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ABSTRACT 

The article presents a proposal for a combined application of fuzzy logic and genetic 

algorithms to control the procurement process in the enterprise. The approach presented in 

this paper draws particular attention to the impact of external random factors in the form of 

demand and lead time uncertainty. The model uses time-variable membership function 

parameters in a dynamic fashion to describe the modelled output fuzzy (sets) values. An 

additional element is the use of genetic algorithms for optimisation of fuzzy rule base in the 

proposed method. The approach presented in this paper was veryfied according to four 

criteria based on a computer simulation performed on the basis of the actual data from an 

enterprise. 

 

1. OVERVIEW OF INVENTORY MANAGEMENT ISSUES 

As a result of the on-going globalisation and mass consumption, the demand on the goods 

market is characterised by intense dynamics and a certain level of uncertainty, especially in 

large agglomerations and urban areas. The logistical processes that occur there as part of 

supply networks focus primarily on the flow of the streams of material goods, but also take 

into account the flows of necessary information and financial resources. The volatility of 

these processes and certain level of uncertainty cause all sorts of inventory to amass at 

various levels of the logistic network in order to ensure the continuity of production and the 

uninterrupted availability of the finished products to customers. The goods amassed in the 

nodal points of the logistic network act as buffers that mitigate the differences in customer 

demand for the products. In practice, despite the use of modern systems, such as JIT (Just In 

Time), ERP (Enterprise Resource Planning), MRP (Material resource Planning), it is not 

possible to entirely eliminate the inventory. In fact, economic processes are stochastic in 

nature (which results from both the operating environment of these processes and the impact 

of their surroundings), so it is possible to identify them only to a certain extent, with a greater 

or smaller error (Wolski, 2010). Due to the impact of random factors on the nodal elements 

of the supply network (manufacturing plants, distribution centres, warehouses, etc.) through 

the volatility of demand for semi-finished products or finished products, lead time 

changeability, vendors’ limited capabilities, etc., the optimal policy for the supply and 

inventory control logistics is of utmost importance to the effectiveness of the entire logistic 

network.  

As a result of the above-mentioned factors and the ever-increasing competition among 

entities, logistics companies are often forced to keep a high inventory level in order to 

maintain the desired service level. This behaviour makes it possible to dynamically respond 
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to unexpected changes in the demand or other external factors but it generates increased 

costs at the same time. These are, in particular, associated with the carrying the inventory, 

leasing additional storage space and freezing the limited financial resources in the inventory. 

On the other hand, the inventory level that is too low in relation to the stock-keeping units 

characterised by an unusual demand pattern which are essential for the enterprise can lead 

to the occurrence of external costs caused by lost resources. They can be expressed as cash 

but also as a customer loss, lowering the reputation of the enterprise or a loss of its 

competitiveness. This situation is also conducive to the formation of additional transport 

costs associated with the implementation of unplanned deliveries. 

 

2. OVERVIEW OF INVENTORY CONTROL SOLUTIONS 

 

Due to the impact of the aforementioned factors, the optimal inventory control is a complex 

decision-making process that requires analysis of multiple criteria and parameters, which in 

practice are usually non-deterministic in nature. The result is that the basic decisions about 

how much merchandise should be purchased and at what point in time in order to minimise 

the stocking and stock-carrying costs and meet the established level of customer service are 

made in conditions of uncertainty. The subject literature, both domestic and international, 

provides numerous rich sources on the topic of inventory management. The most popular 

classical methods for determining inventory levels include, first and foremost, the Economic 

Order Quantity (EOQ) model, the Re-Order Point (ROP) models and Re-Order Cycle (ROC) 

models (Krzyżaniak, Cyplik, 2007). However, the applicability of these methods is quite 

limited as it often requires the adoption of limitations on the stationarity of demand or the 

known and fixed lead time. The extensions of these methods take into account certain 

variability with regard to the demand or the lead time by introducing an additional parameter 

in the form of a safety stock, which aims to cover the unexpected changes in the demand 

