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ABSTRACT 20 

In order to evaluate the effect of simplifying the β-ketoamide system present in 

active isolated metabolites from Penicillium brevicompactum (2, 3) on the activity, new 

analogues with a monocarbonylic amide functionality have been obtained. This way, the 

insecticidal and fungicidal activities have been improved in relation to the natural 

products taken as lead molecules. Thus, two of the synthetic analogues (5a and 5b) 25 

showed very important insecticidal activities against third instar nymphs of Oncopeltus 

fasciatus Dallas, with acute LD50 values of 3.0 and 1.5 µg/cm2, respectively. Moreover, 

some analogues showed good levels of fungicidal activity against a wide range of 

commercially important and taxonomically diverse fungi; remarkably, compound 7c has 

proved to be highly active against Colletotrichum gloesporoides and Colletotrichum 30 

coccodes, with  ED50 values of  2.04 and 11.7 µg/mL, respectively. 
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INTRODUCTION 

 45 

The independent synthesis of bioactive natural products is often necessary to 

confirm their structures and activities as these compounds are secondary metabolites 

usually isolated in minimal quantities. Such work also leads to a series of synthetic 

intermediates, chemically related to the natural compounds, which are potentially 

active; sometimes these analogues are even more active than the isolated compound. 50 

Thus, active natural products can be used as lead molecules in order to design different 

derivatives with similar functionalities but with improved biological activities . 

Recently, we have achieved the isolation and identification of a new family of 

bioactive metabolites from fungal extracts. Thus, brevioxime (1), isolated from 

Penicillium brevicompactum, exhibits a very high activity as JH biosynthesis inhibitor 55 

(Moya et al., 1997; Castillo et al., 1998). The related compounds, N-(2-methyl-3-

oxodecanoyl)-2-pyrroline (2), N-(2-methyl-3-oxodec-6-enoyl)-2-pyrroline (3) and 2-

hept-5-enyl-3-methyl-4-oxo-6,7,8,8a,-tetrahydro-4H-pyrrolo[2,1-b]-1,3-oxazine (4), 

isolated from the same source, show in vivo JH antagonistic and insecticidal activity 

(Moya et al., 1998; Cantín et al., 1999). Two inactive pyrrolic metabolites, presumably 60 

belonging to the same biosynthetic pathway, were used as starting point to obtain active 

analogues, upon introduction of simple structural changes (Cantín et al., 1998).  

Now we wish to report the synthesis and biological activities of several 

derivatives of the enamides 2 and 3, which were prepared as part of a programme aimed 

at improving the activities exhibited by these natural products. 65 
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MATERIALS AND METHODS 

 70 

All chemicals were obtained from commercial suppliers and used without 

further purification. IR spectra were obtained as liquid films; νmax is given for the main 

absorption bands. 1H and 13C NMR spectra were recorded at 300 and 75 MHz, 

respectively, in CDCl3 solvent; chemical shifts are reported in δ (ppm) values, using 

TMS as internal standard. The assignement of 13C signals is supported by DEPT 75 

experiments. Mass spectra were obtained under electron impact or chemical ionization; 



the ratios m/z and the relative intensities are reported. Isolation and purification were 

done by flash column chromatography on silica gel 60 (230-400 mesh). Analytical TLC 

was carried out on precoated plates (silica gel 60 F254), and spots were visualized with 

UV light and in a I2 chamber. 80 

General Synthetic Procedures 

Synthesis of N-Acylpyrrolidines. To a mixture of pyrrolidine (14.1 mmol) with 

1.7 M KOH (9.0 mL) was added a solution of acyl chloride (14.0 mmol) in CH2Cl2 (9.0 

mL) dropwise (10 min). After being stirred at room temperature for 5 h 30 min, the 

mixture was extracted with CH2Cl2; the resulting organic extracts were washed with 85 

brine, dried over Na2SO4 and concentrated to dryness to give the N-acylpyrrolidine in a 

straightforward manner as oils. 

