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ABSTRACT 

 

The railways are a priority transport mode for the European Union given their safety record 

and environmental sustainability. Therefore it is important to have quantitative models 

available which allow passenger demand for rail travel to be simulated for planning purposes 

and to evaluate different policies. The aim of this article is to specify and estimate trip 

distribution models between railway stations by considering the most influential demand 

variables. Two types of models were estimated: Poisson regression and gravity. The input 

data were the ticket sales on a regional line in Cantabria (Spain) which were provided by the 

Spanish railway infrastructure administrator (ADIF – RAM). The models have also 

considered the possible existence of spatial effects between train stations. The results show 

that the models have a good fit to the available data, especial the gravity models constrained 

by origins and destinations. Furthermore, the gravity models which considered the existence 

of spatial effects between stations had a significantly better fit than the Poisson models and 

the gravity models that did not consider this phenomenon. The proposed models have 

therefore been shown to be good support tools for decision making in the field of railway 

planning. 

 

1. INTRODUCTION 

 

The European Commission transport roadmap (European Commission, 2011) gives priority 

to the railways because of their proven safety and environmental sustainability compared to 

road transport. One of the Commission’s stated future goals is the creation of a unique 

European railway space, the introduction of new technological solutions and the construction 

of new intelligently financed and costed infrastructure.  

 

In order to reach these goals, the European Commission has highlighted the need to evaluate 

transport projects to guarantee their social profitability and the added value they give to the 
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EU. This evaluation needs to be supported by the available evidence and transport demand 

models which allow user behaviour to be accurately simulated.  

 

Among the group of transport demand models are trip distribution models which allow the 

interaction between origin and destination points to be simulated. The most well-known and 

widely used distribution model has traditionally been the gravity model which, based on the 

analogy with Newtonian physics, has later been theorized from a probabilistic perspective 

as a maximum entropy model (Wilson and Bennett, 1985). The state of the art provides many 

calibration techniques for the parameters of both origin and destination as well as for 

impedance (Ortúzar and Willumsen, 2011). Other researchers have insisted on the need to 

use Poisson type regression models given the discrete and positive nature of the journeys 

(Flowerdew and Aitkin, 1982). 

 

This article proposes the estimation of trip distribution models based on the boarding and 

alighting data of passengers on a regional railway line. The data used has been obtained from 

ticket sales on the line provided by the Spanish railway infrastructure administrator (ADIF 

– RAM). The models were estimated based on two methods: a Poisson type nonlinear 

regression without any kind of constraint and a Wilson type gravity model doubly 

constrained to origins and destinations. Both types of models are compared by considering 

their goodness of fit with the data, in order to determine if the greater number of parameters 

estimated in the gravity models really does provide greater significance. The models have 

also been estimated with additional variables to consider the existence of spatial effects 

between stations to determine if these effects are significant and increase the explanatory 

capability of the models. The results show that gravity models restricted to origins and 

destinations with additional variables which consider spatial effects like contiguity between 

stations have a significantly better goodness of fit. 

 

A brief review of the state of the art in the field of trip distribution models and distribution 

models applied to the railways is presented in the following section. The methodology 

followed is summarised in Section 3 concentrating on Poisson type regression models and 

doubly constrained gravity models. Section 4 provides a description of the study area and 

presents and discusses the results obtained by the models. Finally, the conclusions drawn are 

summarised in Section 5.  

 

 

2. STATE OF THE ART ABOUT TRIP DISTRIBUTION MODELS 

 

Spatial interaction models were applied very early on in multiple fields of study for 

simulating the effects of spatial interaction such as the movement of people between urban 

areas (Ravenstein, 1885) or commercial flows (Huff, 1959). The first models proposed were 

based on an analogy with Newtonian gravity theory with the sizes of origins and destinations 

and the distances between them as explanatory variables. This type of model has a 
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reasonably good fit to the data although they lack theoretical justification. The theoretical 

base was provided by Wilson (1970) who showed the possibility of deriving  a great number 

of models from the principal of maximum entropy by which the most probable distribution 

matrix is the one which maximises the microstates of a given macrostate (Fotheringham et 

al., 2000). Other authors have later insisted on the convenience of using Poisson type non 

lineal regression models given their greater adaptability to the trip distribution phenomenon 

(Flowerdew and Aitkin, 1982). 

