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Abstract 

The challenge of absorption in room acoustics is finding solutions that perform efficiently 

in most of the acoustic frequency range. While porous or fibrous materials deliver great 

performance in high frequencies, large membrane or elements creating Helmholtz effect 

are necessary to reduce the sound energy of lower frequency sound waves.  

Thus, there is no element or material that can meet the requirements of all the spectrum, 

but a combination of elements can lead to an optimum performance. 

This work aims to model and compare the absorption behavior of different acoustic 

materials combined. The learnings will be applied to a commercial absorption solution 

based on periodic fitting panels.  

The designed Mathematical model is defined based on the modification of existing ones 

(Delany & Bazley and Dunn&Duvern), which are based on air-flow resistance property 

for porous and fibrous materials. The behavior of a low-frequency efficient material is 

added to the model. 

The final model is compared with empirical tests of the materials in plain set up and 

shaped as fitting panels.  

The result is the definition of the most suitable materials for a commercial absorption 

solution panel that is able to reduce the reverberation in all human voice frequency 

range. 

  

 

 

Keywords: Absorbent Metamaterials, Acoustic absorption. Absorptive fitting panels, 
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 Chapter 1. Introduction and Goals 
 

1.1 Introduction 
 

Nowadays acoustics and noise control play an important role in the comfort 

conditions of a living space. Its relevance has been increasing as people activities have 

been developed in crowded spaces.  

A key acoustic challenge that occurs in the crowded areas is reverberation: The 

increase in total noise level in a venue do to the reflections in surfaces of noise created 

within the same venue. It can be very annoying and can easily get worse: The higher is 

the final noise level, the louder people tend to speak. This makes the problem hard to 

solve without corrective actions in the room. 

Features that affect the reverberation are volume and geometry of the room, its 

surfaces and the elements of decoration. To minimize the problem, most efficient solution 

without affecting the design, is placing elements that are able to absorb total or partial 

energy of the sound avoiding the increase of total noise level due to reflections. 

Absorptive corrective elements should be able to mitigate the reverberation problem and 

add value to the space.  

This work aims to model and optimize the absorption behavior of combinations of 

different acoustic materials. The learnings are applied to commercial absorbent solutions 

built by fixing periodic fitting panels with attractive design.  

 

 

1.2 Goals 
 

The goal is to define a mathematical model that can estimate the performance 

of a metamaterial absorber based on porous/fibrous material and a membrane 
element. 
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The findings will be applied on a complex 3D periodic shaped panel. As a result 

of the development, a conclusion about which of the analyzed material is the most 
suitable for this application (shaped absorbent materials). 

This work will speed up developments based on the same technology, reduce the 

time-to-market and help saving time and economic resources. 

 

1.3 Methodology 
 

The followed methodology can be summarized in the following 5 steps:  

Pre-select materials: Understand the parameters that define the acoustic behavior of 

an absorbent and narrow down the materials that meet all necessary features for the 

application. 

Define most accurate Mathematical models for these materials: After understanding the 

key parameters, the most suitable model is chosen based on the nature of the material 

(fibrous or porous). 

Measure key physical property/ies: Measurement of Thickness, Density and Airflow 

resistance in order to define the input parameters of the Mathematical model.  

Calculate the Absorption theoretically and empirically: Obtain the empirical values of 

the Sound absorption and the theoretical calculations. 

Compare model vs real measurement: The model and measurements are adjusted for 

a proper comparison in order to obtain valuable feedback.  
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1.4 Content 
 

The work is organized as follows: 

Chapter 2. Absorption Efficient Material Definition: After a brief introduction of the 

Absorption in room acoustics, the key properties for acoustic absorption are explained 

and most suitable Materials for Acoustic Absorption are summarized in order to define 

the final material selection. 

Chapter 3. Mathematical Model Definition: The most suitable Mathematical model is 

defined for each of the absorbent materials (fibrous and porous). 

Chapter 4. Code Modelling: Code updates over the original methods are presented and 

commented. 

Chapter 5. Empirical Validation: Empirical measurements performed to adjust the 

defined Mathematical model. (Explanation of the measurements of airflow resistivity and 

absorption diffusive field measurements). 

Chapter 6. Results: Results of the measurements are presented and commented. 

Chapter 7. Conclusions and Next Steps: Findings and learnings are commented and 

explained. They will help propose next steps.  
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Chapter 2. Absorption Efficient Material 
Definition 
 

 This chapter summarizes the importance of absorption materials and explains 

which physical features provide proper acoustic properties. This sets the theoretical 

foundation of the selection of the materials used in the study and development: 

 

2.1 Introduction to Absorption in room Acoustics 
 

 As explained formerly, achieving a pleasant environment can be obtained by 

using techniques that use different elements that absorb the sound. Fibrous, porous and 

other kinds of materials have been widely accepted as sound absorptive materials for 

these elements. 