N-Octanoylpyrrolidine (5a). 91 % yield; obtained as an oil; HRMS (EI): m/z 

197.1774 (C12H23NO requires 197.1779); IR: νmax 2900, 2860, 2840, 1605, 1410, 1330, 

1230, 1160, 1090, 1030, 905 and 830; 1H NMR: δH 3.4 (m, 4H, H-2+H-5), 2.2 (t, J= 7 90 

Hz, 2H, H-2’), 2.0-1.8 (m, 4H, H-3+H-4), 1.6 (m, 2H, H-3’), 1.3 (br s, 8H, (CH2)4CH3) 

and 0.9 (t, J= 7 Hz, 3H, CH3); 13C NMR: δC 171.8 (C1’), 46.5 (C2), 45.5 (C5), 34.8 (C2’), 

31.6, 29.4, 29.0, 26.0, 24.9, 24.3, 22.5 (C3, C4, C3’-C7’) and 14.0 (CH3); MS: m/z 197 

(M+, 11), 168 (12), 154 (9), 140 (13), 126 (73), 113 (100), 98 (46), 85 (56), 71 (72), 70 

(80), 57 (30) and 55 (65). 95 

N-Oct-6-enoylpyrrolidine (5b). 85 % yield; obtained as an oil; HRMS (EI): 

m/z 195.1627 (C12H21NO requires 195.1623); IR: νmax 2910, 2845, 1640, 1430, 1330, 

1250, 1220, 1190, 1160 and 960; 1H NMR: δH 5.4 (m, 2H, H-6’+H-7’), 3.4 (m, 4H, H-

2+H-5), 2.2 (t, J= 7 Hz, 2H, H-2’), 2.0-1.7 (m, 6H, H-3+H-4+H-5’), 1.6 (m, 5H, H-

3’+H-8’) and 1.4 (m, 2H, H-4’); 13C NMR. δC 171.5 (C1’), 130.9 (C6’), 124.7 (C7’), 46.4 100 

(C2), 45.4 (C5), 34.5, 32.2, 29.2, 25.9, 24.2 (C3, C4, C2’-C5’) and 17.7 (CH3); MS: m/z 



195 (M+, 87), 180 (6), 166 (12), 152 (7), 140 (30), 127 (95), 126 (57), 113 (58), 99 (36), 

98 (65), 85 (42), 70 (100) and 55 (85). 

N-[2-(3-Phenoxyphenyl)propionyl]pyrrolidine (5c). 83 % yield; m.p. 80-83° 

C (from hexane); HRMS (EI): m/z 295.1577 (C19H21NO2 requires 295.1572); IR: νmax 105 

3040, 2960, 2860, 1700, 1630, 1575, 1480, 1420, 1360, 1330, 1240, 1160, 1060, 1020, 

950, 920, 750 and 695; 1H NMR: δH 7.3 (m, 2H, H-3’’’+H-5’’’), 7.2 (t, J= 8 Hz, 1H, H-

5’’), 7.1 and 6.9 (m, 5H, H-2’’+H-6’’+H-2’’’+H-4’’’+H-6’’’), 6.8 (ddd, J= 8, 3 and 1 

Hz, 1H, H-4’’), 3.7 (q, J= 7 Hz, 1H, H-2’), 3.5 and 3.4 (m+m, 4H, H-2+H-5), 1.8 (m, 

4H, H-3+H-4) and 1.4 (d, J= 7 Hz, 3H, CH3); 13C NMR: δC 171.5 (C1’), 157.1, 156.8, 110 

143.4 (C1’’, C3’’, C1’’’), 129.7, 129.4, 122.9, 122.0, 118.4, 117.9, 116.6 (C2’’, C4’’-C6’’, 

C2’’’-C6’’’), 46.0 (C2), 45.7 (C5), 44.4 (C2’), 25.7 (C3), 23.8 (C4) and 19.8 (CH3); MS: m/z 

295 (M+, 81), 242 (5), 224 (3), 197 (18), 181 (4), 104 (8), 103 (7), 98 (100), 91 (7), 77 

(10) and 55 (33). 

Anodic Oxidation of N-Acylpyrrolidines. A solution of amide (1.6 mmol) in 115 

methanol (60.0 mL) containing tetrabutylammonium p-toluenesulfonate (4.4 mmol) as a 

supporting electrolyte was placed into an electrolysis cell equipped with carbon 

electrodes (8.5 cm2). A constant current (20 mA) was passed through the solution. After 

4.0 F/mol of electricity were passed, the solvent was evaporated under reduced pressure. 

Water was added to the residue and the product was extracted with CH2Cl2. The 120 

combined organic layer was dried over anhydrous sodium sulfate. Thereafter, the drying 

agent was removed by filtration, the solvent was evaporated to dryness and the residue 

was filtered through silica gel using ethyl acetate as eluent, in order to eliminate the 

supporting electrolyte. The solvent was evaporated under reduced pressure and the 

residue was purified by column chromatography on silica gel, to afford the 125 

methoxylated amide. 



