

Teaching Abstraction

Böttcher, Axel
a
; Schlierkamp, Kathrin

a
; Thurner, Veronika

a
 and Zehetmeier,

Daniela
a

a
Faculty of Computer Science and Mathematics, Munich University of Applied Science,

Germany.

Abstract

Many technical disciplines require abstraction skills, such as the ability to

deduce general rules and principles from sets of examples. These skills are

the basis for creating solutions that address a whole class of similar

problems, rather than merely focusing a single specific instance. Experience

shows that many freshmen students are ill equipped with these skills.

Therefore, we developed an intervention that systematically teaches

abstraction skills to students, and applied our approach to a cohort of

freshmen students in computer science.

Keywords: Abstraction, cognitive competencies, computer science, teaching

2nd International Conference on Higher Education Advances, HEAd’16
Universitat Politècnica de València, València, 2016
DOI: http://dx.doi.org/10.4995/HEAd16.2016.2770

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

357

Teaching Abstraction

1. Motivation

Thinking in an abstract manner is a key competency for computer scientists (Bucci, Long,

& Weide, 2001) (Kramer, 2007), as well as in many other technical discplines. For

example, moving from a notion of quantity, count or multiplicity to the representation of

numbers in a computer requires some kind of abstraction. Similarly, a function that

computes the sum of the values of its two parameters A and B is an abstraction that

specifies the general mechanism for adding up two numbers from a given set, no matter

what their values are. Finally, when analysts model a complex business process, they

usually examine a set of specific scenarios, identify their commonalities and differences,

intentionally drop irrelevant detail and mold the relevant parts into some kind of template

that captures the very essence of the underlying business process in its “typical” form. Each

of these examples involves a strong notion of abstraction.

Our experience, based on both formal tests and observation, shows that abstraction-related

competencies are insufficiently developed in the vast majority of our freshmen students.

Just to mention one example, the exercise given in Figure 1 was only solved by less than

30% of our freshmen-students. Even worse, most students are not even explicitely aware

that there is such a skill as abstraction, and that it is highly essential for their chosen course

of study. Needless to say, many of them don’t know about their own proficiency (or the

lack of it) in this area, either.

Figure 1. Example question from the ’Informatik Biber’, an exercise that assesses abstraction skills of A-level

students (BWINF, 2010).

However, abstraction skills are a key competence for computer scientists to be, and highly

essential for learning reasonable programming skills. Therefore, in order to enable our

students to successfully cope with the technical content that they are confronted with in

their course of study, we have to teach them abstraction as a fundamental practical and

cognitive competence.

One difficulty that arises in teaching abstraction is, that it is an “invisible” concept,

meaning that there is no obvious way to make its notion tangible e.g. by suitable

experiments (such as “dropping an apple” to visualize the notion of “gravity”). Another

problem is that those people that are adept in the skill of abstraction usually apply it

unconsciously. More precisely, experts tend to form abstractions from real world details

without being able to specify the steps of the cognitive process that they applied. So

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

358

Böttcher, A.; Schlierkamp, K.; Thurner, V. and Zehetmeier, D.

obviously, even if you are an expert in abstract thinking, it is difficult to teach this skill to

novices if you are unaware of how you do it.

Therefore, in order to teach the skill of abstraction in a systematic way, experts first have to

identify what they themselves do in the abstraction process. Once this is understood in

sufficient detail, they can then move towards developing appropriate didactic approaches

that help to evolve the skill of abstraction in their students. In addition, to measure

abstraction skills we need suitable tests or tasks that focus on assessing abstraction skills on

different levels of expertise.

2. Goals

To tackle these problems, we investigate how we can teach abstraction in a systematic way.

Thus, this paper describes and evaluates an intervention for teaching abstraction that

- conveys an understanding of the concept of abstraction to our students,

- creates an awareness of what abstraction is, and why it is a necessary skill,

- makes the cognitive process of abstraction transparent,

- transfers to our students at least a basic understanding of this process as well as the

ability to apply it, and

- helps students to assess their own current skill level in this area.

To specify the intended learning outcome in our students, we have to define which kind of

skills we associate with different levels of expertise in abstract thinking. Therefore, in Table

1, we provide teaching goals that are formulated in accordance with the revised Bloom

taxonomy for teaching and learning objectives (Anderson, 2001). Note that as our

intervention addresses freshmen students and thus novices to the art, it only covers the four

lower levels of expertise, i.e. Remember to Analyse.

Table 1. Teaching goals for the intervention on abstraction, according to the revised Bloom

taxonomy.

Level Teaching Goal: Students ...

Remember … define the terms abstraction and concretion.

… define the competence of abstract thinking.

Understand … explain that computer science mainly deals with abstract concepts

and that hence the ability of abstract thinking is essential in this domain.

… reason that understanding of a domain requires an understanding of

the underlying rules.

Apply … derive concrete statements from a given simple abstraction.

… extract the simple rule-set underlying a given set of concrete yet also

simple examples.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

359

Teaching Abstraction

Analyse … apply a meta-strategy for finding an abstraction and solution strategy

for a given abstraction task.

