
i





Development of Bioinformatics
Resources for the Integrative Analysis

of Next Generation Omics Data

Rafael Hernández de Diego

Supervisor:
Dr. Ana Conesa Cegarra

Genomics of Gene Expression Lab
Centro de Investigación Príncipe Felipe

Tutor:
Dr. Monserrat Robles Viejo

Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA)

Universitat Politècnica de València

A doctoral thesis submitted to

Instituto Universitario de Tecnologías de la Información y Comunicaciones

(ITACA)

July 2017





Abstract

Advances in high-throughput sequencing techniques and the technological de-

velopment accompanying them have favoured the development and populari-

sation of a new range of genomic research disciplines, collectively known as the

omics. These technologies are capable of simultaneously measuring thousands

of molecules which are essential for life, including DNA, RNA, proteins, and

metabolites. Historically, classical genomic research has followed a reductionist

approach by studying the structure, regulation, and function of these biological

units independently. However, despite being a powerful analytical tool, the re-

ductionist method cannot explain many of the biological phenomena that take

place in living systems. This is because these biological events are not repre-

sented by the sum of their components, rather, only the interacting dynamics

of the different omics elements can explain their complexity.

In recent years Systems Biology has established itself as a multidisciplinary area

of research which tries to model the dynamic behaviour of biological systems

by holistically studying the interactions between the different omics disciplines;

it combines simultaneous measurements of different types of molecules and

integrates multiple sources of information in order to identify changing com-

ponents in a coordinated way and under controlled study conditions. Thus,

Systems Biology is an interdisciplinary area that requires biologists, mathe-

maticians, biochemists, and other researchers to work closely together, and in

which computer sciences plays a fundamental role because of the volume and

complexity of the data handled.
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This thesis addresses the problem of data management, integration, and anal-

ysis in multi-omics studies. More specifically, this research focused on two of

the most characteristic computational challenges in Systems Biology: the de-

velopment of integrated databases and the problem of integrative visualisation.

Therefore, the first part of this work was devoted to designing and creating a

bioinformatics resource for managing multi-omics experiments. The resulting

platform, known as STATegra Experiment Management System (EMS), offers

a complete set of tools that facilitate the storage and organisation of the large

datasets generated during omics experiments, and also provides tools for data

annotation in the later stages of processing and analysis of the information.

The development of this platform required overcoming problems created by the

heterogeneity, volume, and high variability of the data. Thus, as part of the

solution to these problems, detailed metadata can be recorded within STATe-

gra EMS, allowing dataset discrimination and successful data integration. To

aid this process, the platform also offers a collaborative and easy-to-use web

interface that combines modern web technologies and well-known community

standards to represent the different components of the integrated experiments.

The second part of this thesis examines the current situation and challenges

in integrative data visualisation in multi-omic experiments, and presents the

PaintOmics 3 web tool which was developed to address these issues. Since the

capacity of the human brain for visual processing is highly evolved, integrative

visualisation combined with data analysis techniques is probably one of the

most powerful tools for interpreting and validating results in Systems Biology.

PaintOmics 3 provides a comprehensive framework for performing biological

function enrichment analyses in experiments with multiple conditions and data

types; it combines powerful tools for integrative data visualisation on Kyoto

Encyclopedia of Genes and Genomes (KEGG) molecular-interaction diagrams,

biological-process interaction-networks, and statistical analyses. Moreover, un-

like similar tools, PaintOmics 3 is interactive and easy to use, and stands out

for its flexibility and the variety of omics data types it accepts, which include

epigenomics data based on genomic regions, proteomics data, and miRNA-

study data.
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Resumen

Los avances en las técnicas de secuenciación de alto rendimiento y el posterior

abaratamiento tecnológico han favorecido el desarrollo y la popularización de

una nueva gama de disciplinas de investigación genómica, conocidas colecti-

vamente como "ómicas". Estas tecnologías son capaces de realizar mediciones

simultáneas de miles de moléculas esenciales para la vida, tales como el ADN,

el ARN, las proteínas y los metabolitos. Históricamente, la investigación ge-

nómica clásica ha seguido un enfoque reduccionista al estudiar la estructura,

regulación y función de estas unidades biológicas de manera independiente. Sin

embargo, pese a ser una poderosa herramienta analítica, el método reduccionis-

ta es incapaz de explicar muchos de los fenómenos biológicos que tienen lugar

en un sistema vivo, sugiriendo que la esencia del sistema no puede explicarse

simplemente mediante la enumeración de elementos que lo componen, sino que

radica en la dinámica de los procesos biológicos que entre ellos acontecen.

La Biología de Sistemas se ha establecido en los últimos años como el área de

investigación multidisciplinaria que trata de modelar el comportamiento dinámi-

co de los sistemas biológicos a través del estudio holístico de las interacciones

entre sus partes, combinando mediciones simultáneas de diferentes tipos de

moléculas e integrando múltiples fuentes de información para identificar aque-

llos componentes que cambian de manera coordinada en las condiciones bajo

estudio. La Biología de Sistemas es un área interdisciplinar que requiere que

biólogos, matemáticos, bioquímicos y otros investigadores trabajen en estrecha

colaboración, y en la que la informática tiene un papel fundamental dado el

volumen y la complejidad de los datos manejados.
v



Esta tesis aborda el problema de la gestión, integración y análisis de los datos

en estudios multi-ómicos. Más específicamente, la investigación realizada se ha

centrado en dos de los retos computacionales más característicos de la Biología

de Sistemas: el desarrollo de bases de datos integrativas y el problema de la

visualización integrativa. Así, la primera parte de este trabajo se ha dedicado

al diseño y creación de un recurso bioinformático para la gestión de experimen-

tos multi-ómicos. La plataforma desarrollada, conocida como STATegra EMS,

ofrece un conjunto de herramientas que facilitan el almacenamiento y la orga-

nización de los grandes conjuntos de datos que son generados durante estos

experimentos, así como la anotación de las etapas posteriores de procesamiento

y análisis de la información. La heterogeneidad, el volumen y la alta variabili-

dad de los datos ómicos son algunos de los obstáculos que han sido abordados

durante el desarrollo del STATegra EMS, con el fin de alcanzar un registro de-

tallado de la meta-información que permita discriminar cada conjunto de datos

y lograr así una integración exitosa de la información. Para ello, la plataforma

desarrollada ofrece una interfaz web colaborativa y de fácil manejo en la que

se combinan modernas tecnologías web y conocidos estándares comunitarios

para la representación de los diferentes componentes del experimento.

En la segunda parte de esta tesis se discuten la situación actual y las dificulta-

des de la visualización integrativa de datos en experimentos multi-ómicos, y se

presenta la herramienta web desarrollada, PaintOmics 3. Dado que la capacidad

del cerebro humano para el procesamiento visual está altamente evolucionada,

la visualización integrativa en combinación con técnicas de análisis de datos

es probablemente una de las herramientas más poderosa para la interpretación

y validación de los resultados en Biología de Sistemas. PaintOmics 3 propor-

ciona un completo marco de trabajo para realizar análisis de enriquecimiento

de funciones biológicas en experimentos con múltiples condiciones y tipos de

datos ómicos, en el que se combinan potentes herramientas de visualización

integrativa de datos sobre diagramas de interacción molecular y redes de reac-

ción KEGG, redes de interacción de procesos biológicos, y estudios estadísticos

de los datos. Además, a diferencia de otras herramientas desarrolladas, Pain-

tOmics 3 destaca por su facilidad de uso y su gran interactividad, así como por

su flexibilidad y variedad de los datos ómicos aceptados, incluyendo datos de
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epigenómica basados en regiones genómicas, datos de proteómica o estudios

de miRNA.
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Resum

Els avenços en les tècniques de seqüenciació d’alt rendiment i l’abaratiment

tecnològic posterior han afavorit el desenvolupament i la popularització d’una

nova gamma de disciplines d’investigació genòmica, conegudes col·lectivament

com a "òmiques". Aquestes tecnologies permeten realitzar mesuraments simul-

tanis de milers de molècules essencials per a la vida, com ara l’ADN, l’ARN, les

proteïnes i els metabòlits. Històricament, la investigació genòmica clàssica ha

seguit un enfocament reduccionista a l’hora d’estudiar l’estructura, la regulació

i la funció d’aquestes unitats biològiques de manera independent. No obstant

això, tot i ser una eina analítica poderosa, el mètode reduccionista és inca-

paç d’explicar molts dels fenòmens biològics que tenen lloc en un sistema viu,

suggerint que l’essència del sistema no es pot explicar simplement mitjançant

l’enumeració d’elements que el componen, sinó que radica en la dinàmica dels

processos biològics que tenen lloc entre ells.

La Biologia de Sistemes ha esdevingut els darrers anys l’àrea d’investigació

multidisciplinària que tracta de modelar el comportament dinàmic dels sistemes

biològics a través de l’estudi holístic de les interaccions entre les seues parts,

combinant mesuraments simultanis de diferents tipus de molècules i integrant

múltiples fonts d’informació per a identificar aquells components que canvien de

manera coordinada en les condicions objecte d’estudi. La Biologia de Sistemes

és una àrea interdisciplinar que requereix que biòlegs, matemàtics, bioquímics

i altres investigadors treballen plegats i en la qual la informàtica té un paper

fonamental, atès el volum i la complexitat de les dades emprades.
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Aquesta tesi aborda el problema de la gestió, la integració i l’anàlisi de les dades

en estudis multi-òmics. Més concretament, la investigació s’ha centrat en dos

dels reptes computacionals més característics de la Biologia de Sistemes: el

desenvolupament de bases de dades integratives i el problema de la visualització

integrativa. Així, la primera part d’aquest treball s’ha dedicat al disseny i

creació d’un recurs bioinformàtic per a la gestió d’experiments multi-òmics. La

plataforma desenvolupada, coneguda com a STATegra EMS, ofereix un conjunt

d’eines que faciliten l’emmagatzematge i l’organització dels grans conjunts de

dades que són generats durant aquests experiments, així com l’anotació de les

etapes posteriors de processament i anàlisi de la informació. L’heterogeneïtat,

el volum i l’alta variabilitat de les dades òmiques són alguns dels obstacles

que han estat abordats durant el desenvolupament de l’STATegra EMS, amb

la finalitat d’assolir un registre detallat de la meta-informació que permeta

discriminar cada conjunt de dades i aconseguir així una integració reeixida

de la informació. Per a aconseguir-ho, la plataforma desenvolupada ofereix

una interfície web col·laborativa i fàcil de fer servir que conjumina modernes

tecnologies web i coneguts estàndards comunitaris per a la representació dels

diferents components de l’experiment.

En la segona part d’aquesta tesi s’hi estudia la situació actual i les dificultats de

la visualització integrativa de dades en experiments multi-òmics i s’hi presenta

l’eina web desenvolupada: PaintOmics 3. Com que la capacitat del cervell

humà per al processament visual ha evolucionat en gran manera, la visualització

integrativa en combinació amb tècniques d’anàlisi de dades és probablement

una de les eines més poderosa per a la interpretació i validació dels resultats en

Biologia de Sistemes. PaintOmics 3 proporciona un marc complet de treball

per a fer anàlisis d’enriquiment de funcions biològiques en experiments amb

múltiples condicions i tipus de dades òmiques; s’hi combinen eines potents

de visualització integrativa de dades sobre diagrames d’interacció molecular i

xarxes de reacció KEGG, xarxes d’interacció de processos biològics i estudis

estadístics de les dades. A més, a diferència d’altres eines desenvolupades,

PaintOmics 3 és molt interactiva i fàcil d’usar, i destaca per la flexibilitat i

varietat de dades òmiques que accepta, com ara dades d’epigenòmica basades

en regions genòmiques, dades de proteòmica o estudis de miRNA.
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1
About this Thesis

1.1 Motivation

High-throughput experimental methods provide an outstanding resource for re-

searching the behaviour of complex biological systems, but also represent an

enormous challenge when trying to manipulate these large heterogeneous bio-

logical data sets and convert them into useful knowledge. The development of

integrative methodologies and tools for Systems Biology has significantly in-

creased in recent years, and has been propelled by the proliferation of large in-

ternational consortia, such as the Encyclopaedia of DNA Elements (ENCODE)

project [32] or The Cancer Genome Atlas (TGCA) [153]. Nevertheless, Systems

Biology is constantly evolving and further development will still be required to

comprehensively integrate the complex multidimensional data generated by dif-

ferent omics platforms. Hence, the work presented in this thesis focuses on

two of the most important branches in Systems Biology: the development of

integrated databases and the integrative visualisation of omics data.

The field of integrative databases seeks to create single repositories from het-

erogeneous data sources, establishing interconnections among the different

datasets and providing a unified and centralised interface for information re-

trieval. More specifically, the lack of comprehensive tools for properly storing

and organising large datasets and for managing the processing pipelines as-
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Chapter 1. About this Thesis

sociated with multi-omics experiments motivated the first part of this thesis

(Chapters 3 and 4), which is dedicated to the development and use of a man-

agement system for multi-omics experiments.

In contrast, integrative visualisation aims to facilitate the interpretability of

different omics-system structures by developing tools that support multiple

types of molecular data which are capable of displaying them in different ways.

Several resources for integrative visualisation are available in the context of

Systems Biology but, in most cases, the integration is not completely effective.

Therefore, the second part of this work focuses entirely on integrative visualisa-

tion of multi-omics data. Chapter 5 discusses the development of a web-based

application for integrative visualisation of multiple biological datasets on Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway diagrams, and Chapter

6 introduces the use of this tool in the context of a Systems Biology research.

1.2 Objectives

• To develop a user-friendly and integrated system for the manage-
ment, annotation, and storage of multi-omics experiments. Specif-
ically, the following tasks will be addressed:

– The system must include tools for annotating the experimental de-

sign, biological material, and subsequent processing and manipula-

tion of the data generated for Systems Biology studies.

– The application should accept the following omics types: transcrip-

tomics, proteomics, metabolomics, and epigenomics; more specif-

ically, it must include tools for annotating at least the most pop-

ular technologies for each omics type (e.g. messenger RNA se-

quencing (mRNA-seq) for transcriptomics, chromatin immunopre-

cipitation followed by sequencing (ChIP-seq) for epigenomics, and

gas chromatography-mass spectrometry (GC-MS) for metabolomics

measurements).

– The system must be conceived as a centralised service, supporting

multiple users and collaborative annotations.
2
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– To ensure the usability and integration capability of the system,

the information must be stored using standards accepted by the

research community for each omics data type.