When a porous material is exposed to incident sound waves, the air molecules at the 

surface of the material and within the pores of the material are forced to vibrate. By doing 

so, they get and dissipate some of their original energy. This is because part of the 

energy of the air molecules is converted into heat due to thermal and viscous losses at 

the walls of the interior pores and tunnels within the material. At low frequencies, these 

changes are isothermal, while at high frequencies, they are adiabatic.  

In fibrous materials, much of the energy can also be absorbed by scattering from the 

fibers and by the vibration caused in the individual fibers. The fibers of the material rub 

together under the influence of the sound waves. [1] 

In order to measure and compare the effective attenuation of the energy and reduction 

of the reverberation, a coefficient is defined: Sound Absorption Coefficient. 
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Sound Absorption Coefficient 
The Sound Absorption Coefficient indicates the percentage of sound intensity absorbed 

by the material placed covering a given surface. Values close to 1 show high percentage 

of absorbed energy while lower values imply that most of the energy is reflected back 

again in to the venue. This coefficient is proven to be the reference to compare different 

absorptive elements and materials. 

 

!	 =
	$%
	$&

   or !	 = 1 −
	$)
	$&

 

where  

Ia  = sound intensity absorbed  (W/m2) 

Ii = incident sound intensity (W/m2) 

Ir = reflected sound intensity (W/m2) 

 

 

2.2 Key properties for Acoustic Absorption 
 

Absorption is basically the ability of the material to get the energy from the sound wave 

and damp it transforming it into heat by friction between the fluid (air in most of the cases) 

and the structure of the material. When sound enters these materials, its amplitude is 

decreased by friction as the waves try to move through the tortuous passages. 

A porous absorbing material should contain cavities, channels or interstices so that the 

sound waves are able to enter through them, to interact with the structure as much as 

possible and not get reflected back. On the other side, the material should be able to 

exchange as much mechanical energy as possible into heat. 

Several studies [2][3][4] present models according to Biot’s theory (of poroelastic 

materials consisting of a fluid and a solid phase) to relate behavior of a porous material 

under acoustic excitation as an equivalent fluid with effective a given effective density 

and bulk modulus. Thus, the characteristic impedance and the wave number can be 

defined related to the following properties: 
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• Air-Flow resistance (*) 

• Porosity (+) 

• Tortuosity (!,) 

• Viscosity: viscous characteristic length (Λ) & dynamic viscosity (/) 

• Thermal properties: thermal characteristic length (Λ′) & specific heat ration (1) 

23 = 45 

6 =
4
5

 

4 = 47!, 1 +
+*

9:47!,
+ 1 + 9

4:47/!,<

+<*<Λ<

=
<

 

 

5 =
>71

1 − 1 − 1 1 +
8/

9:@<Λ′<47
+ 1 + 9

:@<Λ′<47
16/

=
<

B= 

Being B2 the Prandtl number. 

 

Air-Flow resistance & Air-Flow Resistivity (C) 
It is the ratio between the pressure drop and the velocity. Low values of airflow resistance 

indicate little resistance for air streaming through the porous material. With little 

resistance and interaction no exchange of energy and sound waves keep their way and 

reflect in all surfaces.  

On the other side, high values show difficulties of movement through the material, which 

results in less interaction. That could mean that most of the pores or fibers inside the 

material are closed. [5] 

Flow resistance: 

* =
∆>
E

 

* =
>F

[H/J]
=

>F · [J]
[H]

=
M/H< · [J]

[H]
=

M · [J]
[HN]

=
6O · [H] · [J]
HN · [J<]

=
6O

H< · [J]
= [PFQR] 
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Air Flow Resistivity: 

P =
*

SJTSJUV
=
∆>
E
·

1
SJTSJUV

 

P =
>F

[H/J]
·
1
[H]

=
>F · [J]
[H<]

=
M/H< · [J]
[H<]

=
M · [J]
[HW]

=
6O · [H] · [J]
HW · [J<]

=
6O

HN · [J]
=

=
[PFQR]
[H]

 

Porosity (X) 
It is the ratio of the void space within the material to its total displacement volume. It can 

be expressed as a function of the volumetric densities of the material, 4Y, and the fibre, 

4Z, as [6]: 

[ = 1 −
4Y
4Z

 

Closed pores are substantially less efficient than open pores in absorbing sound energy. 

On the other hand, “open” pores have a continuous channel of communication with the 

external surface of the material, and they have great influence on the absorption of 

sound.  

Tortuosity (\,) 
It is the elongation of the passage way through the pores, compared to the thickness of 

the material. Tortuosity describes the influence of the internal structure of a material on 

its acoustical properties. Also described as a measure of how far the pores deviate from 

the normal. The measuring methods are very complex and in some cases destructive so 

is not an easy feature to have. 

Viscous Characteristics (]	&	_) 
It is the average macroscopic dimensions of the cells related to viscous losses. It may 

be seen as an average radius of the smaller pores. The viscous characteristic length is 

similar to this ratio weighted by the velocity in the volume and on the surface for an 

inviscid fluid.  