2-Methoxy-N-octanoylpyrrolidine (6a) 45 % yield; obtained as an oil; HRMS 

(CI): m/z 228.1965 (M+H+, C13H26NO2 requires 228.1963); IR: νmax 2910, 2840, 1650, 

1410, 1350, 1330, 1240, 1160, 1110, 1040, 990, 910 and 830; 1H NMR: δH 5.4 and 5.0 

(d+d, J= 4 Hz, 1H, H-2), 3.6 (m, 2H, H-5), 3.4 and 3.3 (s+s, 3H, OMe), 2.3 (m, 2H, H-130 

2’), 2.2-1.8 (m, 4H, H-3+H-4), 1.6 (m, 2H, H-3’), 1.3 (br s, 8H, (CH2)4CH3) and 0.9 (t, 

J= 7 Hz, 3H, CH3); 13C NMR: δC 173.5 (C1’), 88.7 and 86.9 (C2), 56.4 and 53.9 (OMe), 

46.1 and 45.4 (C5), 34.6, 34.0, 31.6, 31.3, 30.9, 29.4, 29.3, 29.0, 25.1, 24.5, 22.9, 22.5, 

21.0 (C3, C4, C2’-C7’) and 14.0 (CH3); MS (CI): m/z 228 (M+H+, 61), 214 (74), 195 

(73), 184 (8), 180 (7), 173 (9), 142 (12), 129 (100), 113 (29) and 111 (85). 135 

2-Methoxy-N-oct-6-enoylpyrrolidine (6b). 25 % yield; obtained as an oil; 

HRMS (CI): m/z 226.1813 (M+H+, C13H24NO2 requires 226.1807); IR: νmax 2920, 

2860, 1645, 1400, 1350, 1310, 1230, 1170, 1090, 1070, 1060, 960, 910, 810 and 720; 

1H NMR: δH 5.4 (m, 2H, H-6’+H-7’), 5.0 (d, J= 4 Hz, 1H, H-2), 3.6 (m, 2H, H-5), 3.4 

and 3.3 (s+s, 3H, OMe), 2.3 (m, 2H, H-2’), 2.1-1.8 (m, 6H, H-3+H-4+H-5’), 1.6 (m, 140 

5H, H-3’+H-8’) and 1.4 (m, 2H, H-4’); 13C NMR: δC 173.1 and 173.0 (C1’), 131.0 and 

130.9 (C6’), 124.9 and 124.8 (C7’), 88.6 and 86.8 (C2), 56.3 and 53.8 (OMe), 46.0 and 

45.3 (C5), 34.4, 33.8, 32.2, 31.3, 30.8, 29.2, 29.1, 24.5, 23.9, 22.8, 20.9 (C3, C4, C2’-C5’) 

and 17.8 (CH3); MS (CI): m/z 226 (M+H+, 9), 212 (22), 194 (100), 165 (5), 142 (10), 

129 (16), 124 (9) and 111 (10). 145 

2-Methoxy-N-[2-(3-phenoxyphenyl)propionyl]pyrrolidine (6c). Two 

diastereomers. Combined yield: 27 %; obtained as oils. 

Spectral data of the first eluted diasteromer 6c1: HRMS (EI): m/z 325.1689 

(C20H23NO3 requires 325.1678); IR: νmax 3060, 2975, 2931, 2888, 1658, 1581, 1488, 

1403, 1238, 1163, 1083, 917 and 694; 1H NMR: δH 7.4-6.8 (m, 9H, Ar-H), 5.5 and 4.8 150 

(d+d, J= 5 Hz, 1H, H-2), 3.9 (q, J= 7 Hz, 1H, H-2’), 3.6-3.3 (m, 2H, H-5), 3.3 and 3.2 



(s+s, 3H, OMe), 2.1-1.7 (m, 4H, H-3+H-4) and 1.4 (m, 3H, CH3); 13C NMR: δC 173.8 

and 173.3 (C1’), 157.5, 156.9, 143.9 (C1’’, C3’’, C1’’’), 130.1, 130.0, 123.5, 122.2, 118.8, 

117.1, 117.0 (C2’’, C4’’-C6’’, C2’’’-C6’’’), 88.0, 87.4 (C2), 56.5, 55.9 (OMe), 45.9, 45.7 

(C5), 44.7, 44.0 (C2’), 31.3, 30.6 (C3), 22.9 (C4) and 20.4, 19.8 (CH3); MS: m/z 325 (M+, 155 

23), 310 (41), 294 (72), 224 (15), 197 (46), 181 (10), 128 (100), 103 (18), 91 (20), 85 

(84), 77 (30), 70 (32) and 55 (29). 