(Grzybowska, 2010), (Niziński, Żurek, 2011), (Krawczyk, 2011). In addition to the above-

mentioned methods, one may also encounter other control models, such as: the reorder point 

model using fixed reorder cycles or the combined re-order point and fixed re-order cycle 

model (Wolski, 2010). Few papers indicate the problem of inventory control in the 

conditions of demand discontinuity. When dealing with this issue, authors often present 

methods created by Wagner-Within and Silver-Meal. Compared to the domestic literature, 

the list of international publications on the subject of inventory control is definitely more 

extensive and takes into account a greater number of determinants and characteristics of the 

task being considered (Axaster, 2006), (Lang, 2009), (Nahmias 2010). An important element 

raised in foreign publications is the simultaneous inclusion of several products in the control 

models, which is much closer to the reality (Frank, 2009), (Li, Cheng, Wang, 2007), (Maity, 

2007), (Maity, 2009). Due to the difficulty of simultaneously taking into account many 

parameter variables in the analytical models, more and more papers suggest identifying 

uncertainty through the introduction of a fuzzy environment. Some articles (Mandal, Roy, 

2006), (Roy, 2007), (Taleizadeh, 2009), (Hsieh, 2002), (Maiti, 2006), present an approach 

that assumes that demand, lead time, stock-carrying costs, customer service, etc. are fuzzy 
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values. Due to the great complexity and elaborateness of the problem, researchers have been 

increasingly proposing the use of genetic algorithms to find optimal solutions to the issue 

(Taleizadeh, 2013), (Khanlarpour, 2013), (Gupta K, 2015). Despite this, in most cases the 

suggested methods do not take into account the impact of several random factors on the 

control system at the same time. Therefore, it seems reasonable to develop models and 

methods for solving the problems of procurement logistics with the use of artificial 

intelligence techniques. These include, in particular, fuzzy reasoning models supported by 

the use of genetic algorithms as a synergic element used to further enhance the quality of the 

solution. 

 

3 THE USE OF FUZZY LOGIC AND GENETIC ALGORITHMS TO SOLVE THE 

PROBLEM OF INVENTORY CONTROL IN CONDITIONS OF DEMAND AND 

LEAD TIME UNCERTAINTY 

 

As mentioned previously, the impact of many external determinants on the procurement 

logistics subsystem leads to the situation where taking the right decision in this respect 

requires methods and tools with the ability to specify events characterised by uncertainty, 

information inaccuracy and adaptation to the changing system parameters. Hence, the theory 

of fuzzy sets and fuzzy reasoning systems is suitable for the wide range of application in the 

field of inventory control and management in logistics. An additional element that supports 

and complements the functioning of fuzzy system in the proposed control method will be 

the use of genetic algorithm. Its aim will be to optimise the knowledge base contained in the 

fuzzy rules by optimal selection of weights for these rules.  

 

3.1. Fuzzy Logic 

 

Fuzzy logic is an example of a multi-valued logic. Closely related to the theory of fuzzy sets, 

it was introduced by L. Zadeh. In contrast to the classical logic, the fuzzy logic theory 

assumes that there may be an infinite number of intermediate values between the false state 

and the true state. This means that an element of a given set may belong to this set only to a 

certain degree. This reasoning leads to the formulation of the definition of fuzzy set. 

According to it, the fuzzy collection A in a non-empty space X is a set of pairs: 

 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)) ∶ 𝑥𝜖𝑋}                  (1) 

where: 

      𝜇𝐴: 𝑋 → [0.1]  

is known as the membership function of fuzzy set A. This representation assigns a degree of 

fuzzy set membership of each element 𝑥𝜖𝑋 to the fuzzy set A. One can distinguish the 

following cases: 

𝜇𝐴(𝑥) = 1in the case of full membership of an element x to the fuzzy set A (𝑥𝜖𝐴). 

𝜇𝐴(𝑥) = 0  in the case of no membership of the element x to the fuzzy set A (𝑥 𝐴). 

0 < 𝜇𝐴(𝑥) < 1  in the case of a partial membership of an element x to the fuzzy set A 

http://creativecommons.org/licenses/by-nc-nd/4.0/


  CIT2016 – XII Congreso de Ingeniería del Transporte 

València, Universitat Politècnica de València, 2016. 