Thermal Characteristics (]′ & `) 
It is the thermal properties of the material. They help convert the the energy of the air 

molecules is converted into heat and dissipate it. As Viscous characteristics, It has little 
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influence on the absorption behaviour. The thermal characteristic length can be obtained 

by a non-acoustical technique, but it is costly and not very accurate. 

 

Some studies point out that porosity and tortuosity determines the high frequency 

behavior sound absorbing porous materials [7]. Others, state that tortuosity also affects 

the location of the quarter-wavelength peaks, whereas porosity and flow resistively affect 

the height and width of the peaks [8].  

Although it has been proved that all have influence on the behavior, interaction of 
sound with a fibrous or open cell material is mainly defined by the flow resistance of 

the material [6].  

For this reason, and the availability of methods to measure the Airflow Resistance the 

mathematical models used in this thesis are based on Airflow resistance methods. 

 

2.3 Most suitable Materials for Acoustic Absorption 
 

Based on their microscopic configurations porous absorbent materials can be classified 

as cellular, fibrous, or granular [9][1]: 

Cellular: Materials structured in interconnected open cells. They are commonly known 

as foams. The airflow resistance per unit thickness of a porous material is proportional 

to the coefficient of shear viscosity of the fluid involved and inversely proportional to the 

square of the characteristic pore size of the material. They show a great performance for 

medium and high frequencies [7]. 

Fibrous: Materials composed of a set of continuous filaments that trap air between them. 

They include various materials such as glass, rock wool or polyester fibers. Its 

performance is defined by the size, orientation and length of the fibers. Absorption 

coefficient increases with a decrease in fiber diameter as thin fibers can move more 

easily than thick fibers on sound waves. Other studies show that structural characteristic 

(characteristic impedance) is inversely proportional to the fiber diameter and to the 

square root of the frequency [10]. They have a good performance for medium and high 

frequencies. 
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Granular: Materials built of macroscopic bodies whose dimensions exceed those of the 

internal voids by many orders of magnitude. They can be relatively rigid (agglomerates) 

or loosely packed assemblages of individual particles (aggregates). Examples of them 

are some kinds of asphalt, porous concrete, granular clays, sands, gravel, and soils. 

They are mainly used in controlling outdoor sound propagation. [1] 

 

 
Figure 1. Type of materials according to the inner structure 

 

Another way of absorbing can be achieved by resonating elements. They consist of a 

mechanical or acoustical oscillation system. When they get excited at their natural 

frequency, they reach their maximum absorption. Most common are the membrane 

absorbers: 

Membranes: Thin materials that can be elastic or semi-rigid elements of relatively large 

size. They help damp low frequency high wavelength (thus energy) sound waves by 

resonating.  

 

2.4 Final Meta-Material selection 
 

In order to provide a good performance for most of the frequency range a combination 

of porous or fibrous material should be used in combination with a membrane. A 

perforated membrane spaced away from a solid backing effectively makes up of a large 
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number of individual Helmholtz resonators [1], each consisting of a neck, comprised of 

the perforated panel and a shared air volume formed by the total volume of air enclosed 

by the panel and its backing. When the sound waves penetrate the perforated panel, the 

friction between the moving molecules of air and the internal surface of the perforations 

dissipates the acoustical energy into heat. The perforations are usually holes or slots, 

and as with a single resonator, porous material is usually included in the airspace to 

introduce damping into the system. 

Given this configuration to maximize the acoustic performance, the materials are 

narrowed down to the ones that are able to meet the application requirements: Fire 

behavior and capability to be and keep a shape.  

As the material is to be placed before the walls where the noise and reflections occur, 

the fire performance must be good enough to stop or at least slow down the propagation 

of the fire. Absorbent elements that are place either in the wall or in the ceiling as 

decorative panels must comply with the building code regulation. 

 

Material Type 
Acoustic 

Performance 
Fire 

Behavior 

Ability 
to 

Shape Low Mid High 

Polyurethane Foam Porous Poor Good Good Poor Good 

Recycled Polyurethane 

Foam 
Porous Poor Good Good Poor Medium 

Melamine Foam Porous Poor Good Good Good Good 

Latex Foam Porous Poor Good Good Poor Medium 

Polyester Fiber Fibrous Poor Good Good Good Good 

Cotton Fiber Fibrous Poor Good Good Poor Poor 

Polyester Fabric Membrane Mid Mid Mid Good Medium 

Table 1. Material Characteristics 

According to the fire behavior and ability to shape, the most efficient acoustic materials 

are narrowed down to one fibrous and one porous material, that are combined with a 

membrane: 

 

Porous: Melamine Foam 
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Foam made out of melamine resin. Small sized open porous material with good fire 

performance properties. Its characteristic feature is its three-dimensional network 

structure consisting of small and shaped cell network. It has very low density and 

standard elasticity. Its high nitrogen content makes it highly flame-resistant without the 

need to use fire retardants. It is a thermoset so it would not melt or produce burning 

droplets when it comes into contact with flames. 