Spectral data of the second eluted diasteromer 6c2: HRMS (EI): m/z 325.1672 

(C20H23NO3 requires 325.1677); IR: νmax 3060, 2973, 2931, 2884, 1658, 1579, 1489, 

1442, 1400, 1242, 1084, 926 and 694; 1H NMR: δH 7.4-6.8 (m, 9H, Ar-H), 5.4 (d+d, J= 160 

5 Hz, 1H, H-2), 3.9 (q, J= 7 Hz, 1H, H-2’), 3.8-3.5 (m, 2H, H-5), 3.4 and 3.1 (s, 3H, 

OMe), 2.2-1.7 (m, 4H, H-3+H-4) and 1.4 (m, 3H, CH3); 13C NMR: δC 173.5 (C1’), 

157.4, 144.1, 143.6 (C1’’, C3’’, C1’’’), 130.0, 129.6, 123.2, 122.3, 118.6, 118.2, 117.1 

(C2’’, C4’’-C6’’, C2’’’-C6’’’), 88.5, 87.6 (C2), 56.9 (OMe), 45.7 (C5), 44.9 (C2’), 31.1 (C3), 

22.7 (C4), 20.7 and 19.8 (CH3); MS: m/z 325 (M+, 34), 310 (15), 294 (10), 224 (19), 197 165 

(30), 181 (7), 128 (100), 103 (10), 91 (10), 85 (50), 77 (12), 70 (13) and 55 (8). 

 

Synthesis of Enamides. The corresponding methoxy derivative (0.05 mmol) 

and silica gel (0.05 mmol) were heated at 150-160 ºC in a flask, under reduced pressure 

and nitrogen atmosphere. After 2 h 45 min, water was added to the residue and the 170 

slurry was extracted with CH2Cl2. The combined organic layer was dried over 

anhydrous sodium sulfate. Then, the drying agent was removed by filtration, the solvent 

was evaporated to dryness and the residue was purified by column chromatography on 

silica gel. Under those conditions enamides were obtained; when the reaction was 

carried out with β-oxoamides, bicyclic oxazines were also formed. 175 



N-Octanoyl-2-pyrroline (7a). 30 % yield; obtained as an oil;  HRMS (EI): m/z 

195.1619 (C12H21NO requires 195.1623); IR: νmax 2960, 2920, 2860, 1630, 1550, 1410, 

1350, 1160, 1110, 1050 and 840; 1H NMR: δH 7.0 and 6.5 (m+m, 1H, H-2), 5.2 (m, 1H, 

H-3), 3.8 (dd, J= 9 Hz, 2H, H-5), 2.7 and 2.6 (m+m, 2H, H-4), 2.3 and 2.2 (t+t, J= 7 Hz, 

2H, H-2’), 1.6 (m, 2H, H-3’), 1.3 (m, 8H, (CH2)4CH3) and 0.9 (t, J= 7 Hz, 3H, CH3); 180 

13C NMR: δC 169.1 (C1’), 129.3 and 128.9 (C2), 111.3 and 111.0 (C3), 45.5 and 44.7 

(C5), 34.5, 34.2 (C4), 31.6, 29.3, 29.0, 25.0, 22.5 (C4, C2’-C7’) and 14.0 (CH3); MS: m/z 

195 (M+, 12), 156 (5), 145 (33), 141 (98), 129 (48), 127 (52), 111 (39), 98 (26), 86 (45), 

70 (73), 69 (64), 57 (100) and 55 (37). 

N-Oct-6-enoyl-2-pyrroline (7b). 28 % yield; obtained as an oil; HRMS (EI): 185 

m/z 194.1463 (C12H19NO requires 193.1466); IR: νmax 2920, 2850, 1647, 1224, 1333, 

1106, 964, 734 and 612; 1H NMR: δH 7.0 and 6.5 (m+m, 1H, H-2), 5.4 (m, 2H, H-6’-H-

7’), 5.2 (m, 1H, H-3), 3.8 (dd, J= 9 Hz, 2H, H-5), 2.7 and 2.6 (m+m, 2H, H-4), 2.3 and 

2.2 (t+t, J= 7 Hz, 2H, H-2’), 2.0 (m, 4H, H-4+H-5’), 1.6 (m, 5H, H-3’+H-8’) and 1.4 

(m, 2H, H-4’); 13C NMR: δC 169.0 (C1’), 130.9 (C6’), 130.9 and 129.2 (C2), 125.0 (C7’), 190 

111.4 and 110.1 (C3), 45.5 and 44.8 (C5), 34.1(C4), 32.2, 30.1, 29.2, 24.4 (C2’-C5’) and 

17.9 (CH3); MS: m/z 193 (M+, 37), 138 (5), 124 (21), 111 (17), 97 (11), 96 (11), 84 

(18), 81 (35), 69 (72), 68 (100) and 55 (98).  