• To develop a user-friendly tool for integrative visualisation of mul-
tiple omics data types based on metabolic pathways. Specifically,

the following tasks will be tackled:

– The new platform must be flexible enough to accept data for tran-

scriptomics, proteomics, metabolomics, and epigenomics. Tools for

data manipulation will be included if necessary.

– The main visualisation approach will be based on pathway maps,

although complementary approaches can be included (networks or

genome browsers).

– The information for pathways should be extracted from a reference

database such as the KEGG or the Reactome Pathway Database.

– The system must provide a complete framework for biological-functions

enrichment-analysis for multiple species. Different naming conven-

tions could be accepted for each species.

Moreover, two additional objectives are considered for the proper development

of the thesis:

• As general rule, the new tools developed must be reliable and user-
friendly.This is because potential users for both tools are researchers with
medium-low informatics skills. Table 1.1 provides an overview for the tar-

get user groups in a typical bioinformatics scenario and their requirements

in terms of user-friendliness and accessibility.

• Good accessibility and wide distribution of the generated software
are also objectives for this thesis. To achieve these goals, development

of these tools will include the provision of guidelines and training on their

use, as well as the diffusion of the results of this work in scientific journals
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and at international conferences. In addition, the use of free and open-

source technologies will be prioritised.

Table 1.1: Target user groups in a typical bioinformatics scenario and their
requirements in terms of user-friendliness and accessibility.

1.3 Organization

This thesis describes the systems biology work performed during the last four

years related to the objectives outlined above, more specifically, for the devel-

opment of integrative databases and tools for integrative visualisation of omics

data. The thesis consists of a central section (Chapter 3 to 6) which de-

scribes the methodologies used to develop both tools as well a use case-study

for each one. This is preceded by a general introduction (Chapter 2, p.7)
which provides some insight into molecular biology and Systems Biology; the

main purpose of this chapter is to make the thesis as self-contained as possible.

• Chapter 3 (p.31) describes the state-of-the-art in integrative databases

for storing and organising data for multi-omics experiments, and intro-
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duces the methodology followed to develop the "STATegra Experiment

Management System (EMS)".

• Chapter 4 (p.53) illustrates how the STATegra Experiment Management

System (EMS) can be used to annotate a multi-omics experiment.

• Chapter 5 (p.77) focuses on the field of integrative multi-omics data

visualisation, and introduces the PaintOmics 3 platform.

• Chapter 6 (p.123) describes a complete use case-study for PaintOmics 3

in the context of real multi-omics biomedical research.

Finally, a general discussion provides an overview of the major contributions of

the work and future perspectives.

Appendices A (p.161) and B (p.169) provide some supplementary information

that complements the content of the main text body.

1.4 Context

This work was carried out at the Genomics of Gene Expression Laboratory at

the Centro de Investigación Príncipe Felipe (CIPF), under the supervision of

Dr. Ana Conesa (CIPF); Dr. Montserrat Robles (Universitat Politècnica de

València) provided tuition for this project. The work was developed within

the framework of the international STATegra research project; the tools devel-

oped for this thesis were used to analyse the data generated by the STATegra

project and therefore, publication of this data analysis also contributed to the

dissemination of the results described in this thesis.

This work was funded by the following projects and grants:

STATegra: User-driven Development of Statistical Methods for Experi-

mental Planning, Data Gathering, and Integrative Analysis of Next Gen-

eration Sequencing, Proteomics, and Metabolomics data. European

Commission (FP7), project number 306000.
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The Gerónimo Forteza program for aiding the recruitment of support

personnel. Ministry of Education, Research, Culture, and Sport, Valen-

cian Regional Government (Programa Gerónimo Forteza de Ayudas para

la Contratación de Personal de Apoyo. Conselleria d’ Educació, Investi-

gació, Cultura i Esport de la Generalitat Valenciana).

The genomics and transcriptomics of detoxification pathways in Drosophila

project. Ministry of Economy and Competiveness, Spanish central Gov-

ernment (Genómica y transcriptómica de las rutas de detoxificación en

Drosophila. Ministerio de Economía y Competitividad, Gobierno de Es-

paña). Project number PIB2010AR-00266.
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2
Introduction

Part of this chapter have been published in "Conesa A. and Hernández-de-Diego R. Omics

Data Integration in Systems Biology: Methods and Applications. In: Applications of Ad-

vanced Omics Technologies: From Genes to Metabolites, Volume 64 (Comprehensive Ana-

lytical Chemistry). Ed. by García-Cañas V, Cifuentes A, and Simó C. Elsevier, 2014".

2.1 Introduction

The objective of this introduction is to provide an overview of the key concepts

relevant to the topic of this thesis, namely, the development of software tools

for managing and analysing multi-omics data. The content of the chapter has

been divided into different sections: the first section describes the molecules

and biological processes that are measured by the different omics technologies;

the second section is about these technologies themselves, the challenges they

currently imply, and the state of the art. Finally, the third section reviews the

Systems Biology paradigm and the role multi-omics analysis plays in it.
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2.2 Biological background

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, and metabo-

lites are present in every cell in multicellular and unicellular organisms. The

complex network of interactions between these molecules is vital to all cellular

functions and processes; therefore, knowledge of which molecules are required

for certain cellular functions, and understanding how these biological processes

are regulated, are fundamental to the comprehension of molecular biology.

Metabolism is the term used to describe the set of biochemical reactions that

takes place in cells, allowing organisms to grow and reproduce, maintain their

structures, and to respond to changes in their environment; it is a dynamic pro-

cess in which cells are continuously degrading and synthesising most cellular

materials [44] (Figure 2.1-A). The molecular transformations of metabolism are

organised into metabolic pathways, i.e. coordinated series of interactions be-

tween chemical reactions in which one metabolite is transformed into another

product through a series of steps [99]. Cellular metabolism can be divided

into two broad categories: catabolism and anabolism. Catabolism is the set

of metabolic processes that breakdown and oxidise large molecules; the pur-

pose of catabolic reactions is to provide the energy and components required

for anabolic reactions. On the contrary, anabolism is a set of constructive

metabolic processes in which cells use the energy released by catabolism to

synthesise complex molecules [28]. All biochemical reactions are catalysed by

one or more flexible proteins known as enzymes, which promote these reactions

by reducing the reaction activation energy required, i.e. the minimum amount

of energy required to proceed with the reaction. Enzymatic activity is crucial

for metabolic processes because it allows cells to respond to environmental

challenges and to regulate their metabolic pathways, both processes which are

crucial to cell survival.

Proteins are large molecules comprising chains of units called amino acids (Fig-

ure 2.1-C). An amino acid is an organic compound containing amine (−NH2)

and carboxylic acid (−COOH) functional groups. There are many types of

amino acids; some of them can be synthesised by different organisms while oth-

ers, the so-called essential amino acids, must be supplied in the organisms’ diet.
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2.2 Biological background

Figure 2.1: The major constituents of organisms: nucleic acids, proteins, and
metabolites. (A) - Metabolites are small molecules that work both as intermediate
and final products of metabolomic reactions. Primary metabolites are synthesised by
cells and are indispensable for their growth. Secondary metabolites are not directly
involved in these processes, but usually have an important function on the organism.
(B) - Nucleic acids are large biomolecules that include DNA (deoxyribonucleic acid)
and RNA (ribonucleic acid). The core of nucleic acids consists of nitrogenous bases
which are divided into two groups: pyrimidines, including cytosine (C), uracil (U), and
thymine (T), and purines, which include adenine (A) and guanine (G). DNA is formed
by two complementary strands of T, G, C, and A bases joined by a phosphate backbone,
while RNA molecules are single-stranded and combine T, G, C, and U monomers.
DNA sequences are converted into RNA molecules by the action of specific enzymes
in a process called transcription. (C) - Proteins are macromolecules comprising one
or more chains of amino acids, organic compounds containing amine (−NH2) and
carboxylic acid (-COOH) functional groups. There are hundreds of known amino acids
but only 22 are used for protein synthesis during translation (proteinogenic amino
acids). Some amino acids can be synthesised from scratch by organisms while others
must be supplied in the diet (essential amino acids).
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Proteins are responsible for almost all cellular functions; for instance, as en-

zymes, proteins catalyse biochemical reactions (Figure 2.2-8), as transcription

factors (Figure 2.2-4) they regulate protein synthesis itself, and as antibodies

they are used by the immune system to identify and neutralise pathogens. The

information necessary to produce all proteins is encoded in the DNA.

DNA is essentially a storage molecule. It contains all of the instructions a cell

needs to sustain itself [90]. DNA molecules form a double helix where each

chain is a sequence of four basic building blocks, called nucleotides (Figure

2.1-B). There are four nucleotides in the DNA alphabet: adenine (A), cytosine

(C), guanine (G) and thymine (T). By combining these four bases DNA en-

codes genetic information into genes –the basic physical and functional units

of genetic heredity which, in turn, determine the instructions for building some

of the molecules essential for life. When a gene encodes a protein, it is known

as a "protein coding gene". Importantly, not all DNA encodes information for

protein synthesis. In fact, only a small part of the whole genome in humans is

considered to be "coding", while the remaining DNA sequences are involved

in regulatory or structural processes.

In eukaryotic organisms, most DNA is located in the cell nucleus, packaged

into thread-like structures called chromosomes [110] (Figure 2.2-1). Inside

chromosomes the DNA helix wraps multiple times around histone proteins to

form nucleosomes (Figure 2.2-4); these nucleosomes coil tightly to form chro-

matin loops (Figure 2.2-3) which, in turn, wrap around each other to form

chromosomes [6] (Figure 2.2-2).

The central dogma of biology explains how the genetic information coded into

certain sections of DNA is decrypted into proteins, via the transcription of

individual transportable units of RNA. This critical trio of macromolecules –

DNA, RNA, and proteins – is present in all cells [81].

RNA molecules are created when the "instructions" encoded by genes are de-

coded in a process called transcription or gene expression (Figure 2.2-6); the

step leading from RNA to protein production is called translation (Figure 2.2-

7). The chemical structure of RNA transcripts is similar to that of DNA, except

that it is single-chained rather than a double helix, and one of the four bases,
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2.2 Biological background

Figure 2.2: A schematic representation for the main branches in functional
genomics.
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T, is replaced by U (Figure 2.1-B). Several types of RNA are present in cells,

but many of them do not code for proteins (non-coding RNAs); messenger

RNAs(mRNAs) carry the genetic information responsible for protein synthesis

to ribosomes –a cellular component where biological protein synthesis occurs

(translation). Transfer RNAs(tRNAs) transport amino acids to the protein-

synthesis machinery during translation and ribosomal RNAs(rRNAs) then link

the amino acids together to form proteins [81].

During transcription, the area around the gene to be transcribed must be un-

packed in order to facilitate its access to the transcription machinery. This

complex process requires the coordination of multiple proteins, as well as some

chromatin-structure modifications to make it more transcription-permissive (by

default it is strongly repressive to transcription). Once the gene sequence is ac-

cessible, the transcription machinery attaches to the DNA template strand and

begins assembling a new chain of nucleotides, thus producing a complementary

RNA strand [3]. The more the gene is read, the more of the corresponding

transcript is produced in the cell. However, gene expression is a highly reg-

ulated process: only a subset of genes in the genome are expressed at any

particular moment or in a given tissue, and genes turn "on" and "off" during

a cell’s lifetime in a process known as gene regulation [110].

In eukaryotes, the regulation of transcription occurs at many different stages:

transcriptional initiation, elongation, splicing, etc. and is the result of the com-

bined effects of structural properties and the interactions of several molecules

such as the transcription factors. Moreover, mRNAs can be post-transcriptionally

regulated, for example, by microRNAs(miRNAs) or post-translational protein

modifications, which add on additional layers of biological regulation.

Transcription factors(TFs) are regulatory proteins whose function is to control

which genes are turned "on" or "off" in the genome by binding to DNA and

other proteins. Once bound to DNA, these proteins can promote or block the

enzyme that controls the reading (transcription) of genes, making genes more

or less active [59]. However, even when TFs are present in a cell, transcription

does not always occur. For example, in eukaryotes the accessibility of different

DNA regions depends on the chromatin structure and the density of its packing

may indicate the frequency of transcription. Another important regulation
12
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method in eukaryotes is the DNA methylation that occurs when a methyl-group

is added to cytosine DNA bases (Figure 2.2-5) and whose presence constitutes

a common epigenetic signalling factor that cells use to lock genes in the "off"

position [106].

In addition, miRNAs have emerged in the last few years as a major new research

focus in molecular biology. These small non-coding RNA transcripts are known

for their involvement in a wide range of biological processes, especially as key

post-transcriptional gene-expression regulators. Although the mechanisms of

miRNA-mediated repression are not yet fully understood, it is thought that they

either trigger bound mRNA degradation or hamper the translation of target

genes into active proteins [36].

2.3 The omics technologies and bioinformatics

Understanding the behaviour of cells, tissues, organs, and the entire organ-

ism at the molecular level is the major objective of molecular biology, and to

achieve this goal it is essential to characterise the function, regulation, and in-

teraction of all the biomolecules described above. The advances in sequencing

technologies achieved over the last two decades, and the subsequent devel-

opment of high-throughput technologies, have given rise to a new range of

research disciplines, which are collectively referred to as omics. The so-called

omics technologies allow individuals of the same (or even different) species to

be compared at the molecular level. Thanks to these technological advances, it

is now practical and affordable to sequence entire genomes to look for variants

which might be associated with diseases, measure variations in molecular pro-

files in response to drugs or other environmental challenges, and even compare

the sequences of hundreds of genes between different species in order to create

a more detailed and accurate evolutionary tree than ever before possible.

High-throughput instruments are now routinely used in individual laboratories

and, as an immediate consequence, scientists must now deal with the result-

ing massive datasets and subsequent challenges of handling, processing, and

analysing this information [13]. It is within this context that Bioinformatics

has arisen as a key tool for studying the vast amount of data generated by
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these technologies. Bioinformatics is an interdisciplinary field that combines

very different techniques from vastly different fields such as biology, computer

sciences, mathematics, statistics, and physics, and is commonly applied in the

great variety of omics techniques currently available.

In general terms, each omics approach seeks to provide specific insights into

biological systems and relationships between cellular elements and their pheno-

typic manifestations at the organismal level. Omics disciplines can be roughly

divided according to the aspect of biological research of interest: Genomics

is devoted to comprehensively studying the "static" or "structural" aspects

of genomes, including their architecture, origin, and evolution; Functional ge-

nomics focuses on dynamic processes linked to functionality such as the tran-

scription, translation, and regulation of gene expression.