 
Figure 2. Melamine Foam Structure 

Feature Value 

Density 11 kg/m3 

Thickness 50mm 

Pore Size 10 - 1000 μm 

 

Fibrous: Polyester Fiber 
Material made out of recycled Polyester fibers. Small sized long fibers material with good 

fire performance properties. It has a relatively low density and open structure to help 

absorb at mid frequencies.  
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Figure 3. Polyester Fiber Structure 

 

Feature Value 

Density 18-20 kg/m3 

Thickness 50 mm 

Fiber Size 12-50 um 

Fiber Length 45 mm 

 

 

 

Membrane: Fabric 
Material made out of thick polyester fire-proof fibers. The threads are arranged in a Plain 

Wave. Thick open fabric with limited flexibility, but enough to be shaped. It acts as a Low-

pass filter at the same time that leaves the air to go through the material. Airflow 

permeability is key to let the absorbent (either porous or fibrous) interact with the wave. 
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Figure 4. Fabric Structure 

 

Feature Value 

Weight (m2) 0,45 kg/m2 

Weight (m2) 225 kg/m3 

Thickness 0,7-8 mm 

Gap between Threads 0,3-0,4 um 

 

 

0.4	mm 

0.8	mm 
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Chapter 3. Mathematical Model Definition 
 

The models defined in the time-domain are useful for studying transient behavior. 

However, models intended to describe the acoustic behavior of materials as a function 

of frequency are more common as they are more useful and practical for absorption in 

room acoustics.  

Frequency models are based on obtaining the diffuse field absorption coefficient from 

the normal absorption coefficient [11]: 

!a = 1 −
2bcbdUJe − 1
2bcbdUJe + 1

<

sin 2e je

k
<

7

 

Being 2bcb the normalized closing impedance to the air (27 = 47d7). 

The normal sound absorption coefficient can be obtained from the closing impedance as 

[12]: 

 

! =
4 · 2bcb · 47d7

2bcb < + 2 · 47d72bcb + 47d7 < 

 

In our case, as the piece has different layers, each of them acting as different element, 

a combined model must be used. In order to obtain the Closing Impedance, the behavior 

of the textile and the inner homogeneous isotropic material must be considered 

separately: 

lmnm = 2bop + 2qrY 

1. In order to model the textile, model based on perforated membranes must be used. 

Using a Mixed Mass-Resistance element model (perforated Sheet) [13] the Impedance 

of the textile can be defined as: 
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Figure 5. Fabric Modelling 

 

2bop = Pbop + 9stbop 

Pbop =
1
uF<

47 2:v
w
F
+ 2 1 −

xq
xy

 

tbop =
47
uF<

w + 1.7F 1 −
F
|

 

where:  

F is the radius of the holes 

| is the distance between holes 

xq = uF< is the area of the holes 

xy = uF< is the area of the square of each hole 

w is the thickness of the fabric 

v is kinematic coefficient of viscosity 

In the case of this study, textile threads will define the area that surrounds the hole, 

while 2a is the gap between the threads. The thickness of the fabric will define the 

thickness of the perforated membrane, and the kinematic coefficient of viscosity of the 

air is v = 1.56 · 10B�H</J. 

2.Sound propagation through a homogeneous and isotropic material in the frequency 

domain is determined by two complex values:  

I. The complex propagation constant (Γ): 

Γ = ! + 9Å 

II. Characteristic Wave Impedance (Z):  
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Z = P + 9É 

Given so, the closing impedance is: 

2qrY = 2 cosh Γ · j = 	P + 9É cosh ! + 9Å · j  

 

Where j is the thickness of the inner homogeneous isotropic material. 

Models based on the absorbent materials are used to predict the interaction of 

propagation and sound absorption inside the materials[9]. The following methods allow 

us to obtain both the characteristic and propagation constant of the medium based on 

the physical parameters of the material[14]:  

Delany & Bazley: For fibrous absorbent materials. This model provides good 

estimations for characteristic impedance and propagation constant for frequencies 

above 250 Hz, but prediction has significant errors at lower frequencies. Bies & Hansen: 

extended the lower and upper frequency ranges of validity of this model. 

[9][15][16][12][17] 

Dunn & Davern: Suitable for foams. It was observed that the model proposed by Dunn 

and Davern presents inaccurate predictions of the sound absorption coefficient as the 

material density is increased. The predicted sound absorption coefficient is lower than 

the measured value in the low frequency range [9]. Fortunately for this study, the porous 

material has very low density values. 

Pompoli & Garai: Empirical model for textile fibers. It is concluded that the new model 

can predict the basic acoustic properties of common polyester fiber materials with any 

practical combination of thickness and density [18].  

Voronina: Characterize sound absorbing highly porous (porosity is greater than 0.7) 

materials from physical parameters such as tortuosity and structure factor associated 

either with the fibers or pores layout. This model enables calculation of acoustic 

parameters, impedance and sound absorption coefficient in terms of a structural 

characteristic which gives a quantitative estimation of acoustic energy losses in fibrous 

media. [10]  

Kenaf Proposal: Proposed method to estimate the behavior of a fibrous bio-material: 

the kenaf. [19] 
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PET Proposal: Empirical method for Polyester (PET) wool. The values of the 

coefficient back engineered from measured absorption coefficient in normal incidence 

[15]. 

