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Abstract

In this work, we address the evaluation of design concepts and the analysis of multiple Pareto
fronts in multi-criteria decision-making using level diagrams. Such analysis is relevant when
two (or more) design concepts with different design alternatives lie in the same objective
space, but describe different Pareto fronts. Therefore, the problem can be stated as a Pareto
front comparison between two (or more) design concepts that only differ in their relative
complexity, implementation issues, or the theory applied to solve the problem at hand. Such
analysis will help the decision maker obtain a better insight of a conceptual solution and be
able to decide if the use of a complex concept is justified instead of a simple concept. The
approach is validated in a set of multi-criteria decision making benchmark problems.

Keywords: multi-criteria decision-making, multi-objective optimization, decision-making
tools, m-dimensional Pareto front comparison, m-dimensional Pareto front visualization,
s-Pareto front.

1. Introduction

It is common to state a design problem as an optimization statement, where a specific
cost index must be optimized. However, many real world problems require the fulfillment
of a set of requirements and specifications. In that case, it is said to have a multi-objective
problem (MOP) instead of a single-objective problem. In such statements, it is usual to find
that some objectives are in conflict with each other, and a trade-off solution must be found
(or selected).

Multi-objective optimization (MOO) can handle these issues in a simple manner, due to
its simultaneous optimization approach. In MOO, all the objectives are significant to the
designer, and as a consequence, each is optimized. In general, there is no single solution
because no solution is better than the others in all the objectives. Therefore, a set of
solutions, the Pareto set ΘP , is defined and its objective vector set as the Pareto front JP .
This set of solutions offers the decision maker (DM) greater flexibility at the multi-criteria
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decision-making stage. The role of the designer is to select the best solution according to
her/his needs and preferences for a particular situation.

MOO techniques search for a discrete approximation Θ∗

P of the Pareto set ΘP in order to
build a useful description J∗

P of the Pareto front that is as good as possible. In this way, the
DM has a set of solutions for a given problem and a high degree of flexibility when choosing
a particular or desired solution. Classic techniques [31] for building this Pareto front have
been used (for example: weighting vectors; ǫ-constraint and goal programming methods); as
well as specialized algorithms (normal boundary intersection method [8], normal constraint
method [29, 42, 27, 26]; and successive Pareto front optimization [40]). Multi-objective
evolutionary algorithms (MOEAs) have been recently used due to their flexibility when
dealing with non-convex and highly constrained functions [7, 6]. Some examples include:
NSGA-II [10]; MOGA [13]; ev-MOGA [17]; paǫ-MyDE [16]; paǫ-ODEMO [14], sp-MODE
[35], NOSGA [11], DNMOEA/HI [24]. Furthermore, new techniques to improve diversity in
the Pareto front for MOEAs have been proposed [47, 34, 5].

Once the DM has been provided with a Pareto front J∗
P , the DM will need to analyze

the trade-off between objectives and select the most preferable solution according to his
preferences. Such an approach has been termed generate first-choose later [30]. Several
techniques and methods have been developed to facilitate the DM’s task [12, 1, 32, 49]. It
is widely accepted that visualization tools are valuable and provide decision makers with
a meaningful method to analyze the Pareto front and take decisions [3]. We can recall the
desirable characteristics for such visualization techniques noted in [25] included: simplicity (it
should be easy to understand); persistence (the DM should be able to retain all information in
his/her mind); and completeness (all the relevant information should be shown). Moreover,
desirable characteristics (at software level) include interactivity with the DM and an intuitive
graphical user interface.

For two-dimensional problems (and sometimes for three-dimensional problems) it is usu-
ally straightforward to make an accurate graphical analysis of the Pareto front, but the
difficulty increases with the dimension of the problem. Common alternatives to tackle an
analysis in higher dimensions are scatter diagrams and parallel coordinates [19, 20]. The
former uses an array of scatter diagrams for each pair of objectives. The latter plots an
m-dimensional objective vector in a two-dimensional graph. Each dimension of the original
data is translated to an x-coordinate in the two-dimensional plot. This is a very compact way
of presenting multidimensional information, but with large sets of data it loses clarity and
the analysis becomes more difficult for the DM [2]. Recently, hybrid tools merging parallel
coordinates, dendrograms, and cluster maps have been proposed [4].

Recently, level diagrams (LD) [2] have been provided as a practical solution for achieving
accurate analysis onm-dimensional Pareto fronts by enabling the DM to correlate tendencies
between the Pareto set and Pareto front. This visualization has been successfully used in
control systems [36, 37, 38, 15], safety systems analysis [52], and reliability engineering [50,
51]. As pointed in [41], LD is one of the most useful methods for visualizing m-dimensional
Pareto fronts.