N-[2-(3-Phenoxyphenyl)propionyl]-2-pyrroline (7c). 29 % yield; obtained as 

an oil; HRMS (EI): m/z 293.1416 (C19H19NO2 requires 293.1416); IR: νmax 3060, 2931, 195 

2888, 1647, 1573, 1489, 1420, 1258, 1110 and 610; 1H NMR: 1H NMR: δH 7.4-6.8 (m, 

9H, Ar-H), 6.5 (m, 1H, H-2), 5.2 and 5.1 (m+m, 2H, H-3), 4.0-3.5 (m, 3H, H-5+H-2’), 

2.8-2.5 (m, 2H, H-4) and 1.5 (d, J= 7 Hz, 3H, CH3); 13C NMR: δC 169.1 (C1’), 157.4, 

157.3, 143.9 (C1’’, C3’’, C1’’’), 130.1, 129.7, 128.4, 123.2, 122.0, 118.7, 117.2, 111.8, 

110.4 (C2, C3, C2’’, C4’’-C6’’, C2’’’-C6’’’), 45.2 (C5), 44.9 (C2’), 27.9 (C4) and 19.9, 19.7 200 



(CH3); MS: m/z 293 (M+, 52), 250 (2), 197 (72), 104 (14), 91 (17), 77 (20) and 69 

(100).  

 

Synthesis of Imides. A mixture of 2-pyrrolidinone (2.7 mmol), acyl chloride 

(1.8 mmol) and Et3N (2.0 mmol) in benzene (20 mL) was refluxed for 8 h. The reaction 205 

mixture was extracted with CH2Cl2; the resulting organic extracts were washed with 

brine, dried over Na2SO4 and concentrated to dryness, providing a residue which was 

purified by column chromatography on silica gel to afford the corresponding imide. 

N-Octanoyl-2-pyrrolidinone (8). 68 % yield; obtained as an oil; HRMS (EI): 

m/z 211.1570 (C12H21NO2 requires 211.15.72); IR: νmax 2952, 2922, 2853, 1738, 1694, 210 

1460, 1360, 1324, 1250 and 593; 1H NMR: δH 3.8 (t, J= 7 Hz, 2H, H-5), 2.9 (t, J= 7 Hz, 

2H, H-3), 2.6 (t, J= 8 Hz, 2H, H-2’), 2.0 (m, 2H, H-4), 1.6 (m, 2H, H-3’), 1.3 (br s, 8H, 

(CH2)4CH3) and 0.9 (t, J= 7 Hz, 3H, CH3); 13C NMR:  δC 175.4 (C2), 174.4 (C1’), 45.4 

(C5), 36.7, 33.7, 31.6, 29.1, 29.0, 24.1, 22.5, 17.1 (C3, C4, C2’-C7’) and 14.0 (CH3); MS: 

m/z 211 (M+, 35), 182 (7), 154 (23), 140 (98), 127 (100), 112 (14), 99 (88), 86 (53), 69 215 

(26), 57 (91) and 55 (58). 

Biological activity. 

Insects. Oncopeltus fasciatus Dallas were maintained at 28 ± 1 °C, 50-60 % 

relative humidity, 16h/8h (light/dark) photoperiod and a diet based on sunflowers seeds. 

Target Microorganisms. Fungicidal activity was measured against thirteen 220 

agronomically important phytopathogens: Aspergillus parasiticus (CECT 2681), 

Geotrichum candidum (CCM 245), Alternaria tenuis (CECT 2662), Colletotrichum 

gloesporoides (CECT 2859), Colletotrichum coccodes (CCM 327), Fusarium 

oxysporium ssp gladioli (CCM 233), Fusarium oxysporum ssp niveum (CCM 259), 

Fusarium culmorum (CCM 172), Penicillium italicum (CECT 2294), Trichoderma 225 



viride (CECT 2423), Trichothecium roseum (CECT 2410), Rosellinia necatrix (CCM 

297), Verticillium dahliae (CCM 269).  