The methods based on the air flow resistivity, which are proved to be more accurate for 

the porous and fibrous materials in a wider range of frequencies, are based on the 

following formulas and coefficients [16]: 

! =
2uá
d7

à�
47 · á
V

Bâä

 

Å =
2uá
d7

1 + àã
47 · á
V

Bâå

 

P = 47d7 1 + à=
47 · á
V

Bâç

 

É = −47d7 àN
47 · á
V

Bâé

 

Where r is the airflow resistance per length unit (resistivity) of the homogeneous and 

isotropic absorbent material. 

The European norm EN 12354:2003 [11] recommends the use these formulas for the 

prediction of the sound absorption of materials. Delany and Bazley [16][20]model in the 

case of materials made up of fibers whereas the model by Dunn and Davern is the most 

suitable for foams. [21] 

For each of the described methods, the coefficients are: 

 Method  C1 C2 C3 C4 C5 C6 C7 C8 
Delany & Bazley  0,057 0,754 0,087 0,732 0,189 0,595 0,098 0,700 
Dunn & Davern   0,114 0,369 0,099 0,758 0,168 0,715 0,136 0,491 

Pompoli & Garai  0,078 0,623 0,074 0,660 0,159 0,571 0,121 0,53 
Kenaf Proposal  0,046 0,255 0,112 0,967 0,060 1,256 0,039 0,541 

PET Proposal  0,078 0,648 0,082 0,602 0,156 0,629 0,108 0,506 
Table 2. Model coeficients 
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According to ISO10534 and assuming no sound propagation parallel to the surface, the 

Sound Absorption coefficient  in diffusive field can be obtained from the Normalized 

Impedance as [22]:  

 

 

!èb = 8 · 	
ê′

êë< + êëë<
1 −

ê′
ê′< + ê′<

· ln 1 + 2ê′ + ê′< + ê′′< +
1
ê′′
·
ê′< − ê′′<

ê′< + ê′′<
· tanB=

ê′′
1 + ê′

 

where 

ê′ = PS 2bcb  

ê′′ = ïH 2bcb  

 

 

As the diffusive field of the chamber is not ideal. A correction for the theoretical results 

must be done in order to be able to compare both empirical and theoretical results. 

According to the the Eyring’s formula [23]: 

!ñó = − ln 1 − ! = ! +
!<

2
+ ⋯+

!ô

ö
 

The theoretical absorption coefficient can be adjusted specifically for this particular 

reverberation chamber as [24]:� 

!ñó = ! +
!<

8
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Chapter 4. Code Modelling  
 

The developed mathematical method is implemented in MATLAB code. Explain and 

comment the Matlab code.  

It is divided in 5 parts: 

1. Parameters and Absorbent method (Delany & Bazley or Dunn&Davern) 

definition: 

%% Parameter Definition 
rho=1.2;  %rho= Density (m/s) 
c0=343;   %c0= Speed of Sound in Air at 20ºC (m/s) 
f=[0:5000];   %f= Frequency vector 
  
%% Material Features Definition 
r=9.8e3;  % Air-flow Resistivity (Rayls/m) 
d=0.05;   % Espesor del absorbente (m). Espesor total - espesor del tejido 
 
%% Membrane Material Definition 
mu=1,56e-5;             % Kinematic coefficient of viscosity of the air (m2/s) 
a=0.4;                  % Fabric gap between threads (mm) 
b=0.8;                  % Distance between thread gaps (mm) 
Ah=pi()*a.^2;           % Gap area (mm2) 
Ab=b.^2;                % surrounding thread Area (mm2) 
t=2;                    % Espesor del tejido (mm) 
 
%% Method Selection 
Met='5';% Metodo a utilizar: 
%   1.Delany & Bazley (Fibrous materials f>250Hz) 
%   2.Pompoly & Garai (Textile fibres) 
%   3.Kenaf (fibrous bio-material) 
%   4.PET  
%   5.Dunn & Davern (foams) 
% ---------------------Model------------------------ 
switch Met 
    case{'1'} 
C1=0.057;   C2=0.754;   C3=0.087;   C4=0.732;   C5=0.189;   C6=0.595;   C7=0.098;   C8=0.700; 
    case{'2'} 
C1=0.078;   C2=0.623;   C3=0.074;   C4=0.66;    C5=0.159;   C6=0.571;   C7=0.121;   C8=0.53; 
    case{'3'} 
C1=0.046;   C2=0.255;   C3=0.112;   C4=0.967;   C5=0.06;    C6=1.256;   C7=0.039;   C8=0.541; 
    case{'4'} 
C1=0.078;   C2=0.648;   C3=0.082;   C4=0.602;   C5=0.156;   C6=0.629;   C7=0.108;   C8=0.506; 
    case{'5'} 
C1=0.114;   C2=0.369;   C3=0.099;   C4=0.758;   C5=0.168;   C6=0.715;   C7=0.136;   C8=0.491; 
    otherwise 
C1=0;   C2=0;   C3=0;   C4=0;   C5=0.01;    C6=0.01;    C7=0.01;    C8=0.01; 
end 
 
