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ABSTRACT: We evaluate the added value of a forecast service that can provide probabilistic predictions 
for adverse weather events for two differentiated seasons, corresponding to the same productive cycle. 
The paper builds on a cost-loss dynamic model, by considering the role of forecasting systems in the 
decision making process. We present the analytical solution for this problem which is consistent with 
the numerical results in the literature. However, we prove that there is a range of regions for the opti-
mal policy depending on the cost of crop protection, the avoided loss and the quality of the information 
available. Finally, we illustrate the results with a numerical example.
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Análisis del valor económico de la información meteorológica utilizada en la toma 
de decisiones sobre cultivos, en un contexto dinámico de gestión de riesgos

RESUMEN: Evaluamos el valor añadido de los servicios meteorológicos que proporcionan predicciones 
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entes a un mismo ciclo productivo. Este artículo se apoya en un modelo coste-pérdida dinámico para 
considerar el papel de los sistemas de predicción y alerta temprana en los procesos de toma de decisión. 
Se presenta la solución analítica para este problema, que es consistente con los resultados numéricos en 
la literatura. Sin embargo, probamos que la política óptima presenta numerosas regiones distintas depen-
diendo del coste de proteger, la pérdida evitada y la calidad de la información disponible. Finalmente, 
ilustramos los resultados con un ejemplo numérico.
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1.	 Introduction

Great concern exists about the increase in adverse climate events and their con-
sequences for society and the economy (IPCC, 2007). Agriculture is one of the most 
affected economic sectors suffering each year high losses due to meteorological 
changes (Ciscar et al., 2011; Battisti and Naylor, 2009; Olesen and Bindi, 2002) and 
water conflicts, especially in the Mediterranean region (Gómez-Limón and Riesgo, 
2004; Iglesias et al., 2009). Nevertheless, improved farming management can largely 
cope with the climate risks and so crop production is one of the activities with the 
highest adaptive capacity to climate change effects (EU COM, 2009). 

Adaptation policies on a global scale are essential to cope with the potential los-
ses, but the development of private adaptation strategies based on improved mana-
gement is also crucial (Brouwer et al., 2004). For this kind of adaptation measures, 
meteorological information can play an important role if it assists the improvement 
of management decisions. Nowadays, a number of high quality seasonal forecasts 
and weather forecasts are available leading to significant applications in agricultural 
management. This is more so since a correlation between ENSO (El Niño/Southern 
Oscillation) and rainfall and temperature patterns is being widely analysed.

In this paper we analyse the economic value of information on adverse climate 
events that some forecasting service is giving in advance with differentiated probabilis-
tic predictions. We consider two time periods, corresponding to the same productive cy-
cle, and evaluate the optimal decision making about protective actions to avoid potential 
losses. Then we analyse how the information improves the decision making process.

 Dynamic treatment is essential for this kind of risk management problems. When 
farmers decide about protecting harvests from a meteorological risk, they do not ob-
tain immediate results, since the decision taken over every period influences the total 
results. To take no protective action in one period is enough to risk losing the overall 
harvest if the adverse weather event occurs. For example, frost protection is just one 
phase of an orchard management process, but if the crop is lost due to frost, the deci-
sions pertinent to orchard operation for the rest of the time horizon under consideration 
may have limited or no effect on current year production (Cerdá and Quiroga, 2011).

The cost-loss model has been widely used to analyse this kind of management 
problem (Katz and Murphy, 1997; Cerdá and Quiroga, 2010; Wilks, 1997; Pal-
mer, 2002), and several examples with numerical results have been presented for a 
farmer’s protection in a dynamic framework (Katz, 1993; Meza et al., 2003; Katz and 
Ehrendorfer, 2006). Analytical results for the optimal policy of the dynamic model 
for the case of climatological information have been calculated in Cerdá and Quiroga 
(2011). This paper builds on this dynamic model considering the role of forecasting 
systems in the decision making process.

The structure of the decision making problem is as follows: (i) the farmer can de-
cide to protect or not to protect in each of the two periods, (ii) adverse meteorological 
events can occur in either of the two periods considered (corresponding to the same 
productive cycle) and they can cause crop losses if the protective action has not been 
taken, (iii) the farmer makes the decision about protection in each of the two periods 
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before knowing if severe weather is coming, (iv) the information available is of two 
types. One kind of information is the climatological information, based on historical 
records of climate variables (ie. the statistical probability of drought for the considered 
region). We consider that this is always available and known for the farmer´s commu-
nity. Another type of information is the weather forecast or seasonal forecast informa-
tion. This forecast system is considered as a kind of early warning system that allows 
the farmer to have improved information about the probability of severe events.

