

their own plans, congestions, unsolved conflicts, and delays by solved conflicts

and/or congestions), the IPG with better-response dynamics will converge to a

PNE in most cases.

Convergence to Conflict-free Joint Plans

In some problems, a joint plan with conflicts can be a PNE of the IPG and

better-response dynamics could converge to this non-executable PNE joint

plan. This is always caused by a multi-symmetric unsolvable situation among

(at least) two agents which have a symmetric unsolvable conflict and none of

them has a better response; that is, no alternative plan that improves ui or uj

due to the existence of conflicts.

Definition 5.3.1. There exists a Multi-Symmetric Unsolvable Situation

(MSUS) between two agents i and j in an IPG if the following two conditions

hold:

1. there exists a symmetric unsolvable conflict between a plan πi and every

plan of j that solves T j , and
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2. there exists a symmetric unsolvable conflict between a plan πj and every

plan of i that solves T i

In contrast to an unsolvable IPG (that would be the case when every plan of i

contains a symmetric unsolvable conflict with every plan of j and vice versa),

a MSUS states there is (at least) an IPG solution for the game but none of

the agents is able to unilaterally find a better response if they get stuck in

symmetric unsolvable conflicts. We note that, whereas a MSUS is defined

between a pair of agents, it can affect any number of agents. However, the

presence of a single MSUS between two agents is a sufficient condition to

endanger the convergence to an IPG solution if agents get stuck in the specific

plans involved in the MSUS.

F
c1

I

c2

c3

l1

l3

l2

l4

Ag1
Ag2

Figure 5.3: Multi-symmetric unsolvable situation example

Figure 5.3 shows a problem with a MSUS. Two agents, 1 and 2, are placed in

location I and want to get to F . Agent 1 can only traverse solid edges and

agent 2 dashed edges (except I − c1 which can be traversed by both agents).

Locations c1, c2 and c3 can only be visited by one agent at a time, being per-

manently unavailable afterwards. Each edge has unitary cost. Agent 1 has

two plans π1
1 and π1

2 with costs costP (π1
1) = 3 and costP (π1

2) = 4, correspond-

ing to its inner and outer path, respectively. Similarly, agent 2 has two plans

π2
1 and π2

2 corresponding to its inner and outer path, respectively, with costs

costP (π2
1) = 3 and costP (π2

2) = 4. If both agents use their best plans, π1
1 and
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π2
1 , they will cause a symmetric unsolvable conflict at c1. If agent 2 switches to

π2
2 , another symmetric unsolvable conflict will appear at c2. In the same way,

if agent 1 switches to π1
2 , the symmetric unsolvable conflict will occur at c3.

The only IPG solution is composed of π1
2 and π2

2 , in which agents traverse the

outer paths of Figure 5.3. This reveals that a better-response process can get

trapped in a joint plan with conflicts which is PNE. This happens because a

symmetric unsolvable conflict is only solvable through a bilateral cooperation,

and in case of a MSUS like this, any alternative plan of one of the two agents

also provokes a symmetric unsolvable conflict.

The strategies and utilities of this example are represented in Table 5.2, which

is the normal-form of the IPG and includes all of the joint plans. A cell repre-

sents the utility of each agent in the joint plan formed by the plans of the

corresponding row and column. The existence of a conflict in a joint plan en-

tails a loss of utility of −cci units. If one of the agents (or both) initiate the

better-response process with their first plan, BRPS will converge to the non-

executable joint plan with utilities (−2cc1 − 3,−2cc2 − 3), which is a PNE. This

happens because none of the agents is able to unilaterally improve its utility

by switching to another plan. The utilities of the agents can only be improved

if they bilaterally switch to π1
2 and π2

2 , respectively. However, this can never

happen in a sequential better-response dynamics.

Table 5.2: Multi-symmetric unsolvable situation. PNE in bold

π2
1 π2

2

π1
1 −2cc1−3,−2cc2−3 −2cc1−3,−2cc2−4

π1
2 −2cc1−4,−2cc2−3 −4,−4

It should be noted that a MSUS is unlikely to occur in real-world problems as it

features a very restricted scenario with several and fairly particular conflicts.
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As shown in the example of Figure 5.3, the two agents block each other, not

only for a plan but for all possible alternative plans since they only could reach

a conflict-free joint plan through a bilateral plan switch. Hence, once these

situations are identified, where BRPS could end up in a non-executable PNE,

we can assure that in the absence of MSUS, if BRPS converges to a PNE it will

be an IPG solution.

Corollary 5.3.2. Better-response dynamics in an IPG without any multi-symme-

tric unsolvable situation always converges to a PNE if the potential game prop-

erty holds, which is an IPG solution (conflict-free joint plan).

As shown in Corollary 5.3.1, the IPG is a potential game (under some assump-

tions) with an associated ordinal potential function Φ of Equation 5.7 that

guarantees convergence to a PNE with better-response dynamics. Thus, in

the absence of MSUSs, agents will never get blocked in a symmetric conflict

since, if an agent cannot solve it, the other involved agent will address the

conflict. Therefore, agents will progressively reduce their costs by solving

conflicts and improving their utility until converging to a PNE which is an IPG

solution (conflict-free joint plan). In other words, if a game does not present

MSUSs, only conflict-free joint plans can be PNE. Additionally, in the absence

of MSUS, if BRPS converges to a PNE in the non-potential version of the IPG,

then the PNE will be an IPG solution.

Convergence in the Non-Potential IPG Version

Better-response (or best-response) dynamics in the IPG may cycle only by the

combination of the individual agents plans cost and congestion cost. For ins-

tance, if an agent i improves its cost by switching its plan to one that provokes

a congestion to other agents, and the cost decrease of i does not compensate

the cost increase of the other agents in congestion (reflected by Φ), the poten-
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tial game property is broken. When the IPG is not a potential game, situations

like the example we described may provoke cycles and better-response dyna-

mics would never converge. However, it is not really common to find domains

in which such cycles appear easily, as we will show in the experiments of

Chapter 6.

To analyze what happens in the non-potential IPG version, in which all the cost

elements of costTotal are considered, we turn to the concept of a sink equi-

librium (Goemans et al. 2005). We define a state graph G = (V,E), where

V are the states of the game (strategy profiles or joint plans Π in the IPG),

and E are better or best responses, that is, an agent i has an arc from one

state Π to another state Π′ if it has a better/best response from Π to Π′. The

evolution of game-play is modeled by a random path in the state graph, simi-

larly to extensive-form games with complete information. Such a random path

may converge or may not converge to a PNE, but it surely converges to a sink

equilibrium (which may be or may not be a PNE). If we contract the strongly

connected components of the state graph G to singletons, then we obtain an

acyclic graph. The nodes with out-degree equal to zero are named sink nodes,

that is, nodes with no out-going arcs in G. These nodes correspond to states

of sink equilibria since random best/better-response dynamics will eventually

converge to one of those (and will never leave it) with probability arbitrar-

ily close to 1 (Goemans et al. 2005). Therefore, we announce the following

proposition:

Proposition 5.3.1. Random better(best)-response dynamics in an IPG without

any multi-symmetric unsolvable situation will eventually converge to a sink

equilibrium, which is a conflict-free joint plan.

Proof. Similarly to Corollary 5.3.2, in the absence of MSUSs, agents will pro-

gressively reduce their costs by solving conflicts and improving their utility
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until converging to a sink equilibrium because they would never get blocked

in a symmetric conflict. A sink equilibrium is always a conflict-free joint plan

since, in an IPG without MSUSs, all the conflicts of a joint plan can be avoided.

Only conflict-free joint plans can be sink equilibria, so convergence to them is

guaranteed. However, a sink equilibrium is not necessarily an IPG solution so

it is not necessarily either a NE solution.

Despite a sink equilibrium is not as strong as a PNE, we remark that, in most

cases, random better-response dynamics may converge to a sink equilibrium

which may be also a PNE. This is an important result in the IPG because even

without the potential property which guarantees convergence, we can almost

assure convergence. Furthermore, in the absence of MSUSs, the equilibrium

achieved will always be a conflict-free joint plan. All these promising results

will be reflected in the experiments of Chapter 6.

5.3.4 Complexity of Better Response in an IPG

In this subsection, we discuss the complexity of using better-response dyna-

mics in an IPG, considering both the planning complexity and the complexity

of computing a NE in a potential game.

The class of Polynomial Local Search problems (PLS) is an abstract class of

all local optimization problems which was defined by Johnson et al. 1988.

Examples of PLS-complete problems include traveling salesman problem, or

maximum cut and satisfiability. Finding a NE in a potential game is also PLS-

complete if the best response of each player can be computed in polynomial

time (Fabrikant et al. 2004). Moreover, the lower bound on the speed of con-

vergence to NE is exponential in the number of players (Hart et al. 2010).

This is a lower complexity than finding a NE in a general-sum game as the

IPG, which is PPAD-hard as we showed in Theorem 5.2.1.
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While these are good news for the IPG in general, we note that computing a

strategy for an agent implies to plan, which is PSPACE-complete in the ge-

neral case (Bylander 1994), as we pointed out in Theorem 5.2.2. However,

planning complexity can be lower for some planning domains as it is shown

by Helmert 2003. Specifically, while bounded (length) plan existence is al-

ways NP-complete, non-optimal plans can be obtained in polynomial time for a

transport domain without fuel restrictions (i.e., LOGISTICS, GRID, MICONIC-10-

STRIPS, and MICONIC-10-SIMPLE). In contrast, optimal planning is always NP-

complete. This is one of the reasons why the BRPS approach uses better-

response dynamics instead of best-response dynamics because in terms of

planning complexity it is easier to compute a non-optimal plan with satisficing

planning.

Nevertheless, the inclusion of the IPG in the PLS class is not possible unless

we are able to guarantee a best response in polynomial time. In the BRPS

approach, only a better response (non-optimal plan) can be computed in poly-

nomial time. Then, we need to guarantee that a sequence of better responses

leads the game to a NE. In this sense, a bounded jump improvement (Chien

et al. 2011) must be guaranteed in order to ensure PLS-completeness of the

IPG with the BRPS approach.

Proposition 5.3.2. Computing a PNE of an IPG, in its potential game version,

using better-response dynamics is PLS-complete if non-optimal plans can be

computed in polynomial time and a better response minimum improvement is

guaranteed.

Proof. Let us take a standard transport domain without fuel restrictions like

LOGISTICS, GRID, MICONIC-10STRIPS, or MICONIC-10-SIMPLE, for which a non-

optimal plan can be computed in polynomial time, as specified in (Helmert

2003). If we use a satisficing planner which computes non-optimal solutions,
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and the planning agents always have a minimum jump improvement in their

better responses, then achieving a PNE which is an IPG solution is in PLS.

This is a positive result since it guarantees that for some specific planning

domains, the complexity of solving this planning and game-theoretic problem

is PLS-complete, which is much better than common PSPACE-completeness

of planning and PPAD-completeness of computing a NE for any general-sum

game.

5.4 Conclusions

In this chapter, we have presented an approach to address non-cooperative

MAP problems that feature planning conflicts and congestion issues. These

are problems where agents wish to make their interests prevail but coordi-

nating their strategic behavior with the others yields better solutions. The

inclusion of individual cost functions for the agents reflects strategic behavior

and a more realistic representation of self-interested planning agents for real-

world problems. Despite quite a few real-life problems follow this behavioral

pattern, the study of this type of problems has been mostly neglected.

We define a general-sum game named Interaction Planning Game (IPG) in

which self-interested planning agents consider interactions (conflicts and con-

gestions) as part of their cost, as well as the cost of their own plans. If an

agent provokes a conflict that impedes another agent to execute its plan, such

a dis-coordinated situation may be an equilibrium solution in non-cooperative

MAP. However, it is undesirable since some agent would not be able to execute

its plan. Hence, we apply taxation schemes to agents that provoke planning

conflicts. The tax applied to conflicts incentivize agents to avoid them, and
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thus, we prove that any equilibrium is an IPG solution (conflict-free joint plan)

in the absence of any multi-symmetric unsolvable situation.

Regarding the potential version of the IPG, we show that convergence to a PNE

is always guaranteed with better/best-response dynamics. When congestion

interactions and the individual cost of a plan are considered, the IPG is a non-

potential game. However, better/best-response dynamics will converge to a

PNE in most cases, or otherwise they can still converge to a sink equilibrium.

We also prove that any equilibrium is an IPG solution (conflict-free joint plan)

in the absence of multi-symmetric unsolvable situations.

We analyze the complexity of using better-response dynamics in an IPG and

concluded that, non-optimal plans can be computed under some conditions.

This is much less costly than computing the best response or optimal plan be-

cause agents do not need to explore all their strategies. Additionally, comput-

ing a NE is also a hard task, but using better-response dynamics may reduce

the complexity of such task. For these reasons, we show promising results

towards PLS-completeness under some assumptions.

All in all, we believe that BRPS may have a reasonable execution time in many

practical cases while it is capable of tackling real-world problems more accu-

rately than other approaches. Hence, the aim of the next chapter is to perform

a comprehensive experimental evaluation of BRPS to assess its performance

and applicability to non-cooperative MAP problems.
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Chapter 6

BRPS Experimental Evaluation

This chapter presents a comprehensive empirical evaluation of the perfor-

mance of the BRPS approach presented in Chapter 5. In order to properly

assess the behavior of BRPS in different contexts, the experiments presented

in this chapter are structured in three different scenarios:

• Congestion scenario: this setting evaluates BRPS by means of the net-

work routing domain, introduced in (Jonsson et al. 2011), which features

congestion issues but does not include planning conflicts.