 

2. Impedance Calculation based on the method (Propagation constant and 

Characteristic Impedance): 

%% Absorbent Impedance 
Zb=rho*c0*((1+C1*(rho*f/r).^(-C2))-(j*C3*(rho*f/r).^(-C4)));  
Gamma=(j*2*pi()*f/c0).*(1+(C7*(rho*f/r).^(-C8))-j*C5*(rho*f/r).^(-C6)); 
Zab=Zb.*coth(Gamma.*d); 
 
%% Membrane Impedance 
Rftj=rho*sqrt(2*2*pi()*f*mu)*(t/a+2*(1-Ah/Ab));  
Xtj=(t+1.7*a*(1-a/b))/1e3;  
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Ztj=Rftj+i.*2.*pi().*Xtj.*f; 
 
%% Total Impedance 
Ztot=Zab+Ztj; 
Rtot=real(Ztot); 
Itot=imag(Ztot); 
 

3. Standard Absorption Coefficient in diffuse field (Vigran or London): 

%% Standard Absorption Coefficient (Alfa) London Method ISO10534-2:2002  
  
ZtotNor=Ztot./(rho*c0); 
R=real(ZtotNor); 
X=imag(ZtotNor); 
C1=R./(R.^2+X.^2); 
C2=(R.^2-X.^2)./(R.^2+X.^2); 
alfast1=(8*C1)-((8*C1.^2).*log(1+2*R+R.^2+X.^2))+(((8*C1.*C2)./X).*atan(X./(1+R))); 
 

4. Sabine Correction 

%% Standard Absorption Coefficient (Alfa) London Method ISO10534-2:2002  
alfast1cc=alfast1+alfast1.^2/8; 
 

5. Representation 

fs=[100,125,160,200,250,315,400,500,630,800,1000,1250,1600,2000,2500,3150,4000,5000]' 
AL=alfast1cc(fs); 
APET=[0.1,0.24,0.3,0.37,0.57,0.67,0.89,0.96,1.05,1.05,1.01,1,0.95,0.91,0.86,0.84,0.83,0.85];  
AEM=[0.05,0.16,0.13,0.27,0.38,0.48,0.68,0.8,0.85,0.95,1,1.03,1.02,0.94,0.89,0.85,0.83,0.84]; 
semilogx(fs,AL,'r',fs,APET,'b'); 
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Chapter 5. Empirical Validation 
 

In order to validate the model, empirical measurements are required in order to adjust 

and confirm the model: 

Measurements of Airflow Resistance/Resistivity in the Kundt Tube according to 

ISO10534 of all 3 materials: 

Melamine Foam  

 Polyester Fiber 

Fabric 

Measurements of Absorption Coefficient in Reverberation Chamber according to ISO354 

of: 

 Melamine Foam + Fabric  

 Polyester Fiber + Fabric  

 Melamine Foam + Fabric in Shaped fitting panels 

 Polyester Fiber + Fabric in Shaped fitting panels 

 

Air Flow Resistance in Kundt Tube Test 
 

As Airflow resistance is the key parameter that defines the behavior of the material, 

measures of the resistance of all different materials that are involved in the construction 

of the piece are performed. The most convenient and accurate method to do it is the 

Ingard and Dear [6], as it presents closer to the values the ISO standard and less 

standard deviation[5]. In this method, a sample of the material of thickness is placed in 

the Kundt tube (closed cylindrical tube with a rigid termination in one end and a 

loudspeaker on the other end).  The tube with the sample should will be excited with a 

pure tone that meets the condition of l>>1.7 times the Diameter of the tube and total 

distance from the sample to the rigid termination must be and odd number of quarter 

wavelength: 

 

õ ≫ 1.7ù 
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û + j = 2ö + 1 õ
4 

What Ingard & Dear method introduces is the possibility to excite the tube with a 

broadband stationary random noise, using the absolute value of the imaginary part of 

the transfer function between the microphone signals: 

* = 4d ïH
T=
T<

 

Measuring in tube: 

 
Figure 6. Kundt Tube Set-up 

 

 

Figure 7. Airflow Resistance measurement Set-up 

p1 p2 

Rigid termination Sample 
Speaker 

d L 
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Material used: 

• Loudspeaker Beyma CP 800Ti 

• 2 Freefield Microphone B&J4190 

• Methacrylate Impedance Tube 

• Acquisition System B&J. 