 

In the field of trip distribution models relating specifically to railways, these models allow 

different planning alternatives to be evaluated. The currently available demand prediction 

models can be classified into two large groups depending on the data used: models based on 

aggregate data which use ticket sales information and models based on surveys which use 

disaggregate data on an individual level.   

 

Among the aggregate models based on ticket sales, Wardman (2006) proposed an 

unrestricted distribution model using time series data for the United Kingdom in the 1990s. 

The estimated model presented variables corresponding to the characteristics of the origin 

such as the population, GDP and the rate of motorisation, as well as to the journey such as 

the overall cost. The author found that GDP was the most important factor in explaining the 

growth of journeys, even though in a complete four stage model these types of variables are 

usually introduced into trip generation models. In a similar work applied to railway journeys 

to and from airports, Lythgoe and Wardman (2002) estimated a demand model based on 

linear regression which calculated elasticities for different variables like GDP, the fare or 

journey time. 

 

Where disaggregate data is available, models based on user surveys allow researchers to 

simulate individual choices considering personal characteristics (age, gender, income, etc.) 

and transport service characteristics as well as origins and destinations (Ben-Akiva and 

Lerman, 1985). However, this type of disaggregate model based on random utility theory 

require greater effort during the data collection phase because they are generally estimated 

using fewer data than models based on ticket sales. 

 

3. METHODOLOGY 

 

Different authors have highlighted the specification problems involved in using a multiple 

linear regression model (MLR) to estimate the generation and distribution of journeys in a 

study area (Flowerdew and Lovett, 1988; Thill and Kim, 2005). The dependent variable in 

distribution models is of a discrete nature, whereas the MLR model assumes a continuous 

distribution. Therefore, it is desirable to use a model specified with a qualitative dependent 

variable such as the Poisson regression model (Gujarati and Porter, 2009). This model takes 

the form: 
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The Poisson regression assumes that each dependent variable iY  is extracted from a Poisson 

type discrete distribution with the distribution parameter i , which is logarithmically linked 

to a linear combination of explanatory variables: 

 

 1 2 2 3 3ln( )i i i k kiu X X X        (2) 

 

Where: 

k  are parameters to be estimated 

kiX are the independent variables  

 

The Poisson model cannot be made linear, meaning that the parameters cannot be estimated 

using Ordinary least Squares (OLS). Various alternative estimation methods such as 

maximum likelihood (Greene, 2003) or reweighted least squares have been proposed 

producing both equivalent results (Green, 1984).  

 

A particular case of the Poisson model appears when all the independent variables are 

specified as dummy variables. In this case the Poisson model is equivalent to a log-linear 

model as both the dependent variable and the independent are qualitative. Log-linear models 

are more frequently used for modelling contingency tables (Agresti and Kateri, 2011). This 

type of model can be specified as totally saturated, in other words, with a perfect fit to the 

data as a parameter is specified for each observation. Willekens (1983) has shown how log-

linear models are equivalent to the gravity models if they are conveniently scaled, usually 

by equalling the equilibrium factors of the first origin and destination to 1. 

 

The fit of a Poisson model can be evaluated through different indicators as the Akaike 

information criteria (AIC), the log–likelihood or through the deviation of the model 

estimated with respect to the totally saturated model, in other words, using a likelihood 

reason test (LR) of the following kind: 

 

 0
ˆ ˆ2 ( ) ( )sLR L L    

 
 (3) 

Where: 

0
ˆ( )L  is the log – likelihood of the estimated model 

ˆ( )sL   is the log – likelihood of the saturated model 

 

This type of test asymptotically distributes 
2 with r degrees of freedom, where r in this case 

is the difference between the number of observations and the number of parameters 
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estimated in the non-saturated model. The LR test can also be used to compare the fit 

between general models and their constrained versions with fewer parameters. 

 

A trip distribution model estimated using a Poisson regression is usually specified with three 

variables: a variable of the trips produced by the origin, a variable of trips attracted by the 

destination and an impedance variable between both zones, where the variables of the 

produced and attracted trips are usually extracted from a trip generation model (Hall, 2012). 