DOI: http://dx.doi.org/10.4995/CIT2016.2016.3508 

 .  
 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-

ND 4.0). 

 

Similarly to the classical approach, fuzzy sets make it possible to perform a series of 

operations in the form of a sum, product, etc. 

Another important concept necessary to describe fuzzy systems is the linguistic variable, i.e. 

the input or output quantity in the fuzzy system that is estimated using linguistic values (high 

demand, long lead time, etc.). 

 

3.2. Genetic Algorithms 

 

Genetic algorithms are algorithms designed to search for optimal solutions to artificial 

human-created optimisation problems. Their functioning is based on the mechanisms of 

natural selection and the process of heredity. They combine the evolutionary principle of 

survival of the fittest individuals (solutions of decision problem). When considering a set of 

solutions to the decision problem, one can compare it to the population of organisms. Each 

solution (individual) can be attributed its own characteristics of adaptation to certain set 

conditions (criterion function that measures the quality of a certain solution). This allows 

you to simulate the evolutionary processes by duplicating better solutions in the future 

"generations" and eliminating those that are not as good at satisfying the optimisation 

problem criteria. This operation is carried out on the basis of the reproduction of genetic 

code and more specifically on the possibility of collating partial ideas (similarly to crossover) 

that come from a variety of solutions, which results in better innovative solutions to the 

problem. In practice, this requires adoption of a method of transforming a specific solution 

into a uniquely representative code string, often called a chromosome. In this way, using the 

so-defined code strings (solution population), one can perform processing, e.g. the crossover 

and mutation operations, and receive new solutions (Goldberg, 1989).    

 

3.3. Proposed method for solving the problem 

 

The approach proposed in the article involves describing the uncertainty of input and output 

system parameters through fuzzy sets. Then, on the basis of the knowledge base contained 

in the rules, the optimal sharpened control parameters are determined. The rule base consists 

of a set of conditional instructions. The generalised inference rule modus tollens can be 

specified in the following way: 

Antecedent   𝑦 𝑖𝑠 𝐵′ 

Implication   𝑰𝑭 𝑥 𝑖𝑠 𝐴 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 𝐵 

Conclusion    𝑥 𝑖𝑠 𝐴′ 

Where: 𝐴, 𝐴′ ⊆ 𝑋 𝑎𝑛𝑑 𝐵, 𝐵′  ⊆ 𝑌 are fuzzy sets, and x and y are linguistic variables. 

The input data supplied to the fuzzification block are fuzzified, i.e. the degree of their 

membership to particular fuzzy sets is determined. Then, each rule is run in the inference 

block and also activation degrees are calculated for the antecedents contained within them. 

Each rule is assigned a certain weight w. In this way, rules with higher weights have a greater 

impact on the determination of the output variable value. In order to guarantee the required 

control efficiency, a genetic algorithm was used to optimise the weight values for a fuzzy 
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system rule set. Therefore, the decision variable is the vector of the rule weights. The 

optimisation process is performed on the basis of the minimisation of the function being a 

weighted sum of standardized three sub-criteria: the average inventory level, the number of 

stock-outs and the number of deliveries for a fixed period of time, on the basis of training 

data sets. The above-mentioned problem can be represented as follows: 

 

𝐹(𝑊) = 𝜑1

𝑓1
∗∗ − 𝑓1(𝑊)

𝑓1
∗ − 𝑓1

∗∗ + 𝜑2

𝑓2
∗∗ − 𝑓2(𝑊)

𝑓2
∗ − 𝑓2

∗∗ + 𝜑3

𝑓3
∗∗ − 𝑓2(𝑊)

𝑓3
∗ − 𝑓3

∗∗    →     𝑚𝑖𝑛                     (3) 

 

𝑊 ≥ 0                         (4) 

∑ 𝜑3 = 1             (5)

3

𝑖=1

 

Where: 