 

 

Figure 8. Impedance Tube 

 

 

Samples to be tested: 

 

a. Melamine Foam 

 

b. Poliester Fiber 

 

c. Fabric 

   

Figure 9. Material Samples  
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Reverberation Chamber test (under ISO-354 norm) 
 

The ISO 354 norm was defined in order to standardize methods and conditions, 

delivering an absorption value regardless of the incident angle, and the position of the 

source in an enclosure. Reverberating sound will depend on the features of the surfaces 

of the enclosure, so an even distribution of the sound waves must be considered. Sound 

intensity should also be independent from the position so diffuse field must be achieved 

to perform the measurements. 

Final sound absorption coefficient of the absorbent surface will be obtained from the 

equivalent absorption area: 

! =
xü
†

 

where S is the real surface of material and the equivalent absorption area is the 

incremental absorption equivalent area between the empty chamber	x= and the chamber 

with the absorption material x<: 

xü = x< − x= = 55,3 · £
1

d<§<
−

1
d=§=

− 4£ H< − H=  

being m, the sound attenuation coefficient that depends on the humidity and temperature 

conditions: 

H =
!

10 · log	 S
 

and T, the reverberation time of each frequency. It can be measured by three different 

ways: 

Direct: Generating an impulsive source able to excite the whole frequency range. 

Indirect: Generating special sound signals that can provide an impulsive response after 

post-processing, such tone swap or pseudo-random noise.  

We performed the indirect measurement through pseudo-random noise as it requires 

less signal-to-noise ratio. 
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Material used: 

• Omnidirectional Loudspeaker Omni Power 4296 

• Power Amplifier B&J 2716. 

• Prepolarized 1 Freefield Microphone B&J4189 

• Sound Level Meter B&J. 

• Anemometer Testo 410-2. 

 

a.Amplifier and Sound Level Meter 

 

c.Omnidirectional Loudspeaker 

 

b.Anemometer and Thermometer 

 

d.Microphone   

Figure 10. Testing Equipment 
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Figure 11. Empty Chamber set-up 

 

Figure 12. Melamine Foam + Fabric set up 
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Figure 13. Polyester Fiber + Fabric set up  

 

Figure 14. Melamine Foam + Fabric in Shaped fitting panels set up 
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Figure 15. Polyester Fiber + Fabric in Shaped fitting panels set up 
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Chapter 6. Results 
 

6.1. Results of the Airflow Resistivity: 

Sample Resistivity  
(Pa·s/m2) Std Dev 

Polyester Fibre 1.877 103 

Melamine Foam 8.763 149 
Table 3. Air-flow resistance results 
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6.2. Results of the Sound Absorption Coefficient: 

 6.2.1. Absorption Coefficient of Melamine Foam + Fabric: Empirical vs Model 

f (Hz) Melamine Foam 
Model 

Melamine Foam 
Measured 

100 Hz  0,09   0,05  
125 Hz  0,16   0,16  
160 Hz  0,25   0,13  
200 Hz  0,36   0,27  
250 Hz  0,49   0,38  
315 Hz  0,63   0,48  
400 Hz  0,76   0,68  
500 Hz  0,86   0,80  
630 Hz  0,94   0,85  
800 Hz  0,98   0,95  

1000 Hz  0,99   1,00  
1250 Hz  0,98   1,03  
1600 Hz  0,95   1,02  
2000 Hz  0,89   0,94  
2500 Hz  0,83   0,89  
3150 Hz  0,82   0,85  
4000 Hz  0,83   0,83  
5000 Hz  0,78   0,84  

Table 4. Absorption Coefficients Melamine Foam 

 
Figure 16. Absorption Coefficient Melamine Foam  
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6.2.2. Absorption Coefficient of Polyester Fiber + Fabric: Empirical vs Model 

f (Hz) PET Model PET Measured 

100 Hz  0,13   0,10  
125 Hz  0,18   0,24  
160 Hz  0,25   0,30  
200 Hz  0,34   0,37  
250 Hz  0,44   0,57  
315 Hz  0,57   0,67  
400 Hz  0,70   0,89  
500 Hz  0,82   0,96  
630 Hz  0,91   1,05  
800 Hz  0,97   1,05  

1000 Hz  1,00   1,01  
1250 Hz  1,00   1,00  
1600 Hz  0,97   0,95  
2000 Hz  0,93   0,91  
2500 Hz  0,84   0,86  
3150 Hz  0,68   0,84  
4000 Hz  0,79   0,83  
5000 Hz  0,78   0,85  

Table 5. Absorption Coefficients PET Fiber 

 
Figure 17. Absorption Coefficient PET Fiber 
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6.2.3. Absorption Coefficient of Materials: Melamine Foam vs PET 

f (Hz) Melamine Foam 
Measured 

PET  
Measured 

100  0,05   0,10  
125  0,16   0,24  
160  0,13   0,30  
200  0,27   0,37  
250  0,38   0,57  
315  0,48   0,67  
400  0,68   0,89  
500  0,80   0,96  
630  0,85   1,05  
800  0,95   1,05  

1000  1,00   1,01  
1250  1,03   1,00  
1600  1,02   0,95  
2000  0,94   0,91  
2500  0,89   0,86  
3150  0,85   0,84  
4000  0,83   0,83  
5000  0,84   0,85  