A further analysis on objective tradeoff by the DM could include the selection and com-
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parison of various design concepts (i.e. different methods) for solving an MOP. However,
the higher the dimension of the objective vector, the greater the difficulty in performing an
analysis. This task will be more complex if the aim is to perform a comparison of two (or
more) design concepts.

An analysis of the objective exchange when different design concepts are used will provide
a better insight into the problem at hand. This new analysis will help the DM compare
different design approaches, and evaluate the circumstances where he/she would prefer one
over another; furthermore, the DM can decide if the use of a complex concept is justified
over a simple concept. In this paper, the LD capabilities are improved by defining a new
quality measure to perform an analysis between Pareto fronts (design concepts) for a given
MOP statement. This work is developed on two assumptions:

• For the DM it is important to compare the degree of improvement of one design concept
over other(s). This could be justified by the fact that some of the qualitative preferences
of one design concept are important to bear in mind during the final selection. If there
are no preferences for the design concepts under consideration, a global Pareto front
could be calculated with solutions from all design concepts; in such case, the analysis
on a single Pareto front described in [2] with LD visualization would be enough.

• This visualization is complementary, i.e. it does not substitute the LD visualization
technique shown in [2], but it gives additional information to the DM.

The remainder of this paper is as follows: in Section 2 some preliminaries in MOO and
design concepts definition are stated. In Section 3 the new framework for concept comparison
by means of LD is defined. In Section 4, the new LD framework is validated as a practical
tool for concept comparison with a set of MOP. Finally, some concluding remarks are given.

2. Design concepts preliminaries

A MOO problem, without loss of generality,1 can be stated as follows:

min
θ∈ℜn

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ ℜ
m (1)

subject to:

g(θ) ≤ 0 (2)

h(θ) = 0 (3)

θi ≤ θi ≤ θi, i = [1, . . . , n] (4)

1A maximization problem can be converted to a minimization problem. For each of the objectives that
has to be maximized, the transformation: max Ji(θ) = −min(−Ji(θ)) could be applied.
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where θ ∈ ℜn is defined as the decision vector, J(θ) as the objective vector, and g(θ),
h(θ) as the inequality and equality constraint vectors respectively; θi, θi are the lower and
upper bounds in the decision space.

Usually, there is no single solution because no solution is better in all objectives. There-
fore, a set of solutions, the Pareto set, is defined. Each solution in the Pareto set defines an
objective vector in the Pareto front. Each point in the Pareto front is said to be a Pareto
optimal solution:

Definition 1. (Pareto optimality [31]): an objective vector J(θ1) is Pareto optimal if there
is not another objective vector J(θ2) such that Ji(θ

2) ≤ Ji(θ
1) for all i ∈ [1, 2, . . . , m] and

Jj(θ
2) < Jj(θ

1) for at least one j, j ∈ [1, 2, . . . , m].

Figure 1: Design concept and design alternative.

A Pareto front is calculated for a given design concept (a design concept is an idea about
how to solve a given MOP); this design concept is built with a family of design alternatives,
that is, a specific solution in the design concept (see Figure 1). But sometimes, there is a
set of different concepts, all of which can solve the MOP. Therefore, the DM can calculate a
Pareto front approximation for each. Accordingly, in [28] the definition of the Pareto front
and Pareto optimality were extended to a Pareto front for a set of concepts (s-Pareto front)
where all solutions are s-Pareto optimal. That is, the s-Pareto front is built with the design
alternatives of a set of K design concepts (see Figure 2).
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Figure 2: s-Pareto front concept.
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Definition 2. (s-Pareto optimality [28]): an objective vector J(θ1) is s-Pareto optimal if
there is no other objective vector J(θ2) in the design concept k such that Ji(θ

2) ≤ Ji(θ
1) for

all i ∈ [1, 2, . . . , m] and all concepts k, k ∈ [1, . . . , K]; and Jj(θ
2) < Jj(θ

1) for at least one
j, j ∈ [1, 2, . . . , m] for any concept k.

A comparison between design concepts is useful for the designer, because he will be able
to identify concept strengths, weaknesses, limitations, and drawbacks [28]. It is important
to visualize such comparisons, and to have a quantitative measure to evaluate such strengths
and weaknesses. As LD has been shown to be useful to visualize m-dimensional Pareto
fronts, we focus this work on the extension of design concept comparison with LD with a
new quality measurement to help in evaluation.

3. Level diagrams for concept comparison

We propose a new measurement to evaluate design concepts using LD visualization [2].
Firstly, a brief review of LD is presented.