𝐹(𝑊) – cumulative criterion function 

W – vector of weights for a rule set 

𝑓1
∗ , 𝑓1

∗∗ – maximum and minimum, respectively, for the function determining the average 

inventory level 

𝑓2
∗, 𝑓2

∗∗ – maximum and minimum, respectively, for the function determining the number of 

stock-outs 

𝑓3
∗∗, 𝑓3

∗ – maximum and minimum, respectively, for the function determining the number of 

required deliveries 

𝜑1, 𝜑2, 𝜑3 - weights for partial criteria 

The structure of a single chromosome and the applied two-point crossover operator are 

presented on Fig. 1 and Fig. 2, respectively. 

 

 
Fig. 1. Sample chromosome structure 

 

 

w1 wnw2 w3 ... ...... ... ......... ...... ......

 

w1,w2,w3,…,wn ∊W
n – number of fuzzy rules
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Fig. 2. Sample two-point crossover 

 

The functioning of the reasoning block optimized by the genetic algorithm results in the 

output system value, which is a sharp value as a consequence of the defuzzification 

procedure. Fig. 3 shows the general scheme of the entire system of the presented approach. 

 

 
Fig. 3. Scheme of the proposed system 

The input to the system comprises three variables, which are the most important in shaping 

the current inventory level management policy. These include the variables describing the 

forecast demand, the actual inventory level on a given day and the random lead time. The 

control parameters in the proposed system are the actual re-order point and the actual order 

quantity. The first specifies the emergency inventory level at which an order must be placed 

and the latter designates the item batch size that is appropriate for a certain moment. All 

variables, both input and output, are defined as linguistic variables determined on a set of 

linguistic values. For example, one of the input variables can be as follows: 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 =  {𝑠𝑚𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒}. Each estimation of the linguistic variable 

is assigned an appropriate fuzzy set. Fig. 4 shows the methods of describing the uncertainty 

of input parameters in the control system. 

w1 wnw2 w3 ... ...

...

... ......... ...... ......

w1 wnw2 w3 ... ...... ... ......... ...... ......

...

...

......w1 wnw2 w3 ... ...... ......... ...... ......

w1 wnw2 w3 ... ...... ... ......... ...... ......

...

...... ...
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Fig. 4. Input system parameters described by means of fuzzy sets 

The presented fuzzy sets are described by the proposed triangular and trapezoidal 

membership functions. The characteristic points on the horizontal axes of the diagrams are 

determined based on historical observations of a certain variable in a fixed time horizon. 

Output system parameters were defined in a similar way (Fig. 5). 

 

 

Fig. 5. Output system parameters described by means of fuzzy sets 

 

Characteristic points on the horizontal axis are identified on the basis of the following 

formulas: 

 

𝑄 = √
2𝑃𝐾𝑧

𝐾𝑢
                (6) 

 where: 

P – estimated demand for the product within a specified time horizon (e.g. a year)  

Kz – stocking unit costs 

Ku – stock-carrying costs 

 

𝑅𝑂𝑃 = 𝐷𝑠𝑟 ∗ 𝐿𝑠𝑟 + 𝑘 ∗ 𝜎𝑑 ∗ √𝐿𝑠𝑟            (7) 

where: 

Dsr – average demand for the article on a given day 

q1/5

1
low largemedium

Forecasted Demand

Drs*Lsr

1
low highmedium

Actual Inventory Level

q2/5 q3/52*Drs*Lsr 3*Drs*Lsr

1
short longmedium

Lead Time

q4/5

q0.25, q0.5, q0.75 – quartiles of rank I, II, III 

q1/5,...q4/5 – quantiles of rank I, II, III, IV, V

Drs – average demand in considered time period

Lsr – average lead time of order in considered time 

period

Where

q0.25 q0.5 q0.75

[days]

[pcs.]

[pcs.]

)( x

)( x )( x

0.5Q Q 2Q

1
small largemedium

Order Quantity Q* 

0.5ROP ROP 2ROP

1
low highmedium

Re – order point ROP* 

[pcs.][pcs.]