Table 5. Absorption Coefficient Melamine Foam vs PET Fiber 

 
Figure 18. Absorption Coefficient Melamine Foam vs PET Fiber 
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6.2.4. Absorption Coefficient of Melamine Foam: Plain vs Shaped 

f (Hz) ⍺  Material ⍺  Panels 
100  0,07   0,08  
125  0,14   0,16  
160  0,13   0,18  
200  0,25   0,27  
250  0,41   0,42  
315  0,51   0,58  
400  0,67   0,82  
500  0,79   1,02  
630  0,88   1,13  
800  0,97   1,14  

1000  1,02   1,14  
1250  1,04   1,12  
1600  1,00   1,09  
2000  0,96   1,08  
2500  0,90   1,08  
3150  0,86   1,04  
4000  0,83   1,04  
5000  0,83   1,02  

Table 6. Absorption Coefficient Melamine Foam Plain vs Shaped 

 
Figure 19. Absorption Coefficient Melamine Foam Plain vs Shaped 
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6.2.5. Absorption Coefficient of PET: Plain vs Shaped 

f (Hz) ⍺  Material ⍺  Panels 
100  0,10   0,06  
125  0,24   0,14  
160  0,30   0,14  
200  0,37   0,20  
250  0,57   0,40  
315  0,67   0,55  
400  0,89   0,76  
500  0,96   0,95  
630  1,05   1,05  
800  1,05   1,08  

1000  1,01   1,10  
1250  1,00   1,08  
1600  0,95   1,10  
2000  0,91   1,09  
2500  0,86   1,06  
3150  0,84   1,07  
4000  0,83   1,03  
5000  0,85   1,03  

Table 7. Absorption Coefficient PET Fiber Plain vs Shaped 

 
Figure 20. Absorption Coefficient PET Fiber Plain vs Shaped 
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Figure 19. Absorption Coefficient Melamine Foam and PET Fiber Plain vs Shaped 
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Chapter 7. Conclusions and Next Steps 

 

7.1 Conclusions 
 

Model: 

The study shows that the model estimates reasonably well the behaviour of the 

absorbent with the frequency. It can be also stated that Airflow resistance is a valid 

parameter upon which base absorbent material modelling. 

The model, for higher frequencies, delivers conservatives values for both materials. For 

low frequencies model values are conservative for fibrous absorbent while optimistic for 

porous. This could be due to the imperfections (airgaps between the textile and the 

absorbent) on one side. On the other side, is important to consider that the model does 

not include the effects of the elasticity of the material nor the textile.  

Thus, it is clear that further tests with different elasticity materials must be perform in 

order to identify the impact on the performance. 

Material: 

Regarding the performance of the two materials, better results can be found for the 

Polyester Fiber Material (PET) for low and mid frequencies (f < 1KHz). Achieving up to 

20% more energy absorbed (300Hz -400Hz). Presumably due to the higher elasticity of 

the PET compared to the Melamine Foam (MF). It might allow the textile to vibrate 

easily and act as a real vibrating membrane. For high frequencies, both materials 

perform similarly, dropping their absorption progressively with frequency from 1 down 

to 0.8. It shows that theoretically PET would be a better suited material for this 

purpose. 

Shaped fitting panels: 

The results of the fitting panel configuration show a performance dominated by the 

geometry for both materials. In the case of the PET, the low frequency performance 

has got worse. It can be due to the shaping process, which causes the compression of 

the PET. With lower thickness, higher density and thus higher airflow resistance, the 

performance is similar to the fabric. This might be causing impedances coupling. This 
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together with an increase of the rigidity can be causing the worsening of the 

performance at low frequencies. For high frequencies (f > 900Hz) shaping increases 

the absorption performance.   

The MF, on the other side, undergoes a significant improvement. Shaped panel 

outperforms plain material for all frequency range. For low frequencies, the resonance 

frequencies of the shape (600Hz and 1000Hz) define the behaviour of the absorbent. 

For high frequencies, there is also an improvement, as occurred with the PET, caused 

by diffusion.  

Finally, it has been demonstrated that the interface of different materials improves the 

performance of the final solution if the right combination of features (low and high 

frequencies) is made. According to the theoretical and empirical results, both 

technologies are equally suitable for the purpose. Thus, the decision should be made 

according to other considerations (fire resistance and cost). 
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7.2 Next Steps 
 

Further work is necessary to understand the impact of the elasticity of the vibrating 

membrane in the model before it can be adjusted. In order to do so, similar empirical 

tests must be done with different elasticity (keeping thread size and pattern).  

On the other side, once the model is adjusted, interesting work lies ahead trying to 

model the behavior of the sound wave inside the panel. It can be demonstrated that the 

behavior depends on the shape and fundamental frequency of it, but a model would 

help to estimate the effect of diffusion/scattering. In plane configuration is not that 

relevant, but it is in shaped fitting panels.  
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