Therefore, this type of model would not present any kind of constraint although it could have 

problems of spatial autocorrelation in the origins or destinations which would be convenient 

to address to guarantee the reliability of the estimated parameters (Griffith, 2007). One of 

the techniques which is available for addressing this spatial autocorrelation in nonlinear 

models is Spatial Filtering (Tiefelsdorf and Griffith, 2007) where the spatial effects are 

separated from the rest of the non-spatial effects, thereby eliminating the possible correlation 

present in a neighbourhood matrix.  

 

The Poisson regression can also be specified with constraints on the origins or destinations 

by estimating a different parameter for each zone. The case of a doubly constrained model 

with an impedance variable leads to the well-known gravity distribution model derived from 

the principle of maximum entropy (Wilson, 1970): 

 

 exp( )ij i i j j ijT AO B D c   (4) 

Where: 

Tij are the trips between zones i and j 

Oi are the trips produced by zone i 

Dj are the trips attracted by zone j 

Cij are the costs between zone i and zone j 

β is an impedance parameter to be estimated 

 

The impedance parameter β can be estimated using different procedures like the method 

proposed by Hyman (1969) or using a log linear model (Dennett, 2012). The balancing 

factors Ai and Bj are codependent, meaning they need to be estimated iteratively: 

   

 
1 1

exp( ) exp( )
i j

j j ij i i ij

j i

A B
B D c AO c 

 
  

  

 

Given the constraints on the origins and destinations of the model, the resulting fits are 

usually high. However, it is possible to introduce new variables into the model in order to 

consider other spatial effects. Flowerdew (2010) has proposed inserting dummy variables 

into the model to consider zonal contiguity, as depending on the type of trip being modelled, 

the contiguous zones may be a more or less likely destination than the rest of the areas. This 

type of spatial effect may help in improving the fit of the models by adapting them to the 
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peculiarities of each study area. 

 

4. STUDY AREA AND RESULTS 

 

4.1 Available data and the study area 

 

The trip distribution models have been estimated using data provided by the Spanish railway 

organisation ADIF – RAM about ticket sales on a narrow gauge regional line in Cantabria 

(Spain). The ticket sales provide information on both the origins and destinations of the 

passengers meaning the trip matrix gives an exact representation of travel on the line.  

 

The studied line has a total of 23 stations being the two terminals located at Santander and 

Cabezón de la Sal (see Figure 1). The data obtained corresponds to the week from 19th to 

25th January 2015 and counted 26,371 passengers. The stations with the highest production 

and attraction trips were the two largest towns in the region, Santander and Torrelavega, 

which accumulated more than 50% of the passengers given their higher demographic weight.  

 

Figure 1 – Stations on the narrow gauge line Santander – Cabezón de la Sal 
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Variable Description Units Average Standard 

Deviation 

Minimum Maximum 

Vij Trips between 

origin i and 

destination j 

No. Trips 52.47 255,40 1 2900 

Oi Trips produced 

by  origin i 

No. Trips 1146.57 2083.57 43 8842 

Dj Trips attracted 

by destination j 

No. Trips 1146.57 2066.93 43 8913 

Cij Generalised cost 

between i and j 

Euros 8.59 4.80 1.90 21.05 

Cont Dummy variable 

if the stations 

are contiguous 

1/0 0.09 0.28 0 1 

SantTorre Dummy variable 

if the O-D pair ij 

corresponds to 

Santander and 

Torrelavega 

1/0 0 0.06 0 1 

Table 1 – Descriptive statistics of the variables contained in the database 

 

The variables contained in the database can be seen in Table 1. Between all the O-D pairs 

there is an average of 52.5 trips with a maximum of 2,900 trips corresponding to the 

Santander – Torrelavega pair. Impedance between the pairs has been specified through a 

generalised cost (Cij) measured in euros which combines the journey time between the 

stations (in minutes) with the fare variable between the stations. The value of time was 

provided by a previous study based on surveys asked to regional train users with a final 

weight of 0.25 € per minute of journey time (Grupo de Investigación de Sistemas de 

Transporte, 2008).  