3.1. Level diagram review

The LD helps us to perform an analysis on the calculated Pareto front J∗
P . LD visualiza-

tion is based on the classification of the Pareto front J∗
P . Each objective Jq(θ) is normalized

with respect to its minimum and maximum values. That is:

Ĵq(θ) =
Jq(θ)− Jmin

q

Jmax
q − Jmin

q

, q ∈ [1, . . . , m]. (5)

where (with a little abuse of notation):

Jmin =

[
min

J1(θ)∈J∗

P

J1(θ), . . . , min
Jm(θ)∈J∗

P

Jm(θ)

]
(6)

Jmax =

[
max

J1(θ)∈J∗

P

J1(θ), . . . , max
Jm(θ)∈J∗

P

Jm(θ)

]
(7)

For each normalized objective vector Ĵ(θ) = [Ĵ1(θ), . . . , Ĵm(θ)] a p-norm ‖Ĵ(θ)‖p is
applied to evaluate the distance to an ideal solution J ideal = Jmin; common norms are:

‖Ĵ(θ)‖1 =
m∑

q=1

Ĵq(θ) (8)

‖Ĵ(θ)‖2 =

m∑

q=1

Ĵq(θ)
2 (9)

‖Ĵ(θ)‖∞ = max Ĵq(θ) (10)
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Figure 3: Typical representation of the Pareto front for bi-objective problems using 2-D
graph (a) and LD (b). Points at the same level in LD correspond on each graphic.
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The LD visualization displays a two-dimensional graph for every objective and every

decision variable. The ordered pairs
(
Jq(θ), ‖Ĵ(θ)‖p

)
are plotted in each objective sub-

graph and
(
θl, ‖Ĵ(θ)‖p

)
in each decision variable sub-graph. Therefore, a given solution will

have the same y-value in all graphs (see Figure 3). This correspondence helps to evaluate
general tendencies along the Pareto front and compare solutions according to the selected
norm. In all cases, the lower the norm, the closer the ideal solution2. For the remainder of
this work and for sake of simplicity, ‖ · ‖2 norm will be used.

Differences in LD from other visualization techniques rely mainly on the number of plots
required to depict all the information (completeness). For example, scatter plots (SCp) re-

quire at least m(m−1)
2

graphs for trade-off comparison of each pair of objectives; if correlations
with the decision space are needed, n ·m additional plots will be required. Another popular
visualization strategy is Parallel Coordinates (‖p), which is a very compact way to display
multidimensional data. A single 2-dimensional plot is required, with as many vertical axes
as objectives (plus decision variables, if required). Nevertheless, to fully appreciate all the
tradeoff among objectives, some re-arrangements of the vertical axes could be required. In
the case of LD, a total of n+m graphs are needed and no additional rearrangement for axis
is required. Furthermore, the decision space variables inherit the norm value from the objec-
tive space, giving a straightforward correlation between objective and decision space. The
LD visualization would offer a tradeoff between SCp and ‖p to visualize an m-dimensional
Pareto front if we make the following assumption: the fewer the plots required to depict all
the information, the greater the persistence.

In any case, some degree of interactivity (with the data) would be desirable to facilitate
the decision making procedure; this could improve the simplicity of any visualization tech-
nique. Moreover, elementary tools to identify preferable zones could be helpful (such as color
coding for example); this could improve the persistence of the aforementioned visualization
techniques. These types of features have been successfully included in software tools such as
VIDEO [23] (classical visualization) and TULIP (parallel coordinates) from INRIA 3.

The LD-ToolBox 4, a powerful tool to analyze m-objective Pareto fronts, [36, 38, 52] uses
LD visualization and is employed at this point. It is a Matlab c© toolbox that offers to the
DM a degree of interactivity with multidimensional data. An in-depth explanation of LD
tool capabilities can be found in [2]. In [37], an initial approach to compare design concepts
with LD was presented. Nevertheless, this analysis is difficult, because it is not possible to
have a quantitative measurement to decide which concept performs best. As it is difficult to
obtain such an insight with current norms, a new measurement is required for this purpose.

2In this paper, the minimal values for each objective in the calculated Pareto front approximation are
used to build an ideal solution.

3Available at http://tulip.labri.fr/TulipDrupal/
4available at http://www.mathworks.com/matlabcentral/fileexchange/24042
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Iǫ(J
∗
p1,J

∗
p2) < 1 → Every J2(θ2) ∈ J∗

p2 is
strictly dominated by at
least one J1(θ1) ∈ J∗

p1.

Iǫ(J
∗
p1,J

∗
p2) = 1 ∧ Iǫ(J

∗
p2,J

∗
p1) = 1 → J∗

p1 = J∗
p2.

Iǫ(J
∗
p1,J

∗
p2) > 1 ∧ Iǫ(J

∗
p2,J

∗
p1) > 1 → Neither J∗

p1 weakly domi-
nates J∗

p2 nor J∗
p2 weakly

dominates J∗
p1.

Table 1: Interpretations for the Iǫ indicator.