• Conflict scenario: a collection of problems from the CoDMAP benchmarks

(Komenda et al. 2016) where selected and adapted to a non-cooperative

context in order to evaluate BRPS in a setting where planning conflicts

among agents may arise. These domains do not consider congestion

issues.

• Combined congestion/conflict scenario: we designed an additional MAP

domain, called Electric Autonomous Vehicles, to test the performance
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of BRPS in non-cooperative MAP problems that include both planning

conflicts and congestion issues.

The experimentation compares BRPS against the state-of-the-art BRP1 solver

(Jonsson et al. 2011), one of the few fully-functional non-cooperative MAP ap-

proaches in the literature. BRP presents the following features:

1. BRP is specifically designed to compute equilibria in congestion games

(Rosenthal 1973), where the simultaneous use of a resource by multi-

ple agents increases its cost. The agents’ cost functions in BRP do not

consider planning conflicts.

2. BRP requires an initial conflict-free joint plan Πini that is calculated of-

fline by means of a cooperative MAP solver2. The joint plan comprises

one plan per agent in AG, such that Πini achieves the agents’ goals,

Gi,∀i ∈ AG.

3. BRP is an iterative plan improvement model wherein agents best respond

to the plans of the other agents while maintaining the conflict-free struc-

ture of the joint plan. This means that agents plan at each iteration, thus

having a potentially unlimited amount of plans.

4. BRP applies best response instead of better response, which implies that

agents use cost-optimal planning machinery for the individual plan ge-

neration that may be more costly (NP-complete) than non-optimal search

(polynomial time in some cases) (Helmert 2003).

1We used the optimal version of Fast Downward (FD) (Helmert 2006) as the underlying indivi-

dual planner of BRP, since it was the best-performing setting in our tests.
2Due to implementation limitations of BRP, we used the satisficing LAMA planner (Richter et al.

2010) to compute the initial conflict-free joint plan, instead of a cooperative MAP solver.
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5. BRP is proved to be useful for improving an initial congested conflict-

free joint plan, thus increasing the utility of the agents in scenarios that

feature congestion interactions.

The aforementioned features reveal that BRP is directly comparable to BRPS.

For this reason, the experimental tests presented in this chapter compare the

behavior of our BRPS approach against BRP.

This chapter is structured as follows: firstly, we discuss some details concern-

ing the implementation of BRPS. Section 6.2 presents the results of BRPS in

the network routing domain, which focuses on congestion issues exclusively.

In Section 6.3, BRPS is evaluated by means of several conflict-based CoDMAP

domains adapted to a non-cooperative context. Finally, Section 6.4 presents

our Electric Autonomous Vehicles domain and the results obtained by BRPS

in this setting, which presents both congestion issues and planning conflicts.

We analyze aspects such as the strategic behavior of agents in BRPS or the

influence of the ordering of the agents in the solutions synthesized by BRPS.

The last section presents a general discussion on the results.

6.1 BRPS Implementation Details

BRPS is implemented on top of a modified version of the MH-FMAP satisfic-

ing MAP solver (Torreño, Sapena, et al. 2015), which is used by BRPS agents

to individually compute plans. BRPS draws upon the features of MH-FMAP,

including its multi-agent data structures, communication infrastructure and

message-passing protocols, privacy model (Torreño et al. 2014b), and heuris-

tic functions (Torreño, Sapena, et al. 2015).

An agent i of BRPS uses MH-FMAP to individually synthesize plans (responses)

that are integrated in the current joint plan Π−i. The search space of an
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agent i is pruned by using the cost of its previous response, πix, as a bound.

Additionally, the search process is efficiently guided by the heuristic functions

of MH-FMAP (Torreño, Sapena, et al. 2015), which have been adapted to deal

with the cost functions of the agents. Moreover, the individual planner of each

agent can return plans with unsolved conflicts.

Finally, it is worth noting that we designed an extension to the MAP language

presented in (Torreño et al. 2014b), which is based on the Planning Domain

Definition Language (PDDL), to define the elements that can be implied in a

congestion. The planner was modified to include specific reasoning mecha-

nisms that interpret and use the congestion information of the PDDL input

files.

6.2 Congestion Scenario: Network Routing Domain

This section compares the performance of our BRPS approach and BRP in a

network routing domain proposed in (Jonsson et al. 2011), which features con-

gestion issues among agents.

6.2.1 Experimental Setup

The network routing domain (Jonsson et al. 2011) roughly emulates congestion

in computer networks. This domain consists of a set of nodes, connected

to each other through a variable number of links [1-3]. An agent in this

domain represents a data package that must be transported from an origin to

a destination node. The origin and destination of an agent are always different

nodes, but these are not exclusive for the agent.

In this domain there are no planning conflicts between the actions of the

agents, but two or more agents can be involved in a congestion if they tra-
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verse the same link simultaneously. The cost of traversing a link is unitary, as

well as the cost of a one-time-step delay. An agent cannot introduce parallel

actions.

The theoretical cost of traversing a link in a computer network is defined as

cl(n) = L · n + Emax(0,n−C(l)), where n is the number of agents using the link

simultaneously, L = 1 is the linear component, E = 2 is the exponential com-

ponent, and C(l) is the capacity of the link. In this MAP domain, the cost of

a congested link l increases linearly with the number of agents that traverse

it concurrently, as long as this number is under the link capacity, C(l), which

ranges between 1 and 10 agents. If the number of agents in a link l exceeds

C(l), the congestion cost increases exponentially.

The PDDL encoding of the network routing domain includes a single action

move (see Listing 6.1), which represents a package agent moving from a node

n1 to another node n2 through link l. The cost for an agent that executes a

move action depends on the cost of traversing the link l, which is defined via

the link-cost1 function (this function reports a unitary cost).

Listing 6.1: PDDL encoding of the move action

(:action move

:parameters (?a - agent ?n1 ?n2 - node ?l - link)

:precondition (and (= (at ?a) ?n1) (has-link ?n1 ?n2 ?l) )

:effect (and (assign (at ?a) ?n2)

(increase (total-cost) (link-cost1 ?l))))

However, if the link l is congested, the cost of the move action is redefined

according to the cost of the link, cl(n), which depends on the number of agents

simultaneously traversing it. As shown in Listing 6.2, cl(n) is modeled through
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the PDDL congestion link-use: for 2 agents, the link-cost2 function is ap-

plied, for 3 agents link-cost3, and so on.

Listing 6.2: Excerpt of the PDDL congestion linkuse

(:congestion linkuse

:parameters (?l - link)

:variables (?a - agent ?n1 ?n2 - node)

:usage (move ?a ?n1 ?n2 ?l)

:penalty (and

(when (= (usage) 2) (increase (total-cost) (link-cost2 ?l)))

(when (= (usage) 3) (increase (total-cost) (link-cost3 ?l)))

...

))

B

B

C

C

A

A

cg

Figure 6.1: Network routing domain example
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Figure 6.1 shows an example of application where three agents, named A,

B, and C, traverse the network from an origin to a destination node. In this

example, a congestion occurs in the link labeled as cg because agents A and B

traverse it at the same time step t = 1. In the case of agent C, its path has no

interaction with other agents.

6.2.2 Results

Tables 6.1 and 6.2 summarize the comparative results of BRP (Jonsson et al.

2011) and our BRPS approach in the network routing domain. The results show

the different features of the solution joint plans obtained by each approach,

such as the number of actions (acts), makespan or finish time of the joint plan

(ms), and cost. We also show the number of iterations (iters) spent by BRP and

BRPS to find the equilibrium solution plans, and the total planning time (time).

Table 6.1: Experimental results of BRP and BRPS for networks of 10 nodes and 5 to 40

agents

BRP BRPS

Agents Acts Ms Cost Iters Time Acts Ms Cost Iters Time

5 9.0+−2.49 3.0+−0.67 10.8+−3.58 2.5+−0.53 0.637+−0.17 9.1+−2.56 2.7+−0.67 10.3+−3.56 2.5+−0.53 0.063+−0.02

10 18.9+−2.33 3.8+−0.42 23.6+−3.95 3.0+−0.47 1.686+−0.28 18.8+−2.30 3.1+−0.74 24.3+−3.92 3.1+−0.53 0.130+−0.02

15 27.4+−4.38 3.7+−0.67 37.4+−8.11 3.6+−0.52 3.481+−0.75 27.0+−3.97 3.1+−0.74 39.7+−9.94 3.7+−0.48 0.256+−0.11

20 38.0+−4.14 4.3+−0.67 59.2+−12.22 3.8+−0.63 5.318+−1.05 36.7+−2.71 3.9+−0.48 59.1+−12.90 3.9+−0.57 0.435+−0.36

30 61.2+−6.86 5.0+−0.67 123.6+−25.62 4.2+−1.03 10.715+−3.35 59.7+−5.19 4.9+−0.57 129.4+−34.81 4.4+−0.47 1.300+−0.65

40 87.0+−15.69 5.6+−1.71 249.5+−77.34 4.7+−1.49 19.387+−8.82 88.7+−12.21 5.8+−1.63 251.2+−79.87 5.1+−1.42 2.161+−0.97

The first experiment, shown in Table 6.1, tests the performance of BRP and

BRPS in networks of fixed size and a variable number of agents. More pre-

cisely, a row in Table 6.1 shows the average results of 10 randomly generated

networks of 10 nodes for 5 to 40 agents. The capacity of a link ranges between

1 and 10 packages (agents), and the origin and destination nodes of the agents

are also randomly defined.
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Regarding performance, it is worth noting that the number of iterations scales

up linearly with the number of agents (see Figure 6.2). The reason behind this

result is that a higher number of data packages (agents) in a computer net-

work raises the number of congestion issues. This increases the complexity of

the problem, since avoiding a large number of congestions to reach an equili-

brium generally requires a high amount of iterations, which also causes an im-

pact on the overall planning time. In most problems, both approaches require

a similar number of iterations to yield solutions. However, since BRPS uses

better-response dynamics, it requires more iterations to converge in some ins-

tances, because unlike BRP, agents do not necessarily propose the best possi-

ble response in an iteration.
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Figure 6.2: Planning time (in seconds) and iterations of BRP and BRPS in the experi-

ments of Table 6.1 for 5 to 40 agents

In terms of planning time (see Figure 6.2) BRPS performs significantly better

than BRP, since the latter approach uses a centralized planner, which is not

optimized for MAP tasks, to synthesize responses. Additionally, BRP uses opti-
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mal search, which is in general computationally harder than our sub-optimal

approach.

In terms of joint plan quality (number of actions, makespan and cost), both ap-

proaches present very similar results, as shown in Table 6.1 and Figure 6.3. It

is important to note that, as the number of agents increases, the quality of the

solution joint plans decreases, since congestion issues in a network are more

frequent if the number of agents (data packages) is high. Agents can either

incur in congestions, which penalizes their costs, or take alternative longer

paths to avoid them, thus jeopardizing the number of actions and makespan

of the solution joint plans.
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Figure 6.3: Average number of actions, makespan, and cost of BRP and BRPS in the

experiments of Table 6.1 for 5 to 40 agents

While BRP starts the problem-solving process with an initial joint plan, BRPS

executes the better-response dynamics from scratch. For this reason, BRPS

and BRP yield slightly different solution joint plans with different global costs.

Best-response and better-response dynamics can be interpreted as a search

of local maximums, which means that there may be different equilibrium so-
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lutions that report notably different costs to a given agent. However, irres-

pective of the use of better or best-response dynamics, the solution joint plan

depends not only on the mechanism applied to build the initial joint plan, but

also on the ordering of the agents in the game.

For example, let us assume a problem with two agents, named 1 and 2, and a

network of unitary cost links where a congestion implies a 4-unit cost. Both

agents have an optimal path of three links (3 cost units). Agent 1 has a se-

condary path of four links (4 cost units), and agent 2 has an alternative path

of five links (5 cost units). If agent 1 puts forward its plan first, it will choose

its optimal 3-cost-unit plan. Then, agent 2 tries to put forward its 3-cost-unit

plan, which would cause a congestion, since the route for agent 2 shares a

link with agent 1. This congestion would raise the cost of the plan from 3

to 6 units (two 1-cost-unit links and one congested 4-cost-unit link). For this

reason, agent 2 selects instead its 5-cost-unit plan, which does not cause any

congestion. This results in a solution joint plan with associated costs (3, 5).

However, if agent 2 puts forward its plan before agent 1, the game would yield

a solution joint plan with costs (4, 3). Both solutions are equilibria that will

be found through better and best-response dynamics. However, the latter one

has lower global cost. This proves that the ordering of the agents in the game

is a key aspect that influences the final solution, which explains the variability

of the plan quality results in these experiments.