The strains were provided by the “Colección Española de Cultivos Tipo” 

(CECT) or by the “Colección de la Cátedra de Microbiología” (CCM) of the 

Department of Biotechnology (Universidad Politécnica de Valencia). 230 

Entomotoxicity and anti-JH activity. The test was carried out basically 

according to the contact method of Bowers et al. (1976). Briefly, 15 third-instar O. 

fasciatus nymphs were confined to a 9 cm Petri dish coated , across the bottom, with 10 

µg/cm2 of the product. Chemicals showing high activity at 10 µg/cm2 were retested at 

7.5, 6, 5, 4, 2.5 and 1 µg/cm2. Toxicity effects were considered according to the number 235 

of insects dead after 72 h of exposure to the chemicals and probit analysis (Finney, 

1971) was applied to determine the LD50. The surviving nymphs were transferred to a 

500 cm3 glass flask and held at standard conditions. After metamorphosis occurred and 

reproduction was successful with the production of viable offsprings, the tests were 

finished. The tests were considered positive for JH antagonistic activity when 240 

precocious metamorphosis occurred. Controls were run in parallel and received the 

same amount of acetone as treated insects. 

Antifungal activity. The products, dissolved in acetone, were added to PDA, in 

a concentration 100 µg/mL. PDA plates containing only acetone were used as control 

plates and a positive control with Benomyl (methyl-1-[butylcarbamoyl]-2-245 

benzimidazolecarbamate; Sigma, Germany) at 2.5 µg/mL was performed in order to 

appraise the level of activity of the synthesized compounds. Spores from seven day-old 

cultures of each fungus on PDA plates were used as an inoculum onto the control and 

test plates. The radial mycelial growth was measured and the percentage of inhibition 

was calculated on the basis of growth in control plates, after 4 days of incubation (6 250 



days for R. necatrix and V. dahliae), at 28 °C. The antifungal activity of each product 

was determined three times. When minimun inhibitory concentration (MIC) values were 

lesser than 100 µg/mL, the effective dose to inhibit 50% (ED50) of the mycelial growth 

was estimated by linear regression analysis of the percentage of inhibition versus log of 

compound concentration. Analysis of variance (ANOVA) was performed for fungicidal 255 

data (Table 1) and the least significant difference (LSD) test was used to compare 

means (Statgraphics Plus 2.1). 

 

RESULTS AND DISCUSSION 

 260 

The sequence of reactions previously used to synthesize 2, 3 and 4 was modified 

to prepare the related compound 7, in order to as certain whether the β-ketoamide 

functionality is esential for the activity. Thus, the side chain presents in the natural 

products was maintained in the monocarbonylic analogues. Phenoxyphenyl group was 

introduced, because it is very common in pesticides. 265 

 

As shown in Scheme 1, the employed synthetic sequence implied formation of 

amides by means of a Schotten-Baumann reaction, taking pyrrolidine and the 



corresponding acid chloride as starting materials in the first step. Subsequent anodic 270 

oxidation of the pyrrolidine ring using the method described by Shono (Shono, 1984; 

Shono et al., 1982; Shono et al., 1982; Shono et al.,1981; Shono et al., 1981) followed 

by elimination of MeOH upon acid catalysis and heating at 150-160 ºC (Slomczynska et 

al., 1996; Cornille et al., 1995; Cornille et al., 1994; Moeller et al., 1994; Moeller et al., 

1992) afforded the corresponding enamides. This worked is a satisfactory way in the 275 

case of 7a and 7b; however obtention of 7c implied in the anodic oxidation a 

diastereomeric mixture which appeared joined with a series of oxidation products of 

aromatic rings. This mixture of diastereomers was resoluted by cromatographic column. 

Lately, both diastereomers were used in the elimination reaction affording the desired 

enamide 7c. 280 

Finally, in order to obtain further analogues, 2-pyrrolidinone was introduced as a 

five member ring instead of pyrrolidine. This was achieved by simple heating of 

octanoyl chloride with 2-pyrrolidinone and triethyl amine in refluxing benzene 

(Ostrovskaya, et al., 1993; Sasaki, et al., 1991). 
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Biological activities.  

Insecticidal and anti-JH activity. Two of the products (5a and 5b) showed potent 290 

insecticidal activity against O. fasciatus. In the case of 5a, acute LD50 and LD90 values 

for third-instar nymphs, exposed to the chemical by the contact method, were 3.0 and 

5.0 µg/cm2, respectively. The corresponding values for compound 5b were 1.5 and 2.0 

µg/cm2. Thus, the latest compound was 2-fold more active than 5a; this toxicity data 

unambiguously demonstrates that introduction of an unsaturation in the side chain is 295 

associated with an improved entomotoxicity. Insects were unaffected, at test levels, by 

the other synthetic analogues. Thus, deeper modifications of the side chain or the five 

membered-ring produce an adverse effect on the toxicity. 

Insecticidal activity has been shown to be closely associated with the pyrrolidine 

moiety. In our previous work on the isolation, synthesis and biological activity of 300 

compound 2 (Moya et al., 1998), the study of the insecticidal activity of its synthetic 

precursors showed that the presence of the pyrrolidine ring was essential for the activity. 