3.2. Quality measure to compare design concepts

As pointed in [28], when multiple design concepts are evaluated by means of their Pareto
fronts, it is necessary to have a measurement to quantify their weaknesses and strengths.
Both are essential to bring the usefulness of Pareto fronts to conceptual design evaluation.

Several measurements have been developed to evaluate the Pareto front approximations.
Nevertheless, many are incompatible or incomplete [53] with the objective vector relations
(for example, strict dominance,5 dominance,6 and weak dominance.7)

To evaluate the relative performance between design concepts, the Iǫ binary indicator
[53, 22] is used. This indicator shows the factor Iǫ(J

∗
p1,J

∗
p2) by which an approximation set

J∗
p1 is worse than another set J∗

p2 with respect to all the objectives. As detailed in [53], this
indicator is complete and compatible, and is useful to determine if two Pareto fronts are
incomparable, equal, or if one is better than the other (see Table 1).

Definition 3. The binary ǫ-indicator Iǫ(J
∗
p1,J

∗
p2) [53] for two Pareto front approximations

J∗
p1,J

∗
p2 is defined as:

Iǫ(J
∗
p1,J

∗
p2) = max

J2(θ2)∈J∗

p2

ǫJ2(θ2) (11)

where

ǫJ2(θ2) = min
J1(θ1)∈J∗

p1

ǫJ1(θ1),J2(θ2) (12)

ǫJ1(θ1),J2(θ2) = max
1≤l≤m

J1(θ1)l
J2(θ2)l

, ∀J1(θ1) ∈ J∗
p1,J

2(θ2) ∈ J∗
p2 (13)

5An objective vector J(θ1) strictly dominates another vector J(θ2) if J(θ1) is better than J(θ2) in all
objectives.

6An objective vector J(θ1) dominates another vector J(θ2) if J(θ1) is not worse than J(θ2) in all
objectives and is better in at least one objective.

7An objective vector J(θ1) weakly dominates another vector J(θ2) if J(θ1) is not worse than J(θ2) in
all objectives.
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Q(J i(θi),J∗
pj
) < 1 → J i(θi) ∈ J∗

pi
strictly domi-

nates at least one J j(θj) ∈
J∗
pj
.

J i(θ1) ∈ J∗
pi

has an im-
provement over a solution
J j(θj) ∈ J∗

pj
by a scale

factor of Q(J i(θi),J∗
pj
) (at

least) for all objectives.
Q(J i(θi),J∗

pj
) = 1 → J i(θi) ∈ J∗

pi
is not com-

parable with any solution
J j(θj) ∈ J∗

pj
.

J i(θi) ∈ J∗
pi

is Pareto opti-
mal in J∗

pj
or J i(θi) ∈ J∗

pi

is inside a region in the ob-
jective space not covered by
J∗
pj
.

Q(J i(θi),J∗
pj
) > 1 → J i(θi) ∈ J∗

pi
is strictly

dominated by at least one
J j(θj) ∈ J∗

pj
.

A solution J j(θj) ∈ J∗
pj

has an improvement over
J i(θi) ∈ J∗

pi
by a scale of

Q(J i(θi),J∗
pj
) (at least) for

all objectives.

Table 2: Comparison methods using the Q(J i(θi),J∗
pj
) quality measure and its meaning.

As the binary ǫ-indicator is a scalar measure between Pareto fronts, some modifications
are required to build a scalar measure for each design alternative on each concept. The
quality indicator Q(J i(θi),J∗

pj
) 8 is defined for this purpose.

Definition 4. The quality indicator Q(J i(θi),J∗
pj
) for two design concepts i, j ∈ [1, . . . , K]

is defined as:

Q(J i(θi),J∗
pj
) =





1 if min ǫJ i(θi),J∗

pj
> 1 ∧min ǫJj(θj),J∗

pi
> 1

min
Jj(θj )∈J∗

pj

ǫJ i(θi),J∗

pj
otherwise (14)

where:

ǫJ i(θi),J∗

pj
= max

1≤l≤m

J i(θi)l
J j(θj)l

,J i(θi) ∈ J∗
pi
, ∀J j(θj) ∈ J∗

pj
(15)

with θi ∈ Θ∗
pi
, J i(θi) ∈ J∗

pi
, i 6= j.

With this quality measurement and the LD we can visualize regions in the Pareto front
where a design concept is better or worse than another. Furthermore, we will have a mea-
surement of how much better one design concept performs than the other (see Figure 4).