The second experiment aims to study the influence of the network size (num-

ber of nodes) in the results. Table 6.2 shows the average results for 10 ran-

domly generated networks of 5 to 100 nodes and 10 agents. In terms of per-

formance, one can observe that the number of iterations of BRP and BRPS

remains relatively stable, while planning time increases with the network size

(see Figure 6.4). Regarding planning time, BRPS clearly outperforms BRP,

which scales up poorly, as shown in Figure 6.4. Since both approaches spend
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Table 6.2: Experimental results of BRP and BRPS for networks of 5 to 100 nodes and

10 agents

BRP BRPS

Nodes Acts Ms Cost Iters Time Acts Ms Cost Iters Time

5 16.4+−4.65 3.5+−0.97 35.7+−12.01 2.9+−0.57 1.222+−0.26 16.7+−3.40 3.4+−0.84 35.2+−15.32 2.9+−0.53 0.086+−0.02

10 18.9+−2.33 3.8+−0.42 23.6+−3.95 3.0+−0.47 1.714+−0.28 18.8+−2.30 3.1+−0.74 24.3+−3.92 3.2+−0.53 0.138+−0.02

15 24.1+−4.56 4.6+−0.52 27.1+−7.42 3.0+−0.00 2.606+−0.35 24.4+−4.40 4.4+−0.70 27.2+−7.35 3.1+−0.42 0.187+−0.02

20 22.8+−2.66 4.3+−048 25.4+−3.86 3.1+−0.57 3.343+−0.91 22.8+−2.49 3.8+−0.63 25.4+−3.92 3.0+−0.53 0.207+−0.03

30 26.6+−3.20 4.6+−0.52 27.8+−4.52 2.6+−0.70 4.981+−1.91 26.8+−3.22 4.4+−0.97 28.2+−5.07 2.7+−0.32 0.250+−0.03

40 30.8+−3.22 5.1+−0.57 32.8+−2.94 3.0+−0.47 10.326+−2.32 30.4+−3.34 4.8+−0.42 32.8+−3.33 3.2+−0.52 0.286+−0.04

50 28.6+−2.91 4.8+−0.42 29.6+−3.44 2.6+−0.52 12.165+−4.03 28.5+−3.03 4.6+−0.52 29.7+−3.65 2.5+−0.32 0.362+−0.14

60 31.5+−2.32 5.0+−0.67 32.3+−2.26 2.3+−0.48 12.931+−4.24 31.7+−2.45 4.9+−0.53 32.3+−1.83 2.2+−0.32 0.473+−0.16

70 32.0+−3.71 5.1+−0.57 32.6+−3.27 3.0+−0.47 25.759+−5.31 32.0+−3.71 4.9+−0.53 32.8+−3.22 3.3+−0.53 0.420+−0.17

80 31.6+−1.96 5.0+−0.00 31.8+−1.75 2.6+−0.52 25.608+−8.78 31.4+−2.07 4.5+−0.53 32.0+−1.70 3.0+−0.32 0.443+−0.12

90 34.3+−4.47 5.7+−0.67 35.1+−4.82 2.6+−0.52 36.854+−14.18 34.1+−4.28 5.4+−0.84 35.1+−4.95 2.8+−0.42 0.518+−0.20

100 34.6+−4.25 5.7+−0.67 34.6+−4.25 2.5+−0.53 37.221+−13.00 34.6+−4.25 5.2+−0.63 34.6+−4.25 2.6+−0.48 0.469+−0.07

roughly the same number of iterations across all the problems, we can con-

clude that BRPS requires a significantly lower planning time per iteration than

BRP. The performance differences become more apparent in large networks

that exceed 30 nodes.
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Figure 6.4: Average planning time (in seconds) and iterations of BRP and BRPS in the

experiments of Table 6.2 for networks from 5 to 100 nodes
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The quality of the solution joint plans remains stable regardless of the size of

the network (see Figure 6.5). Note that the number of actions and makespan

of the solutions increase slightly with the number of nodes, because the data

packages (agents) traverse longer paths to reach their destinations. In 5-node

networks, the average cost of the solution joint plans is notably higher than the

subsequent cost results in Table 6.2. This is explained by the reduced size of

these networks, which causes many unavoidable congestions, thus penalizing

the plan cost.
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Figure 6.5: Average number of actions, makespan, and cost of BRP and BRPS in the

experiments of Table 6.2 for networks from 5 to 100 nodes

In summary, agents in this congestion-focused setting are significantly af-

fected by congestions in networks where these issues are not avoidable. In-

curring in a congestion penalizes the cost of the solution joint plan, while

deviating from the optimal route to avoid it affects the number of actions and

makespan of the solution. The results reveal that BRPS and BRP achieve simi-

lar results in terms of cost and plan quality, since the strategies they use to

reach an equilibrium perform similarly in this setting, which does not consider
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planning conflicts. However, our BRPS approach significantly outperforms BRP

in terms of planning time, proving to scale up much better, particularly in pro-

blems that feature complex computer networks or large amounts of agents.

6.3 Conflict Scenario: CoDMAP Domains

The second test compares BRPS and BRP over a set of non-cooperative MAP

problems based on several well-known domains of the 2015 Competition of

Distributed and Multi-Agent Planners (CoDMAP)3 (Komenda et al. 2016).

The purpose of this test is to assess the performance of BRPS in a setting

where planning conflicts may emerge among the participating agents. In other

words, this test measures the ability of BRPS agents to circumvent conflicts

and yield executable solution plans.

6.3.1 Experimental Setup

This benchmark includes a set of non-cooperative problems from four different

CoDMAP domains that have been customized to maximize the appearance of

conflicts among agents:

• Driverlog (dl) : in this transportation domain, driver agents compete

for the use of trucks that allow them to deliver packages. In our non-

cooperative version, a location can only be occupied by a single truck.

Therefore, conflicts may arise if two agents try to drive concurrently to

a given location.

• Floortile (fl) : in this domain, a set of robots paint a grid of floor tiles in

different colors. A robot can only paint the tile that is above or below its

3http://agents.fel.cvut.cz/codmap/
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location, but it can move both vertically and horizontally. Once a tile is

painted, it cannot be traversed, and only one robot can be in a tile at a

time.

• Rovers (rv) : this domain models a set of rover agents that must col-

lect a variety of samples (rocks, soil samples, and pictures). In order to

maximize the number of conflicts among agents, a waypoint can only be

traversed by one rover at a time, and agents must take turns to commu-

nicate the collected samples to the lander.

• Zenotravel (zt) : in this domain, agents are aircrafts that must transport

persons over a set of cities. In order to maximize the appearance of

conflicts, only one aircraft can be on a given city at a time. Additionally,

a person can only be transported by an a priori defined aircraft.

6.3.2 Results

Table 6.34 summarizes the results of BRP and BRPS regarding solution joint

plan quality (number of actions, makespan, and cost) and performance (num-

ber of iterations and computation time). For each MAP domain in this test,

we defined 5 non-cooperative problems of growing complexity. The rightmost

number of a problem name represents the number of agents that take part in

the problem (for instance, dl1-2 refers to the first driverlog problem, which

features 2 agents).

As in the congestion scenario (see Section 6.2), BRPS clearly outperforms BRP

in terms of computation time, despite the fact that our approach requires an

additional iteration to converge in some instances. In general, BRPS is two

4All the tests were conducted on a single machine with an Intel Core i7-3770 CPU at 3.40GHz

and 8 GB RAM. Each test was run within a time limit of 1800 seconds.
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Table 6.3: Results of BRP and BRPS in CoDMAP problems

BRP BRPS

Prob-Ag Acts Ms Cost Iters Time Acts Ms Cost Iters Time

dl1-2 9 6 11 2 1.49 9 6 11 2 0.31

dl2-2 11 7 13 2 1.31 11 7 13 2 0.32

dl3-3 16 7 18 2 2.78 16 7 18 2 0.58

dl4-3 19 8 21 2 2.99 19 8 21 2 0.63

dl5-3 18 7 19 2 3.33 18 7 19 2 0.65

ft1-2 8 4 8 2 1.80 8 4 8 2 0.47

ft2-3 11 4 11 2 2.16 11 4 11 2 0.50

ft3-4 15 6 15 2 2.38 13 4 14 2 1.23

ft4-5 19 10 20 2 4.85 19 10 20 3 2.17

ft5-5 22 10 23 2 5.20 22 10 23 2 1.55

rv1-3 10 5 12 2 1.52 10 4 11 3 0.85

rv2-4 15 6 18 2 2.15 14 4 15 3 0.98

rv3-5 15 6 20 3 4.23 15 4 16 3 1.57

rv4-6 17 7 27 3 5.44 17 4 18 3 2.05

rv5-6 23 9 31 3 6.26 24 7 24 2 1.66

zt1-2 12 7 17 3 4.79 13 6 13 3 0.78

zt2-2 20 12 23 2 10.35 17 12 20 2 0.79

zt3-3 22 12 42 2 24.32 28 19 45 4 7.45

zt4-3 28 11 33 2 24.50 38 21 52 4 15.52

zt5-4 35 16 43 3 621.27 28 22 59 2 14.34

to four times faster than BRP, being even two orders of magnitude faster in

problem zt2-2.

As previously discussed, BRP starts the best-response dynamics from an initial

joint plan built by a centralized planner, while BRPS computes solution joint

plans from scratch. The execution time results in Table 6.3 do not consider
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the time spent by BRP to synthesize this initial joint plan, so the performance

difference between both approaches is even higher.

Regarding joint plan cost, BRPS tends to obtain better solutions, since, in con-

trast to BRP, the utility functions of BRPS agents explicitly consider planning

conflicts. This makes BRPS more effective at minimizing the makespan of the

solution plans in this conflict-based scenario, which also benefits the overall

cost of the solutions.

In driverlog, both approaches exhibit a notable performance, obtaining solu-

tion joint plans of the same quality in the five tested problems. While both

planners manage to converge in 2 iterations in all the driverlog problems,

BRPS is one order of magnitude faster than BRP, which once again proves the

practical efficiency of its better-response dynamics.

In floortile, BRPS and BRP obtain similar results, with the notable exception

of problem ft3-4, where BRPS yields a superior solution joint plan in terms

of makespan and cost. Despite the complexity and high amount of interac-

tions among robot agents in the floortile problems (note that the robots move

through relatively tight maps where the tiles become unusable once painted),

BRPS agents manage to optimize the quality of the solution plan while avoid-

ing the conflicts that arise during the better-response dynamics. BRP agents,

on the other hand, are unable to improve on the quality of the initial joint plan

in most instances.

BRPS significantly outperforms BRP in the rovers domain, attaining better-

quality solutions in all five problems. Planning conflicts in this domain are

easily solvable, since they are basically related to the occupancy of the dif-

ferent waypoints. Once a planning conflict is detected, a rover agent can

either take an alternative route or wait until the affected waypoint becomes

traversable again. In this context, the results show that BRPS agents behave
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strategically to minimize the length of their plans, thus effectively optimizing

the makespan and cost of the solutions. Regarding BRP, we must note that

its underlying centralized planner does not properly parallelize the actions of

the agents, and hence, it yields longer solution plans than BRPS, which also

jeopardizes their overall cost. Moreover, the solution plans of BRP are in part

determined by the initial joint plan obtained prior to the execution of the best-

response dynamics. In most cases, BRP agents are unable to deviate from

this initial joint plan without causing new conflicts. Finally, it is worth noting

that BRPS solutions properly balance the agents’ costs; that is, our approach

attains PNEs in which none of the agents is particularly penalized.

The zenotravel domain presents mixed results: BRPS obtains better solution

joint plans in two of the problems, while BRP outperforms BRPS in the three

remaining instances. Since an aircraft agent can directly travel between any

pair of cities, zenotravel presents a wider array of alternatives to solve con-

flicts that the rest of domains in the benchmark. In this context, the plan-

ning strategy of BRP is particularly efficient, since agents manage to clearly

improve on the initial joint plan during the best-response dynamics. This ex-

plains the relatively better solutions obtained by BRP in some of the problems.

Despite yielding worse solutions in some zenotravel instances, BRPS is notice-

ably faster than BRP; in particular, BRPS solves zt5-4 in 14 seconds, while BRP

spends more than 10 minutes to synthesize a solution.

In conclusion, BRPS proves to be the superior approach in this conflict-based

scenario, often yielding better solution plans in terms of actions, makespan

and cost, while requiring much lower execution times than BRP. The perfor-

mance of BRP in this context is limited by some aspects of its strategy: on

the one hand, BRP relies on an initial joint plan synthesized by a centralized

planner. Generally, this initial plan is not properly balanced among the agents,

which may cause a utility loss. On the other hand, BRP agents do not reason
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about conflicts, which makes difficult for them to improve on the initial joint

plan. In contrast, BRPS properly circumvents planning conflicts while minimiz-

ing makespan and cost. Moreover, the use of suboptimal planning machinery

in BRPS clearly benefits its computation times.

6.4 Combined Scenario: Electric Autonomous

Vehicles Domain

The final test evaluates BRPS on a complex scenario that combines both con-

gestion issues and planning conflicts. For this purpose, we defined a non-

cooperative MAP domain where several autonomous taxi companies (agents)

seek their own benefit without behaving in a strictly competitive manner. This

domain models a real-world non-cooperative MAP problem in the context of a

clean, coordinated and harmonic smart city.

Section 6.4.1 defines and motivates our Electric Autonomous Vehicles (EAV)

domain, while Section 6.4.2 presents the experimental results obtained by

BRPS and BRP on the EAV domain.

6.4.1 Case Study: Electric Autonomous Taxis in a Smart City

Sustainable and clean energy is one of the crucial aspects that define a smart

city. Nowadays, the automobile industry is facing a conversion towards all-

electric vehicles, and e-mobility has become one of the main objectives of

both traditional car manufacturers and technological companies. However,

the development of all-electric vehicles still faces some challenges like the

deployment of a network of charging stations, limitations in the installation’s

power management or the widespread of slow-charging stations (Nigro et al.