 

Two dummy variables were also included in the database to consider the possible presence 

of spatial effects. A variable of contiguity between stations taking a value of 1 if the stations 

are adjacent, and a variable which takes a value of 1 in the Santander – Torrelavega and 

Torrelavega – Santander pairs. This latter variable could be important because, as can be 

seen in Figure 2, the number of trips in the cost interval of 10 – 15 euros increases with 

respect to the interval 5 – 10 euros due largely to the journeys produced between the two 

towns.  
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Figure 2 – Histogram of journeys according to generalised cost 

 

 

4.2 Results and discussion of the models 

 

The parameters estimated for the seven models are summarised in Table 2. The first four (P-

1 a P-4) correspond to Poisson type regression models, while the three latter are Wilson type 

gravity models.  

 

The P-1 model was specified with the totals produced and attracted by the origin and 

destination stations, using the generalised cost between them as independent variables. The 

production and attraction parameters were identical and had a positive sign, whereas the 

impedance parameter was, as expected, negative. Furthermore, all the parameters were 

clearly significant. The parameters show, using the transformation 100*( 1)e  , that one 

unit change in production and attraction generates, ceteris paribus, 0.05% more trips. 

However, an increase of one euro in the generalised cost implies about a 9% reduction in the 

number of trips being made. According to the AIC index the model had a fit of 20,279 and 

an R2 of 0.85 for the estimated journeys compared with the observed journeys. The P-2 

model adds to the variables of the P-1 model, the dummy variable of contiguity between 

stations, which showed a negative sign. This sign provides evidence that, if a greater number 

of journeys are made between points with low generalised costs (see Figure 2), these are not 

normally made between adjacent stations given that the parameter implies a reduction of 

around 72% in the number of journeys. The P-2 model had a slightly better fit than P-1 

according to the AIC index as well as a superior R2 comparing the estimated with the 

observed journeys. The Poisson P-3 model included an additional dummy variable 

corresponding to whether the O-D pair was Santander – Torrelavega or Torrelavega – 

Santander. The sign of the parameter was negative with a reduction of 10% in the number 

of expected trips which is almost certainly due to the fact that the O and D factors already 
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captured the potential for interaction between the two locations.  This model had a slightly 

better fit than P-2 with all the estimated parameters being clearly significantly different from 

0. The specification of P-3 is therefore: 

 

 
1 2 3 4 5 6ln( )ij i j ij ij ij iju O D C Cont SantTorre              (5) 

 

Variable P-1 P-2 P-3 P-4 W-1 W-2 W-3 

(Intercept) 1.9490 

(.000) 

2.2190 

(.000) 

2.1460 

(.000) 

1.7180 

(.000) 

- - - 

O  / Ai 0.0005 

(.000) 

0.0005 

(.000) 

0.0005 

(.000) 

0.0005 

(.000) 

0.0001 0.0002 0.0002 

D / Bj 0.0005 

(.000) 

0.0005 

(.000) 

0.0005 

(.000) 

0.0006 

(.000) 

0.8846 0.9690 0.9307 

Cij -0.0969 

(.000) 

-0.1187 

(.000) 

-0.1156 

(.000) 

-0.1092 

(.000) 

-0.1102 

(.000) 

-0.1690 

(.000) 

-0.1652 

(.000) 

Cont - -1.2890 

(.000) 

-1.2800 

(.000) 

-1.2460 

(.000) 

- -2.3657 

(.000) 

-2.4135 

(.000) 

SantTorre - - -0.1097 

(.000) 

-0.5648 

(.000) 

- - -0.2789 

(.000) 

EvO - - - -8.9470 

(.000) 

- - - 

EvD - - - 4.4020 

(.000) 

- - - 

AIC 20,279 18,614 18,591 16,880 10,295 6,998 6,910 

R2 0.85 0.88 0.89 0.91 0.94 0.98 0.99 

Residual 

Deviation 

18,531 16,864 16,839 15,124 8,463 5,164 5,074 

Table 2 – Estimated Distribution Models (in brackets the p – value with the statistical 

significance of the parameters) 

Finally, the P-4 model was estimated using the Spatial Filtering technique to eliminate the 

possible presence of spatial correlation in the origins and destinations (Griffith, 2007). All 

the pairs with identical origins or identical destinations were considered to have 

neighbourhood relationships. The spatial filtering selected two eigenvectors, one at origins 

(EvO) and another at destinations (EvD), which were introduced into the Poisson regression. 