Particularly, N-(3-oxodecanoyl)pyrroline and N-(2-methyl-3-oxodecanoyl)pyrroline, 

both with the β-ketoamide functionality, showed LD50 of 7.0 and 3.75 µg/cm2, 

respectively. As mentioned above, our current results show the same tendency, but in 305 

this case there has been a significant improvement of entomotoxicity. 

Although natural enamides 2 and 3 show an important in vivo anti-JH activity, 

neither their previously reported synthetic precursors nor the new analogues assayed in 

the present work proved to retain such activity; no precocious metamorphosis or not 

even slighter symptoms of HJ deficiency, as delayed growth or altered fertility, were 310 

detected. It seems that this activity has a very specific structural requeriments. 

  Fungicidal activity. At a first sight, it is interesting to note that the introduction 

of an amide group, instead of the β-ketoamide functionality present in the natural 



products and their synthetic precursors, resulted in an important increase of the 

fungicidal activity [for comparative purposes see Moya et al. (1998) and Cantín et al. 315 

(1998)]. However, comparatively, the level of activity are clearly lower that those of a 

conventional fungicide such as Benomyl (Table 1).  

Fungicidal activity of the new analogues, expressed as the percentage of growth 

inhibition against 13 agronomically important plant pathogens, is shown in Table 1.  

In general, the products possessing the phenoxyphenyl substituent showed the 320 

best fungicidal activity with regard to the percentage of growth inhibition and the 

number of affected species; compound 7c has proved to be highly active against C. 

gloesporoides [ED50 = 2.04 µg/mL; 95% confidence interval: (1.26 , 4.12)] and C. 

coccodes [ED50 = 11.7 µg/mL with a 95% confidence interval of (7.3 , 20.7)], although 

these results still compare unfavourably with those found for Benomyl [ED50 = 0.05 325 

µg/mL; 95% confidence interval: (0.04 , 0.08) against C. gloesporoides and ED50 = 0.13 

µg/mL with a 95% confidence interval of (0.12 , 0.17)]. Besides, compound 7c strongly 

affected the growth of T. roseum and P. citrophthora and, very interestinly, A. tenuis, 

one of the Benomyl resistant species; all the other fungi were also inhibited in some 

extent. The improvement obtained with this product appears important and warrants 330 

further work. It will be used as a starting point in the search for more active analogues 

and also for studies on its mechanism of action. 

The remaining analogues exhibited minimun inhibitory concentration values  

greater than 100 µg/mL, so none of them were strongly effective against tested 

microorganisms. In some cases, however, obtained data have been useful to appraise the 335 

influence of the different chemical transformations on the ability to control fungi. 

 Among the products possessing the pyrrolidine ring, compound 5c, with the 

phenoxyphenyl substituent, showed the best fungicidal activity. Compounds 5a and 5b 



exhibited lesser level of activity; 5a was significantly (P>0.05) more active than 5b 

against all microorganisms, except for both subspecies of F. oxysporium and A. tenuis. 340 

This fact suggested that the presence of an unsaturation in the side chain of the molecule 

had adverse effects on fungal growth, contrary to that observed for insecticidal activity.  

 Introduction of a methoxy group in the pyrrolidine ring to give the 

corresponding derivatives (6a, 6b and the diasteromers 6c1 and 6c2) was associated 

with a decreased activity. Thus, 6a and 6b were aproximately 2-fold lesser active than 345 

5a and 5b, respectively; this loss of activity could be observed not only at the level of 

activity but in the number of affected fungi. Compounds 6c1 and 6c2, the methoxy by-

products of 5c, were also adversely but not dramatically affected. 

 Molecules containing a pyrroline ring showed a good fungicidal activity 

specially against Colletotrichum genus. Contrary to the observed trend with the above 350 

products, the unsaturation on the side chain of this enamide (7b) appears to enhance the 

fungitoxicity. 

 Finally, important fungicidal activities were obtained when a 2-pyrrolidinone 

ring was introduced in the structure, instead of pyrrolidine. The activities were similar, 

or even higher, to those showed by compound 5c for Colletotrichum, A. tenuis and T. 355 

viride, but the other fungi were lesser affected. Previously, a similar 2-pyrrolidone 

derivative with antibiotic activity was described (Takeuchi and Yonehara, 1964). The 

product, named variotin, was isolated from the culture broth of the fungus Paecilomyces 

varioti and exhibits activity against different kinds of fungi with MIC values in the 

range 10-160 µg/mL. It is interesting to note that, as in our case, variotin is specially 360 

effective against various species of the Colletotrichum genera, with MIC values from 

0.2 to 2.0 µg/mL (Yonehara et al., 1959; Takeuchi et al., 1959; Abe et al., 1959).  