)( x)( x
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Lsr – average lead time 

𝜎𝑑 – standard demand deviation 

k – adopted safety factor specifying the level of customer service 

 

The approach proposed in this paper is an example of continuous inventory monitoring and 

control system. The input and output variables are updated for the adopted time interval (e.g. 

one day). Hence, the identified characteristic points in the fuzzy space for the output 

variables are only the initial values in the simulation of the entire analysed planning period. 

Within each successive one-day time interval, the parameters of the membership function 

describing the outputs from the system are modified based on the identified prediction error 

(Fig. 6.) Thanks to this, the system has a greater ability to adapt and intelligently identify 

any unusual situations. 

 
 

Fig. 6. The method of updating the membership function parameters for output system 

variables 

 

4. SAMPLE CALCULATION AND RESULTS 

 

In order to verify the effectiveness of the proposed solution, a computer simulation has 

been performed on the inventory level of certain product, based on historical demand data 

from the enterprise within a period of six months. The simulation results were compared 

with the results obtained from the classical ordering level method and the combined re-order 

point and fixed reorder cycle model. These methods are broadly presented in (Axsater, 

2006). For the set of all possible combination of rules in the reasoning module, optimisation 

process was performed for weights as shown in the previous section. As a consequence, a 

set of 27 most useful rules was received together with their assigned optimal weights. The 

efficiency of the optimisation procedure is shown in Fig. 7.   

0.5Qi =0.5Qi-1+λdi Qi=Qi-1+λdi 2Qi =2Qi-1+λdi

Order Quantity Q* 

0

0.5ROPi =0.5ROPi-1+λdi ROPi=ROPi-1+λdi 2ROPi =2ROPi-1+λdi

Re – order point ROP*

0

Where:
λdi – demand forecast error in i-th time horizon
i=1...N ; N – number of time horizons within computer simulation

[pcs.]

[pcs.]
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Fig. 7.  Efficiency of the genetic algorithm in the procedure of optimisation of rule set 

weights 

  

The final comparison of the results of the inventory level simulation was made on the 

basis of the adopted criteria in the form of the total inventory costs for the considered period, 

the average inventory level, the number of deliveries and the number of the encountered 

stock-outs. The simulations were carried out for 25 data sets. The final results were averaged. 

Fig. 8 shows the simulation scheme as per the proposed approach. 

 

 

 

Fig. 8. Simulation scheme as per the proposed fuzzy method 

The sequence of all the steps presented in the simulation scheme is performed each time for 

each day of the entire six-month period. Fig. 9 contains the presentation of the results of the 

proposed approach in relation to two methods according to selected criteria. 

Initial data:

Demand vector,

Initial  inventory 

level

The occurrence of 
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given day

Inventory level greater 

than actual value of ROP* 

Calculation of inventory 

level for i-th day: 

Zi=Zi-1-Pi +Di
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Modyfication of 
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parameters for output 

system wariables

Estimation of values for 

output system wariables 

for i-th day  ROP*, Q* 

no

yes

Placing of order 
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estimated Q* units    

Where:

Zi – inventory level in i-th day

Pi – amount of demand on i-th day

Di – potential delivery on i-th day

ROP* - actual estimated re-order point 

for i-th day

Q* - actual estimated of order quantity for 

i-th day 
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Fig. 9. Simulation results  

 

5 CONCLUSION 

The approach presented in this paper and the performed simulations illustrate that the 

classical method of determining the inventory level are inefficient and ineffective where 

random factors in the form of a large uncertainty in demand, lead time, etc. impact the 

inventory control system. On the basis of the received results, the proposed approach brought 

results that were better by a dozen or so percent compared to the other two classical methods 

according to the adopted estimation criteria. For the stock-out number criterion, the proposed 

fuzzy solution turned out to be a little worse than one of the methods being compared. This 

is dictated by the large number of deliveries for the combined re-order point and re-order 

cycle method, which is associated with far higher stocking and stock-carrying costs. Further 

work will be focused on attempts to include an additional uncertainty factor in the form of a 

limited supply of goods from suppliers and further tests of the method using a greater number 

of data sets. 
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