The fit of the model increased and reduced the AIC to 16,880. 

 

The Wilson gravity type models are summarised in columns W-1 to W-3 in Table 2. Rows 

Ai and Bj show the average of the 23 balancing factors estimated for origins and destinations, 

respectively. The rest of the parameters are the same as those specified in the Poisson type 

models, having been estimated using a log-linear model which also allows their statistical 

significance to be estimated. The fit of the constrained gravity models was better than that 
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of the Poisson regression models with R2 superior to 0.9 in all cases, up to a fit of 0.99 for 

the observed data in model W-3 considering the contiguity of the stations and the specific 

interaction between Santander and Torrelavega. The W-3 model was specified as: 

 

 
4 5 6exp( )ij i i j j ij ij ijV AO B D C Cont SantTorre      (6) 

 

If an LR test is conducted between the gravity and Poisson regression models, the former 

show a test value which is clearly superior to the critical value even considering the greater 

number of parameters used by the constraints on the origins and destinations. This is the 

case, for example, with the W-3 model compared with P-4, where the test presented a value 

greater than 10,000 for a critical value of 95% of the confidence level of 55.8. 

 

If the residual deviation between the estimated models and the completely saturated model 

is considered, the test value was always superior to the critical value of the distribution, 

although the Wilson type models clearly got closer to the maximum fit provided by the 

saturated model. 

 

An examination of the fit of the models with respect to the observed data by cost ranges (see 

Figure 3 and Figure 4) shows how the Poisson models have a worse fit for the intermediate 

cost ranges (5-10 and 10-15 euros). On the other hand, the gravity models and especially the 

W-2 and W-3 models with dummy variables considering spatial effects showed a better fit 

over all the cost ranges. The fit provided by these models was significantly better than that 

of the W–1 model using the LR test with one (W–2) or two degrees of liberty (W–3).  

 

 
Figure 3 – Histogram of the observed trips compared to estimated trips for the 

Poisson regression models 
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Figure 4 - Histogram of the observed trips compared with the estimated trips for the 

gravity models 

 

5. CONCLUSIONS 

 

This article has presented the estimation of trip distribution models using two methods: 

nonlinear Poisson regression and gravity models with constraints on origins and destinations. 

The goal was to assess whether or not the gravity models fit to the data significantly better 

considering they require a greater number of parameters. Additional variables have also been 

introduced to account for the spatial effect of contiguity between stations controlled by the 

effect of spatial correlation which may be present in the trip distribution data. The estimated 

models could be useful tools for simulating changes that passengers make in their choice of 

destination as a result of new policies such as the opening and closing of stations or changes 

in the service conditions. 

 

The results confirm that the gravity model with constraints on origins and destinations had 

a significantly better fit to the data, according to the LR test, than the Poisson regression 

models without constraints. This fact was true even considering that the gravity models were 

estimated with 40 to 42 more parameters and that in a Poisson model the presence of spatial 

correlation was controlled. The models that considered contiguity between stations and the 

specific effects of interaction also showed a significantly better fit with only one or two more 

parameters than the models that did not consider these effects. It would therefore seem 

recommendable to estimate gravity models constrained by production and attraction data 

obtained from a trip generation model when creating a trip distribution model. Even more 

so when to estimate a gravity model using a log-linear model does not imply any additional 

costs other than those involved in the iterations needed to obtain the balancing factors. The 

possibility of specifying addition spatial variables also gives the model an extra capacity of 

adaptation to the study area. 

 

A future line of research would be the estimation of gravity models which consider the 
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presence of spatial autocorrelation at origins, destinations and at points of interaction 

between O-D pairs. The estimation of this type of model currently requires considerable 

computing power which makes necessary additional research (Griffith, 2009).  
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