Genomics has numerous applications, especially in medicine for studying ge-

netic diseases or in the development of more precise drugs, and encompasses

many research areas of molecular biology. Some popular areas of genomics are:

comparative genomics, which studies the similarities and differences between

the genomes of different organisms; metagenomics, the study of the entire

microbial genome in a given environment such as water or soil; and struc-

tural genomics, which seeks to determine the three-dimensional structure of

all proteins encoded by a given genome. This latter aspect of genomics is not

considered in this work.

In contrast, functional genomics aims to understand the complex relationship

between the genome and phenotypic manifestations, focusing on the dynamic

aspects of genes and the biochemical and physiological functions of all gene

products [61]. Consequently, functional genomics comprises a wide range

of omics disciplines that measure molecular activities, and is the focus of

this thesis. In particular, this work deals with transcriptomics, epigenomics,

metabolomics, and proteomics.
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2.3.1 Transcriptomics

The transcriptome is the complete set of transcripts encoded by the genome

of a cell or organism under specific physiological conditions. Studying the

transcriptome is essential for understanding the functionality of the genome

and revealing the molecular processes of development and disease in cells and

tissues. Transcriptomics is the generic term used to describe the set of meth-

ods which aim to comprehensively identify the whole catalogue of transcripts,

including mRNAs, non-coding RNAs, and small RNAs, to determine how ex-

pressed RNAs are processed (including splicing, transport, and editing), and

to profile how the expression levels of each transcript change under different

conditions [151].

Transcriptomic analysis has been traditionally performed usingmicroarray tech-

nology. A microarray is a solid support (e.g. a glass slide or a silicon chip) that

contains thousands of spotted samples, known as probes, which are coupled to

a fluorescent marker; each one represents a specific gene from a known subset

of the genes of a cell or organism (Figure 2.3). The key principle of microarrays

is that complementary sequences of nucleic acids tend to pair with each other,

forming strong hydrogen bonds. RNA samples are treated to convert them

into complementary DNA (cDNA), i.e. "synthetic" DNA strands transcribed

through the reaction of an enzyme called reverse transcriptase and using the

RNA sequence as a template. These treated samples are then injected into

the microarray so that they come into contact with the probe-spotted support

and where some of the cDNA strands bind to their target probes (i.e. the

complementary strand). Finally, the array is washed to remove all the unbound

strands and is scanned by a machine that uses a laser to excite the fluorescent

probes on the target sequences and to measure the intensity of the emissions

with a detector. These intensity values are interpreted as an estimation of the

expression level of the target genes.

Although microarrays allow the simultaneous measurement of the expression

levels for thousands of genes, this technology has a major limitation: previous

knowledge of the target genes is required to fabricate a microarray and, con-

sequently, this technology is unable to detect and measure the expression of

unknown genes.
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RNA sequencing (RNA-seq) is the alternative transcriptomics technology. RNA-

seq is a highly sensitive and accurate tool that allows researchers to detect both

known and novel transcripts, without the limitation of prior knowledge [94].

RNA-seq, as well as DNase-seq, ChIP-seq, and Methyl-seq, belong to a family

of the so-called sequencing-based assays or Next-Generation Sequencing Tech-

nologies. These methods link particular biochemical assays (used to isolate

target-nucleotide sequences) to the use of massively-parallel sequencing instru-

ments and are capable of sequencing millions of base-pairs at an affordable

price. Thus, these sequencing machines have created unprecedented possibili-

ties for genomic research.

RNA-seq can be divided into several sub-techniques, depending on the type

of RNA being measured; some popular examples are small RNA sequenc-

ing (sRNA-seq), microRNA sequencing (miRNA-seq), and messenger RNA-seq

(mRNA-seq). In general terms, the methods used for these different branches

are similar, and differences are often only obvious at the level of the input ma-

terial (e.g. for sRNA-seq experiments, transcripts are filtered by size, removing

all transcripts whose sequence is longer than a given threshold).

During a typical RNA-seq experiment (Figure 2.4), the RNA population is first

converted to smaller cDNA fragments using specific short DNA sequences at-

tached to one or both ends (adaptors). The cDNA fragments are then injected

onto a surface (flowcell) that contains short strands (primers) complementary

to the adaptors. The complementary strand binds to the adaptor and cDNA

fragments are anchored to the flowcell. A complex cycle of amplification and

washing is then performed, resulting in a huge increase in the amount of cDNA

present. Finally, the resulting strands are reused as a template to synthesise

more cDNA molecules, but this time using fluorescently-tagged nucleotides.

Every time a nucleotide is added to the new strand, a fluorescent signal is

emitted and is detected by a special camera. Each of the tagged bases (A,

C, G, and T) gives off a characteristic colour. This massive, parallel process

results in the generation of millions of short sequences of characters (reads),

which usually must be collected and mapped back to their transcripts of origin

before proceeding with gene-expression quantification. The total number of
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Figure 2.3: Overview of the use of microarrays for gene-expression quantifi-
cation. The sample is injected into the microarray; after binding takes place it is
washed and scanned. Fluorescent emissions are measured and registered, resulting in
a matrix of colours where each spot represents a targeted sequence, and the colour in-
tensity indicates the relative abundance of the target. Raw data is then normalised and
processed, which for most genes results in an estimation of their absolute abundance.

Figure 2.4: Overview of how sequencing for gene-expression quantification
(RNA-seq) is implemented.

17



Chapter 2. Introduction

sequencing reads that map to a given gene is an estimation of the expression

level of the gene.

2.3.2 Epigenomics

Epigenomics studies the set of chemical DNA and DNA-associated protein

modifications that take place in cells and which alter gene expression [133]. A

variety of methods are used for study in epigenomics, among them some of the

most popular are:

i. ChIP-on-chip. This technique combines chromatin immunoprecipitation

(ChIP) and DNA microarrays (chip) and aims to identify the binding

sites of transcriptional regulators and other relevant proteins. In a ChIP-

on-chip experiment, DNA samples are first treated in order to fix the

protein of interest (POI) with the DNA binding sites (crosslinking). The

DNA is then fragmented into small double-stranded fragments and an

antibody specific to the POI is incorporated, forming antibody-POI-DNA

complexes. Next, these complexes are isolated (usually using beads that

are mixed into the sample and which specifically capture and immobilise

the antibodies in a solid-phase) in procedure known as immunoprecipita-

tion. After that, the DNA fragments are purified, amplified, and labelled

using a fluorescent tag. The labelled fragments are injected into a DNA

microarray and illuminated with fluorescent light; any probes on the ar-

ray that contain labelled fragments emit a signal that is captured by

a high-sensitivity camera which allows researchers to locate DNA sites

containing histone modifications.

ii. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a

technique for genome-wide profiling of DNA-binding proteins, histone

modifications or nucleosomes [103]. ChIP-seq experiments also use chro-

matin immunoprecipitation but, instead of microarrays, sequencing tech-

nologies are used to locate the binding sites.

iii. Reduced representation bisulfite sequencing (RRBS-seq) is a common

high-throughput technique for assessing DNA methylation patterns across

the genome at a single-base resolution. During a RRBS experiment,
18



2.3 The omics technologies and bioinformatics

DNA fragments are "bisulfite converted", a key process that converts all

the non-methylated cytosines into uracils. Hence, after sequencing, se-

quences that contain uracils can be identified as methylated DNA regions

[77].

iv. DNase I hypersensitive site sequencing (DNase-seq) is a genome-wide

sequencing method used to identify regions sensitive to cleavage by the

DNase enzyme. These hypersensitive sites are DNA regions that have a

less-compact structure which increases the availability of DNA to interact

with transcription factors and other regulatory elements, a feature that

characterises regions of the genome that likely contain active genes.

2.3.3 Proteomics

By proteomics we understand the comprehensive study of the entire set of pro-

teins produced by an organism or cellular system, also known as the proteome.

Typically, mRNA molecules in cells rapidly degrade, become inefficiently trans-

lated, or are affected by post-translational modifications such as "alternative

splicing" – a process by which certain parts of the transcript are removed,

allowing the production of different proteins from the same piece of DNA.

Consequently, the proteome has a very dynamic nature and is much larger

than the genome, especially in eukaryotes. While measuring the level of gene

transcription can provide a rough estimate of the level of translation into pro-

teins, studying changes in the proteome can provide a more accurate snapshot

of cellular processes.

Proteomics studies a wide variety of aspects of proteins, including their struc-

ture, protein-protein interactions, and protein expression [46]. Of particular

interest to the work in this thesis is quantitative proteomics, a technique used

to determine the quantity of different proteins and the differences between a set

of samples. There are several methods for detecting and profiling the presence

of proteins; some of most popular are:

i. Protein Microarrays, a high-through put method which is conceptually

similar to DNA microarrays. This technology method allows specific
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proteins to be targeted, captured, and measured, allowing scientists to

isolate and study many potential biomarker proteins.

ii. Mass spectrometry (MS) is a high-resolution method that allows scien-

tists to detect and quantify proteins. In a typical MS experiment samples

are ionised and molecules in the sample are converted into gas-phase ions

which are then sorted and separated according to their mass-to-charge

(m/z) ratio using an electric or magnetic field. They are then injected

into an ion detection system which generates a "mass spectrum", i.e. a

plot that presents the relative abundance of each detected ion against its

m/z ratio, which can be used to identify the peptides originally present

in the sample. For example, "peptide mass fingerprinting" is a popular

analytical technique for protein identification that compares the masses

of the detected molecules to the masses predicted based on the digestion

of a set of known proteins, available in certain databases [46].

2.3.4 Metabolomics

Metabolomics refers to the comprehensive qualitative and quantitative study

of the metabolic content of a cell, tissue, or organism, which usually focuses on

metabolites – the intermediate and end products of cellular processes. Three

major branches of metabolomics are extensively used, depending on the ex-

perimental goals: Metabolite fingerprinting, a technology which provides in-

formation about the overall composition of metabolites in a sample, without

necessarily identifying or quantifying any particular compound. This high-

throughput approach is normally used in tissue comparison or discrimination

analysis. Metabonomics, which focuses on the metabolic response of organ-

isms to certain pathophysiological stimuli or genetic modifications, and is gen-

erally restricted to microbiological studies [39]; and metabolite profiling, which

aims to identify and quantify low molecular-weight metabolites and their in-

termediates which together reflect dynamic cell responses induced by genetic

modifications or external stimuli (e.g., a drug treatment) [25]. Metabonomics

can be considered to be an extension of metabolomic profiling which also

considers perturbations caused by environmental factors, while metabolomic
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profiling studies should, by definition, exclude metabolic contributions from

extra-genomic sources.

The main platforms developed to detect metabolites are based on MS and

on nuclear magnetic resonance (NMR) spectroscopy. MS-based metabolomics

follows a similar approach to proteomics: gas or liquid samples for MS are

introduced into the spectrometer where they are ionised and separated by their

mass-to-charge (m/z) ratio. Ions are then detected to obtain a mass spectrum

that allows the metabolomic composition of the sample to be identified. A very

different approach is used for NMR-based methods: NMR is a physical property

of the nuclei of atoms which absorb and re-emit electromagnetic radiation when

located within a magnetic field. By exciting the sample with radio-frequency

pulses a NMR response is emitted and detected by a sensitive radio receiver,

resulting in a series of peaks known as the NMR spectrum which plot the

radio frequency applied to the sample against its absorption. The shift (i.e.

the difference from the zero point), shape, and area of the peaks provide

information about the chemical structure of the molecules in the sample. This

technology is considered to be "non-destructive" because it does not require

separation of the sample components, thus allowing the entire sample to be

recovered for further analysis.

2.4 From omics to Systems Biology: towards a more
complete picture of life at the molecular level

Historically, molecular biology, along with other modern sciences, has taken a

reductionist approach, dividing (biological) systems into their constituent parts

and studying them in isolation [144]. Methodological reductionism has proven

to be a very powerful analytical tool that has allowed scientists to investigate

many basic molecular and cellular processes; however, this approach is nearing

its limits and it has become evident that, by its nature, reductionism will be

unable to provide a complete understanding of the behaviour of systems via

exclusively reductive explanations. This is because this approach ignores the

highly-structured biological networks that are known to operate in complex

biological systems such as cells, tissues, diseases, and even human societies.
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For instance, the discovery of alternative splicing made it evident that genes

are not just linear representations of the information encoded by DNA. On

the contrary, an intricate network of regulatory factors, RNA editing events,

and post-translational protein modifications exists, which adds several layers

of complexity to gene transcription. Indeed, these events are not controlled

by genes, but rather, by other molecules such as proteins or small RNAs. Not

surprisingly, the main challenges in computational biology now involve under-

standing biological phenomena holistically in a context where complementary

genome-wide measurements could be combined to provide an even more com-

plete picture of life at the molecular level.

Thanks to technological advances, it is now practical and affordable for re-

searchers to obtain simultaneous measurements of different types of features

from the same set of samples. However, the high dimensionality of omics mea-

surements requires sophisticated analytical methods and computer modelling

to enable the search for meaningful interactions between the components of

biological systems.

Systems Biology (SB) arose as a discipline that seeks to provide insights into

the processes of living systems, by holistically studying the behaviour and rela-

tionships of the components forming it. SB usually involves monitoring the re-

sponses of genes, proteins, and other particles in controlled biological, genetic,

or chemical perturbation conditions, integrating these data and, ultimately,

creating mathematical models that describe the system’s structure and allow

responses to certain stimuli or environmental changes to be predicted [57].

The high dimensionality and massive size of omics data, as well as the inherent

variability and heterogeneity of the aggregated datasets, give rise to unique

computational and statistical challenges. Thus, scalability and storage bot-

tlenecks, noise accumulation, measurement errors, and heavy computational

costs are some of the hurdles faced by researchers and tool developers when

trying to achieve effective multi-omics data integration [34]. Basic concepts in

SB are comprehensiveness (incorporation of all the molecular elements of the

system), interpretability (SB has a clear goal to better understand biology), and

predictive power (mathematical modelling is considered to be a fundamental

aspect of SB).
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2.4.1 Data integration in Systems Biology

With the rise of novel omics technologies, data integration has become a very

commonly used idea in the life sciences. Data integration refers to the com-

bination of multiple sources of heterogeneous data with the aim of better un-

derstanding a system under study (SuS); it constitutes not only a conceptual

challenge but also a practical challenge in terms of every day analysis in SB

[42]. Thus, the high dimensionality, inherent variability, and contrasting nature

of omics data are some of the hurdles that researchers must overcome before

effective integration can be achieved (Figure 2.5).