Evaluate … evaluate the results of an abstraction process (i.e. the model or rule-

set).

Create … develop a meta model.

3. Related Work

Abstraction is ”a process of omitting all individuating features, and retaining only what is

common to all of a set of resembling particulars“

John Locke, to be found e.g. in (Wiener, 1973-1974)

Contributions towards abstraction in computer science (CS) curricula touch three

categories:

 definition attempts or at least identification of abstraction in computer science

 the field of teaching abstraction abilities

 the field of testing them

Kramer states that abstraction is a key skill for computing (Kramer, 2007). He concludes

that “we should focus more directly on ensuring that our teaching is effective and that

computing professionals have adequate abstraction skills”. As a basis, he recommends to

measure students’ abstraction abilities, both at the time when they apply for a place at

colleges to study computer science, as well as annually throughout their college education

process. But he does not give hints on how to achieve this. Kramer also mentions that many

courses “rely on or utilize abstraction (...) but that it must be taught indirectly through other

topics”. Similarly, Bucci et al. (Bucci, Long, & Weide, 2001) observed that abstraction is

severely shortchanged by current CS1/CS2 pedagogy. They give some examples of

teaching support.

On the other hand, Hazzah and Kramer (Hazzan & Kramer, 2007) state that “abstraction

should be introduced as an identifiable concept”. This corresponds to our notion, namely to

move away from the indirect teaching of abstraction to focusing it as a topic by itself. If

teachers are not aware of their own abstract thinking, they might easily overlook concepts

that need a detailed explanation, and take it for granted that students can understand these

concepts on their own. However, we did not find any contributions towards teaching

abstraction as a concept on its own, and making the abstraction process transparent to

students.

Cook et al. have tried a systematic approach to teach abstraction for computer scientists to

be, which is based on mathematical modeling. When basic math courses are taught in

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

360

Böttcher, A.; Schlierkamp, K.; Thurner, V. and Zehetmeier, D.

parallel to introductory courses on software development and not up-front, an additional

layer of complexity is introduced by the context of that specific mathematical subject.

Several ideas for tests that measure abstract thinking capabilities are proposed by Hazzan &

Kramer (Hazzan & Kramer, 2007). However, they already require some basic knowledge of

computer science which we cannot expect in our freshmen students.

4. Teaching Approach

Our teaching unit on abstraction is designed along the process depicted in Figure 2, based

on Dietz & Dietz (Dietz & Dietz, 2011). Starting point is the idea to make students aware of

their lack in abstract thinking. As soon as students are conscious of their incompetence and

willing to face this deficit, it is possible to work with them to close the identified gap. The

next step is to teach abstraction and to develop basic skills in this competence. Those skills

must be practiced over and over, and improved until abstract thinking finally becomes an

unconscious competence. Abstract thinking must become second nature to our students.

Figure 2. The different steps from unconsciuos incompetence to unconscious competence.

4.1 From unconscious incompetence to conscious incompetence

The first of two 90-minute teaching units started with an initial test to unveil the deficits in

abstract thinking of our students, and to attract the students’ attention for this topics.

4.2 From conscious incompetence to conscious competence

On the way to conscious abstract thinking, we tried to make transparent categorizations that

unconsciously take place in everyday’s life. As examples, we used verbs/nouns,

round/angular shaped geometric ojects and car/bike brands, and asked our students to find

the odd ones out. This demonstrates that everyone naturally uses fundamental abstraction

skills. Next step was the discussion of the term “abstraction” and its common definitions.

This was followed by exercises to find commonalities in sets of different entities like video

game consoles, fruit, or geometric objects. Those commonalities define rule sets, which in

general are the basis for the transformation into formalism of software.

On the other hand, it is important to be able to identify concrete examples from given sets

of rules. Therefore, we asked students to find examples for the following three rule sets:

- primitive data types in Java

- control structures

- mandatory classes and electives in their degree course

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

361

Teaching Abstraction

Furthermore, in order to establish the relationship to the context of software development,

we introduced the concepts of entities and behavior, which result in boxes (classes) and

blue prints (class definitions).

In a second step, we introduced the concept of the abstraction of processes. As examples

from everyday life, we used text formatting in a word processor, and sorting. As an exercise

for the abstraction of processes, students had to define rules for calculating change in a

vending machine. To practise concretion of processes, students had to apply the right-hand-

rule for escaping from different mazes.

Deepen the conscious competence

A deep understanding of abstraction in the domain of computer science requires expert

thinking. In order to understand the mental processes computer scientists implicitly apply

when solving problems, we analyzed our thinking-steps while developing an algorithm with

help of a think-aloud session of domain experts (Pea, 1986). Following the approach of

Pólya (Pólya, 1973), we formalized the single steps we applied into a general approach. In

order to give our students more guidance than the very general description of Pólya, we

described our approach in more detail with respect to finding algorithms.

We used this approach to develop the second part of our intervention on abstract thinking, a

90 minute lecture where we focused on the problem of determining whether a given word is

a palindrome (word that reads identically backward or forward) or not.