8To avoid problems with this quality indicator when the objective vector has positive and negative values
or zero values are involved, a normalization in the range [1,2] for each objective is used as a preliminary step.
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Figure 4: Typical comparison of two design concepts using a 2-D graph (a), level diagrams
with quality measure Q(·, ·) (b) and level diagrams with 2-norm (c).
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For example, in Figure 4 the relationships described in Table 2 can be seen. Firstly, due
to the quality measurement, it is possible to quickly identify the s-Pareto non-optimal (any
solution Q(J i(θi),J∗

pj
) > 1) from s-Pareto optimal solutions (any solution Q(J i(θi),J∗

pj
) ≤

1). Moreover, the quality measurement enables us to assign a quantitative value about how
better or worse a solution is with respect another concept. Further analysis with this quality
measurement can be made for particular solutions, or for regions in the LD.

Regarding particular solutions, let us see for example design alternatives 1a, 2a, 1b and
2b (Figure 4b). We have:

• Q(1a,J∗
p2) ≈ 1.2. That is, among the solutions J2(θ2) ∈ J∗

p2 which dominate objective

vector 1a, the smaller k for a solution J2(θ2) such that J2′(θ2) = k · J2(θ2) is weakly
dominated by 1a is k ≈ 1.2.

• Q(1b,J∗
p2) ≈ 0.8. That is, among the solutions J2(θ2) ∈ J∗

p2 dominated by objective

vector 1b, the bigger k for a solution J2(θ2) such that J2′(θ2) = k · J2(θ2) weakly
dominates 1b is k ≈ 0.8.

• Q(2a,J∗
p1) ≈ 1.28. That is, among the solutions J1(θ1) ∈ J∗

p1 which dominate objective

vector 2a, the smaller k for a solution J1(θ1) such that J1′(θ1) = k · J1(θ1) is weakly
dominated by 2a is k ≈ 1.28.

• Q(2b,J∗
p1) ≈ 0.9. That is, among the solutions J1(θ1) ∈ J∗

p1 dominated by objective

vector 2b, the bigger k for a solution J1(θ1) such that J1′(θ1) = k · J1(θ1) weakly
dominates 2b is k ≈ 0.9.

With regard to tendencies, the following remarks can be made:

• The lower J1(θ), the better the improvement of concept 2 (©) over concept 1 (♦).

• For J2(θ) ∈ [0.055, 0.1] approximately, the lower J2(θ), the better the improvement of
concept 1 (♦) over concept 2 (©).

Regarding zones in Figure 4b, region A represents the zone where design concept 2 (©)
is better than design concept 1 (♦). Note that the design alternatives from concept 2 have
a quality measurement Q(J2(θ2),J∗

p1) < 1 and design alternatives from concept 1 have a
quality measurement Q(J1(θ1),J∗

p2) > 1. The opposite is true for region B. Region C is
a zone reached (covered) only by concept 1 (and thus, it is impossible to compare both
concepts). Finally, region D represents a region where both concepts have almost the same
exchange between objectives. Please note how this analysis is more difficult with standard
norms using LD (see Figure 4c).

Finally, note that although it is possible to build a s-Pareto front merging the design
alternatives of each concept and analyze its tendencies, it is difficult to measure the im-
provement of one concept over another. This fact is mainly due to the loss of information
after building the s-Pareto front. The LD with the quality measure enables a quantitative

12



a-priori analysis between concepts, and it is possible to decide, for example, if the improve-
ment of one of them is justifiable. For instance, the DM could decide that the improvement
by a factor of 0.9 for concept 2 is not justifiable, and decide to only retain concept 1.

Whilst such comparison can be performed by visual inspection in a classical 2D-objective
graph (see Figure 4a), such a task will be more complex when three or more objectives are
considered. Several examples are considered to show the LD performing comparisons on
m-dimensional Pareto fronts using this quality measurement.

4. Examples

In this section, four examples are analyzed, where different concepts are used to obtain
different trade-offs between objectives. The following examples show analysis on 2, 3, 5
and 6 dimensions for the objective vector space. The first example is used to show that no
information (completeness) or clarity (simplicity) will be lost using the LD instead a 2-D
graphical analysis. The latter cases are presented to show the visualization capacity of LD
using the quality measurement for concept comparison in m-dimensional Pareto fronts. It is
assumed that any superfluous objective has been previously removed from the analysis; i.e.
we are depicting all the information (concerning the number of objectives) required by the
DM.

For all examples, the LD-ToolBox is used to retain the degree of interactivity with the
supplied data (in Appendix A, supplementary videos are provided). Finally, the Pareto
fronts are calculated using the sp-MODE algorithm [35, 39], which uses differential evo-
lution (DE)[45, 44, 9] algorithm (see Appendix Appendix B for details), but any other
algorithm or procedure could be used since we are developing tools for the MCDM step. For
the sake of simplicity, the LD will be coded as follows: LD/front/measure. For example,
LD/J∗

p/‖Ĵ(θ)‖2, means that a visual representation of Pareto front approximation J∗
p with

2-norm in LD is presented.