Many integrative methodologies and tools have proliferated over the last few

years, covering the properties of comprehensiveness, prediction power, and

interpretability that, to different degrees, define SB and allows them to be

classified into three major groups: Predictive power is the main objective for

integrative omics analysis, which makes use of statistical methods to unravel

relationships between diverse molecular entities and to create predictive models

of the biological system being studied. Comprehensiveness is the key charac-

teristic of integrative databases, which aim to create single repositories from

various heterogeneous data sources, to establish interconnections among them,

and to provide a unified and centralised interface for information retrieval. Last

but not least, many, if not most, studies incorporating multiple omics types ad-

dress the integration challenge at the level of visualisation, by developing tools

that support multiple types of molecular entities and display them in different

ways; this approach to integration seeks to facilitate the interpretability of the

systems structure.

Integrative omics analysis

Integrative analysis of omics data describes the algorithmic and statistical ap-

proaches used to pursue the compilation of different omics data into one anal-

ysis. Often, integrative analysis is used for two purposes: first, to perform a

descriptive analysis designed to find any underlying relationships between the

datasets and second, to predict a certain response using one or more explana-

tory datasets [109].
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Figure 2.5: Schematic representation of the multi-dimensional complexity of
biological data. (A) - The heterogeneity of the data generated depends on multiple
factors, such as the nature of the cellular levels measured, the different conditions of
the experiment, and the variety of techniques used for the measurements [109]. (B)
- An example of integrative analysis using four datasets. Although the same number
of observations was made for the three cellular levels, each omics approach reports a
different number of variables (i.e. genes, proteins, and metabolites) and, even within
the same omics experiment-type, different technologies may report a different number
of measurements.

In general terms, we can identify two main categories of analytical strategies

[53]:

i. Methods that first determine the correlation between the features in each

data type and the conditions being studied, and which subsequently com-

bine the results of the different analyses into one interpretative model

(multistage approach). Most of omics integration reports already pub-

lished follow this approach.

ii. Methods that initially combine all data and then use computational re-

sources to find mathematical models that allow relationships to be in-

ferred between the different omics variables, and which can, together,

better explain the conditions present in the analysis (simultaneous anal-

ysis).

24



2.4 From omics to Systems Biology: towards a more complete picture of life at the molecular level

Furthermore, data integration can be classified into two general types: hori-

zontal data integration and vertical data integration [140]. Horizontal data in-

tegration involves the combination and analysis of different datasets measuring

the same molecular events under similar experimental conditions; for example,

combining gene expression data sets from different breast cancer studies [154].

This approach is frequently used in meta-analysis.

Meta-analysis is the combined analysis of multiple datasets (typically collected

from public repositories) of one type or biological scope and is one of the most

extended forms of integrative omics. Meta-analysis has become a widely used

statistical tool and benefits from combining of a large number of observations

in order to enhance statistical and discovery power. For example, large-scale

correlation meta-analysis across thousands of datasets has been used to identify

distinct co-expression modules associated with specific cancer subtypes [78], to

dissect the association between gene co-regulation and function, or to discover

genetic-risk variants.

In contrast, vertical data integration, which is commonly used in SB, combines

different data types into one model; for example, by relating transcriptional and

metabolic data sets from the same patient cohorts [156]. When building mod-

els which can predict biological situations, vertical data integration methods

have to deal with different variable sets which may have different properties,

e.g. the data might span different dynamic ranges, follow different data dis-

tributions, or bear different levels of noise. Moreover, vertical integration may

also need to consider the biological relationships between variables; however,

in some cases these relationships are unknown and so further investigation is

required before precise inferences can be made. Hence, most mathematical SB

models restrict themselves to only analysing systems with a reduced number of

variables and where the model topology is imposed beforehand. This paradigm,

also called "reverse engineering", has been solved by different mathematical

approaches, each based on the specific goal of the integrative effort. When the

statistical power is insufficient for predictive purposes, vertical integration, such

as the afore mentioned genome-wide gene regulatory network, can provide very

useful hypotheses for proposing models that can be subsequently validated by

experimentation.
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In addition to reverse modelling, many attempts have been made to identify

key biomolecules in SuS and to create models of molecular function. These

are not within the scope of the work presented in this thesis and therefore,

more information can be found in some of the excellent reviews in this field,

including the one published by Hawkins and colleagues [49], and more recently

in 2014 by Gomez-Cabrero et al. [42] and Conesa et al. [26].

Integrated database resources

As consequence of the fast-growing availability of omics biological data, a

wide variety of data sources, databases, and web services have been created

to facilitate data management, accessibility, and analysis [158]. While these

specialised platforms may answer several specific research-community needs,

the heterogeneity of the data types, formats, and their contents mean that

significant effort is required in order to access and analyse these data from

multiple sources [42].

Consequently, substantial effort has been invested in creating organism-specific

or field-specific integrative databases that collect different types of omics data

and to make them available in an integrated way in order to support SB re-

search. Practically every large international consortium in SB has produced

an organism-specific database or repository that acts as a reference source

for the genomic information and resources collected for the targeted species;

some of these resources contain mostly genomic, annotation, gene expression,

and variant information. Representative examples include the UCSC Human

Genome Browser [113], which contains a large collection of genomes and an-

notations, as well as several tools for querying, visualising, and retrieving data;

the Ensembl Genome Database [157], a huge repository that collects genes,

variations, sequence conservation data, and other types of annotation for hun-

dreds of species, including vertebrates, fungi, bacteria, and plants; and the

Encyclopaedia of DNA Elements (ENCODE) Project [32], a worldwide consor-

tium for cataloguing the functional elements encoded in the human genome,

including genes, transcripts, and transcriptional regulatory regions, together

with their associated chromatin states and DNA methylation patterns.
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Alternatively, other solutions focus on building unified environments around dis-

tributed data sources. Typically, data warehouses provide interfaces (e.g. web-

services) for querying and retrieving the stored data so that third-party services

can search data from different sources, assemble the results, and present them

in an integrated format [96]. BioMart [120] provides an easy-to-use web-based

system for performing complex queries across a variety of genomic databases;

in addition, the system includes several tools, application programming inter-

faces(APIs), and data services that allow researchers to retrieve information

directly from their own programs. Pathway Tools [67] and InterMine [121]

are both services that enable the creation of biological databases, and which

provide tools for integrating data from many common biological data sources

and formats as well as for accessing the data using sophisticated web-based

queries. Some data warehouses powered by these tools are FlyMine [83], an

integrated database for Drosophila and Anopheles genomics, and HumanCyc

[112], which provides an encyclopaedic reference on human metabolic pathways

and integrates data from different sources.

Integrating such diverse data creates several problems that usually hamper

the process. Probably the most obvious integration problem is that, as a

consequence of its heterogeneity, data in SB is highly context-dependent [22].

For example, data from gene expression is meaningful only in the context of

the conditions under which they were generated, hence, reliable integration

requires a detailed record of the meta-data that discriminate each dataset;

however, this can only be accomplished by adopting community standards for

the data schemas, formats, nomenclatures, and protocols. Standardisation is

critical for allowing data exchange and interconnection and, consequently, this

has become an important field in the context of SB. Thus, numerous attempts

have recently been made to define a set of rules widely accepted by the scientific

community. The various minimal information recommendations, such as the

minimum information about a microarray experiment (MIAPE) [18], minimum

information about a high-throughput sequencing experiment (MINSEQE) [131]

and the minimum information about a proteomics experiment (MIAPE) [129],

as well as the ontology efforts, such as that of the Gene Ontology Consortium

[8], are good examples of these attempts [41].
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Integrative visualization of omics data

Integrated visualisation of different omics data types is probably the most pow-

erful tool for the interpretation of SB results. While mathematical models can

reveal significant associations between system components or can predict the

behaviour of the system, graphical display of omics data can lead to better

insights into its global functional properties. Many software tools are now

available that accept diverse omics measurements and generate joint visual

representations of the data, which itself can be grouped based on different

criteria. Among these tools, the first major distinction is whether it is devoted

to displaying genome or network information.

Genomic information is often visualised using genome browsers(GBs). GBs

are interactive tools that usually display the different layers of information as

customisable tracks which are continuously distributed along the chromosome

coordinates (Figure 2.6-A). Examples of displayable information include anno-

tations for gene sequences and genomic variants, as well as dynamic features

such as ChIP-seq, RNA-seq, or methylation tracks from a particular biological

sample. Some of the most popular databases (mentioned above) incorporate

their own web-based GB that allows researchers to explore the stored datasets.

For example, the UCSC GB, developed by the University of Californica Santa

Cruz [70], collects a wide range of annotation datasets, including hundreds

of human and mouse datasets, from the ENCODE Project, and the Ensembl

Genome Browser [157] acts as a single point of access to all of these annotated

genomes from within the Ensembl databases. Another interesting web-based

genome viewer is Genome Maps [88] which allows users to upload large vol-

umes of high-throughput sequencing data and is particularly well suited to the

analysis of large data collections, such as cancer or population studies; the data

is locally cached and visualised in real time on the client side. Finally, other

GBs such as the Integrative Genomics Viewer (IGV) [136] run on the user’s

computer as standalone applications, allowing offline viewing and analysis of

local genomic datasets.

A very different visualisation approach is required to represent the interactions

between molecular features, such as genes, proteins, and metabolites. These

data are best analysed in the form of graphs, where nodes represent features and
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Figure 2.6: Overview of the three types of tools for integrated omics data
visualisation. (A) - Genome browsers display user tracks to display measurements and
annotation along genome coordinates (image from UCSC GB [70]). (B) - Pathway-
based methods use predefined pathways to map multi-omics data and show them
jointly (image from PaintOmics [40]). (C) - Network-based methods build data-
specific networks, integrating relationships between different types of features (image
from 3Omics [75]).

edges indicate an interaction between these features (Figure 2.6-C). Popular

tools such as Cytoscape [118] provide a general framework for representing

such biological networks; they can display virtually any feature, are linked to

existing databases, and are visually enhanced with different graphical resources.

Additionally, Cytoscape also offers many add-ons that allow further analysis of

topological or functional properties of the network.

Another set of tools incorporate extensive analysis options and focus on the

discovery of integrated networks. For example, 3Omics [75] can accept a suffi-

cient number of proteomics, metabolomics, and transcriptomics data samples

to enable it to compute pairwise correlations and to create correlation networks

containing elements of all the three types of molecular data. VANTED v2 [111]

is a comprehensive omics integration framework that supports different types

of topological, functional, and statistical analysis on the supported data types,

and can also run simulation tasks on a predefined network in order to study

behavioural aspects of the network. SteinerNet [141] accepts proteomics and

transcriptomics data and maps these to a database of protein-protein inter-

action networks and transcription factor target-gene interactions to create a

network that maximises the connectivity of the submitted data, incorporating

additional database elements when needed.
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Finally, other tools map the data (such as metabolic or signalling pathways) pro-

vided by the user onto interaction templates that guide visualisation and facil-

itate interpretation (Figure 2.6-B). For example, KaPPa-View [138] and Map-

Man [135] display metabolite and transcript information on predefined pathway

blocks. The MassTRIX software [124] translates NMR spectra into metabolic

compounds and maps them onto Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways together with genome and transcriptome information, and

PaintOmics [40] represents multiple gene expression and metabolomics datasets

as KEGG pathways and performs joint pathway analysis, taking both types of

data into consideration. However, as these solutions use a known scaffold to

analyse omics data, they are limited in their network inference and data mining

functionalities, which is usually restricted to some kind of functional enrichment

analysis.

30



3
Managing multi-omics experiments: the STATe-
gra Experiment Management System

Part of this chapter have been published in "Hernández-de-Diego R, Boix-Chova N, Gómez-

Cabrero D, Tegner J, Abugessaisa I, and Conesa A. STATegra EMS: an Experiment Man-

agement System for complex next-generation omics experiments. BMC Systems Biology, 8

Suppl 2:S9, 2014".

3.1 Introduction

The widespread availability of high-throughput sequencing techniques has had

a big impact on genome research and has reshaped the way we study genome

function and structure, and the rapidly decreasing costs of sequencing have

made these technologies affordable to small and medium size laboratories.

Furthermore, the continuing development of novel sequencing-based assays,

referred to with the suffix -seq, has expanded the scope of cell properties which

can be analysed by high-throughput sequencing, making sequencing reads the

new underlying common data format. Today, virtually all nucleic acid omics

methods traditionally based on microarrays have a -seq counterpart and many

more have recently become available. As a consequence, it has become a lot

more practical to run multiple sequencing-based experiments to measure dif-

ferent aspects of gene regulation and to combine these with non-sequencing

omics technologies such as proteomics and metabolomics [9, 17, 115, 122,
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152]. For example, the ENCODE project [32] combined ten major types of

sequencing-based assays in order to unravel the complexity of genome archi-

tecture. Many records can be found at the Sequence Read Archive (SRA),

a resource which integrates multiple sequencing technologies measured in the

same samples; similarly, searching PubMed for "next-generation sequencing"

plus "proteomics" or "metabolomics" returns more than a hundred entries.

Finally, one of the advantages of sequence-based experiments is that they are

equally applicable to the study of both well-annotated model organisms and

less-studied non-model organisms because little or no a priori genome knowl-

edge is required.

However, sequencing-based assays also bring new data-processing and storage

challenges. The memory requirements for a medium-sized sequencing experi-

ment exceed the capacity of current regular workstations, and at the same time,

the analysis steps required to go from raw to processed data are becoming in-

creasingly complex and memory-intensive. As the number of datasets grows,

the need to properly store and track the data and its associated metadata is

becoming more pressing. For example, a medium-sized RNA-seq experiment

ranging from 4 to 20 samples of 20 million reads each may produce 40 GB of

raw data and generate multiple quality control and intermediate processing-step

files, occupying a total of up to 500 GB of memory. Laboratory information

and management systems (LIMS) or sample management systems (SMS) are

bioinformatic tools that help experimentalists to organise samples and experi-

mental procedures in a controlled and annotated way. There are several dedi-

cated LIMS, both commercial and free, that have been developed specifically

for genotyping labs where thousands of samples are processed by automated

pipelines and procedures are tightly standardised [14, 48, 145]. One popular

LIMS for genomics is BASE [143]. This software includes a highly structured

system for metadata annotation and flexible architecture for defining experi-

ments and incorporating analysis modules. However, BASE is currently limited

to microarray experiment annotation.