 



In summary, good insecticidal and fungicidal activities have been achieved and 

preliminary structure-activity relationships have been established. In this context, the 365 

improvements obtained so far on the biological activities and the simplicity of structures 

are encouraging to pursue on the search of new, more effective, analogues as promising 

pesticidal candidates.  

 

 370 
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Table 1. Analogues Showing Fungicidal Activity 

 Radial Mycelial Growth Inhibition  [% (mean±SD)a] 

Product 1 2 3 4 5 6 7 8 9 10 11 12 13 

5a 0 20.6±3.3AB 21.6±0.1A 13.0±0.5A 36.3±3.4AE 67.9±6.6A 34.9±6.9AFG 26.4±1.6A 44.6±4.8AE 41.5±3.2A 23.3±2.3A 15.8±2.8AD 21.9±1.7A 

5b 0 21.3±2.6B 24.7±3.4A 0 25.3±1.8B 50.2±2.3BC 48.8±5.3B 22.1±3.4AB 27.3±1.5BG 13.6±4.5B 9.9±0.1B 0 15.5±2.8B 

5c 48.8±2.5 A 52.0±1.0DE 52.2±2.2B 27.5±2.5B 61.4±1.7C 70.5±6.3A 77.4±10.4C 74.3±2.9C 76.1±5.4C 62.0±2.8C 48.0±2.0C 48.9±3.8B 50.9±1.3C 

6a 0 0 0 0 11.7±2.1D 44.7±1.8B 14.1±2.3D 19.9±3.0B 17.3±3.7D 15.6±4.6B 0 0 12.5±0.8B 

6b 0 0 0 0 0 45.8±2.2B 24.6±0.7A 10.7±1.9D 19.5±2.2BD 0 0 0 7.6±1.0D 

6c1 30.9±3.6B 47.3±1.3D 48.0±1.9BC 15.8±3.8A 55.7±2.1C 55.2±3.4CD 78.6±1.5C 61.1±3.5F 48.2±6.9E 60.2±6.6C 33.3±1.0D 24.0±3.5C 47.0±3.2CE 

6c2 30.3±5.3BC 33.9±1.8C 31.6±5.2D 16.7±2.9A 43.1±4.2A 44.5±0.6B 63.6±2.7E 44.4±2.7E 37.5±5.4AF 50.6±2.9D 18.2±0.0E 18.9±1.3D 23.2±3.0A 

7a 0 15.8±0.3A 13.5±4.3E 0  34.1±4.6E 47.8±3.9B 42.0±7.3BF 38.9±0.6G 19.9±3.2BD 18.0±3.4B 8.7±2.3B 9.0±2.0E 15.0±2.5B 

7b 27.6±3.4B 17.9±2.0AB 21.3±4.1A 0 84.0±5.4F 61.3±1.7D 38.9±6.6BFG 26.2±3.7A 34.1±9.3FG 26.4±4.2E 0 12.2±1.9AE 21.9±4.0A 

7c 46.7±2.1A 38.3±2.9C 46.1±2.5C 26.7±2.9B 100G 100E 84.8±0.9C 70.0±2.9C 57.1±5.5H 78.2±4.4F 33.1±3.1D 23.6±1.4C 43.6±3.3E 

8 23.0±5.1C 56.0±8.2E 36.9±5.4D 40.7±1.6C 77.2±6.8F 68.3±6.0A 34.3±4.3AG 89.0±5.2H 36.8±3.5AF 33.6±2.0G 65.3±1.2F 38.9±1.9F 48.3±1.5C 

Benomyl 87.0±1.4 11.1±0.0 100 0 100 100 100 0 100 100 100 100 100 

a values represent means ± standard deviations of growth inhibitions from three independent experiments. Assays concentration of analogues: 

100 µg/mL; Benomyl concentration: 2.5 µg/mL. Within each column, mean values showing the same superscripts (A-H) are not significantly 455 

different (P>0.05). Target Plant Pathogens: 1, F. culmorum; 2, F. oxysporum ssp gladioli; 3, F. oxysporum ssp niveum; 4, G. candidum; 5, C. 

gloesporioides; 6, C. coccodes; 7, T. roseum; 8, A. tenuis; 9, V. dahliae; 10, P. citrophthora; 11, T. viride; 12, P. italicum; 13, A. parasiticus. 