At the beginning, we introduced the task description including a short definition of

palindromes. In addition, we defined the input and output of the desired algorithm.

According to our approach, the first step is to find examples and non-examples.

Subsequently, students were asked to informally describe an algorithm in natural language.

This typically includes redundancy in terms of repeated compare-instructions on different

character positions, as shown in Figure 3.

Figure 3. Illustration of the compare-instructions on different character positions of a palindrome.

The next step is to apply the following fundamental rules of formalization:

- Replace the textual sequence with an index

- Create decision trees and flow diagrams

- Use signal words like if, while, until, repeat, … for the process description

- Avoid redundancy wherever possible

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

362

Böttcher, A.; Schlierkamp, K.; Thurner, V. and Zehetmeier, D.

This description is refined step by step, until the majority of our students understands how

to transfer the process description into source code. In order to support students while

formulating source code, we listed some general rules to help them:

- Wrap an algorithm into a method

- Map signal words to constructs of the programming language

- Convert examples to test-cases

5. First Results

In order to evaluate our special lecture, we designed a pre- and a post-test. For these tests,

we used two similar questions as shown in Figure 4, as well as one question that occurred

identically in both tests. Furthermore, we asked students to self-assess their competencies in

concrete and abstract thinking on a scale of 1 (low) to 10 (very high).

Figure 4. Task: how would the series on the left side continue?

The first test was handed out at the beginning of the first lecture, and students had 10

minutes to fill in the form. Then, we started with the lecture that took around 60 minutes.

At the end of the lecture, we assessed students again to evaluate the impact of our lecture.

As students performed good in the pre-test on the questions (15 and 19 correct answers out

of 21 participants) there was no significant improvement to measure. It seems that students

have some basic abilities of abstract thinking at the beginning of their studies. However,

this just works for common problems like the one illustrated in Figure 4. Nevertheless, if it

comes to computer science related tasks like finding an algorithm (also cf. the exercise in

Figure 1 for this issue), students often struggle. This is one reason, why we prepared the

second part of the intervention, where we have explicitly presented the thinking process for

developing an algorithm step by step.

The self-assessment of the students’ confidence in their ability to think in an abstract way

increased from a median of 5 to 6. At the beginning of their studies (October 2015), the

same students estimated this ability with 3 to 4. Thus, this single lecture improved the

ability of thinking abstractly much quicker than other lectures before.

To ask our students for feedback on the lecture, we distributed another questionnaire.

Students stated that the unit was helpful to understand what abstraction and concretion is

about, and that the intervention provided an introduction into the topic. Additionally,

students realized that these skills are important for understanding problems from the area of

computer science. As well, students stated that they felt supported individually, and that

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

363

Teaching Abstraction

they learned something new. However, they still felt not very confident about their

individual competencies. For example, they stated that they are not sure if they are able to

create abstract objects, relationships and rules by themselves for new tasks, or if they can

depict complex facts clearly. All in all, they assessed themselves to be more skilled in

concrete than in abstract thinking.

6. Conclusion and Future Work

We devised an intervention for teaching abstraction systematically, and tested it with our

students of computer sciences. As a result, our students stated that they increased their

knowledge about abstract and concrete thinking, but still struggle when solving new tasks.

Therefore, they need to practice these skills regularly, to increase their proficiency in this

area. Only with sufficient practice, our students’ abstraction skills will evolve from a

conscious competence to an unconscious one.

References

Anderson, L. W. (2001). A Taxonomy for Learning, Teaching, and Assessing. A Revision of

Bloom's Taxonomy of Educational Objectives (1 ed.). (L. W. Anderson, D. R.

Krathwohl, P. W. Airasian, K. A. Cruikshank, R. E. Mayer, P. R. Pintrich, . . . M. C.

Wittrock, Eds.) New York: Longman.

Bucci, P., Long, T. J., & Weide, B. W. (2001). Do we really teach abstraction? Proceedings

of the thirty-second SIGCSE technical symposium on Computer Science Education (pp.

26-30). New York, NY, USA: ACM.

BWINF, G. f. (2010). Informatik Biber. Informatik Biber. Retrieved from http://informatik-

biber.de/

Dietz, I., & Dietz, T. (2011). Selbst in Führung. Paderborn: Junfermann Verlag.

Hazzan, O., & Kramer, J. (2007, January). Abstraction in Computer Science & Software

Engineering: a Pedagogical Perspective. Frontier Journal, 4(1), 6-14.

Kramer, J. (2007). Is abstraction the key to computing. Communications of the ACM, 50.

Pea, R. D. (1986). Language-independent conceptual 'bugs' in novice programming.

Journal of Educational Computing Research, 2, 25-36.

Pólya, G. (1973). How to Solve It: A New Aspect of Mathematical Method. Princeton

university press.

Wiener, P. P. (Ed.). (1973-1974). The Dictionary of the History of Ideas: Studies of

Selected Pivotal Ideas. New York: Charles Scribner.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València

364