This paper is structured as follows: the next section presents the model structure 
and equations. Analytical solutions are obtained in Section 3, while in Section 4 an 
illustrative numerical example is developed. Finally some conclusions are presented 
in Section 5.

2.	 The model

The model involves two possible actions, to protect (α = 1), or not to protect 
(α = 0), and two possible events, adverse weather (θ = 1) and no adverse weather 
(θ = 0). If protective action is taken, the farmer is assumed to incur a cost, C > 0 that 
we consider a proportion of the avoided loss, C = γ L where 0 < γ < 1. A loss L > 0 
is suffered by the farmer if protective action is not taken and severe adverse weather 
occurs. There is no cost or loss, otherwise. The type of protection could avoid the 
physical loss (i.e. by applying protective technology to some plants) or just provide 
an economic compensation (i.e. purchasing insurance for part of the crop). We consi-
der the common assumptions of the familiar prototype problem usually referred to as 
the cost-loss ratio situation (Katz and Murphy, 1997; Katz, 1993) and a summary of 
the model variables and parameters is presented in Table 1.

TABLE 1

Description of the variables and parameters included in the model

Name Variable or parameter

θi State of weather in the i-period (θ = 1, “adverse weather”; θ = 0, “no adverse weather”)

αi Protection level for the harvest (0, no protection or 1, total protection) in the period i

Li Amount of harvest available at the beginning of the period i

γ Cost of the protection measures (proportion of the avoided loss: Ci = γLi)

Pθ Climatological information: Pr [θ = 1]

Source: Own work.

When only the climatological information is available, the optimization problem 
to minimize the expected expenses deriving from the adverse weather event (i.e. se-
vere drought) in the two periods can be written as follows:
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[1]

θ1 and θ2 are independent random variables and take the value 1 with probability 
Pθ and the value 0 with probability 1-Pθ. 

L1 is predetermined as L, L2  {L,0} and L3  {L,0}.
This is a stochastic, dynamic optimization problem of two time periods in discrete 

time, which will be solved using the method of Dynamic Programming. In this pro-
blem, Li = (i = 1, 2, 3) is the state variable and αi (i = 1, 2) is the control variable. The 
sequence in which the state variable, the control variable and also the stochastic com-
ponent of the problem θi (i = 1, 2) appear, is represented in Figure 1. This sequence is 
very helpful for the understanding of the problem and also for the calculation of the 
optimal solution, using the Bellman equations. 

FIGURE 1

Sequence in which the different variables appear in Problem [1]

Source: Own work.

In the case of counting on an information system for weather forecasting or sea-
sonal forecasting, the farmer’s decision making can be potentially improved, so we 
want to analyze the optimal policy also in this case. As in Murphy et al. (1985), we 
consider the incorporation of additional information to the model which is introduced 
as an imperfect weather or seasonal forecasting from a meteorological office. It is 
assumed that the farmer receives an imperfect forecast about the state of nature at the 
beginning of each of the two periods. For i  {1,2}, this information is represented 
by the variable Zi which indicates a forecast of adverse weather (Zi = 1), or of non-
adverse weather (Zi = 0). The conditional probabilities of adverse weather are denoted 
by P1 = Pr {θi = 1 / Zi = 1} and P0 = Pr {θi = 1 / Zi = 1}. In addition, as in Murphy 



Analysing the economic value of meteorological information to improve crop...	 9

et al. (1985) it is assumed that Pr {Zi = 1}= Pr {θi = 1}=Pθ, that is, the forecasting 
system produces adverse weather signals with the same probability that adverse wea-
ther events take place. As Katz and Murhy (1997: 187-188) explain, concerning this 
assumption, “It is assumed that forecasts of adverse weather are issued with the same 
long-run relative frequency as the occurrence of adverse weather (termed “overall 
reliability” or “unconditionally unbiased”). This requirement is equivalent to cons-
training the conditional probability P0 to move from Pθ toward zero at the same rela-
tive rate at which the conditional probability P1 moves from Pθ toward one”.