2015).
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On the other hand, autonomous (driverless) vehicles is also an emerging tech-

nology of growing interest in the context of smart cities, which is regarded

as the future of the automobile industry. Advances in perception and algo-

rithmic improvements in high-level reasoning capabilities, such as planning,

predict a growing adoption of self-driving vehicles not limited only to public

transportation (Stone et al. 2016).

The introduction of Electric Autonomous Vehicles (EAV) opens up a new sce-

nario in transportation planning and poses key challenges in electric vehi-

cle supply equipments such as the level of power demand (Wishart 2013).

Thereby, it is important to avoid congestions due to excessive or peak-power

demand. Moreover, car-to-car coordination needs to be applied in order to

minimize accidents and rationalize traffic flow in densely-populated smart

cities.

Let us suppose that a set of electric driverless taxi companies that operate on

a smart city, individually design cab ride plans to carry passengers to their

destinations, and recharge the batteries of their taxis when necessary. Each

taxi company, which acts as a rational self-interested agent, designs a plan that

maximizes its own benefit. However, at execution time, unexpected congestion

issues caused by traffic jams or high occupancy rates in charging stations may

hamper the predicted benefit of company agents’ plans. This configures a

multi-agent scenario where company agents must coordinate their plans with

each other in order to maximize their benefits (Grosz et al. 1998). Therefore,

taxi company agents are self-interested but behave on a coordinated manner,

since a selfish behavior could prevent them from achieving their objectives.

Coordinated planning by self-interested agents is a desirable approach to pre-

vent conflicts and unnecessary delays in the aforementioned scenario. For

example, if multiple EAV need to recharge their batteries in a station that has
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a single connector, a company may act strategically by forwarding its taxi into

the station before the rest of implied EAV, thus forcing them to wait. By a pri-

ori coordinating their plans, the company agents can plan alternative routes

for their EAV, so that they recharge their batteries in different stations, thus

obtaining a joint outcome that reports better utilities to all the companies.

Through the use of MAP and the design of game-theoretic outcomes, driverless

taxi companies operate as autonomous and rational agents that interact with

each other to dynamically adjust the routes of their vehicles according to the

planned routes of the rest of companies.

Domain Definition

In order to properly motivate our EAV case study, Figure 6.6 shows the area

covered by several taxi companies in a European city. The route of a taxi is

determined by the streets it traverses (black edges). A street is defined by

the two junctions (gray circular nodes) it connects. Across the city, there are

several chargers (green squares) where the taxis recharge their batteries.

A taxi company agent must coordinate its fleet of taxis to provide transport

services to passengers that are located in different junctions and want a ride

to specific destinations. A company agent plans the routes of its taxis across

the network of streets in order to deliver the passengers in a cost-optimal way.

Since energy management is a critical aspect of electrical vehicles, the course

of action of a taxi company must include the necessary stops to recharge the

batteries of its taxi fleet in the available chargers across the smart city.

This EAV domain was encoded with an extended version of the MAP language

introduced in (Torreño et al. 2014a) that incorporates explicit support of con-

gestion constraints. Taxi agents manage the following object types:
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Figure 6.6: Smart city map example

• company: identifies the taxi company agents.

• taxi: identifies a taxi of a company.

• location: agents traverse two types of locations: street junctions

and electric chargers.

• passenger: represents the clients that must be transported by the taxi

companies.

• level: models the level of battery charge of an electric taxi.

The situations or states of the world are described through the following

:predicates and :functions:

• (traversing ?t - taxi) - location: this function returns the cur-

rent location of a taxi, either a street junction or a charger.
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• (position ?p - passenger) - (either junction taxi): this function

models the position of a passenger ?p, which is either waiting at a street

junction or inside a taxi towards his/her destination.

• (street ?j1 ?j2 - location): this predicate indicates that there is a

street which connects locations ?j1 and ?j2, so that a taxi which is

traversing ?j1 can progress to ?j2.

• (free-taxi ?t - taxi): the taxi ?t is not occupied by a passenger if

this predicate holds.

• (max-battery-capacity ?t - taxi ?l - level): the level ?l repre-

sents the maximum capacity of the taxi battery.

• (empty-charger ?c - charger): if true, the charger ?c is not occu-

pied and can be accessed by a taxi.

• (current-charge-level ?t - taxi) - level: this function models the

current level of charge of a taxi ?t.

• (destination ?p - passenger ?j - junction): this predicate repre-

sents the destination of a passenger ?p.

• (next-level ?l1 ?l2 - level): this predicate indicates that levels

?l1 and ?l2 are consecutive.

Taxi company agents individually plan the routes of their taxis by applying a

set of planning actions:

• (drive ?t - taxi ?j1 ?j2 - junction ?l1 ?l2 - level): the taxi

drives from junction ?j1 to junction ?j2 reducing its battery level

from ?l1 to ?l2.
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• (charge ?t - taxi ?j - junction ?ch - charger ?n - network ?cl

?ml - level): the taxi ?t enters the charger ?ch, connected to net-

work ?n, from junction ?j and charges its battery from its current

level, ?cl, to its maximum capacity, ?ml.

• (leave-charger ?t - taxi ?ch - charger ?j - junction): the taxi

?t leaves the charger ?ch and goes back to junction ?j.

• (pick-up-passenger ?t - taxi ?p - passenger ?j - junction): the

passenger ?p waiting at junction ?j gets into the empty taxi ?t.

• (drop-passenger ?t - taxi ?p - passenger ?j - junction): the pas-

senger ?p leaves the taxi ?t at his/her destination ?j.

Since taxis act in the same environment, their activities may lead to a charg-

ing station occupancy conflict. A charger is accessible by a single taxi at a

time. When a taxi comes across an occupied charger, the company agent can

either forward the taxi to a different charger (i.e. modify its plan), or make it

wait until the occupying taxi leaves the charger (i.e. delay the charge action

to circumvent the conflict).

The encoding of the charge operator includes a precondition (empty ?ch) and

an effect (not (empty ?ch)), which effectively prevents other taxis from ac-

cessing the charger until the occupant leaves it through an action leave-char-

ger, which has an effect (empty ?ch). Therefore, a conflict will emerge if two

taxis attempt to enter one particular charger at the same time or if there is

already a taxi in the charger.

The traffic flow in a smart city may lead to congestions that directly affect the

cost of the taxis’ activities. In this case study, we identify two different types

of congestions:
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• Traffic jam congestion. If several taxis drive simultaneously through

a street between two junctions, traffic in such street will become less

fluid, resulting in a traffic jam congestion. Consequently, the cost asso-

ciated to the drive action of each taxi will increase. Therefore, agents

should consider traffic congestions when selecting the routes of their

taxis.

Listing 6.3: PDDL congestion traffic-jam

(:congestion traffic-jam

:parameters (?j1 - junction ?j2 - junction)

:variables (?t - taxi ?l1 - level ?l2 - level)

:usage (drive ?t ?j1 ?j2 ?l1 ?l2)

:penalty (and

(when (= (usage) 2) (increase (total-cost)

(traffic-jam-cost-2 ?j1 ?j2)))

(when (>= (usage) 3) (increase (total-cost)

(traffic-jam-cost-3 ?j1 ?j2)))))

The PDDL code of Listing 6.3 defines two different penalties: if two

taxis traverse the street between ?j1 and ?j2 simultaneously, they will

be penalized with a cost defined by the function traffic-jam-cost-2,

while if three or more taxis are involved in the congestion, their owner

companies receive a higher fee, represented by traffic-jam-cost-3.

• Electricity network congestion. When many taxis intend to recharge

their batteries simultaneously at chargers that are connected to the same

electrical network, prices will raise due to a peak demand, thus leading

to an electricity shortage. For this reason, company agents will be penal-

ized if they get involved in an electricity network congestion.
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Listing 6.4: PDDL congestion electricity-network-overload

(:congestion electricity-network-overload

:parameters (?n - network)

:variables (?t - taxi ?j - junction ?ch - charger

?cl - level ?ml - level)

:usage (charge-battery ?t ?j ?ch ?n ?cl ?ml)

:penalty (and

(when (= (usage) 2) (increase (total-cost)

(network-cost-2 ?n)))

(when (>= (usage) 3) (increase (total-cost)

(network-cost-3 ?n)))))

As shown in the PDDL code of Listing 6.4, we consider that an electric-

ity network congestion appears when two or more taxis charge their

batteries simultaneously in the same network. If only two taxis are

connected to the electrical network, they are penalized with a cost de-

fined by the function network-cost-2. In case that three or more taxis

charge their batteries simultaneously in the same electrical network, the

power demand will increase considerably, and company agents will re-

ceive a higher penalty, defined as network-cost-3.

In this scenario, where concurrent actions of self-interested agents can pro-

voke congestions and conflicts, the best individual plan of an agent may not

be the course of action that maximizes its utility in a joint plan. Moreover,

a conflict makes the involved plans be non-executable. Therefore, agents are

willing to give up their best individual plan for the sake of a safe joint plan that

guarantees a stable execution of all the involved parties. For this reason, our

BRPS model emerges as an appropriate mechanism to tackle route planning of

electric autonomous vehicles.
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Problem Example

This section analyzes a small example problem (see Figure 6.7) based on the

EAV domain, in order to illustrate the behavior of BRPS. The example consists

of three taxi companies, Company1, Company2, and Company3, each having a

single vehicle (t1 t2 t3) and a passenger to transport (p1 p2 p3). There are

four connected junctions, j1 to j4, and two chargers, c1 and c2, connected

to the same electrical network, n1, and accessible from junctions j1 and j2,

respectively (see Figure 6.7). Taxis t1 and t3 start at j1, and t2 starts at j2.

The battery level of all taxis is l0, and their capacity is l2.

c2

j2

j4

j3

j1c1

3

2

2
2

2

t3

t2
t1

p3
p1

p2

Company1
Company2
Company3

Figure 6.7: EAV problem example representation

In this problem, the cost of an individual plan, costP (πi), is obtained as the

sum of the costs of the actions in πi. We assume unitary costs for all actions

except for the drive actions, whose cost depends on the length of the street,

as shown in the edges of Figure 6.7. The cost of integrating a plan in a joint

plan, costS(πi,Π−i), includes the cost of possible delays to avoid conflicts and

congestion. The cost of a delay is measured as the difference in the number of

time steps between the finish time of πi in isolation and when πi is integrated
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in Π−i multiplied by a constant. This constant depends on the impact of a

delay on each agent, which in turn may depend on whether or not a passenger

is waiting for the taxi. For the sake of simplicity, we will assume a constant

value of 5 units to all agents. The cost of a congestion is linear with the

number of congested actions returned by the function #(Π, t, r), for any agent

i and resource r; i.e., if two actions use the same resource simultaneously,

the involved agents get a cost rise of 2; if three actions are involved, then

the cost rise is 3, and so on. Additionally, we set cci = 10000 to obtain the

value of costU(πi,Π−i). Despite the above specifications, we note that the IPG

cost functions can be individually customized to each agent accordingly to its

preferences.

Table 6.4: Individual agents’ plans

time Company1 (π1
1) Company2 (π2

1) Company3 (π3
1)

0 charge t1 j1 c1 n1 l0 l2 charge t2 j2 c2 n1 l0 l2 charge t3 j1 c1 n1 l0 l2

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 leave-charger t3 c1 j1

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 pick-up-passenger t3 p3 j1

3 drive t1 j1 j3 l2 l1 pick-up-passenger t2 p2 j3 drive t3 j1 j3 l2 l1

4 drive t1 j3 j4 l1 l0 drive t2 j3 j4 l1 l0 drive t1 j3 j4 l1 l0

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drop-passenger t3 p3 j4

- costP (π1
1) = 8 costP (π2

1) = 8 costP (π3
1) = 8

Table 6.4 shows the best individual plan of each company. The goal of Company1

and Company3 is to carry a passenger (p1 and p3, respectively) from j1 to j4,

while the goal of Company2 is to take p2 from j3 to j4. The costs of these

optimal plans are: costP (π1
1) = costP (π2

1) = costP (π3
1) = 8. We will compare

these plans, which maximize the individual utility (minimize the cost) of each

company agent, to the final plans of the solution joint plan.

As explained in Section 5.3, an order between the agents is established. We

will assume Company1 goes first, followed by Company2 and then Company3.
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The initial joint plan is built in the first iteration of BRPS, starting from Π = ∅,

and no upper cost bound for any agent.

• Iteration 1:

– Company1 generates its plan π1
1 with costTotal(π1

1 ,Π
−1) = 8 (see Ta-

ble 6.4). The current joint plan is Π = 〈π1
1 ,∅,∅〉.

– Company2 puts forward π2
1 and integrates it in Π, which causes two

congestion interactions. There is an electricity network congestion

at t = 0 since t1 and t2 are using chargers c1 and c2, which are

both connected to the same electricity network n1. Moreover, a

traffic jam congestion arises at t = 4 since both taxis use the road

from j3 to j4. Solving a congestion entails a delay of one time

step in the finishing time of the agent multiplied by 5. If Company2

solves the congestion at t = 0 with one time-step delay, it will be

also solving the congestion at t = 4 since the whole plan is de-

layed one time unit. Then, solving the two congestion interactions

is a total cost of 5. However, remaining in congestion (cost rise of

2 per congestion) is less costly for Company2 than solving the two

congestion interactions. Thus, the cost of integrating π2
1 in Π−2 is

the sum of the individual plan cost plus the congestion cost; that

is, costTotal(π2
1 ,Π

−2) = 8 + 2 + 2 = 12. The resulting joint plan is

Π = 〈π1
1 , π

2
1 ,∅〉.