4.1. Bi-objective truss design problem

The truss design problem is a classical MOO benchmark statement to test algorithms,
as well as decision-making step procedures. The truss parameters proposed in [43] are used
with the design concepts stated in [29, 28]. Two objectives are minimized: deflection (J1(θ))
and total volume (J2(θ)). Whereas it could be easiest (from a persistence point of view)
to use a straightforward approach with the SCp visualization, this example is included and
used to cover the following topics:

• Bring a first approach to the LD visualization and design concept comparison with a
(probably well known) multi-objective benchmark problem.

• Introduce some properties of the LD visualization.

In Figure 5, the objective exchange for both concepts and its LD/
{
J∗
p1, J

∗
p2

}
/‖Ĵ(θ)‖2

visualization is shown. It is important to notice that the LD visualization by itself is not
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Figure 5: Objective exchange for two concepts in truss design example (a) and representation
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enough to make an analysis or a comparison between design concepts. This is mainly because
there is not a quantitative measurement on the improvement of one over the other.

In Figure 6, the LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
and LD/s-Pareto/‖Ĵ(θ)‖2 visualization

are shown. We can identify in Figure 6a some interesting points:

• In region B, concept 1 (♦) is better than concept 2 (©). The opposite is true for Zone
D.

• The lower J2(θ), the better the improvement of concept 2 (©) over concept 1 (♦).

• Region A is covered only by concept 1 (♦).

• In region C, both concepts offer the DM the same type of exchange between objectives.

With this visual inspection, the DM can decide if a 2% of improvement between concepts
is justifiable to change the structural design (assuming that one of the concepts is currently
being used). Furthermore, the DM knows that if the concept design requires keeping the
deflection J2(θ) ∈ [0.03, 0.04], then she/he can select, for example, the easier structure to
build.

4.2. Disc brake design

This is the disc brake design proposed in [33]. The design objectives to be minimized are
the mass of the brake (J1(θ)), the stopping time (J2(θ)), and the engaging force (J3(θ)).
The decision variables are the inner and outer radius of the disc, the engaging force, and the
number of friction surfaces. The latter is used to generate two different design concepts: a
disc brake design with 4 and 6 friction surfaces respectively. This example is used to show:

• The complexity increase on visualization when the DM required to analyse more than
two objectives.

• To introduce geometrical remarks and their physical meaning to the problem at hand.

In Figure 7, the objective tradeoff in a 3D-objective plot, and the LD/
{
J∗
p1, J

∗
p2

}
/‖Ĵ(θ)‖2

visualization are presented. It is important to notice the complexity increases from 2 to 3

objectives. In Figure 8, the LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
and LD/s-Pareto/‖Ĵ(θ)‖2 visu-

alizations are shown. Some remarks from Figure 8 can be made:

• Both design concepts guarantee a useful coverage on J3(θ).

• No single concept is able to fully cover J1(θ) or J2(θ).

• According to the last observation, if J1(θ) ≤ 0.5 is required, concept 1 must be used;
however, if J2(θ) ≤ 4 is required, concept 2 must be selected.

• The bigger the mass of the brake, the better the improvement of concept 2 (©) over
concept 1 (♦) in the range J1(θ) ∈ [0.6, 1.0].
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Notice how the analysis becomes more difficult as the objective space increases. In this

example, using the LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
visualization, it is possible to decide under

which circumstances one concept will be preferred over another. For example, when the DM
has a strong preference for one concept (due to its flexibility or because it is less complex), he
can accept sub-optimal solutions. The following example will be used to show the flexibility

of the LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
visualization to built a Pareto front for a set of concepts

filtered with preferences.

4.3. Parametric controller design

The next example is a parametric controller design G(s) for the control benchmark pro-
posed at the American Control Conference (ACC) [48]. The MOP statement described in
[2] is used. It has six objectives: robust stability (J1(θ)); maximum control effort (J2(θ)),
worst case settling time (J3(θ)); noise sensitivity (J4(θ)); nominal control effort (J5(θ)); and
nominal settling time (J6(θ)). Two different controller structures G1(s) (design concept 1)
and G2(s) (design concept 2) will be evaluated:

G1(s) =
θ1s

2 + θ2s+ θ3

s3 + θ4s2 + θ5s+ θ6
(16)

G2(s) =
θ1s+ θ2

s2 + θ3s+ θ4
(17)

subject to:

− 10 ≤ θi ≤ 25 (18)

J3(θ) ≤ 100 (19)

J4(θ) ≤ 1 (20)

J6(θ) ≤ 50 (21)

The aims with this example are to:

• Demonstrate the viability of the approach with more than three objectives.

• Perform a simple interactive solution selection procedure.

In Figure 9, the LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
visualization is shown. This figure shows

that concept 2 better covers the objective space. Also, there are several solutions from
concept 1 dominated by concept 2.