Without loss of generality, 0 ≤ P0 ≤ Pθ ≤ P1 ≤, is also assumed. In these conditions 

it is easily obtained1 that  

The decision making problem for the two periods can be expressed as the fo-
llowing stochastic, dynamic optimization problem:

[2]

where Zi is a random variable that can take the values 1 or 0 with the following 

associated probabilities: .

θi is also a random variable that can take the values 1 or 0 with the following asso-
ciated probabilities depending on the forecast value:

As before, we assume that θ1 y θ2 are independent random variables.

1
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The sequence of the variables in the decision making problem [2] is shown in 
Figure 2.

FIGURE 2

Sequence in which the different variables appear in Problem [2]

Source: Own work.

3.	 Results

In this section the two cases, climatological information and additional informa-
tion consisting of imperfect weather or seasonal forecasting from a meteorological 
office, are studied independently.

3.1. Optimal policy when only climatological information is available

Proposition 1 shows the optimal policy for the farmer when only climatological 
information is available, that is when the farmer knows about the historical probabi-
lity but does not possess a forecast system.

Proposition 1
In the optimization problem [1], corresponding to the case of climatological 

information2:

i)	 If  the optimal decision is α1 = 1 and α2 = 1 that is to protect in both 

periods. In this case, the minimum expense is: J1
* {L} = 2γL.

ii)	 If 
 
, the optimal decision is α1 = 1 and α2 = 1. That is to protect in 

the second period and not to protect in the first period. The optimal expense 
in this case is: .

2	 It is interesting to observe that it will never be optimal to protect in the first period and not to protect in the 
second period α1 = 1 and α2 = 1. Once the farmer incurs the protective cost, he needs to be sure of not suffering 
the loss in the second period.
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iii)	 If γ ≥ P0, the optimal decision is α1 = 1 and α2 = 1, so it is optimal not to 
protect in each of the periods. The optimal level of expense in this case is: 

.
The proof is in the Annex.

Comparison with the static case:
In the static case (one period), the optimal policy when only climatological infor-

mation is available is the following: to protect if γ < P0, and not to protect if γ ≥ P0. 
That is, if the cost of protection is high it is better not to protect and if that cost is low 
it is better to protect, P0 being the threshold which separates both possibilities.

The optimal policy obtained in the two-period case is less protective than that 
corresponding to the static case. When the condition for no protection in the static 
case holds (γ ≥ P0), it is optimal not to protect in each of the two periods in the dy-
namic case. However the protective situation in the static model (γ < P0) is decom-
posed in two cases in the dynamic model: to protect in each of the two periods if 

the cost of protection is very low  and not to protect in the first period 

but protect in the second one if the cost of protection takes some intermediate value 

 

3.2. Optimal policy when meteorological information is available

In this subsection the situation in which additional meteorological information is 
introduced is analysed. The optimal policy and the corresponding minimum expense 
for each possibility are obtained and stated in Proposition 2.

Different mathematical expressions for the optimal policy appear depending on  

 or . Therefore the optimal policy is obtained for each of the two 

cases. As P0 ≤ P1, it is possible that   (for example for P0 = 0.4 and P1 = 0.75) 

and it is also possible that  (for example for P0 = 0.4 and P1 = 0.6).

As , the higher the value of P1, the higher the value of  

On the other hand, as  the higher the value of P1, the lower the  

value of P0. Therefore, if P1 is high (which means that the weather forecast or the sea-

sonal forecast system is good), the condition  will hold. 
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Proposition 2

(A) Let us assume that  (high quality of the meteorological information).

The optimal policy for the minimization problem in [2] is3:

i)	 If ,  

and .

ii)	 If ,   

and 

iii)	 If  
 
  

and 

iv)	 If  , 

and 

v)	 If  ,   

and 

3	 It can be noticed that if the cost of protection is very high, the farmer will not protect the harvest whatever the 
forecast probabilities may be. On the other hand, for low enough values the farmer will take the protective action 
whatever the forecast given. However there are intermediate regions where the decision clearly depends on the 
information quality. 
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(B) Let us assume that  (low quality of the meteorological information).

The optimal policy for the minimization problem in [2] is:

i)	 If ,   

and .

ii)	 If ,   

and  

iii)	 If    

and 

iv)	  If ,  

and 

v)	 If ,   

and 

The proof is in the Annex.