– Company3 integrates π3
1 in Π and finds out that t3 causes a conflict

to t1 due to the simultaneous use of c1. Company3 addresses the

conflict through an inter-agent ordering that delays the execution

of its plan two time steps. This outcome is preferable for Company3,

because being in a planning conflict would report it a significantly
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higher cost. Therefore, the cost for Company3 is the sum of the cost

of π3
1 plus the delay cost, costTotal(π3

1 ,Π
−3) = 8 + 2 ∗ 5 = 18. At this

point: Π = 〈π1
1 , π

2
1 , π

3
1〉.

• Iteration 2:

– Company1 examines the cost of π1
1 in Π and finds out that it is higher

than expected due to the two congestions with Company2; that is,

costTotal(π1
1 ,Π

−1) = 8 + 2 + 2 = 12. Subsequently, Company1 runs

the search procedure with an upper cost bound upper1 = 12, synthe-

sizing π1
2 , a plan that traverses the street between j2 and j4. This

plan is a better response because costTotal(π1
2 ,Π

−1) = 9 + 2 = 11.

Despite the fact that traversing the street j2-j4 is more costly than

j3-j4, π1
2 allows Company1 to avoid the congestion in j3-j4, which

results in a better-cost outcome. We note that t1 does not avoid the

electricity network congestion with t2 because it is unable to do so.

Then, the resulting joint plan is Π = 〈π1
2 , π

2
1 , π

3
1〉.

– Company2 examines the cost of its plan π2
1 , costTotal(π2

1 ,Π
−2) =

8 + 2 = 10. The cost of π2
1 is reduced thanks to the introduc-

tion of π1
2 by Company1, which addresses a congestion that affected

Company1 and Company2, thus benefiting both agents. Company2 ex-

ecutes the search process with upper2 = 10 and it does not find

a better response after exhausting the search space. Therefore,

Company2 maintains its initial plan π2
1 and the joint plan remains

unchanged, Π = 〈π1
2 , π

2
1 , π

3
1〉.

– Company3 analyzes its plan, which has the same cost as in the pre-

vious iteration, costTotal(π3
1 ,Π

−3) = 8 + 2 ∗ 5 = 18. Company3 is un-
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able to obtain a better response, and thus, it maintains π3
1 . Hence,

Π = 〈π1
2 , π

2
1 , π

3
1〉.

• Iteration 3:

– Company1 checks the cost of its plan, costTotal(π1
2 ,Π

−1) = 9+2 = 11,

and it does not find a better plan after searching. Since Company1

does not changes its plan, either will Company2 and Company3. Given

that no agent changed its plan in a complete iteration, BRPS con-

verges to the current joint plan Π, which is an IPG solution.

Table 6.5: Resulting IPG solution joint plan Π

time Company1 (π1
2) Company2 (π2

1) Company3 (π3
1)

0 charge t1 c1 n1 l0 l2 charge t2 c2 n1 l0 l2 -

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 -

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 charge t3 c1 n1 l0 l2

3 drive t1 j1 j2 l2 l1 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

4 drive t1 j2 j4 l1 l0 drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

6 - - drive t1 j3 j4 l1 l0

7 - - drop-passenger t3 p3 j4

- costTotal(π1
2 ,Π

−1) = 9 + 2 = 11 costTotal(π2
1 ,Π

−2) = 8 + 2 = 10 costTotal(π3
1 ,Π

−3) = 8 + 2 ∗ 5 = 18

Table 6.5 shows the final plans of the three agents in the joint plan Π. The

electricity network congestion at t = 0 is shown in italics. In the IPG solution,

the plan of Company1 is 3 units more costly than its initial individual plan due

to the electricity network congestion, and also because it changed its initial

route and switched to a different plan. Company2 also experienced a cost rise

of 2 units due to the congestion with Company1. Finally, the plan of Company3

is 10 units more costly than its best individual plan because of a delay of two

time steps that avoids a conflict with Company1. This coordinated solution
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satisfies all agents since they are in a PNE, and thus, any unilateral deviation

will jeopardize the execution of their plans.

We must note that a different order of the agents, for instance if Company3

was ordered before Company1, would give rise to a different solution joint plan

because Company3 would be the first to occupy the charger c1.

6.4.2 Results

In this section, we perform an empirical evaluation of the defined EAV domain

over a synthetic benchmark of problems. On the one hand, we make a ge-

neral analysis of the performance and solution quality of our BRPS approach

presented in Chapter 5. For this analysis, we measure the total computation

time and the global cost (sum of all agents’ cost) of an IPG solution with our

BRPS approach against the BRP approach of (Jonsson et al. 2011). On the

other hand, we perform an analysis of the results from the individual agents’

point of view. In this case, we analyze the strategic behavior adopted by the

BRPS agents depending on the configuration of their cost functions, and we

also analyze how the order of the agents in the better-response dynamics of

BRPS influences the results.

Comparative Evaluation of BRPS and BRP

In order to provide a general analysis of the performance of BRPS and BRP

at solving our EAV domain, we prepared a synthetic benchmark that includes

25 multi-agent problems of growing complexity. Table 6.6 shows the problem

setup of this benchmark. The columns of Table 6.6 indicate the number of

company agents, taxis and passengers per company, as well as the number of

junctions and chargers, and the battery capacity of the taxis.
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As shown in Table 6.6, the number of company agents per problem ranges be-

tween 2 and 6: the first 5 problems, p1-2 to p5-2, include two different agents;

problems p6-3 to p10-3 feature 3 agents, and so on. In each 5-problem block,

the different parameters of the task are adjusted to progressively increase the

difficulty of the problems. For example, p1-2 includes 2 taxis, 2 passengers

per agent, and 4 junctions, while p5-2 presents 4 taxis and 5 passengers per

agent, as well as a much larger street map of 12 junctions. Other key param-

eters of the domain, such as the number of chargers and maximum battery

capacity of the taxis, are scaled up along with the number of junctions.

The experimental results for both approaches are summarized in Table 6.75.

The first three columns of each planner refer to the number of actions, make-

span (finish time), and cost of the solution joint plans. The next two columns

show the number of iterations and computation time required by each ap-

proach to synthesize the solution joint plans. The dagger symbol (†) indicates

that a solution was not found within the given time limit. The cost values used

in the function costTotal of BRPS are the values shown in the example of Sub-

section 6.4.1. Similarly, BRP was configured to apply the same costs values as

BRPS, except for the cost of unsolved conflicts (costU ), which is ignored in BRP

as it always works with a conflict-free joint plan.

The computation time of the problems in Table 6.7 are mainly determined by

the complexity of the street map, the number of taxis and task goals (passen-

gers to transport) per agent. This can be observed in each block of tasks,

where the resolution of a problem is generally more time-consuming than the

previous problems of the block. The computation time grows exponentially in

the last problems of each block as they represent the most complex maps in

the number of junctions, taxis and passengers. For this reason, convergence

5All the tests were conducted on a single machine with an Intel Core i7-3770 CPU at 3.40GHz

and 8 GB RAM. Each test was run within a time limit of 1800 seconds.

166



6.4 Combined Scenario: Electric Autonomous Vehicles Domain

Table 6.6: Problem setup of the benchmark of tests for the EAV domain

Prob-Ag Companies Taxis Passengers Junctions Chargers Battery

p1-2 2 2 2 4 1 4

p2-2 2 2 3 6 2 6

p3-2 2 3 3 8 2 8

p4-2 2 3 4 10 3 10

p5-2 2 4 5 12 3 12

p6-3 3 2 2 4 1 4

p7-3 3 2 3 6 2 6

p8-3 3 2 4 6 2 6

p9-3 3 3 3 8 2 8

p10-3 3 3 4 10 3 10

p11-4 4 2 2 4 1 4

p12-4 4 2 3 6 2 6

p13-4 4 2 4 6 2 6

p14-4 4 2 3 8 2 8

p15-4 4 3 3 8 2 8

p16-5 5 2 2 4 1 4

p17-5 5 2 3 6 2 6

p18-5 5 2 4 6 2 6

p19-5 5 2 3 8 2 8

p20-5 5 3 3 8 2 8

p21-6 6 2 2 4 1 4

p22-6 6 2 3 6 2 6

p23-6 6 2 4 6 2 6

p24-6 6 2 3 8 2 8

p25-6 6 3 3 8 2 8

to an IPG solution requires significantly larger computation times in these pro-

blems.
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Table 6.7: Experimental results of BRP and BRPS in the EAV domain

BRP BRPS

Prob-Ag Acts Ms Cost Iters Time Acts Ms Cost Iters Time

p1-2 16 9 22 2 2.84 16 9 22 2 0.66

p2-2 23 13 49 2 38.29 23 10 34 3 35.58

p3-2 † 25 8 36 2 286.99

p4-2 † 37 12 49 2 483.67

p5-2 † 41 8 54 3 954.38

p6-3 26 10 40 2 5.42 27 11 38 3 1.79

p7-3 40 18 93 2 408.68 40 11 58 2 31.87

p8-3 † 48 16 66 3 239.06

p9-3 † 39 6 58 2 223.17

p10-3 † 48 14 67 3 749.68

p11-4 37 12 84 2 14.63 41 10 72 3 5.01

p12-4 † 54 15 78 3 118.83

p13-4 † 57 12 80 3 439.04

p14-4 † 54 12 80 3 658.39

p15-4 † 50 11 74 3 1052.07

p16-5 43 14 78 2 24.32 43 14 78 3 5.38

p17-5 † 74 17 110 2 278.69

p18-5 † 68 16 94 3 251.46

p19-5 † 62 12 94 3 222.00

p20-5 † 64 11 96 2 1167.65

p21-6 † 61 13 100 4 29.93

p22-6 † 71 11 106 3 202.26

p23-6 † 87 14 122 3 1665.96

p24-6 † 80 15 118 3 1761.50

p25-6 † 72 12 108 3 1643.19

Despite the complexity of some of the problems, our BRPS approach solves

the complete benchmark, generating solution plans of up to 87 actions. BRP,

168



6.4 Combined Scenario: Electric Autonomous Vehicles Domain

however, is only able to solve 6 problems within the time limit, being unable

to attain any problem of the fifth block. In summary, BRPS reaches 100% co-

verage, while BRP only solves 24% of the benchmark problems, which proves

that our approach scales up significantly better than BRP.

Regarding computation time, BRPS is in general one order of magnitude faster

than BRP, with the only exception of problem p6-3. We must further note that

the results of BRP in Table 6.7 do not reflect the time needed for the calculation

of the initial conflict-free joint plan, a time-consuming task that is not required

in BRPS. All in all, we can conclude that BRPS clearly outperforms BRP in terms

of computation time.

BRP only needs 2 iterations to converge to a solution in 6 of the problems,

while BRPS takes one more iteration in some of these problems. This is ex-

plained because starting the search process from a conflict-free plan facilita-

tes reaching a solution, while BRPS needs to run as many iterations as number

of agents to build the first joint plan. Additionally, better-response dynamics

may take more iterations to converge since agents do not necessarily propose

the best possible response at each iteration. Despite the downside to a slow

convergence, BRPS exhibits a significantly shorter computation time per itera-

tion than BRP, which results in a superior performance and scalability. BRPS

was able to converge to a solution in all the problems of the benchmark since

better-response dynamics rarely get into a cycle, as pointed out in Section

5.3.3.

BRPS proves to be particularly efficient at optimizing the makespan of the so-

lution joint plans. Even though many of the solution plans contain a large

number of actions, the makespan of such plans never exceeds 17 time units,

which proves that our approach excels at enforcing parallelism among the

company agents’ actions. In other words, the company agents in BRPS use
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their available taxis in a concurrent and efficient manner, effectively minimiz-

ing makespan and cost. This is also supported by the partial-order reasoning

mechanism of the planner MH-FMAP (Torreño, Sapena, et al. 2015). In con-

trast, the BRP plans finish later because the planner used by a company agent

to calculate a plan does not parallelize the actions of its taxis. This has also

a direct impact in the cost of the joint plans of BRP, making the execution of

such plans require more time steps.

In general, almost all BRP plans have a significantly higher cost than the so-

lutions of BRPS. For example, in problem p2-2, BRP obtains a solution joint

plan of 49 cost units, while BRPS yields an IPG solution of 34 cost units. Simi-

larly, the cost of BRP for the problem p7-3 is 93 compared to the 58 cost units

of BRPS. Again, these differences are mainly due to the fact that the type of

planner used by the agents in BRP does not enable parallelizing the plan ac-

tions; this results in a later makespan, which in turn penalizes the cost of the

solution plans.