An inspection of LD/
{
J∗
p1, J

∗
p2

}
/Q

(
J i(θi), J∗

pj

)
enables us to determine under which cir-

cumstances one concept will be preferred over another. To show this flexibility, let’s assume
the DM has a strong preference for concept 2, due to its simplicity and implementation
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facilities. Although concept 1 has a larger coverage, the DM observes that such covering
implies a strong degradation in objective J4(θ). Also, given the preference for implementing
concept 2, the DM decides that small improvements of concept 1 over concept 2 are not
justifiable. With this, the DM can build a Pareto front for a set of concepts filtered with
his/her preferences (fs-Pareto front). For this particular example, lets say:

• Concept 2 is preferred over concept 1, when covering the same objective space (i.e., if
both concepts have the same type of objective tradeoff, then concept 2 will be always
be selected).

• Solutions from concept 2 will be removed from the fs-Pareto front only ifQ(J1(θ1), J∗
p2) >

1.10 (i.e., there is an acceptance region of 10% for a solution from concept 2 even if it
is dominated by J∗

p1). That is, we would accept some sub-optimal solutions given the
simplicity of the design concept.

• Solutions from concept 2 will be inserted in the fs-Pareto front only if Q(J2(θ2), J∗
p1) <

1
1.10

(i.e. a minimum improvement over concept 2 is required for any solution from
concept 1 to be considered.)

• The DM would like to incorporate the preferences defined in Table 3 to facilitate its
selection procedure.

Table 3: Preference matrix for Example 3.

← HD → ← D → ← T →
Highly

Desirable Desirable Tolerable
Objective J0

i J1
i J2

i J3
i

Robust performance -1.00 -0.04 -0.02 -0.001
Maximum control effort 0.00 0.30 0.40 0.500
Worst case settling time 0.00 40.00 60.00 80.000

Noise sensitivity 0.00 0.50 0.60 0.700
Nominal control effort 0.00 0.30 0.40 0.500
Nominal settling time 0.00 30.00 40.00 50.000

With the aforementioned preferences, an fs-Pareto front is built. This front merges
solutions from both concepts with a given set of preferences of the DM. In Figure 10 the
LD/fs-Pareto/‖Ĵ(θ)‖2 visualization is shown. From this point onwards, the usual analysis
on LD/front/measure using the LD-Tool [2] can be performed. For example, a solution
(designed with a star in the aforementioned figure) could be selected to appreciate tradeoff
and performance when compared with concept 1.
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Ĵ
(θ

)‖
2

0.2 0.25 0.3 0.35 0.4
0.5

1

1.5

2

 J
5
 (θ) :

 Nominal control effort 

20 25 30 35 40 45
0.5

1

1.5

2

 J
6
 (θ) :

 nominal settling time 

(a) LD/
{
J∗

p1, J
∗

p2

}
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Figure 9: Objective exchange visualization for example 3.
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It is important to notice that, even with a large dimensional objective space, the LD
visualization remains useful for design alternative selection and concept comparison. Such a
filter over the s-Pareto front facilities the DM analysis task, by allowing her/him to analyze
the region and characteristics that are important according to her/his preferences.

4.4. MOEA performance evaluation

The final example is a proposal for MOEA visual comparison using the proposed ap-
proach. This example is used to:

• Make a proposal for MOEA visual comparison with more than three objectives.

• Show how the comparison of three or more design concepts could be performed.

Three different design concepts (MOEAs) are used to calculate a Pareto front approxima-
tion for problem WFG6 (with 32 decision variables and five objectives) from the benchmark
test suit for multi-objective optimization described in [18]. Design concepts to be used are:

Concept 1: A DE algorithm with the diversity/pertinency mechanism described in [46].

Concept 2: A standard GA for multi-objective optimization.

Concept 3: A standard DE algorithm for multi-objective optimization.

In all cases, a target vector solution is defined at J(θ) = [1.30, 2.24, 2.79, 5.24, 8.24].
The GA algorithm uses a basic penalty-function mechanism for this purpose. A total of 25
independent runs for each design concept was evaluated and 2000 function evaluations are
used.

In order to keep simplicity as a requirement, all the proposals will be compared with
a Pareto front for reference Jref

p (design concept 0) to avoid the comparison by pairwise
design concepts. In this case, it is straightforward to generate such a Pareto front, since it
is known. In other instances, a Pareto front for reference could be generated by merging all
the solutions obtained and using a dominance filter. This would be helpful to visualize the
degree of estrangement of design alternatives in a given design concept from the reference
front.