Comparison with the static case:
In the static case (one period), the optimal policy when meteorological informa-

tion is available is the following: to protect if γ < P0 to protect when Z = 1 but not to 
protect when Z = 0 if P0 ≤ γ < P1, and not to protect if γ ≥ P1. Therefore, if the cost of 
protection is low it is better to protect, if that cost is high it is better not to protect, and 
if it takes an intermediate value the corresponding optimal decision has to be taken 
depending on the specific forecast.

Again, as in the case of only climatological information, the optimal policy obtained 
in the two-period case is less protective than that corresponding to the static case:
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•	 When the condition for unconditional no protection in the static case holds  
 it is optimal not to protect in each of the two periods in the dynamic case.

•	 When the parameter γ takes an intermediate value (P0 ≤ γ < P1) and the 
meteorological information is of high quality (case A), the optimal policy 
to apply is the one obtained in the static case in each of both periods if 

 but the optimal policy is not to protect in the first period 

and to apply the optimal policy corresponding to the static case only in the 

second period is  

•	 When the parameter γ takes that intermediate value (P0 ≤ γ < P1) but the me-
teorological information is of low quality (case B), the optimal policy is not to 
protect in the first period and to protect in the second period only if a forecast 
of adverse weather has been received for that period (that is, the optimal po-
licy corresponding to the static case, only in the second period).

•	 The protective situation in the static model (γ < P0) is divided in two cases 
in the dynamic model (A): to protect in each of the two periods if the cost of 

protection is very low  and to protect in the second period but to 

protect in the first period only if a forecast of adverse weather has been recei-

ved for that period.
•	 That protective situation in the static model (γ < P0) 

is divided in three cases 
in the dynamic model (B): to protect in each of the two periods if the cost of 

protection is very low , to protect in the second period but to pro-

tect in the first period only if a forecast of adverse weather has been received 

for that period if   and not to protect in the first period but 

to protect in the second period if  

3.3. Economic value of the forecast information

The economic value of the forecast information is defined (Katz and Murphy, 
1997) as:

V = Value of information = Minimum expected expense (wihtout forecasting) -
- Minimum expected expense (whith forecasting)
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The minimum expected expense (without forecasting) corresponds to the value of 
 in Proposition 1, and depends on the parameters γ and Pθ.

The minimum expected expense (with forecasting) corresponds to the value of  
 in Proposition 2, and depends on the parameters γ, P0, P1 and Pθ. As in Section 

2 it has been obtained that  this optimal expense can be written as a 

function of the parameters γ, P1 and Pθ.
Therefore, for γ and L given, the value of information can be written as a function 

of P1 and Pθ. In order to write the value of information as a function of a unique va-

riable, it is usual in the literature to consider  where q  [0,1]  
is what is called the quality of the information.

If we compare the structure of the optimal policies corresponding to the cases 
without forecasting (Proposition 1) and with forecasting (Proposition 2), we observe 
that there is an improvement in the decision, and therefore the economic value of 
the information is positive, in the case in which  holds (except when 

 in the case of low quality of the forecast system), because in this inter-

val the decision is dependent on the value predicted for Z, that is the forecast system 
result. Moreover in this case the value of  given by Proposition 1 is different 
from the corresponding value of 

 
obtained in Proposition 2. In this situation, 

since the farmer’s optimal decision depends on the meteorological information re-
ceived, this information has a positive value in being able to improve the decision 
making process. This value will be derived from the difference between the optimal 
expected expense with climatological information and forecasting systems respecti-
vely available. 

However, there are three situations in which the forecast information has no effect 
on the farmer’s decision making: (i) When γ > P1, the optimal decision is the same 
as in the case of climatological information, the farmer should not protect the har-
vest in either of the two time periods whatever the forecast received, and therefore 
the information value is zero in this case. The optimal expected expense given by 
Proposition 1 is identical to the corresponding expense obtained in Proposition 2:

 This does not depend on the quality of the information, 
so for this kind of situation improvements in the weather forecast systems will not 

revert in an increasing value of the information given. (ii) When , the cost 

for the protection action is so low that the optimal decision will be to protect wha-

tever the information received. The information value is therefore again zero, since 
the forecast does not change the decision of the farmer. In this case,  
in both propositions 1 and 2. (iii) When  in case (B) of low quality of 
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the meteorological information. Observing the optimal policy when meteorological 
information is available when γ varies from 0 to 1 we see a transition from uncondi-
tional protection in both periods (for low values of γ) to different forms of conditional 
protection (for intermediate values of γ) to unconditional no protection in both pe-
riods (for high values of γ). In the case of low quality of the weather forecast system, 

if  it is optimal not to protect in the first period (instead of conditional 

protection) and to protect in the second period (Proposition 2, (B)). In this case, in 
Proposition 1 and Proposition 2 we have that 

 
Therefore in 

this particular case, the forecast is not used and the economic value of the informa-
tion is zero because the difference between the minimum expected expense without 
forecasting and the corresponding expense with forecasting is zero.