We can also observe in Table 6.7 that the cost values and number of actions

do not generally scale up and this is specially notable in problems that feature

similar cost values but a significantly different number of actions; e.g., the

solution plan to problem p21-6 has 61 actions and 100-unit cost whereas the

solution to p25-6 has 72 actions and 108-unit cost. Aside from the fact that

the cost of the drive actions range between 2 and 3 units, unlike the rest of

actions that have unitary costs, problems like p21-6 occur in smaller size cities

(fewer junctions and chargers) and so it is more likely to have congestion and

conflict interactions. Consequently, problems that happen is smaller cities

tend to have a relatively higher cost due to the more frequent appearance

of congestions and the introduction of delays to avoid congestions or battery

charging conflicts.
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In summary, despite the notable complexity of the EAV benchmark, which

results in solution plans of more than 40 actions in most cases, our BRPS ap-

proach exhibits an excellent behavior, outperforming BRP in all the evaluated

metrics:

1. Coverage: BRPS solves the complete benchmark within the given time

limit, while BRP only solves 6 of the simplest problems of the benchmark

(24% coverage).

2. Execution time: Despite better-response converge more slowly than

best-response, BRPS is one order of magnitude faster than BRP in almost

all cases.

3. Makespan: The underlying MAP machinery of BRPS efficiently enforces

parallelism among the agents’ actions, keeping the makespan of the so-

lution plans below 18 time units in all cases.

4. Cost: The cost of the solutions plans is significantly lower in BRPS than

in BRP. The lack of parallelism in the BRP penalizes the plan cost no-

tably, while our approach ensures the generation of robust parallel plans

where the taxis of a company agent act in parallel whenever possible.

All in all, the experimental results prove that BRPS significantly outperforms

the state-of-the-art BRP approach in both sheer performance and plan quality,

thus emerging as the current top-contending technique in non-cooperative

MAP.
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Analysis of the Strategic Behavior of the BRPS Agents

This section analyzes the strategic behavior adopted by the BRPS agents ac-

cordingly to the configuration of their cost functions. We do not present a

comparative evaluation with the strategic behavior of agents in BRP because

the cooperative nature of the initial joint plan of BRP would render the compar-

ison not meaningful. More specifically, the behavior of agents in BRP, which

must best respond to a cooperative solution by maintaining the conflict-free

structure of the plan, limit the choice of action of the agents as to satisfying

their own private interests.

For this analysis, we used the problem example presented in Section 6.4.1

and depicted in Figure 6.7 except that the battery level of the taxis is 1 (level

l1). The default ordering of the agents during the better-response dynamics of

BRPS is Company1-Company2-Company3. We tested this problem in six different

settings that modify the agents’ cost functions. The columns of Table 6.8 show

the number of actions, makespan, and cost of the plans of each company agent

in the six different settings.

Table 6.8: Strategic behavior analysis for different cost functions

Company1 Company2 Company3

Setting Act Ms Cost Act Ms Cost Act Ms Cost

1 6 6 11 6 6 10 6 8 18

2 6 6 11 6 6 10 6 8 10

3 6 6 11 6 6 10 6 8 68

4 6 6 11 6 6 18 6 8 19

5 6 6 8 7 8 15 6 10 28

6 6 10 28 7 8 15 6 6 8
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In the following, we analyze the six configurations used in this experiment and

the results summarized in Table 6.8:

• Setting 1: This is the original setting of the problem as presented

in the example of Figure 6.7, where the cost of a delay of one time

step is 5. The cost of drive actions is defined as the length of the

street they traverse, which is 2 by default, except for the street j2-j4,

whose length is 3 (see Figure 6.7). The rest of actions have unitary cost.

Congestions cause a cost increase which is linear with the number of

congested agents; that is, given a congestion that affects two agents, the

cost of their actions is increased by 2 units; if there are three agents in

the congestion, the congestion cost is 3, and so on.

The solution plan for this setting is shown in Table 6.5. As explained

in the example of Figure 6.7, there is an electricity network congestion

between Company1 and Company2 because they are using two chargers

connected to the same electricity network at t=0. Company3 is delayed

two time steps because it must wait for the charger c1 to be released

released by Company1.

• Setting 2: In this setting, the cost of a delay of one time step is 1.

The rest of the costs are as in setting 1. The solution joint plan for this

setting is the same as in setting 1. However, the plan of Company3 has a

lower cost (10 cost units) because it benefits from the unitary delay cost.

• Setting 3: In this case, the cost of a delay of one time step is 30 for

the three agents, while the rest of costs remain as in setting 1. Again,

the only affected agent is Company3, which does not change its plan, but

reports a total cost of 68 units because of the higher cost of a delay.

173



Chapter 6. BRPS Experimental Evaluation

• Setting 4: In this configuration, we defined a 10-unit cost for driving

through street j3-j4, keeping the rest of costs unaltered with respect

to setting 1. The plan of Company2 still uses street j3-j4 to take the

passenger to the goal destination. The best solution for Company2 would

be to take a longer path through streets j3-j2 and j2-j4 because this

would report a lower cost than using street j3-j4. However, since it is

not possible to charge the battery with a passenger on the taxi, and the

maximum capacity of the battery is limited to 2 units, Company2 cannot

take this alternative route. Regarding Company3, its taxi waits for 2 time

steps until taxi1 finishes charging the battery at c1, and then, it takes

the paths j1-j2 and j2-j4 to avoid the more costly street j3-j4.

• Setting 5: This setting increases the congestion cost as follows: a

2-agent congestion reports the involved agents a 12-unit cost; a 3-agent

congestion entails a 13-unit cost, and so on. The rest of costs remain

as in setting 1. The IPG solution obtained with this setting is shown in

Table 6.9. This joint plan presents several differences with respect to the

solution of setting 1 that concern Company2 and Company3. In this solu-

tion, taxi2 of Company2 drives from j2 to j1 to charge its battery at t=2,

once taxi1 leaves charger c1. This explains the 15-unit cost reported

by Company2, which is slightly higher than Company1’s cost. Company2

makes this decision to prevent taxi1 and taxi2 from charging their bat-

teries simultaneously at chargers c1 and c2, which would cause a net-

work congestion. Then, taxi2 drives to j3 to pick up its endowed passen-

ger and transports him to j4. Therefore, the makespan and cost increase

reported by Company2 in this setting is explained by the additional action

that drives taxi2 to charger c1, and the subsequent 1-time-step delay.

Finally, Company3 reports a higher cost than the rest of agents (28 units),

because it waits for 4 time steps until the charger c1 becomes available.
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The high cost of congestions in this setting forces the agents to intro-

duce delays to charge the batteries of their taxis in a sequential order.

Consequently, the agent that revises first its plan in the first iteration

(Company1) is favored since the best option for the subsequent agents is

to delay their activities until the first agent releases a key resource (in

this case, the charger c1).

Table 6.9: Resulting IPG solution joint plan Π for setting 5

t Company1 (π1
2) Company2 (π2

1) Company3 (π3
1)

0 charge t1 c1 n1 l1 l2 drive t2 j2 j1 l1 l0 -

1 leave-charger t1 c1 j1 - -

2 pick-up-passenger t1 p1 j1 charge t2 c1 n1 l0 l2 -

3 drive t1 j1 j3 l2 l1 leave-charger t2 c1 j1 -

4 drive t1 j3 j4 l1 l0 drive t2 j1 j3 l2 l1 charge t3 c1 n1 l1 l2

5 drop-passenger t1 p1 j4 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

6 - drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

7 - drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

8 - - drive t1 j3 j4 l1 l0

9 - - drop-passenger t3 p3 j4

- costTotal(π1
1 ,Π

−1) = 8 costTotal(π2
3 ,Π

−2) = 10 + 1 ∗ 5 = 15 costTotal(π3
1 ,Π

−3) = 8 + 4 ∗ 5 = 28

• Setting 6: This setting maintains the costs of setting 5, but the order-

ing of the agents in BRPS is reversed; that is, Company3 goes first,

followed by Company2 and Company1. As expected, the results are also

reversed with respect to setting 5: in this case, Company3 presents no

delay in its execution while Company1 does. Company2 keeps the same

solution plan and cost as in setting 5.

In these experiments, we can observe that agents design their strategies

(plans) to optimize cost according to the specification of their cost functions.

Agents try to find the lowest-cost plan taking into account their own cost func-

tions and the plans of the other agents. Moreover, agents avoid the most costly

situations if they are able to do so. For instance, if remaining in a congestion
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entails a cost higher than escaping from it by delaying actions, agents will opt

for delaying the execution of their actions. All in all, we can conclude that,

as expectedly, agents in BRPS follow a strategic behavior regarding their cost

functions.

Influence of the Ordering of BRPS Agents

In this section, we analyze whether the order of agents in BRPS affect the cost

of an agent’s plan with respect to its best individual plan as a stand-alone

agent.
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Figure 6.8: Average increment in percentage of actions, makespan and cost of one

agent in the IPG solution with respect to its best individual plan, when it goes first,

last, or random in the BRPS order

Figure 6.8 shows the results when an agent is the first one (agent-first) in

the arbitrary order of the BRPS process, when it is the last one (agent-last) or

when its position is randomly chosen (agent-random). We show the average

increment in the number of actions, makespan and cost of a specific agent for
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all problems of Table 6.7 with respect to the best individual plan of the agent,

which is computed exhausting the search space of the agent.

According to Figure 6.8, we can observe that the order of the agent has a

significant impact in the results. The best results are for agent-first since this

is the agent that reaches first the charger, compelling the other agents to use

alternative plans or introduce a delay. This is also reflected in the number of

actions of agent-first, which only increases 1.33% with respect to the num-

ber of actions of its best individual plan. On the other hand, the makespan

increases slightly and the cost is 7.65% higher because of the unavoidable

congestions. In the case of agent-last or agent-random, the number of actions

only increases 3.3% while the makespan and cost rise notably (21% increase

in the cost of agent-last). The difference between agent-first and agent-last

lies in the number of conflicts the agent needs to solve delaying its execution.

We can conclude that the arbitrary order of the agents clearly impacts the re-

sults of BRPS. The first agent is clearly favored over the others, while a random

order seems a fairer option. Another interpretation within an arbitrary order

in a blackboard system is that the agent that communicates first its plan is in a

more advantageous position. Nonetheless, BRPS is designed to solve problem

sets rather than a single problem. Thereby, selecting a random order in each

problem would balance the agents’ costs across the whole problem set.

6.5 General Discussion on the Results

This chapter experimentally compared the performance of BRPS against BRP,

one of the few available state-of-the-art approaches to non-cooperative MAP.

The tests performed along this chapter are organized in three different sce-

narios that feature congestions, planning conflicts, and a combination of both.
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The first scenario, based on a network routing domain (Jonsson et al. 2011),

puts our approach to test in a context where congestion issues may emerge

among the agents. In this scenario, BRPS performs better than BRP, obtain-

ing plans of similar quality and requiring significantly lower execution times.

These results prove that, in practice, the better-response dynamics of BRPS

are as effective as the best-response-based mechanism of BRP when dealing

with congestion issues. Regarding execution time, BRPS is proven to be much

more efficient than BRP, particularly in complex problems that feature a large

number of agents or complex networks with many nodes and interconnections.

In the conflict-based scenario, which includes problems of several CoDMAP

domains adapted to a non-cooperative planning context, BRPS is again the

superior approach, since in general, it yields better solution joint plans and

converges much faster than BRP.

In terms of plan quality, BRPS outperforms BRP in rovers problems and ob-

tains similar plans in the rest of domains. Despite the fact that BRP departs

from an initial conflict-free plan, it does not achieve better results than BRPS.

The reason behind this result is that agents in BRPS explicitly use information

regarding planning conflicts in their utility functions, which benefits BRPS in

this scenario, easing convergence and improving the overall solution quality.

Regarding execution time, BRPS is clearly faster than BRP in this conflict-

based scenario. This is particularly notable in the most complex problems of

the zenotravel domain. Despite requiring more iterations to converge, BRPS

spends much lower time per iteration than BRP.

The final scenario is based on an Electric Autonomous Vehicles (EAV) case

study. This domain combines conflicts and congestions, thus giving rise to

highly complex and demanding problems, as it can be noted in the high exe-

cution times of BRPS. In contrast to the previous scenarios, an agent in this
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domain is a company that manages a fleet of taxis which, ideally, act in pa-

rallel. Hence, the individual plan of an agent must include parallel actions in

order to maximize its quality. Taxi company agents must avoid conflicts and

congestion issues to optimize traffic density and increase their profit by means

of coordination.

In this EAV domain, BRPS proves to be the superior approach, outperforming

BRP in all the magnitudes we measured. Despite departing from a conflict-

free joint plan, BRP cannot converge to a solution in most problems (24%

coverage). In contrast, our BRPS approach, which starts its better-response

dynamics from scratch, obtains 100% coverage, converging in less than 30

minutes in all cases. BRPS yields plans of higher quality than those of BRP,

which proves that BRPS agents efficiently parallelize the actions of their taxis

while circumventing congestion issues and conflicts. The costs of the plans

synthesized by BRPS are close to their number of actions, which shows that

BRPS agents manage to avoid most congestions and delays.

The key advantages of BRPS over BRP that explain the previous results can be

summarized as follows:

• Better-response dynamics: BRPS allows agents to synthesize better re-

sponses (non-optimal plans) computable in polynomial time in many do-

mains (i.e., transport domains without fuel restrictions). In contrast, BRP

adopts a best-response approach that is always NP-complete (Helmert

2003). Hence, better-response dynamics in a planning setting are faster

than best-response dynamics, while obtaining solutions of a similar qua-

lity.