Several LIMS have been specifically developed and implemented at different

sequencing facilities in order to manage the large volume of samples and data

they routinely handle. Some of these have been made available to the sci-
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entific community or exported to other centres, such as the Leeds University

DNA sequencing facility where they have been published as an extension of the

Protein Information Management System (PIMS), designed to provide sample

tracking both to users and operators [139]. The system allows facility users to

place orders and monitor the processing status of their samples while a different

interface provides operators with full control of the sequencing pipeline with

automated connection to the sequencing robots. The Leeds system supervises

the whole procedure from sample submission to generation of FASTQ files but

does not track the actual experimental characteristics of the sequenced sam-

ples or post-processing of the raw data. Other solutions track the sequencing-

samples via analysis-modules and execute some raw-data processing steps such

as quality control analysis or reference-genome mapping. For example, QUEST

software [21] uses an experiment-resolved configuration file to store experiment

metadata and execute predefined processing pipelines. Another example is NG6

[87], an integrated next-generation sequencing (NGS) storage and processing

environment where workflows can be easily defined and adapted to different

data input formats. NG6 can be used interactively to generate intermediate

analysis statistics and downloadable end results. Similarly, Scholtalbers et al.

[116] recently published a LIMS for the Galaxy platform that keeps track of

input-sample quality and organises flow cells. By working within the Galaxy

system, the associated FASTQ files are readily available for processing using

the platform’s analysis resources. Finally, another interesting package is the

MADMAX system that considers multiple omics experiments by incorporating

modules for microarrays, metabolomics, and genome annotation [79]. MAD-

MAX uses an Oracle relational database to store sample and raw data, and to

facilitate data analysis it links to common bioinformatics tools such as Blast

or Bioconductor when they are installed on a computer cluster.

In this chapter, we describe the STATegra Experiment Management System

(EMS), which is an information system for storing and annotating complex

multi-omics experiments. In contrast to other solutions that put the focus on

managing thousands of samples for core sequencing facilities, the primary goal

of the STATegra EMS is to annotate the experiments that are designed and run

at individual research laboratories. The system contains modules for defining

omics experiments, samples, and analysis workflows and it can incorporate data
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from different analytical platforms and sequencing services with great flexibility;

it currently supports mRNA-seq, ChIP-seq, DNase-seq, Methyl-seq, miRNA-

seq, proteomics and metabolomics by default, and can be easily adapted to

support additional high-throughput experiments.

3.2 Methods

The STATegra EMS is a multiuser web application developed using free, open

source software technologies such as Java Servlets, the Sencha ExtJS frame-

work, the MySQL relational database system, and the Apache Tomcat Servlet

engine, and is freely available to the scientific community.

3.2.1 STATegra EMS architecture

The architecture of the STATegra EMS follows the Client-Server paradigm,

which divides the system into two main components: the SERVER-SIDE

application and the CLIENT-SIDE web application (Figure 3.1). While the

SERVER-SIDE is responsible for maintaining data consistency and for control-

ling access to the stored information, the CLIENT-SIDE must request data

from server and suitably present it to the user. Clients typically communi-

cate with server using a request-response communication pattern: the client

requests data from the server, the server receives and processes the petition,

fetches the information required (e.g. from databases), and returns a response

to the client (Figure 3.2).

For the STATegra EMS, the communication between the client and server is

mainly handled using asynchronous JavaScript and XML (AJAX) techniques

and the data is encoded using JavaScript object notation (JSON). With AJAX,

web applications can send and receive data asynchronously from the server and

update specific parts of a web page which allows them to create very dynamic

web interfaces without reloading the whole page, as usually occurs with classic

web pages.
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Finally, there are some important advantages to using this client-server archi-

tecture model compared to more traditional approaches, the most important

of which are:

• Centralisation, because data are stored and retrieved from a single source

it is easier to back up and manage error and, more importantly, data

duplication is reduced.

• Security, the server-side can control the way clients access data by using

different levels of permissions. Centralising data may also require strate-

gies to be developed to handle concurrent access to data, for example,

when different users edit the same information at the same time.

• Accessibility, server data can be accessed remotely across multiple plat-

forms .

Figure 3.1: Overview of the STATegra EMS architecture.
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STATegra EMS server application

The STATegra EMS server-side was built using Java servlets and MySQL re-

lational databases and is unique for all clients. Although the application was

primarily designed and tested on UNIX servers, the server EMS code could easily

be adapted to work over other architectures (e.g. Windows systems) due to the

cross-platform nature of Java. Java servlets provide a component-based and

platform-independent interface for developing web-based applications, keeping

all the benefits of the Java language (portability, re-usability, performance and

robustness). A servlet is a Java class designed for responding to client requests,

usually HTTP requests, with dynamic content, and are deployed and executed

in a servlet container (Figure 3.3). Some examples of servlet containers are

Apache’s Tomcat server, the official reference implementation for a servlet en-

gine developed by the Apache Software Foundation; and Jetty, a web server

container developed as a free and open source project as part of the Eclipse

Foundation [56, 101, 105].

In terms of the connection with the databases, the server code was implemented

using the data access object (DAO) design pattern in conjunction with the data

transfer object (DTO) pattern. Using both patterns provides an abstraction

layer for interaction with databases, and works as an intermediary between the

server application (servlets) and the MySQL database. The main objective

for the DAO pattern is to provide a set of data operations (e.g. inserting,

Figure 3.2: An example of a request-response exchange between clients and
servers. Multiple client programs may share services from the same server. Responses
can include different information such as images, text files, or HTML files.
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Figure 3.3: Example of a basic interaction between clients, a web server and
a servlet registered within the web server. A client application (Client 1) sends
a request to the server (B.1). A second client (Client 2) could send another request
which would be processed in parallel (B.2). The web server receives the request and
identifies the destination servlet, i.e. the servlet that will accept the request from
clients and that will return a response (Servlet A). The first time that a server loads
a servlet, it runs the servlet’s init method (B.3). Once the servlet is initialised, it is
able to handle the client requests using its doPost or doGet method within the Java
virtual machine (depending on the HTTP method used, i.e. POST or GET ). Each
client’s request involves a call to the doPost or doGet method (B.4), which results in
a HTTP response that the server returns to the client (B.5). Lastly, servlets run until
they are removed from the server by running the servlet’s destroy method (B.6).
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removing, or querying a database) that allows such access to the database

without exposing the details of the database schema.

The advantage of the DAO pattern is that by introducing this separation be-

tween two important parts of the application (business logic and access to

the database) changes in the underlying persistence mechanism only affect

the DAO implementation and leaves the rest of the application unaffected [4,

126]. This helps to reduce the workload if there are any changes made to the

database model, if the application code is extended with new features, or if

alterations are made to the database engine as a consequence of changes in

the existing omics approaches or the emergence of new techniques.

The DAO pattern can be complemented using a DTO: a simple object that does

not have any behaviour except for holding and retrieving its own data by using

accessors and mutators. The DTO encapsulates the data in an object that is

transferred between the server-side processes, thus considerably reducing the

number of method calls [37, 89]. In addition to the accessors and mutators,

DTO is also responsible for serialising its data into specific formats such as

XML or JSON, which are usually transferred out of the application (e.g. when

a client application is used). Figure 3.4 shows an example for the interaction

between business and DAO objects in the STATegra EMS.

STATegra EMS client application

The entire STATegra EMS client side was developed using JavaScript and

HTML. The core of the application was built using Sencha ExtJS [117], a

comprehensive JavaScript framework for building rich cross-platform web ap-

plications. ExtJS simplifies the generation of interactive and user-friendly inter-

faces by including multiple graphical resources such as panels, grids, and form

controls, as well as other valuable features including a flexible layout manager

that helps to organise how the content is displayed across multiple browsers

or devices, and a charting package that allows data to be visually represented

with a broad range of chart types. The JavaScript library JQuery [132] was

used to complement this framework. JQuery is an easy-to-use API for the

manipulation of the HTML documents and simplifying the use of animations,
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Figure 3.4: Class diagram (A) and sequence diagram (B) for an interaction
between Servlets, DAO, DTO, and data sources in the STATegra EMS. When
the servlet is required to retrieve data from the database (B.2), it first receives an
instance of the corresponding DAO using a "factory", which wraps the creation of
the objects (B.1). DAO classes are implementations of the DAO abstract class, which
defines the set of methods available for manipulating the information at the data
source. For example, in diagram A, the class UserJDBCDAO implements the abstract
methods in order to manipulate the data for users stored in a SQL-based database,
using the JDBC API. The DAO object sends a valid query to the data source (B.3),
which usually returns an iterable set of records that represents the results for executing
the statement at the data source. Before exchanging information between the servlet
and the DAO, it is usually compiled as an implementation of the DTO pattern, in this
case, an instance of the User class (B.5 and B.6).
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event handling, or AJAX communications. The client-side is built following

the model-view-controller (MVC) architectural pattern, which makes it easier

to organise, maintain, and extend large client applications. The MVC pattern

separates data modeling, visual representation, and the action’s handlers into

three separate but interconnected parts [19, 102]:

(i) Model, stores the application’s data in a structured way. A model can be

a single object or a more complex structure, and typically includes meth-

ods for manipulating, retrieving, and validating the stored data (accessors

and mutators methods).

(ii) View, is a visual representation for the application’s data. A view usu-

ally represents the information for a given model or set of models, and

multiple views can represent the same model in different ways. Views

usually have an associated controller and may also contain tools for ma-

nipulating the information for the represented model, such as buttons or

text fields. However, a view does not directly change the model’s data,

rather, it delegates the action to its associated controller.

(iii) Controller, works as an intermediary between the models and views; it

updates the view when the model changes, includes event handlers for

the views, and updates the model when the user manipulates a view.

An important factor in the MVC architectural pattern design is use of the

Observer design pattern in which an object (known as a subject or observable)

maintains a list of objects which depend on it (observers) [102]. In the context

of the MVC pattern, the models will be the observable object and the views will

be the observers. When a model changes, it typically notifies its observers that

a change has occurred and they need to update their model’s representation

in order to make the change visible (Figure 3.5).
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3.2.2 User system

An important aspect when developing web applications, especially when the

data stored by the tool are sensitive in terms of privacy and confidentiality,

is the use of security constraints to keep data safe and away from undesired

access.

In general terms, there are two levels of security verifications.

• Authentication, is probably the single most common requirement of any

application. Authentication is the process of verifying that an individual is

a valid and trusted application user. In a traditional web application, this

is usually done using server-side session tracking where each registered

user in the application has a user identifier (ID) and a password [30]. The

STATegra EMS included a Session Management system which controls

access to the application as follows:

(i) Before users can start working with the application they must create

a new user account.

Figure 3.5: Diagram for the Model-View-Controller interaction. When a user
acts on a view (e.g. by pressing a button on View 1, B.1), the view propagates the
event to its associated controller. The controller handles the event and executes the
corresponding task (B.2) which may have an effect on a model or a set of models.
When a model detects changes in its data, it notifies all of its known observers (i.e.
views that are showing its data) about the changes (B.3). Each observer that receives
the notification (B.4 and B.5) asks for an updated version of the model and updates
their visual representation accordingly.
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(ii) With a valid account, the user can login to system. When logging

in, the user is asked for the account credentials (account and pass-

word). The username and password combination is passed in an

unencrypted form to the server. The server compares the values

provided to the encrypted values stored in the database [27].

(iii) If the user is authenticated, the server verifies that they have the

privilege to access the application and then generates a session

token (a random combination of 15-30 alphanumerical characters).

The new session is registered by the Session Manager (a singleton

instance for the application) which is responsible for controlling and

validating the open sessions, as well as for closing the session after

a long period of inactivity.

(iv) Finally, if authentication is successful, the server returns the gen-

erated session token (stored in the browser as an authentication

cookie) to the user.

• Authorisation, is the process of verifying that users can only perform

the actions they have been given permission for by the system admin-

istrator, thus preventing unauthorised actions and limiting data access.

Authorisation is managed using two different strategies in the STATegra

EMS:

(i) a privileges scale for user accounts, where the administrator ac-

counts can access much more advanced system options compared

to regular accounts, including user management and databases ad-

ministration.

(ii) Using ownership and membership as constraints for editing data. As

a general rule, the user creating a data element becomes its owner

and has exclusive rights to edit or delete it. However, any owner

can grant access rights to other users registered on the system.
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3.2.3 Data specification

The overall objective of the STATegra EMS is to serve as a logbook for high-

throughput genomics projects performed at research labs by providing an easy-

to-use tool for annotating experimental designs, samples, and measurements,

and for analysing the pipelines applied to the data. Experimental data and

metadata are organised in the EMS around three major metadata modules

(Figure 3.6): the Study module that records experimental design information

and associated samples; the Samples module that collects all the available

information about the biological material used; and the Analysis module that

contains analysis pipelines and results. Both Sample and Analysis modules

have been broadly defined to accommodate data from different types of omics

experiments and provide a common annotation framework. Commonly used

standards in omics experimental data annotations were used when defining the

data specifications in order to facilitate EMS interoperability. In particular, we

leveraged minimum information about a proteomics experiment (MIAPE) [129]

for proteomics analysis annotation, metabolomics guidelines proposed by [125]

and [43], and minimum information about a microarray experiment (MIAME)

[18] and minimum information about a high-throughput nucleotide sequencing

experiment (MINSEQE) [131] for sequencing experiments.

Sample and Analysis modules contain distinct information units(IUs), which

are the basic elements of data input into the system and are connected by

an experimental or analysis workflow. The Study module wraps Samples and

Analyses modules with one single data input form.

Figure 3.6: Metadata module structure in the STATegra EMS. The Sample
module stores information about biological conditions, biological replicates, and the
associated analytical samples. The Analysis module contains all the analysis steps
required to process the raw data. Both Samples and Analyses are associated to one
or more studies within the Study module.
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(i) Study module: The study module is the central unit of information in

the STATegra EMS. An study is defined by some scientific goals and

a given experimental design that addresses these goals. This design

requires the use of a number of biological samples and an array of omics

measurements, which are assigned to the study.

(ii) Sample module. This section hosts information about the biological

conditions and their associated biological replicates and analytical sam-

ples. The IUs of this module are:

Biological condition. These are defined by the experimental design and

consist of a given biological material such as the organism, cell type,

tissue, etc. and, when applicable, an experimental condition such as

treatment, dose, or time-point for time-series samples.

Biological replicate or sample. Each biological condition is assessed by

using one or more biological replicate. The biological replicate stems

directly from the biological condition by adding a replicate number and, if

applicable, a "batch number". When an study comprises a large number

of samples, very often only some of them can be generated at the same

time; these samples correspond to the same batch. Batch information is

relevant to identify systematic sources of noise that might affect all the

samples in the batch.

Analytical sample or aliquout. Omics experiments analyse the molec-

ular components of biological replicates using the chosen experimental

protocol to produce samples ready to be measured by the relevant high-

throughput technique. For example, a RNA-seq analytical sample is

obtained after using a cytosolic mRNA extraction protocol. Similarly,

in metabolomics, different aliquots can be obtained by applying certain

extraction protocols that target distinct metabolic compounds.