4.	 A numerical example

In this section we obtain the optimal policy and the corresponding optimal value of 
the objective function for different values of the parameters. First we consider the case 
in which only climatological information is available and in the second subsection we 
study the case when weather or seasonal forecast information is also available.

4.1. Only climatological information is available

Let us assume that L = 1 (the amount of harvest available at the beginning of the 
time horizon is normalized to 1). As C = γ L we have then that C = γ.

Table 2 summarizes the potential results for the two strategies available in each 
period.

TABLE 2

Expected expenditure for the different strategies in the two periods when no fo-
recast system is available (P means Protect and N means Not to Protect)

Strategies Expected expenditure

Period 1 Period 2 Period 1 Period 2 Total

P P γ γ 2γ

P N γ Pθ γ + Pθ

N P Pθ (1 - Pθ ) γ γ + Pθ (1 - γ)

N N Pθ (1 - Pθ ) Pθ (2 - Pθ ) Pθ 

Source: Own work.
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The optimal strategies and the corresponding optimal expected expenditures for 
different values of γ (γ  {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}) and different values of Pθ 
(Pθ  {0.15, 0.30, 0.45, 0.60, 0.75}) are presented in Table 3.

TABLE 3

Optimal strategies (P: Protect, N: Not to Protect) and optimal expected 
expenditures (in brackets) for different values of the cost of protection (γ) 

and the probability of adverse weather (Pθ)

γ\ Pθ 0.15 0.30 0.45 0.60 0.75

0.1 P,P (0.2) P,P (0.2) P,P (0.2) P,P (0.2) P,P (0.2)

0.2 N,N (0.277) P,P (0.4) P,P (0.4) P,P (0.4) P,P (0.4)

0.3 N,N (0.277) N,N (0.51) P,P (0.6) P,P (0.6) P,P (0.6)

0.4 N,N (0.277) N,N (0.51) N,P (0.67) N,P (0.76) P,P (0.8)

0.5 N,N (0.277) N,N (0.51) N,N (0.697) N,P (0.8) N,P (0.875)

0.6 N,N (0.277) N,N (0.51) N,N (0.697) N,N (0.84) N,P (0.9)

0.7 N,N (0.277) N,N (0.51) N,N (0.697) N,N (0.84) N,P (0.925)

0.8 N,N (0.277) N,N (0.51) N,N (0.697) N,N (0.84) N,N (0.937)

Source: Own work.

As can be seen in Table 3, for a fixed value of Pθ , the higher the cost of protection 
(higher value of γ), the lower the level of protection. On the other hand, for a fixed 
value of γ (a given cost of protection), the higher the probability of adverse weather, 
the higher the level of protection. As has been proved in Section 3, it is never optimal 
to protect in the first period and not to protect in the second period. In Table 3 we can 
also see that whenever the cost of protection (γ) is higher than or equal to the probabi-
lity of adverse weather (Pθ), the optimal strategy is not to protect in any of the periods.

4.2. Meteorological information is available

In this subsection, the optimal expected expenses, when weather forecast infor-
mation is available, are obtained, applying Proposition 2, for different values of the 
cost of protection, as a function of the quality of the information, for a given value of 
Pθ . Also, the corresponding economic values of the forecast information introduced 
in Section 3 are obtained.

Here, as in the previous case, it is assumed that L = 1. Therefore, we have that 
C = γ is the cost of protection, with 0 < γ < 1. All the numerical results are obtained 
for the case in which Pθ = 0.45.
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FIGURE 3

Optimal expected expenses for different values of γ as a function of q 
for Pθ = 0.45 and L = 1
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Source: Own work.

Figure 3 contains the optimal expected expenses for different values of the para-
meter γ, as a function of the quality of the information q, for Pθ = 0.45. The optimal 
expected expenses are obtained for these particular numerical values of the parame-
ters, applying Proposition 2, where each of the optimal expected expenses, in general 
also depends on P0 and P1. 