• Joint plan synthesis from scratch: while BRP requires an initial con-

flict-free joint plan computed by a MAP planner as an input, the BRPS

approach synthesizes joint plans from scratch. The initial joint plan of
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BRP, which does not reflect the agents’ self interest (since it is computed

by a cooperative MAP planner), is used as a reference throughout the

best-response dynamics and ultimately determines the behavior of the

BRP agents. Moreover, this initial joint plan is already a solution for the

problem, which reduces BRP to a procedure that introduces small im-

provements over the initial solution. In contrast, agents in BRPS are free

to compute and progressively balance a solution joint plan that meets

their interests without any initial commitment or limitation.

• Fully-distributed MAP machinery: the use of an underlying multi-

agent system ensures the preservation of the agents’ privacy, since

BRPS does not depend on a centralized planning entity that has complete

access to the problem. Guaranteeing the agents’ privacy is critical in a

context where agents are self-interested. Hence, BRPS is a more realistic

non-cooperative MAP approach than BRP.

Additionally, the IPG does not allow synergies among the agents; that

is, agents do not behave cooperatively since none of them can benefit

from the effects of other agents’ actions to achieve their goals. If syner-

gies were allowed, as in BRP, agents would not be able to change their

plans in case they were providing preconditions to other agents, because

that would cause inconsistencies or conflicts. This would limit the stra-

tegic behavior of the agents, thus harming their self-interest.

• Partial-Order Planning (POP) technology: the POP-based planner

integrated in the BRPS agents allows them to efficiently parallelize their

individual plans, which is very useful in domains such as the EAV, where

an agent must plan the concurrent actions of several taxis.
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• Conflicts as part of the agents’ utility functions: agents in BRPS

explicitly reason about planning conflicts, which improves the efficiency

of BRPS in domains where these issues can emerge.

All in all, we can conclude that BRPS is the current top-performing non-coopera-

tive MAP approach, clearly surpassing the state-of-the-art method BRP.

6.5.1 Limitations of the Model

Despite the remarkable performance of BRPS, it is worth noting that presents

some limitations:

• The outcome of the better-response dynamics depends on the order of

the agents in the game. For instance, the first agent that puts forward a

plan in the better-response dynamics has a competitive advantage, since

it does not need to make changes that compromise the cost of its pro-

posal in order to integrate it in the (initially empty) joint plan.

• In the context of better-response dynamics, an agent is not forced to res-

pond with its best possible plan; this fact may affect the number of ite-

rations required by BRPS to converge. The experimental results showed

that BRPS took more iterations to converge than the best-response ap-

proach BRP in some instances. However, the execution times were gene-

rally low thanks to the reduced time per iteration exhibited by BRPS.

• Whereas BRPS converged to conflict-free solutions in all the tested pro-

blems, our approach may converge to an unfeasible joint plan in case of

a multi-symmetric unsolvable situation.

The computational complexity of non-cooperative MAP task is hard in most

cases, especially in domains where individual plans cannot be computed in
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polynomial time. This is an inherent limitation to the type of non-cooperative

MAP problems that BRPS aims to solve. In practice, BRPS solved tasks by

computing joint plans up to 87 actions in less than 30 minutes, which is a

remarkable size from a planning perspective and considering the difficulty of

non-cooperative MAP. Nevertheless, BRPS could be further improved to attain

larger tasks.

We believe that using a different machine for each agent would help to in-

crease the performance of BRPS. This should be combined with a continuous

individual exploration of the search space of each agent, which would produce

alternative plans while waiting its turn in the better-response process.

The search algorithms and heuristics of BRPS agents could also be improved

by using a more informed heuristic. This would help to find better solutions

faster and to prune more the search space, thus producing the best plans of

each agent with less exploration.
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Conclusions and Future Work

As stated in the Introduction of this PhD thesis, the main goal of this work is

the design and development of non-cooperative Multi-Agent Planning (MAP)

models to solve planning problems that involve several self-interested agents

which interact in a shared environment. More precisely, we designed the

FENOCOP model, where agents have a limited set of precomputed plans, and

BRPS, where each agent is equipped with an embedded planner to dynami-

cally compute a potentially unlimited set of plans (neither initially limited nor

infinite). In the following, we outline the main contributions of this PhD thesis,

which allowed us to attain the main objectives of this work:

• We thoroughly analyzed the state of the art in MAP with self-interested

agents, confirming the absence of computational approaches that tackle

the non-cooperative MAP problem. In this setting, several non-strictly

competitive agents with complementary interests combine their indivi-

dual plans into a stable joint solution which ensures that all plans are

executable and the private interests of the participants are kept. Al-
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beit many real-world scenarios feature problems that involve the coor-

dination of multiple self-interested planning agents, the topic of non-

cooperative MAP has been traditionally neglected by the MAP commu-

nity. The aim of this PhD thesis is precisely to contribute to the state of

the art in non-cooperative MAP by filling this gap.

• We defined FENOCOP, our initial non-cooperative MAP model for self-

interested planning agents. In this approach, agents have a limited set

of precomputed plans and want to execute one of their plans in a shared

environment. FENOCOP is a two-stage model that allows agents to decide

which plan to execute and how to schedule the execution of the actions of

such plan depending on the decisions of the rest of agents. The General

Game allows each agent to decide which course of action to take from

its precomputed set of plans. In the Scheduling Game, agents decide

how to schedule each combination of plans (one per agent) introducing

empty actions to avoid conflicts. The solutions to the Scheduling Game

are Nash Equilibria, Pareto optimal, and fair; that is, they are stable

solutions that satisfy agents as much as possible.

FENOCOP contributes to the state of the art in non-cooperative MAP in

several ways. Firstly, the outcome of this computational model is a stable

joint plan where all the agents solve their planning tasks. Secondly, the

calculation of multiple Nash Equilibria allows for the selection of solu-

tions that are also Pareto optimal and fair. These properties guarantee

that no agent can improve its utility without reducing the utility of other

agents, and that the less satisfied agent is as satisfied as possible (egali-

tarian social welfare).

• The second model defined in the context of this PhD thesis, named BRPS,

is an approach based on better-response dynamics that iteratively con-
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verges to a stable joint plan. In BRPS, each agent has the ability to syn-

thesize and propose a potentially unlimited amount of plans (not infinite

since it is bounded by plans cost and the search space of the agent) dur-

ing the better-response dynamics.

Among the contributions of BRPS, we can highlight the fact that agents

make use of individual cost functions that evaluate the quality of their

plans according to their inherent cost and the interactions with other

agents; i.e., planning conflicts and congestions. Agents do not depend on

a centralized entity and they iteratively revise and combine their plans in

order to come up with a conflict-free solution joint plan. Additionally, the

combination of individual plans cost, planning conflicts, and congestion

in the agents’ utility functions makes BRPS a realistic model that reflects

the actual behavior of real-world agents.

While under some conditions convergence to a Nash equilibrium can-

not be guaranteed in BRPS, the empirical results of our approach show

that better-response dynamics converge to stable solutions in most ins-

tances. Finally, BRPS is computationally efficient since better-response

dynamics in MAP problems are computable in polynomial time under

some assumptions.

• Both theoretical models were fully implemented and empirically eval-

uated. This is an important contribution since most game-theoretic mo-

dels are not typically implemented and tested exhaustively. The results of

FENOCOP show that the Scheduling Game obtains better quality results

when Pareto optimality and fairness are considered against algorithms

that only guarantee equilibrium solutions. However, these experiments

also showed that FENOCOP could be computationally intractable when

the number of plans and/or agents are relatively high.
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On the other hand, the BRPS approach is built upon the MAP solver MH-

FMAP. We implemented the better-response dynamics mechanism as well

as the underlying techniques to compute the cost of the planning con-

flicts, congestion issues and individual plans. The empirical evaluation

of BRPS compares it against the state-of-the-art BRP approach (Jonsson

et al. 2011). The experimental tests include three scenarios: a setting

which features only congestions, a test based on several CoDMAP do-

mains where conflicts among agents may emerge; and a custom case

study that features both planning conflicts and congestions. BRPS clearly

outperforms BRP in terms of computation time while yielding solution

joint plans of generally superior quality. Despite the lack of convergence

guarantees of the BRPS approach under some conditions, the results

prove that, in practice, convergence is achievable in most cases.

7.1 Future Lines of Research

Due to the novelty of non-cooperative MAP, this research field offers vast op-

portunities for future work. The next paragraphs describe some lines of work

that we consider as potentially interesting for future research:

• Design of specific heuristics for non-cooperative MAP problems. These

heuristics would take into account the self-interest of the agents to pre-

dict in advance how other agents may act (their strategic behavior), thus

yielding a faster convergence to equilibrium solutions. The development

of non-cooperative heuristics is a completely novel research line inspired

by existing cooperative MAP global heuristics, preference planning, and

algorithms to compute equilibrium solutions.
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• Extension of the models to temporal planning. The underlying planning

techniques of our models manage time constraints to efficiently schedule

and parallelize actions. However, they do not manage actions with dif-

ferent durations. In temporal planning, the definition of a state includes

information about the current absolute time and how far the execution

of each active action has proceeded. Using temporal planning in our

approaches would increase the overall difficulty of the task due to the

complexity of this planning paradigm, but temporal planning is more ac-

curate than classical planning to model real-world scenarios.

• Development of a framework that combines FENOCOP and BRPS. FENO-

COP would be used in specific situations with small sets of plans and a

low number of agents to attain equilibria that are Pareto optimal and fair.

Then, BRPS would be used as a general-purpose solver since it is capable

of tackle larger problems.

• Study of other techniques applicable to the non-cooperative MAP pro-

blem. Despite the fact that agents in non-cooperative MAP have private

interests, and hence, game theory is necessary to guarantee stable so-

lutions, other techniques may be applicable. For instance, argumenta-

tion protocols could be interleaved during the planning process in order

to reach agreements that must be guaranteed by external entities. We

believe that it would be interesting to analyze how joint plans for self-

interested agents could be built using agreement technologies.
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7.2 Related Research Activities

This section lists the research activities performed during the development of

this PhD thesis, namely, the related scientific publications, research stays, and

research projects.

7.2.1 Related Publications

The following subsections list all the author’s related scientific publications.

We classify articles according to the type of publication they were included

into:. The first subsection presents the articles appearing in journals listed in

Science Citation Index (SCI)1. Then, the second subsection cites the papers

published in the proceedings of relevant conferences included in the Com-

puting Research and Education Association of Australasia (CORE)2 rankings.

Finally, the third subsection lists other relevant scientific articles without an

impact factor or not published in a ranked conference.

Publications in SCI journals

• J. Jordán, A. Torreño, M. de Weerdt, and E. Onaindía. A Better-Response

Strategy for Self-Interested Planning Agents. Applied Intelligence. 2017

ACCEPTED MINOR CHANGES. Impact Factor (2016): 1,904. Q2.

• J. Jordán, M. de Weerdt, A. Torreño, and E. Onaindía. A Non-Cooperative

Game-Theoretic Approach for Conflict Resolution in Multi-Agent Plan-

ning. Group Decision and Negotiation, Special Issue on Artificial Intel-

ligence Techniques for Conflict Resolution. 2017 SUBMITTED. Impact

Factor (2016): 1,688. Q1 (social sciences).

1http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=K
2http://www.core.edu.au/
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• J. Jordán, S. Heras, S. Valero, and V. Julian. An Infrastructure for Ar-

gumentative Agents. Computational Intelligence. Volume 31(3), pages

418–441, 2015. Impact Factor (2015): 0,722. Q4.

• S. Heras, J. Jordán, V. Botti, and V. Julian. Case-based Strategies for Argu-

mentation Dialogues in Agent Societies. Information Sciences. Volume

223(20), pages 1–30, 2013. Impact Factor (2013): 3,893. Q1.

• S. Heras, J. Jordán, V. Botti, and V. Julian. Argue to Agree: A Case-

Based Argumentation Approach. International Journal of Approximate

Reasoning. Volume 54(1), pages 82–108, 2013. Impact Factor (2013):

1,977. Q1.

Publications in CORE conferences

• J. Jordán and E. Onaindía. Game-theoretic Approach for Non-Cooperative

Planning. In Twenty-Ninth AAAI Conference on Artificial Intelligence

(AAAI-15). Pages 1357–1363, 2015. Conference ranking: CORE A*.

• I. Sánchez-Garzón, J. Fedz-Olivares, E. Onaindía, G. Milla-Millán, J. Jordán,

and P. Castejón. A multi-agent planning approach for the generation of

personalized treatment plans of comorbid patients. In 14th Conference

on Artificial Intelligence in Medicine. Volume 7885, pages 23–27, 2013.

Conference ranking: CORE A.

• A. Costa, S. Heras, J. Palanca, J. Jordán, P. Novais, and V. Julian. Argu-

mentation Schemes for Events Suggestion in an e-Health Platform. In

XII International Conference on Persuasive Technology. Volume 10171

of LNCS, pages 17–30, 2017. Conference ranking: CORE B.
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• J. Jordán, S. Heras, S. Valero, and V. Julian. ArgCBR-CallCentre: A Call

Centre based on CBR Argumentative Agents. In 11th Conference on

Practical Applications of Agents and Multi-Agent Systems (PAAMS-13).

Volume 7879, pages 292–295, 2013. Conference ranking: CORE C.

(2nd IBM prize of Scientific Excellence).