(iii) Analysis module. The analysis module describes the process for obtain-

ing the measurements from the high-throughput platforms, as well as the

later steps of processing and analysis of the raw data. In contrast to the

sample module where only metadata is stored, the analysis module also
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stores the data files. The analysis module consists of one logical and

three data IUs:

Raw data. The raw data IU provides details for the generation of the raw

data, including the type and configuration of the omics equiment, or any

protocol followed to prepare the analytical sample for its measurement.

Intermediate data. This IU covers all the intermediate processing steps

from the raw data production to the generation of the final data. Differ-

ent omics experiments might require zero, one, or several intermediate

steps. For example, in the case of RNA-seq, mapping to a reference

genome that produces a BAM file constitutes an intermediate step. ChIP-

seq generally has two intermediate steps consisting of read-mapping and

peak-calling.

Processed data. The processed data IU describes the final processing step

that results in certain data files containing the ultimate signal values for

the omics assay.

Analysis. The STATegra EMS includes an additional analysis IU con-

structed by connecting some of the previous data IUs to define a data

processing workflow. Figure 3.7 shows a generic representation of the

workflow elements used in sequencing data analyses. An analysis starts

on a raw data file obtained from a particular analytical sample, con-

tinues through one or several intermediate data files covering different

processing steps (such as trimming, mapping, filtering, merging, etc.),

and finishes with a processed data file that contains the signal values of

the omics features. Alternatively, processed data files can be inputted

into an analysis which then applies additional processing steps to ren-

der higher-level processed data. For example, in DNase-seq analysis, a

primary workflow would be to call DNase hypersensitivity regions by ap-

plying a peak-calling algorithm to a file of mapped reads (Figure 3.8-A);

whereas a secondary analysis could involve merging the regions from N

different samples to obtain a set of consolidated regions, and then count-

ing the number of reads of each sample in the consolidated region set to

generate a per-sample signal value file (Figure 3.8-B).

46



3.2 Methods

An analysis is always associated with one or more studies and, because

the analysis workflow can be traced back to raw data and its associated

analytical samples, it provides the link between the study and the sample

modules. By default, when a new analysis is created, it is assigned to

the active study. Figure 3.9 shows the data input window for the analysis

module; the central panel displays the input form for the different analysis

steps, while at the bottom a graphical representation of the workflow

allows the elements and structure of the analysis to easily be monitored.

Figure 3.8: Example of a primary and secondary workflow for a DNase-seq
analysis. The primary workflow (A) involves calling DNase hypersensitivity regions
by applying a peak-calling algorithm to a BAM file of mapped reads whereas the
secondary workflow (B) involves merging region files from different samples to obtain
a set of consolidated regions and then counting the number of reads of each sample
in the consolidated region set to generate a per-sample signal value file.
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Figure 3.9: Input window for the analysis module.
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3.3 Results

3.3.1 Availability and requirements

The STATegra EMS application is distributed under the GNU general public

license version 3 and can be downloaded from the project site (see table B.6

below). This site also provides useful links to the documentation, news about

the application, and a link to a test-instance of it. In addition to this website,

sources for the application are hosted at GitHub, a popular web-based Git

repository, which allows anyone to browse and download the code or discuss

it, submit contributions, and review the code.

The documentation and user manuals for the application are hosted at Read the

Docs, a free web platform for generating fully-searchable and easy-to-find docu-

mentation, and are imported automatically from major version-control systems

such as Mercurial or Git. Documentation sources were written in Markdown, a

lightweight markup language, and are stored on the GitHub repository. As pre-

viously mentioned, the STATegra EMS was developed in Java and is therefore

platform independent, although it has only been extensively tested in UNIX

environments. Installation instructions can be found on the Read the Docs

site.

Availability and requirements

Project links
Project site: http://bioinfo.cipf.es/stategraems/

Sources: https://github.com/fikipollo/stategraems

Documentation: http://stategraems.readthedocs.org

Other information
Operating system(s): Platform independent

Programming language(s): HTML, JavaScript, Java

Other requirements: Web browser. Google Chrome is recommended.

License: GNU General Public License Version 3
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3.3.2 Discussion

As high-throughput sequencing costs decrease and new sequencing-based molec-

ular assays become available, more research laboratories are incorporating NGS

technology as a tool for addressing their scientific goals. This has also been

promoted by the fact that high-throughput sequencing is now feasible in organ-

isms for which very little genome information is currently available. In a typical

scenario, the researcher plans and outsources their experiments to sequencing

facilities that might vary over time or according to the specific NGS assay re-

quired. When the sequencing results arrive and start to accumulate over several

experiments, the researcher must then find ways to properly store and organ-

ise large datasets and their associated processing pipelines. In this chapter,

we showed how the STATegra EMS was conceived to provide a management

solution in such cases.

The architecture of the system was designed with the current organisation in

research labs in mind, i.e. where multiple experiments are run, samples might

be replicated or reused in successive experiments, and the same biomaterial

source might be used in different types of NGS assays. For this reason, the

sample module arranges annotations into three IUs: biological condition, bio-

logical replicate and analytical sample and permits one or many relationships

between them, which is therefore sufficiently flexible to define complex sam-

pling settings without duplicating information. Similarly, the analysis module

divides metadata annotation into steps that can be reused to create alterna-

tive analysis workflows. Finally, by allowing samples and analyses to belong to

different studies, the STATegra EMS can accommodate possible connections

between studies.

This architecture is substantially different from other information management

solutions created for NGS data which have been designed for sequencing fa-

cilities, such as the Galaxy LIMS [116] which handles requests to the service

from users, or the NG6 [87] that controls the sequencing workflow the level of

the sequencing providers. In these cases the management system is adapted

to the production pipeline at the sequencing centre and applies strong control

limits to the facilities wet-lab, including library preparation and sequencer runs.

This type of information is absent from the STATegra EMS, which may even
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be able to accept data from multiple sequencing providers. On the contrary,

the STATegra EMS records experimental information and sample metadata

that might not be relevant in a production centre. In conclusion, NGS LIMS

and the STATegra EMS target different users and needs in sequencing data

management. The remaining challenge is how to best optimise the integration

of seq data with clinical information, in a similar way to current practices in

clinical development centres [1, 2].

The current STATegra EMS supports analysis workflows for five popular se-

quencing functional assays but can easily be extended to other -seq applica-

tions because it uses generic processing step forms for DNA and cDNA high-

throughput sequencing. Additionally, the system supports the annotation of

omics experiments, targeting non-nucleic acid components such as proteomics

and metabolomics, for which specific input forms have been incorporated. In

summary, the STATegra EMS provides an integrated system for annotation of

complex high-throughput omics experiments in functional genomics research

laboratories.
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4
Experiment annotation using the STATegra
EMS: an example of its use in Systems Biology

Part of this chapter have been published in "Hernández-de-Diego R, Boix-Chova N, Gómez-

Cabrero D, Tegner J, Abugessaisa I, and Conesa A. STATegra EMS: an Experiment Man-

agement System for complex next-generation omics experiments. BMC Systems Biology, 8

Suppl 2:S9, 2014".

4.1 Introduction

The objective for this chapter is to illustrate how the STATegra EMS can

be used in the context of real multi-omics biomedical research. For this use

case we consider the data generated by the STATegra project [134], an 7th

Framework Programme (FP7) European Consortium that aims to develop new

bioinformatics methodologies and tools for the integrative analysis of multi-

omics datasets.

4.1.1 The STATegra project

As discusses by Gomez-Cabrero et al. [42], data integration is becoming very

common in life sciences research. In just a few years the rise of new omics tech-

nologies, as well as the funding of large-scale consortia projects, has increased

biological systems research on an unprecedented scale, generating heteroge-
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neous and often large data sets. Although these multi-level data provide new

insights into different aspects of genomic regulation, they also represent an im-

portant challenge in the analysis and manipulation of the data. Consequently,

the scientific community is investing a lot of time and effort in the design

of novel methodologies, approaches, and frameworks that allow meaningful

knowledge to be extracted from this overwhelming amount of data [95].

The objectives for the FP7 European STATegra project [134] include the de-

velopment of a new generation of statistical methods and tools for the inte-

grative analysis of multiple types of omics data. The STATegra consortium

comprises 11 teams from 8 countries, each with backgrounds in different as-

pects of biomedical research such as bioinformatics and biostatistics, omics

technologies and experimentation, and commercial software development.

The STATegra project [134] has developed a wide variety of statistical method-

ologies and software implementations targeting different aspects of the inte-

gration of multi-omics data such as the design of multi-omics experiments,

integrative variable selection, data fusion, integration of public domain data,

and integrative pathway and network analysis. By combining these different

approaches researchers can get a more comprehensive view of how the observed

element or phenomena, also known as system under study (SuS), behaves at

the different molecular layers measured.

4.1.2 Studied system and experimental design

Based on the positive results shown by Ferreiros et al. [35], the STATegra

consortium chose the differentiation process of mouse pre-B-cells as a model

biological system to generate experimental datasets for developing the methods.

The model describes the differentiation of the mouse B3 cell line (cycling pre-B

cells, Figure 4.1-A) under the controlled induction of the Ikaros transcription

factor (TF). The differentiation is controlled by a tamoxifen-inducible vector of

the Ikaros TF (Ikaros-ERt2), while control cells carry an empty vector (Figure

4.1-B). This model is of special clinical interest because the genetic deletion

of Ikaros can result in severe disturbances or even completely block B-cell

development [35].
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Figure 4.1: The biological model system used by the STATegra project [134].
Figures based on Ferreiros et al. (2013) [35]. (A) - B cells develop from hematopoietic
stem cells (HSC) that originate in bone marrow. HSC first differentiate into multipo-
tent progenitor (MPP) cells and subsequently into common lymphoid progenitor (CLP)
cells, which can either differentiate to T-cells or B-cells. B-cell differentiation occurs
in several stages, starting from early pro-B cells, which become pre-B cells, and finally
turn into immature B cells. (B) - Changes in cells after the addition of 4-hydroxy
tamoxifen [4-OHT] (B.1). Ikaros-ERt2 proteins are initially tethered in the cytoplasm
(B.2) but the addition of 4-OHT triggers their translocation into the nucleus where
they interact with Ikaros’ targets (B.3).

The experimental design consisted of a replicated time course using seven dif-

ferent omics platforms: mRNA-seq, miRNA-seq, ChIP-seq, DNase-seq, reduced

representation bisulfite sequencing (RRBS-seq), proteomics, and metabolomics.

Between three and eight samples were extracted per condition (Ikaros and con-

trol), at six time-points after the tamoxifen induction (0h, 2h, 6h, 12h, 18h,

and 24h), depending on the omics type (Table 4.1). For each omics type, data

was acquired, normalised, and pre-processed.

The selected omics data types allow the system to be studied from different

but complementary points of view. As explained in Section 2.3, transcriptomics

(mRNA-seq) and miRNA-seq focus on profiling the expression of genes in the

different conditions of the experiment. DNase-seq provides insights into the

genomic regulatory processes based on the genome-wide sequencing of regions
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0h 2h 6h 12h 18h 24h Total
mRNA-seq 3 3 3 3 3 3 3 3 3 3 3 3 18 18 36
miRNA-seq 3 3 3 3 3 3 3 3 3 3 3 3 18 18 36
ChIP-seq 2* 2* 2* 2* 4 4 8

DNase-seq 3 3 3 3 3 3 3 3 3 3 3 3 18 18 36
RRBS-seq 3 3 3 3 3 3 3 3 3 3 3 3 18 18 36
Proteomics 3 3 3 3 3 3 3 3 3 3 3 3 18 18 36

Metabolomics 8 8 8 8 8 8 8 8 8 8 8 8 48 48 96
25 25 23 23 23 23 23 23 23 23 25 25 142 142 284

50 46 46 46 46 50 284
n Ikaros-ERt2 n Control o No data

* Samples from Ferreiros et al. (2013)[35]
Table 4.1: Summary of the samples used in the STATegra project [134].
Samples were grown as a batch and, as general rule, three samples were isolated for
each condition (Ikaros and control), time point and omics type. Eight samples were
isolated per time point and condition for metabolomics data, and four were used for
LC-MS and GC-MS measurements. Data from previous studies [35] were used for
the ChIP-seq analysis.

sensitive to cleavage by DNase I, and ChIP-seq identifies the binding sites of

TFs and other chromatin-associated proteins interacting with the deoxyribonu-

cleic acid (DNA). RRBS-seq determines the pattern of DNA methylation; when

located in a gene promoter, DNA methylation typically represses gene transcrip-

tion. In contrast, proteomics data identifies and quantifies proteins and, at the

quantitative level, proteomics reflects the effects of post-transcriptional regu-

lation in controlling gene expression. Finally, studying changes in metabolite

profiles provides information about the physiology of the cell. Metabolites rep-

resent the end products of cellular processes and are directly regulated by the

presence or absence of specific proteins. Consequently, the integration of all

these omics data types provides a comprehensive picture of changes in the SuS

at the genomic level for the different conditions.

4.2 Project annotation using the STATegra EMS

The variety of techniques used by STATegra project [134] made necessary the

development of a platform for the standardised annotation, storage, and man-

agement of the huge amount of data generated during the study, the STATegra

EMS. The objective in this section is to describe a real example of the system

being used; however, due to the wealth of the information produced, and in
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order to make this section more readable, some aspects of the data annotation

have been summarised or omitted, while still providing enough information to

fully understand of the scope of the application.

4.2.1 Installing the STATegra EMS

From version 0.6, the STATegra EMS has included a command-line auto-

installer which simplifies system deployment and configuration. Assuming that

the host machine meets all of the requirements detailed in Section 3.3.1, the

script will automatically perform most of the installation steps, such as check-

ing dependencies, and downloading and deploying the binary files. Once the

required files are installed, the process continues via a web-based interface

which allows some of the application’s options to be configured (such as the

database credentials, the location for the data directory, or the administrator

password) before it is launched for the first time. Additional information about

the installation process is available in http://stategraems.readthedocs.

io/en/latest/installation/install/.

4.2.2 User registration

By default, the application includes a special user account that corresponds to

the administrator role. The administrator has some extra privileges compared to

other users, including the ability to back up the databases, delete information,

and manage the users in the system. New users can easily register using the

sign up form, and are described by an username, an email address, and a

password. This user system provides the application with ownership control,

which avoids undesired changes to the annotations.

4.2.3 Study annotation

As explained in previous sections, the annotation process for biological studies

can be divided into three major levels: annotation of the study, annotation

of the biological material, and annotation of the analytical processes. The

process starts with the annotation of the STATegra project [134] as a new

study. On the side menu, we choose the option "Annotate new study" which
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opens the form for describing the study. First, we fill in the main details of the

study, providing a title (The STATegra project), a general description of the

objectives, some public references or links, and any other relevant information.