As  (see footnote 1), each of the optimal expected expenses, for 

these particular values of the parameters, can be written as a function of P1. On the 

other hand, in Section 3 the quality of the information has been defined as  

Therefore, for Pθ = 0.45, we have that P1 = 0.55q + 0.45, and the optimal expected ex-

penses obtained in Proposition 2 can be expressed as a function of q, where 0 ≤ q ≤ 1. 
The meaning of the variable q is more intuitive than of the variable P1. 

The following conclusions can be obtained from Figure 3:
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•	 The higher the cost of protection (γ), the higher the optimal expected expense.
•	 For whatever γ fixed, the optimal expected expense decreases when the qua-

lity of the information increases.
•	 The rate of decrease of the optimal expected expense is higher when the qua-

lity of the information is higher.

Figure 4 contains the economic value of the forecast information V(q), introduced 
in Section 3, for L=1 and Pθ = 0.45, for different values of γ, as a function of the quality 
of the information q. For the calculation of V(q), the optimal expected expenses obtai-
ned from Proposition 2 to represent Figure 3, and also the corresponding expenses, for 
the case of climatological information, obtained from Proposition 1, are needed.

FIGURE 4

Economic value of the forecast information for different values of γ 
as a function of q for Pθ = 0.45 and L=1
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Source: Own work.

The following conclusions can be obtained from Figure 4:

•	 For whatever γ given, the economic value of the forecast information Vγ(q) is 
a non-decreasing function of the quality of the forecast information q.
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•	 For whatever γ given, there exists q*
γ with 0 < q*

γ < 1, such that the form of 
the function Vγ (q) is the following:

where Wγ (q) is strictly increasing and also linear or piecewise linear.

•	 When the quality of the forecast information is very low, the forecast infor-
mation has no economic value. When the quality of the forecast information 
is high, the forecast information has high economic value.

•	 Initially, for low values of the cost of protection γ, the economic value of the 
forecast information is higher when the cost of protection is higher, up to a 
certain level (γ = 0.3 in this case). Beyond that level, the economic value of 
the forecast information is lower when the cost of protection is higher. 

     

5.	 Conclusions

This paper develops analytical solutions for a dynamic cost-loss problem conside-
ring farmer’s decisions about protection against adverse weather events through two 
different periods. We prove that several regions exist in the optimal policy depending 
on the cost for crop protection, the avoided loss and the quality of the information 
available. The optimal expected expense has been calculated for each of the regions 
and the economic value of forecast systems has been discussed. This value is deri-
ved from the difference between the optimal expected expense with climatological 
information and forecasting systems respectively available. The information value 
depends on the information quality, being zero below a quality threshold and taking 
positive values from this threshold and the value increasing with the information 
quality q. However, there are three situations in which the forecast information has 
no effect on the farmer’s decision making: (i) the cost for protection being relatively 
high with respect to the probability of suffering a potential loss, because the farmer 
will not protect the harvest in either of the two seasons whatever the forecast recei-
ved, and therefore the information value is zero. (ii) In the case of the cost for the 
protection action being so low that the optimal decision will be to protect whatever 

the information received. (iii) When 
 
in the case of low quality of the 

weather forecast system. For these three cases, the information value is therefore 
zero, since the forecast does not change the decision of the farmer. This does not 
depend on the quality of the information, so for this kind of situations, improvements 
for the weather or seasonal forecast systems will not revert in an increasing value of 
the information given. Finally, a numerical example is presented in order to illustrate 
all the previous results. The optimal decision of the farmer and the corresponding mi-
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nimum expected expense are obtained for different specific values of the parameters. 
The case in which only climatological information is available and also the case in 
which weather or seasonal forecasts are also available are analized. In this last case, 
the economic value of the meteorological information is also studied. Interesting con-
clusions are obtained and presented for this numerical result, in Section 4.
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Annex: Proofs

Proof of Proposition 1:
Using the Dynamic Programming method for two periods, we start the analysis 

when the second period has finished.
End of the time horizon: L3 being determined, with no contribution to the objec-

tive function: J3
* {L3} = 0.

Second period:
Second period (with L2 determined): the Bellman equation corresponding 

to this period is: , which calculating 

the expected value: , becomes: 

.

Since L2 can take the values 0 or L, we have two possibilities:

J2
* {0} = 0 or J2

* {L} = Min {γL, Pθ L}.