• J. Jordán, S. Heras, and V. Julian. Case-based Argumentation Infrastruc-

ture for Agent Societies. In 7th International Conference on Hybrid Ar-

tificial Intelligence Systems (HAIS-12). Volume 7208(I), pages 13–24,

2012. Conference ranking: CORE C.

• J. Jordán, S. Heras, and V. Julian. A Customer Support Application Us-

ing Argumentation in Multi-Agent Systems. In 14th International Confe-

rence on Information Fusion. Pages 772–778, 2011. Conference rank-

ing: CORE C.

• J. Jordán, S. Heras, S. Valero, and V. Julian. An Argumentation Frame-

work for Supporting Agreements in Agent Societies Applied to Customer

Support. In 6th International Conference on Hybrid Artificial Intelli-

gence Systems (HAIS-11). Volume 6678, pages 396–403, 2011. Con-

ference ranking: CORE C.

Other publications

• A. Costa, S. Heras, J. Palanca, J. Jordán, P. Novais, and V. Julian. Using

Argumentation Schemes for a Persuasive Cognitive Assistant System.

In 4th International Conference on Agreement Technologies. In Press.

2016.
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• S. Heras, J. Jordán, V. Botti, and V. Julian. Arguing to Support Customers:

the Call Centre Study Case. Agreement Technologies. Book chapter,

pages 507–527. Springer, 2013.

• J. Jordán, S. Heras, and V. Julian. Argumentation Tool that Enables

Agents to Argue. In 1st International Conference on Agreement Tech-

nologies. Pages 455–456, 2012.

7.2.2 Scientific Research Stays

The following research stay was completed during the research period associ-

ated to this PhD thesis:

• 1-04-2015 to 15-07-2015. Delft University of Technology, The Nether-

lands. Research stay supervised by Dr. Mathijs de Weerdt in the Al-

gorithmics research group of the Software and Computer Technology

Department. Focused on game theory and developing new models for

game-theoretic multi-agent planning.

7.2.3 Research Projects

This work has been performed in the context of several research projects that

provided economical funding or technological support to its development:

• “GLASS: Goal management for Long-term Autonomy in Smart citieS” un-

der grant MICINN TIN2014-55637-C2-1 (Main Researcher: Eva Onain-

dia). The main objective of the project is to analyze the problem of goal

management for long-term autonomous systems, design appropriate al-

gorithms for addressing the different components of goal management,

and develop software tools that help on the application of this technology

to Smart Cities tasks.
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• “PlanInteraction: Multi-agent Interaction for Planning” under grant

MICINN TIN2011-27652-C03 (Main Researcher: Eva Onaindia). This

project aims to develop new agent techniques based on social dynamics

for the design of a MAP platform composed of autonomous and, possibly

heterogeneous, planning entities. The platform tackles aspects such as

multi-agent execution, cooperative and non-cooperative MAP, plan merg-

ing and planning via argumentation.

• “Integra - Boeing”: Project in collaboration with Boeing Research and

Technology Europe S.L. (Main Researcher: Vicente Botti).

Additionally, this work has been partly supported by the project PROMETEO

II/2013/019 funded by the Valencian Government. Finally, this research would

not have been possible without a 4-year FPI research scholarship TIN2011-

27652-C03-01 granted to the author of this PhD thesis by the Spanish Govern-

ment.

192



References

Aghighi, M. and C. Bäckström (2016). “A Multi-Parameter Complexity Analysis

of Cost-Optimal and Net-Benefit Planning”. In: Proceedings of the 26th

International Conference on Automated Planning and Scheduling (ICAPS),

pp. 2–10 (cit. on p. 116).

Applegate, C., C. Elsaesser, and J. Sanborn (1990). “An Architecture for Adver-

sarial Planning”. In: IEEE Transactions on Systems, Man, and Cybernetics

20.1, pp. 186–194 (cit. on p. 24).

Arrow, K. J. (1963). Social Choice and Individual Values. 12. Yale University

Press (cit. on pp. 30, 34).

Bäckström, C., P. Jonsson, S. Ordyniak, and S. Szeider (2015). “A Complete

Parameterized Complexity Analysis of Bounded Planning”. In: Journal of

Computer and System Sciences 81.7, pp. 1311–1332 (cit. on p. 116).

Bäckström, C. and B. Nebel (1995). “Complexity Results for SAS+ Planning”.

In: Computational Intelligence 11.4, pp. 625–655 (cit. on pp. 14, 115).

193



References

Banerjee, S., H. Konishi, and T. Sönmez (2001). “Core in a Simple Coalition

Formation Game”. In: Social Choice and Welfare 18.1, pp. 135–153 (cit.

on p. 23).

Barrett, A. and D. S. Weld (1994). “Partial-Order Planning: Evaluating Possible

Efficiency Gains”. In: Artificial Intelligence 67.1, pp. 71–112 (cit. on p. 16).

Benton, J., A. Coles, and A. Coles (2012). “Temporal Planning With Preferences

and Time-Dependent Continuous Costs”. In: Proceedings of the 22nd In-

ternational Conference on Automated Planning and Scheduling (ICAPS),

pp. 2–10 (cit. on p. 17).

Benton, J., K. Talamadupula, P. Eyerich, R. Mattmuller, and S. Kambhampati

(2010). “G-Value Plateaus: A Challenge for Planning”. In: Proceedings 20th

International Conference on Automated Planning and Scheduling (ICAPS)

(cit. on p. 115).

Bercher, P. and R. Mattmüller (2008). “A Planning Graph Heuristic for Forward-

Chaining Adversarial Planning”. In: European Conference on Artificial In-

telligence. Vol. 8, pp. 921–922 (cit. on pp. 4, 25).

Blum, A. and M. L. Furst (1997). “Fast Planning Through Planning Graph Anal-

ysis”. In: Artificial Intelligence 90.1-2, pp. 281–300 (cit. on pp. 5, 40).

Bonet, B. and H. Geffner (2001). “Planning as Heuristic Search”. In: Artificial

Intelligence 129, pp. 5–33 (cit. on p. 15).

Borrajo, D. (2013). “Multi-Agent Planning by Plan Reuse”. In: Proceedings of

the 12th International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS), pp. 1141–1142 (cit. on p. 19).

194



References

Borrajo, D. and S. Fernández (2015). “MAPR and CMAP”. In: Competition of

Distributed and Multi-Agent Planners (CoDMAP-15), pp. 1–3 (cit. on p. 19).

Boutilier, C. and R. Brafman (2001). “Partial-Order Planning With Concurrent

Interacting Actions”. In: Journal of Artificial Intelligence Research 14.105,

p. 136 (cit. on p. 21).

Bowling, M. H., R. M. Jensen, and M. M. Veloso (2003). “A Formalization of

Equilibria for Multiagent Planning”. In: Proceedings of the 18th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pp. 1460–1462

(cit. on pp. 28, 46).

Brafman, R. I., C. Domshlak, Y. Engel, and M. Tennenholtz (2009). “Planning

Games”. In: Proceedings of the 21st International Joint Conference on Ar-

tificial Intelligence (IJCAI), pp. 73–78 (cit. on pp. 3, 23).

Brandenburger, A. (2007). “Cooperative Game Theory”. In: Teaching Materials

at New York University (cit. on pp. 21, 23).

Buzing, P., A. T. Mors, J. Valk, and C. Witteveen (2006). “Coordinating Self-

Interested Planning Agents”. In: Autonomous Agents and Multi-Agent Sys-

tems 12.2, pp. 199–218 (cit. on p. 28).

Bylander, T. (1994). “The Computational Complexity of Propositional STRIPS

Planning”. In: Artificial Intelligence 69.1, pp. 165–204 (cit. on pp. 13, 34,

115, 131).

Castillo, L., J. Fdez-Olivares, O. Garcia-Perez, and F. Palao (2005). “Temporal

Enhancements of an HTN Planner”. In: Conference of the Spanish Associ-

ation for Artificial Intelligence. Springer, pp. 429–438 (cit. on p. 17).

195



References

Cenamor, I., T. De La Rosa, and F. Fernández (2014). “IBACOP and IBACOP2

Planner”. In: International Planning Competition 2014 Planner Abstracts,

pp. 35–38 (cit. on p. 16).

Chen, X. and X. Deng (2006). “Settling the Complexity of Two-Player Nash

Equilibrium”. In: 47th Annual IEEE Symposium On Foundations of Com-

puter Science. IEEE, pp. 261–272 (cit. on pp. 114, 115).

Chen, Y., B. W. Wah, and C. Hsu (2006). “Temporal Planning Using Subgoal

Partitioning and Resolution in SGPlan”. In: Journal of Artificial Intelligence

Research 26, pp. 323–369 (cit. on p. 17).

Chevaleyre, Y., P. E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J.

Padget, S. Phelps, J. A. Rodríguez-Aguilar, and P. Sousa (2006). “Issues in

Multiagent Resource Allocation”. In: Informatica 30.1, pp. 3–31 (cit. on

p. 51).

Chien, S. and A. Sinclair (2011). “Convergence to Approximate Nash Equilibria

in Congestion Games”. In: Games and Economic Behavior 71.2, pp. 315–

327 (cit. on p. 131).

Clarke, E. H. (1971). “Multipart Pricing of Public Goods”. In: Public Choice

11.1, pp. 17–33 (cit. on pp. 27, 50).

Clement, B. (2005). Multiagent Planning: A Survey of Research and Applica-

tions. (Cit. on p. 1).

Coles, A., A. Coles, M. Fox, and D. Long (2010). “Forward-Chaining Partial-

Order Planning”. In: Proceedings of the 20th International Conference on

Automated Planning and Scheduling (ICAPS), pp. 42–49 (cit. on p. 17).

196



References

Cox, J. and E. Durfee (2009). “Efficient and Distributable Methods for Solving

the Multiagent Plan Coordination Problem”. In: Multiagent Grid Systems

5.4, pp. 373–408 (cit. on pp. 5, 21).

Cox, J. and E. Durfee (2004). “Efficient Mechanisms for Multiagent Plan Merg-

ing”. In: Proceedings of the 3rd Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pp. 1342–1343 (cit. on p. 21).

Crosby, M., M. Rovatsos, and R. Petrick (2013). “Automated Agent Decompo-

sition for Classical Planning”. In: Proceedings of the 23rd International

Conference on Automated Planning and Scheduling (ICAPS), pp. 46–54

(cit. on p. 19).

Crosby, M. and M. Rovatsos (2011). “Heuristic Multiagent Planning With Self-

Interested Agents”. In: Proceedings of the 10th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), Volume 1-3,

pp. 1213–1214 (cit. on p. 23).

De La Asunción, M., L. Castillo, J. Fdez-Olivares, Ó. García-Pérez, A. González,

and F. Palao (2005). “SIADEX: An Interactive Knowledge-Based Planner

for Decision Support in Forest Fire Fighting”. In: AI Communications 18.4,

pp. 257–268 (cit. on p. 17).

De Weerdt, M., A. Bos, H. Tonino, and C. Witteveen (2003). “A Resource Logic

for Multi-Agent Plan Merging”. In: Annals of Mathematics and Artificial

Intelligence 37.1, pp. 93–130 (cit. on p. 21).

Decker, K. S. and V. R. Lesser (1992). “Generalizing the Partial Global Planning

Algorithm”. In: International Journal of Cooperative Information Systems

01.02, pp. 319–346 (cit. on p. 20).

197



References

desJardins, M., E. Durfee, C. Ortiz, and M. Wolverton (1999). “A Survey of Re-

search in Distributed Continual Planning”. In: AI Magazine 20.4, pp. 13–

22 (cit. on p. 2).

desJardins, M. and M. Wolverton (1999). “Coordinating a Distributed Planning

System”. In: Artificial Intelligence 20.4, pp. 45–53 (cit. on p. 21).

Domshlak, C., E. Karpas, and S. Markovitch (2010). “To Max or Not to Max: On-

line Learning for Speeding Up Optimal Planning”. In: Proceedings of the

24th AAAI Conference on Artificial Intelligence. Atlanta, Georgia, pp. 1071–

1076 (cit. on p. 16).

Dunne, P. E., S. Kraus, E. Manisterski, and M. Wooldridge (2010). “Solving

Coalitional Resource Games”. In: Artificial Intelligence 174.1, pp. 20–50

(cit. on pp. 3, 23).

Durfee, E. H. (2001). “Distributed Problem Solving and Planning”. In: Multi-

Agent Systems and Applications. Ed. by M. Luck, V. Mařík, O. Štěpánková,
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AuPG Auction-Planning Game

BFS Breadth-First Search

BRP Best-Response Planning

BRPS Better-Response Planning Strategy

CGT Cooperative Game Theory
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CoPG Coalition-Planning Game

DFS Depth-First Search

DTG Domain Transition Graph

EAV Electric Autonomous Vehicles

FD Fast Downward

FENOCOP Fair Equilibria in NOn-COoperative Planning
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FF Fast Forward

FMAP Forward Multi-Agent Planning

GG General Game

HTN Hierarchical Task Network

IPC International Planning Competition

IPG Interaction Planning Game

MAP Multi-Agent Planning

MA-PDDL Multi-Agent Planning Domain Definition Language

MAS Multi-Agent System

MA-STRIPS Multi-Agent Stanford Research Institute Problem Solver

MH-FMAP Multi-Heuristic Forward Multi-Agent Planning
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NCGT Non-Cooperative Game Theory

NE Nash Equilibrium
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PSPACE Polynomial Space
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SPE Subgame Perfect Equilibrium
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