The field "Data directory" allows users to specify the location of the project

files. These files can be stored on the same machine running the STATegra

EMS or in an external file system (e.g. an FTP server or an iRODS system)

and the application automatically inspects the directory and shows its contents

during later steps in the annotation.

Next, we fill in the "Design summary" fields. For "Type of experiment" we

choose Time course, Case-Control, and Multiple conditions, and we indicate

the planned omics measurement types (mRNA-seq, small RNA-seq, ChIP-seq,

DNase-seq, Methyl-seq, Proteomics, and Metabolomics). Check boxes next to

each planned measurement are available to monitor the progress of the study.

These are automatically checked when a matching analysis is annotated and

assigned to the study.

Finally, we proceed by defining the users that participate in the study as owners

(users that can administer all the information in the study), or as members

(users that can only edit their entries). After saving, a unique identifier is

assigned to the new experiment (Figure 4.2).

4.2.4 Sample annotation

Once the new study has been registered we can proceed with the sample an-

notations. On the side menu we choose the "Browse Samples" option which

displays a list of all the annotated samples in the study, grouped by biologi-

cal condition (BC). From this panel, users can edit, inspect, or annotate the

information for the samples.

As previously mentioned, the study comprises six omics measurements for the

B3 mouse cell line. In this study, samples are grouped depending on whether

they belong to the group of "Case" samples (i.e. samples that contain the

tamoxifen-inducible vector of the Ikaros TF); or which belong to the "Control"

samples (i.e. samples that contain an empty vector); they are also grouped

58



4.2 Project annotation using the STATegra EMS

Figure 4.2: Annotation details for the STATegra project in the experiment
module.
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according to the extraction time for the sample (i.e. 0h, 2h, 6h, 12h, 18h, or

24h). In total, we will consider 12 groups of samples, as follows.

1. Ikaros-ERt2 cells 0h
2. Ikaros-ERt2 cells 2h
3. Ikaros-ERt2 cells 6h
4. Ikaros-ERt2 cells 12h

5. Ikaros-ERt2 cells 18h
6. Ikaros-ERt2 cells 24h
7. Control cells 0h
8. Control cells 2h

9. Control cells 6h
10. Control cells 12h
11. Control cells 18h
12. Control cells 24h

Additionally, samples can be sub-classified by the number of the batch they

were cultured in, as well as the protocol followed for sample isolation. Table

4.1 summarises all of the samples generated for the experiment. As a general

rule, for each BC, 10 biological replicates(BRs) were cultured in batches, and

about 23 analytical samples(ASs) were isolated for the different sequencing

assays, except for time points 0 and 24 hours when some extra samples were

isolated for ChIP-seq analysis (Figure 4.3).

Figure 4.3: Samples for the STATegra project. Summary of sample production
for the different omics types for each time point in the study. Samples were grown in
batches, with 2-4 replicates for each batch. At each time point, a different number of
aliquots were separated that were used for the later omics measurements (approx. 3
aliquots per omics type).
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For this example we will focus on annotation of the samples corresponding

to the condition Ikaros-ERt2 cells 0h, although annotation of the remaining

samples would generally be equivalent. The process starts by clicking on the

"Add new sample" option, which displays the sample module input form, for

describing the samples (Figure 4.4). The first part of this form describes the

common details for the BC of all the samples. The second part allows us to

annotate the specific details for each BR, such as the batch number, or the ASs

isolated from the culture, and the extraction protocols used to extract them.

Focusing on the first part, the first section (Figure 4.4-A), "General details",

includes fields such as a human-readable name which identifies the sample

(Stategra-Ikaros-ERt2 cells 0h 4-OHT ) and a more extended description of

the sample. The second section (Figure 4.4-B) describes the biological mate-

rial used for the assay. In this case, we choose Mus musculus as the studied

organism, pre-B lymphocyte as cell type, and B3 cell line as cell line, leaving

the remaining fields blank because they are not relevant for this use case. The

next section (Figure 4.4-C), "Experimental conditions", describes any type

of treatment applied to the cells. Some interesting fields would be "Treat-

ment" (4-hydroxy tamoxifen [4-OHT]), "Dose" (0.5 µM), "Time" (0h), and

the "Protocol description", a written description for the process of growing

and maintaining of the cells. Additionally, it is possible to attach extra files for

a more detailed description of the full process. Finally, some extra fields, such

as the list of "Owners" (i.e. users that can edit this information), conclude

this first part of the annotation (Figure 4.4-D).

After filling in the common biological information, we proceed with the an-

notation of the individual samples. To illustrate the process we will use the

annotation for the BRs grown in batch 4 (which were later used in mRNA-seq,

miRNA-seq, RRBS-seq, and proteomics experiments). First, we choose the

"Add new Sample" option which displays the form shown in Figure 4.5-A. We

type a name that identifies the BR (STATegra-Ikaros-batch4-0h), and choose

the "Add new aliquot" option. At this point the system shows a new dialog

for choosing the process or protocol followed to isolate the ASs (Figure 4.5-B).

Protocols are considered to be individual system information units(IUs) which

can be manipulated and reused after saving them. In this use case we need to
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Figure 4.4: Annotation details at the Sample module for the condition
Stategra-Ikaros-ERt2 cells 0h 4-OHT .
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annotate a new protocol. To do this we choose the "Register new extraction

protocol" option and fill in the form to describe the process of how the ASs

for mRNA-seq, miRNA-seq, RRBS-seq, and proteomics assays were isolated,

and define the protocol title and which users can edit the information. Af-

ter setting up the protocol we add all of the ASs isolated using this protocol,

giving each sample a different name (e.g. STATegra-Ikaros-0h-B4-miRNAseq-

sample). To complete the BR annotation we fill in the information for the

remaining analytical samples.

Finally, we save the changes and the new BC is registered in the system which

assigns unique identifiers to the BC and all of its subcomponents (BRs and

ASs). The remaining BCs are annotated in the same way, adapting the in-

formation for each specific case, and the resulting sample panel shows the

complete list of samples for the current experiment, grouped by BC (Figure

4.6).

4.2.5 Analysis annotation

The information about the processing workflows is incorporated into the anal-

ysis module. While this use case-study involves seven omics types, we will only

describe the RNA-seq and proteomics workflows in detail. However, the anno-

tation for the miRNA-seq, ChIP-seq, DNase-seq, RRBS-seq, and metabolomics

analysis are conceptually similar.

In the side menu we choose the "Browse analysis" option, which displays the list

of all the annotated analyses for the active experiment, and provides users with

options for editing, inspecting, and registering the workflows for the analyses

performed during the study.
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Figure 4.5: Annotation of biological replicates for the "Stategra-Ikaros-ERt2
cells 0h 4-OHT" biological condition. (A)- Details for the annotation of the BR
STATegra-Ikaros-batch4-0h. (B)- Dialog for protocol selection.
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Figure 4.6: List of all the samples for the STATegra Project, grouped by
biological condition (BC), after the annotation.
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RNA-seq analysis

Workflow overview

In the following sections we describe the general steps required to produce the

processed data for RNA-seq in the STATegra project [134]. These steps were

applied to each BC and the resulting files were later used in the statistical

analysis.

1. For each AS (three for each BC) stranded paired-end mRNA libraries

were prepared and sequenced using an Illumina HiSeq 2500 sequencer.

2. The raw data files were evaluated (quality control) and pre-processed in

order to remove Illumina primers and low-quality nucleotides.

3. The pre-processed files were mapped to the reference genome using

TopHat 2 [72].

4. HTSeq count [5] was used for quantification of the expression of the

genes.

5. Counts were normalised using the conditional quantile normalisation (CQN)

method [47] and ComBat [62].

Workflow annotation

Although each AS was processed separately, the resulting data for each BC

were combined during the normalisation step, and so we annotate a total of

12 mRNA-seq analyses, grouping the processing workflows by BC. Within the

active experiment, we choose the "Annotate a new Analysis" option and se-

lect mRNA-seq as the analysis type. This option displays the input form for

the analysis module. This form is divided into four sections: a toolbar for

manipulating the current annotation, a table listing the steps in the current

analysis (grouped by analysis type), an interactive diagram which summarises

the analysis workflow, and a main section reserved for showing the details for

each selected step.

New "Raw data" steps usually need to be added at the beginning of an analy-

sis. Selecting this option opens a new dialog box with the form for annotating
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the raw data generation-steps (Figure 4.7). At this point we choose an existing

AS to start annotating the preparation details and sequencing characteristics

of a particular sample in the library. In our example, we choose the AS iden-

tified as the STATegra-Ikaros-0h-B4-mRNAseq-sample which corresponds to

the Ikaros-ERt2 cells 0h BC. Additionally we can also indicate the location

of the raw data files, whether files are stored in an external database (e.g.

a link to a web repository), or in a local directory (using the file browsers).

Then, we provide a "Step name", which helps to identify the step (STATegra

mRNAseq IKAROS 0H B4 - Sequencing), and the "Technology", which de-

scribes the method used for data acquisition (RNA-seq). Depending on the

technology selected, the form may be extended with new fields. Some exam-

ple fields for this example case are "Platform family" (Solexa Illumina) and

"Platform model" (HiSeq 2500) for describing the sequencing equipment, or

"Avg. sequence length" (75 bp), "Layout" (paired-end), and "Strand speci-

ficity" (stranded), for describing the library details. Finally, the last section in

the form describes any quality evaluation performed on the raw data. Some

example fields are the "Software" used (FASTQC ), "Version" (v1.2.2), "Files

location" (in case that the generated reports were stored), and "Observations

and results".

Once the raw data form is completed and saved, a graphical representation

of the "Raw data" step is created on the workflow diagram, which grows as

the subsequent analysis steps are completed. The option "Copy step", which

duplicates the existing raw data instance, can be used to more quickly annotate

the remaining two "Raw data" steps by altering fields such as the used AS or

the step name to fit the new instances.

After the "Raw data" steps are annotated, intermediate steps can be added:

in this use case, the first intermediate step corresponds to the "Data pre-

processing" step. First, we choose the option for adding new "Intermedi-

ate steps"; in the new window (Figure 4.8-A) the type of step (Data pre-

processing) is selected, and then the form is filled in with the description of

the step. This form is divided into four sections: the first section contains

general fields for the step, such as the "Step name" (STATegra mRNAseq

IKAROS 0H B4 - Trimming), the "Files location" (i.e. the location for the
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Figure 4.7: Annotation form for the raw data acquisition steps for a RNA
sequencing step in the STATegra project.
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Figure 4.8: Annotation for an intermediate step in the STATegra project (A).
The input for a new step usually corresponds to the output for the previous steps.
Users can define that relationship by choosing the previous steps in the interactive
workflow diagram (B).
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files it produces, if any), and the "Owners" of the information. The second

section describes the "Software" used (FastX toolkit), as well as the "Objec-

tives" and "Results" for the step. A third section displays specific details for

the selected step type; for example, the fields available for Data pre-processing

are "Pre-processing type" (Trimming) and "Pre-processed files", which spec-

ifies the input files for the step (i.e. the raw files generated in the previous

steps). As Figure 4.8-B shows, the input files can be selected from the ex-

isting workflow and the system automatically determines the location for the

files. Again, the last section in the form is used to describe any quality control

evaluations later applied to the resulting files.

Next, the pre-processed sequences are mapped to the mouse reference genome.

The annotation process for this step is equivalent to the explained before: first,

we choose Data Mapping as the "Step type" and then fill in the specific fields

for the mapping steps, such as "Genome species" (Mus musculus), "Genome

version" (mm10/GRCm38) and "Source" (University of California Santa Cruz

[UCSC]).

As general rule, an analysis ends with the generation of some "Processed data".

For this RNA-seq analysis the generation of processed data corresponds to

a gene-expression quantification and normalisation. Annotating "Processed

data" steps is similar to intermediate step annotation. First, we fill in the

general details, such as the "Step name" (STATegra mRNAseq IKAROS 0H

B4 - Quantification), or the type of step (Features quantification). Then, we

describe the software used, and lastly, we fill in the specific details for the quan-

tification steps, i.e. the "Quantified files" (the output for the three previous

mapping steps) and the "Reference file". The reference file usually contains

the location for the genes in the genome, and can be an external resource (e.g.

the reference genome downloaded from the University of California Santa Cruz

(UCSC) repositories), or the result of another analysis already annotated in the

system.

After saving the new step, the diagram shows the complete workflow for the

analysis (Figure 4.9). Once all the steps have been properly annotated, the

changes are saved and the new analysis is listed as part of the current ex-

periment. The annotation for the remaining mRNA-seq analysis is similar and
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Figure 4.9: Diagram for the RNA-seq analysis after annotation of all the steps
involved. Users can interact with this diagram and retrieve the complete description
for each step by clicking on the corresponding node in the tree.

therefore can be performed faster using the tools provided for copying the anal-

ysis. For example, to annotate the data analysis for the STATegra mRNAseq

IKAROS 2H condition, we can duplicate the previous analysis and adapt its

content to correct the name for the steps, update the files location, and fill in

any new fields or steps where the workflow varies.

Proteomics analysis

Workflow overview

In the following sections we describe the general workflow for producing pro-

cessed proteomics data. These steps were applied for each BC and the resulting

files were used later in the statistical analysis.

1. For each analytical sample (three for each BC) protein extracts were pre-

pared and measured, and then injected onto the liquid chromatography

(LC)-mass spectrometry (MS) system.

71



Chapter 4. Experiment annotation using the STATegra EMS: an example of its use in SB

2. Raw LC-MS were processed using the quantitative proteomics software

package MaxQuant [142] and mapped against a SwissProt mouse protein

sequence-database containing canonical mouse protein sequences and

common contaminants.

3. Peptide counts were normalised with using the CQN method [47].

Workflow annotation

Despite being quite similar to the annotation of sequencing omics, such as

RNA-seq or ChIP-seq, the annotation for proteomics data slightly differs when

registering the "Raw data" steps. Proteomics, as well as metabolomics, use

different technologies for measuring the samples, such as LC-MS or gas chro-

matography (GC)-mass spectrometry; and consequently require different fields

to report the process and the results of the experiments.

As we have previously seen, the annotation process usually starts by the anno-

tation of raw data. The "Raw data" input form includes some general fields for

setting the "Step name" (STATegra Proteomics IKAROS 0H B4 - LCMS), the

AS measured (STATegra-Ikaros-0h-B4-Proteomics-sample), or the location for

the resulting files. However, defining the "Technology" as LC-MS extends the

form by adding multiple sections as recommended by the minimum information

about a proteomics experiment (MIAPE) guidelines [129].