So the contingent decision for the second period would be: α2 (0): Whatever
(The decision in the second period is nonsense since in this case the crop was lost 

in the first period).

That is, if the crop has suffered no damage by the beginning of the second period, 
the optimal decision depends on the cost-loss ratio. If the cost-loss ratio is higher 
(lower) than the probability of suffering the loss, then the better option is not to pro-
tect (protect). This decision should be the same if the farmer has to decide in just one 
period (the decision being static). If the crop was lost in the first period, the decision 
in the second period is irrelevant.

First period:
L1 determined and equal to L.
The Bellman equation corresponding to the first period will be:
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,

which considering the expected value will become:

 
.

Therefore:
If α1 = 0, the expected value will be PθL + (1-Pθ) Min {γL, Pθ L}.
If α1 = 1, the expected value will be γL + Min {γL, Pθ L}.

So, the farmer should protect in the first period if:
PθL + (1-Pθ) Min {γL, Pθ L} > γL + Min {γL, Pθ L}  

Pθ L - Pθ Min {γL, Pθ L} > γL  Pθ - Pθ Min {γ, PθL} > γ

If γ < Pθ to protect will be optimal if Pθ - Pθ γ > γ  γ < .

Therefore, in this case the farmer will protect in both seasons, α1 = 1 and α2 = 1 , if 

 , the expected expense is
 
J1

* {L} = 2γL.

And it will protect just in the second season, that is α1 = 0 and α2 = 1 if 

. In that case, J1
* {L} = Pθ L + γ (1 - Pθ )L

It will never be optimal to protect in the first season and not to protect in the se-

cond, that is, α1 = 1 and α2 = 0, since it is impossible to satisfy  and γ ≥ Pθ 
simultaneously.

If γ ≥ Pθ, to protect will be optimal if Pθ - Pθ
2 > γ, which is impossible, because 

Pθ - Pθ
2 = Pθ (1 - Pθ) < Pθ ≤ γ.

So, in this case, the farmer will not protect either in the first season or in the se-
cond, α1 = 0 and α2 = 0, and the expected expense will be J1

* {L} = Pθ L + (1 - Pθ ) Pθ L.

Proof of Proposition 2:
Using the Dynamic Programming method for two periods, we start the analysis 

when the second period has finished.
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End of the time horizon: L3 being determined, with no contribution to the objec-
tive function: J3

* {L} = 0.
Second period:
Second period (with L2 and Z2 determined): the Bellman equation corresponding 

to this period is: J2
* {L2, Z2} = . The following 

possibilities arise:
If Z2 = 1, taking the expected value, we obtain

 

so α*
2 = 1  γL2 ≤ P1L2  γ ≤ P1.

Therefore:

•	 If γ < P1  α
*
2 = 1 and J2

* {L2,1} = γL2 .

•	 If γ > P1  α
*
2 = 0 and J2

* {L2,1} = P1L2 . 

•	 If γ = P1, both options are indifferent for the farmer.

In general, J2
* {L2,1} = Min{ γL2,P1L2}.

If Z2 = 0, taking the expected value, we obtain: 

so α*
2 = 1  γL2 ≤ P0L2  γ ≤ P0.

Therefore,

•	 If γ < P0  α
*
2 = 1 and J2

* {L2,0} = γL2 .

•	 If γ > P0  α
*
2 = 0 and J2

* {L2,0} = P0L2 . 

•	 If γ = P0, both options are indifferent for the farmer.

In general, J2
* {L2,1} = Min {γL2, P0L2}.

Now if we consider L2 given but Z2 still not known, the optimal value can be ex-
pressed by:

J2
* {L2} =  {J2

* (L2, Z2)} = Pr {Z2 = 1} J2
* {L2, 1} + Pr {Z2 = 0} J2

* {L2, 0} =

= Pθ Min{γL2, P1L2} + (1 - Pθ) Min {γL2, P0 L2}.

And the optimal contingent plan will be:

•	 If γ < P0 , then α*
2 = 1, whatever the value predicted for Z2.

•	 If P0 ≤ γ < P1 , then . 
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•	 If γ ≥ P1, then α*
2 = 0, whatever the value predicted for Z2.

Therefore:

Since L2 can take the values 0 or L, we have that:

α*
2 (0): Whatever (the decision in the second period is nonsense since in this 

case the crop was lost in the first period). Moreover, J*
2 {0} = 0.