To evaluate the average performance of the design concepts, the m-dimensional attain-

ment surface is calculated as indicated in [21] 9. The attainment surface at 50% (J̃∗
pi

50%
) is

calculated for the design concept comparison. In Figure 11 the LD/
{
J̃∗
p1

50%
, J̃∗

p2

50%
, J̃∗

p3

50%
}

/ Q
(
J i(θi), J∗

p0

)
visualization is shown. It is possible to appreciate that design concepts 2

and 3 (circles and points respectively) show almost the same performance in approximating
the Pareto front. Concept 1 (squares) shows a better performance, since it is closer to 1 (the
Pareto front for reference); furthermore, several solutions seem to be in the Pareto front, or

9C code freely available at http://dbkgroup.org/knowles/plot_attainments/
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Ĵ
(θ

)‖
2

 

 

Design Concept 1
Design Concept 2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.5

1

1.5

2

 J
2
 (θ) :

 Maximum control effort 

30 40 50 60 70 80 90
0.5

1

1.5

2

 J
3
 (θ) :

 Worst case settling time 

0.2 0.4 0.6 0.8
0.5

1

1.5

2

 J
4
 (θ) :

 Noise sensitivity 

‖
Ĵ
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Figure 10: Visualization with preferences (see table 3) for example 3. The darker the solution,
the most preferable according to the DM’s preferences.
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at least, are not dominated by the Pareto front for reference J∗
p0

10. This graphical inspection,
as noticed in [21] is helpful because it is important to have a visual validation for MOEA per-
formance evaluation when other metrics are used (such as hypervolume for instance). Notice
that whilst the performance metrics by themselves give an overall-quantitative measure on
Pareto front performance, this graphical inspection enables a visualization and comparison
of the algorithm performance by sectors.

5. Conclusions

In this work, a new quality measurement Q(J i(θi), J∗
pj) was defined to perform concept

comparison using level diagrams (LD). With this measure, and the flexibility of LD to
visualize and analyze m-dimensional Pareto fronts, the DM is able to obtain a better insight
into objective tradeoffs for different concepts. This was validated in a set of multi-criteria
decision making problems of 2,3,5 and 6 objectives.

Furthermore, with the Q(J i(θi), J∗
pj) quality measurement it is possible to have a measure

of alternative design improvements between design concepts. With this feature, it is possible
to build a Pareto front for a set of concepts filtered (fs-Pareto) with the DM preferences.
In this fs-Pareto front, the DM can accept sub-optimal solutions for one concept when for
example, the improvement of one concept over another is small, and the use of the s-Pareto
optimal solution is not justifiable.

Finally, the Q(J i(θi), J∗
pj) quality measurement is used to test multi-objective optimiza-

tion algorithms since it can measure the improvement of one algorithm over another. Al-
though such evaluation can be done by means of the original Iǫ binary indicator that calcu-
lates a single scalar for each Pareto front; with the Q(J i(θi), J∗

pj) quality measurement it is
possible to analyze the regions in the objective space where an algorithm performs better,
thereby obtaining a better understanding of its weaknesses and strengths. This characteristic
could be desirable when the algorithms are evaluated with real-world application problems.

Appendix A. Supplementary Video

Examples on usability and interactivity of LD visualization by means of the LD-tool are
provided at: http://cpoh.upv.es/es/investigacion/software/item/52-ld-tool.html.

Appendix B. sp-MODE

The spMODE algorithm [35, 39] is a MOEA used to calculate a Pareto front approxima-
tion J∗

P . It is based on the differential evolution [45, 44, 9] technique and uses an external file
to store the best solutions found and the extreme values for each objective. To handle the
inclusion/exclusion of a solution in such repository, it uses a spherical pruning mechanism in
the objective space to reduce the size of J∗

P . A general pseudo-code using spherical pruning
is presented in Algorithm I.

10J∗

p0 is calculated with 1000 solutions uniformly distributed in the known Pareto set.
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Algorithm I: spMODE
1 : Generate initial population P |0 with Np individuals.
2 : Evaluate P |0.

3 : Apply dominance criterion on P |0 to initialize repository Â|0.

4 : Perform an spherical pruning [35, 39] in Â|0 to prune it.
5 : Look for extreme solutions on A|0 to initialize extremal values E|0 for all objectives.
6 : WHILE stopping criterion not satisfied
7 : Read generation count G.
8 : Create a population subset S|G with solutions in P |G and A|G.
9 : Generate offspring O|G with population subset S|G.
10: Evaluate offspring O|G.
11: Update population P |G with offspring O|G.
12: Update extremal values with O|G and E|G.

13: Apply dominance criterion on O|G
⋃
E|G

⋃
A|G to get Â|G

14: Perform an spherical pruning [35, 39] in Â|G to get A|G+1

15: G = G+ 1.
16: ENDWHILE
17: Algorithm terminates. JP is approximated by A|G

⋃
E|G = J∗

P
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