J*
2 {L, 1} = Min {γL, P1L}

J*
2 {L, 0} = Min {γL, P0L}

That is also the optimal policy for the static case (just one period).

First period:
With L1 = L and Z1 known, the Bellman equation corresponding to the first period 

will be

We solve the problem for the two possible values of the forecast Z1 = 1 and Z1 = 0.
If Z1 = 1, taking the expected value, we obtain 

Substituting the value for α1 we have the following possibilities for the objective 
function:
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•	 If α1 = 1, the objective function is: γL + J2
* {L}.

•	 If α1 = 0, the objective function is: P1L + J2
* {(1 - P1)L}.

Since in the second period we obtained three possible optimal options depending 
on the value of γ, in order to determine the joint optimal policy for the two considered 
periods we have to analyse for the first period each of the three possibilities which 
appeared in the second period:

a) In the case of γ < P0, we have:

If α1 = 1, the objective function is: γL + γL = 2 γL.

If α1 = 0, the objective function is: P1L + γ(1 - P1)L = P1L + γL - γP1L.

Therefore the optimal decision will be α*
1 = 0  2γL ≥ P1L + γL - γP1L  

γL + γP1L ≥ P1L  γ + γP1 ≥ P1  γ (1 + P1) ≥ P1  γ ≥ .

•	 If .

•	 If .

In general, J1
*
 {L, 1} = Min {2 γL, P1L + γL - γP1L}.

Therefore, distinguishing between the two cases considered in the statement of 
the Proposition, we have:

•	 Assuming that 

•	 Assuming that 

b) In the case of P0 ≤ γ < P1, we have: 

If α1 = 1, the objective function is: γL + Pθ γL + (1 - Pθ) P0 L

If α1 = 0, the objective function is: P1L + Pθ γ (1 - P1) L + (1 - Pθ) Pθ (1 - P1) L,
And therefore, the optimal decision will be:

α*
1 = 1 
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 4

•	 If  and 

•	 If  and
 

In general for this case, we obtain: 

we can distinguish between the two cases considered in the statement of Proposi-
tion 2, in the following way:

•	 Assuming that 

•	 Assuming that 

c) In the case of γ ≥ P1, we have:

If α1 = 1, the objective function is: 

If α1 = 1, the objective function is: ,
and the optimal policy will be:

4
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but this cannot occur if γ ≥ P1, therefore in both cases A and B, 

- If γ ≥ P1 it is α*
1 = 0 and 

If Z1 = 0, taking the expected value we obtain the following expression for the 
optimal expense: 

and substituting the value for α1 we have the following possibilities for the objec-
tive function:

•	 If α1 = 1, the objective function is: γL + J2
* {L}.

•	 If α1 = 0, the objective function is: P0L + J2
* {(1 - P0)L}.

Again we consider the three possible options in the second period:
a) In the case of γ < P0, we have:

•	 If α1 = 1, the objective function is: γL + γL = 2 γL.

•	 If α1 = 0, the objective function is: P0L + γ(1 - P0)L = P0L + γL - γ P0L.

So, the optimal policy will be:

 

In general, 

Therefore, for both cases (A) and (B) we have,
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b) In the case of P0 ≤ γ < P1, we have:

•	 If α1 = 1, the objective function is: γL + PθγL + (1 - Pθ)P0 L.

•	 If α1 = 0, the objective function is: P0L + Pθγ (1 - P0) L + (1 - Pθ) P0(1 - P0)L.

So, the optimal policy will be:

 but it is impossible since γ ≥ P0. 
Therefore, in both cases (A) and (B):

- If P0 ≤ γ < P1 and it is α*
1 = 0 and 

c) In the case of γ ≥ P1, we have:

•	 If α1 = 1, the objective function is: γL + PθP1L + (1 - Pθ)P0 L.

•	 If α1 = 0, the objective function is: P0L + PθP1 (1 - P0) L + (1 - Pθ) P0(1 - P0)L.

so the optimal policy will be:

which is impossible since γ ≥ P1 ≥ P0.
Therefore, for both cases (A) and (B),
If  and .
To calculate the a-priori expected expense, which is the expected result before 

even knowing what the prevision is for the first period, we consider L1 = L given and 
Z1 random variable. The optimal expected expense can be calculated as:

Substituting these expressions in each case and each interval, the optimal policy 
and the corresponding optimal value of the objective function is obtained.