After adding the general details, the next section in the form describes the

"Liquid chromatography" process, which is also divided into several blocks.

For example, the first block describes the protocols for sample processing and

its injection in the chromatographer; the second and third blocks describe

the equipment used for separation and detection (e.g. the column and chro-

matography system models and manufacturer); the remaining blocks describe

the details for the static and mobile phases in the columns, and the pre- and

post-processing of the signals, among other information.

The next section describes the subsequent MS with fields for describing the

manufacturer, model, and configuration of the mass spectrometer. Following

MIAPE standards [129], there are also fields for describing the data acquisition
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process and analysis of the resulting data. Lastly, a final section allows us to

describe any quality control evaluations performed on the resulting data.

After saving the raw data step, the remaining two measurements can easily be

annotated by copying and adapting the previous step. We then annotate the

subsequent step in the workflow, involving peptide mapping, quantification, and

normalisation. These processes are compiled into a special type of "Processed

data" step, known as "Proteomics MS quantification", which provides details

about the procedures, software, and settings used for quantifying and identi-

fying the proteins and peptides. Adding this step to the workflow completes

the MIAPE [129] annotation for the proteomics analysis. Figure 4.11 shows an

extract of the LC-MS input form and Figure 4.10 shows the "Browse analysis"

panel after annotating the remaining analysis for the current experiment.

4.3 Results

As result of this previous process, the complete description of the STATegra

project was stored in the system, registering numerous details about the exper-

imental design, the main objectives, and the biological material and analytical

procedures used for the study. The annotation of the biological material in-

cludes the detailed descriptions for over 280 analytical samples, extracted from

a total of 128 biological replicates by applying a total of 10 different extraction

protocols. Finally, an extensive description for the 12 biological conditions in

the experiment completed the annotation for the biological material.

In addition to the samples metadata, 120 bioinformatics pipelines were regis-

tered in the system for the seven omics data types that were measured in the

experiment. As described in previous sections, the annotations for the analysis

include details that are essential for the reproducibility of the experiment, such

as the name and version of the used bioinformatics tools, and the selected

parameters and the inputs for each step in the workflow.
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Figure 4.10: List of all analyses for the STATegra project after annotation.
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Figure 4.11: Annotation for the proteomics LC-MS. The form is divided into two
main sections: a separate description of the LC and MS, following the MIAPE [129]
guidelines. 75
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4.4 Discussion

Reproducibility is one of the fundamental principles of science and, without it,

a scientific discovery could not be validated or even distinguished from error

or chance. The experimental provenance of data has been usually recorded

in form of laboratory notebooks; however, as big data has become a standard

in biomedical research, encapsulate the experimental metadata along with the

data in a digital manner is now an imperative [69]. In a typical scenario in

bioinformatics research, sample production is performed by a biologist without

extensive bioinformatics skills. The biologist often collaborates with bioin-

formaticians who process the data and carry out statistical analyses that help

interpreting it [146]. From the user’s point of view, keeping a track for all these

steps is not always easy and makes indispensable the usage of a dedicated and

collaborative information management system.

In this chapter we have seen a use of case of the STATegra EMS for the annota-

tion of a real experiment in the field of Systems Biology. As it was discussed in

previous sections, the usage of this tool for storing the experimental information

and sample metadata provides researchers with a valuable resource for tracking

the location and origin of the produced data, as well as the current state of

their experiments, samples and analysis. The availability of this information,

besides the usage of standards for structuring information and the tools for

exporting this information to common formats, are some of the features that

situates the STATegra EMS as a powerful tool for ensuring the reproducibility

the biological experiments.
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5
Integrative visualization of multi-omics data:
The PaintOmics 3 Platform

Parts of this chapter are contents of the manuscript: "Hernández-de-Diego R, Tarazona S,

Furió-Tarí P, and Conesa A. Paintomics: a web resource for the pathway level visualisation

of multiomics data. (In preparation)".

5.1 Introduction

The heterogeneity, high dimensionality, and interconnectivity of the multi-omics

data are hurdles which must be overcome in order to extract comprehensive

knowledge about the system’s responses. Within this scenario, statistical mod-

els have proven to be a powerful approach for integrative analysis. However, a

deep understanding of statistical concepts as well as statistical computing is re-

quired for the proper use of this approach [156]. Alternatively, considering that

the capacity of human brains for visual processing is highly evolved, graphical

visualisation in combination with data analysis techniques are a valuable way

of simplifying data interpretation and assisting its comprehension [104].

Several resources for integrative visualisation are already available in the con-

text of Systems Biology. As previously discussed, visualisation tools can be

classified following different criteria such as being web-based or stand-alone

applications, whether they provide interactive or static images or, more impor-
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tantly, whether the tool is devoted to displaying genome or network information

(see Section 2.4.1). Biological networks can reveal hidden connections between

molecular features by representing the data in the form of graphs, where nodes

represent biological features, such as genes, gene products, phenotypic ex-

pressions, or biological processes, and edges indicate an existing interaction

between pairs of features. Two well-known tools for graph and network anal-

ysis and visualisation are Cytoscape [118] and Gephi [10]. Both applications

are open-source and desktop-based, and provide numerous tools for explor-

ing, manipulating and analysing complex networks (whether biological or not).

Additionally, many plugins are available for both applications, enabling more

specialised analysis of the networks and molecular profiles [104]. Similarly,

the web-based workbench VisANT [54] includes several tools for drawing and

analysing large biological networks; some examples are network structure anal-

ysis, expression enrichment analysis, integration of several external databases,

and the ability to combine multiple types of networks to systematically analyse

the correlations between disease, therapy, genes, and drugs. Another interest-

ing tool is 3Omics [75] a web application specifically designed for the analysis

of human data, which supports datasets for transcriptomics, metabolomics,

and proteomics. Using 3Omics, users can perform correlation analysis, coex-

pression profiling, phenotype mapping, pathway enrichment analysis and GO

enrichment analysis on each dataset, and visualise results graphically.

Alternatively, other tools determine the interaction between biological features

based on existing knowledge, usually curated, of specific biological processes

such as metabolic or signalling pathways. Pathways are a fundamental part

of interpreting omics data, as they provide the biological context for a given

observation [147]. One popular tool for pathway-based visualisation is Map-

Man [135]. This tool is available both as a desktop and a web application

and allows large datasets, including multiple conditions or time-series experi-

ments, to be displayed as pathway diagrams. Another example is KaPPa-View

[138] a web-based tool for integrating transcript and metabolite data into path-

way maps. The latest version of the tool (version 4) allows multiple-condition

datasets to be incorporated, and includes several resources for data analysis.

Garcia-Alcalde et al. developed PaintOmics 2, a web-based tool for integrated

visualisation using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathways as a template [40]. Interesting features of PaintOmics 2 are the

large range of available organisms and the use of interactive and downloadable

images complemented with both experimental and KEGG information. Fi-

nally, Luo and Brouwer introduced Pathview, an R/Bioconductor package for

data integration and visualisation using KEGG pathways [82]. Pathview allows

integration of a wide variety of biological data and, because it is an R pack-

age, can easily be integrated into the user’s analysis workflow. Last but not

least, some tools are devoted to displaying the data along the entire genome.

Genome browsers are especially useful when working with region-based omics

data types, such as chromatin immunoprecipitation sequencing (ChIP-seq) or

DNase I digestion and high-throughput sequencing (DNase-seq) data, although

it is possible to visualise other types of data, such as RNA sequencing (RNA-

seq), they are usually displayed as coverage graphs. One popular genome

browser with integrative capabilities is the Integrative Genomics Viewer (IGV)

[136]. This browser, available as a high-performance desktop application, sup-

ports a large variety of genome-wide data — including data from exome and

whole-genome sequencing, epigenomics, RNA expression profiling, and single

nucleotide polymorphisms(SNPs) — and incorporates useful tools for exploring

the data and for retrieving datasets from popular projects such as ENCODE or

1000 Genomes. In a similar way, the Integrated Genome Browser (IGB) [97]

also integrates a wide variety of omics data types and includes some interest-

ing features such as the possibility of running basic local alignment search tool

(BLAST) searches for sequences, retrieving information from the web for genes

and other biological entities, or exporting and saving high quality images.

Despite being useful, these tools do have some limitations in terms of effective

data integration and visualisation. As a general rule, network-based tools are

useful for identifying the interconnections between multiple biological features,

but the size and complexity of the network, and the lack of similarity with exist-

ing knowledge (e.g. with pathway diagrams) often hamper the interpretation.

Pathway-based solutions reduce the size of the displayed data by grouping the

information based on biological insights, but they do not allow new knowledge

to easily be inferred. Moreover, neither type of tool allows researchers to easily

integrate data from chromatin profiling experiments, which are usually explored

using genome viewers. In contrast, genome browsers, which are able to display
79



Chapter 5. Integrative visualization of multi-omics data: The PaintOmics 3 Platform

this data, make it difficult to visualise changes in multi-condition experiments

and to infer possible relationships between different omics data types.

In this chapter, we introduce PaintOmics 3, a web-based application for integra-

tive visualisation of multiple biological datasets on KEGG pathway diagrams.

As opposed to other visualisation tools, the system covers a complete multi-

omics pathway analysis workflow, including automatic feature name/identifier

conversion, pathway enrichment analysis, network analysis and integrative vi-

sualisation; and supports data for a wide range of omics data types and organ-

isms, as long as they are included in KEGG databases. Data visualisation in

PaintOmics 3 is implemented using the latest technologies in web-based visuali-

sation, providing powerful exploration tools and strong explanatory capabilities.

Finally, this system includes other features which are typical in modern web-

applications such as cloud storage for user data and cloud computing which

results in an enhanced user-experience.

5.2 Methods

5.2.1 The PaintOmics 3 architecture

In order to maintain consistency and reduce the work necessary for future main-

tenance, the PaintOmics 3 architecture (Figure 5.1) uses the same approach

as the STATegra EMS application. Hence, the platform is divided following

the Client-Server paradigm, keeping the server-side in charge of processing the

client data as well as managing access to the stored information; and client-side

responsible for correctly presenting the data to the users, as well as providing

the necessary tools for their manipulation (see section 3.2.1). Communication

between the client applications and the server-side is handled by asynchronous

JavaScript and XML (AJAX) mechanisms where data are exchanged encoded

using JavaScript object notation (JSON).

PaintOmics 3 was entirely developed using open-source resources: Python 2.7

[107], R [108] and MongoDB [92] for building the server-side application, and

JavaScript for building the client-side application. Consequently, the result-
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ing application is also available as a free-to-use and open-source web-based

application.

PaintOmics 3 server application

As mentioned above, the PaintOmics server application was mainly developed

using Python, a general-purpose, high-level programming language which sup-

ports multiple programming paradigms, including object-oriented, imperative,

and functional programming, among others. Python is free and open-source

software and is available for installation on many operating systems. An inter-

esting aspect of Python is the large number of modules and packages available

for it and which easily extend the functionality of the language, providing new

methods and functions for multiple purposes: scientific computing (SciPy [63]),

image manipulation (Python Imaging Library), game development (PyGame),

database manipulation (SQLAlchemy [123]), etc. Additionally, Python can

serve as a scripting language for web applications through Web application

frameworks such as Django [130], Flask [7], or Bottle [86]. PaintOmics 3

makes use of several python modules for processing and manipulating the user

data. Some key modules for the development were:

1. Flask [7], a simple, extendible, and light framework written in Python

for developing python-based web applications. This module determines

the application structure and provides PaintOmics 3 with a routing sys-

tem which maps URLs to the specific code blocks that handle them,

responding with dynamic content to client requests, usually HTTP re-

quests (Figure 5.2).

2. SciPy [63], a Python-based ecosystem of open-source software for math-

ematics, science, and engineering. This module extends Python by

adding support for large, multi-dimensional lists and matrices, along with

high-level mathematical functions to operate on these data structures. In

PaintOmics 3 this module is essential for all statistical and mathematical

estimations.

3. PyMongo [93], is a Python module containing tools for working with

MongoDB.
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Figure 5.1: Overview of the PaintOmics 3 architecture. The platform is di-
vided following the Client-Server paradigm. Client side implemented the Model-View-
Controller pattern (see section 3.2.1 for more info). Server side is implemented in
Python and is divided in several subcomponents. The main entry point for the client’s
requests are the servlets implemented using the Flask module. Requests are processed
and delivered to the corresponding servlet (e.g. requests related with user management
are managed by the Users servlet). Most of the requests requires heavy computational
processing. Hence requests are encapsulated in job objects and enqueued for being
executed as soon as enough resources are available. As a general rule, all information
in the application is encapsulated in Python classes (e.g. information for user is kept in
object of the class User). Interaction with the database is made through Data Access
Objects and connections are controlled by a database manager.

Figure 5.2: An example of a request-response exchange between clients and
servers using Flask routes. Different requests may follow different routes when
arriving to the server. Responses include different information such as text, images,
files, or HTML code.
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4. Multiprocessing, a package which enables concurrent computing. This

module allows PaintOmics to use parallelisation, fully leveraging the mul-

tiple processors on the host machine and dramatically reducing the times

for input data processing. Figure 5.3 displays a comparative study of

the performance for the ID/name translation tool for a selection of cases

where the number of available parallel threads is changed.

Figure 5.3: A comparative analysis of the performance for the ID/name trans-
lation tool by changing the available number of threads for the translation.
Case A (red line) uses the data from a Proteomics comparative study in mouse. Input
data consists on a quantification file with 1050 proteins, and a relevant protein file
containing 125 differentially expressed (DE) proteins. Case B (blue line) combines
transcriptomics and metabolomics measurements for mouse. Input data for transcrip-
tomics includes the quantification for 12763 genes and 5618 DE genes. Finally, Case
C (green line) includes a more developed example that combines measurements for
gene expression (6337 genes, 5524 DE genes), proteomics (1110 proteins, 148 DE
proteins), metabolomics (59 compounds, 41 relevant compounds), DNase-seq (5101
regions, 3596 relevant regions) and miRNA-seq data (998 genes with miRNA values,
605 relevant genes). In all cases the files, the measured time includes the time for
request processing, name translation, job storage and response processing at client
side. The time for uploading the files to the server was not considered due to files
were previously uploaded. All tests were made in a local instance of PaintOmics 3 in a
workstation with an Intel(R) Core(TM) i7 CPU (2.67GHz , 4 cores and hyperthreading
enabled) and 12GB of RAM.

In addition to Python, PaintOmics makes use of R, a powerful programming

language for statistical computing. Data storage for PaintOmics 3 is man-

aged using MongoDB databases, a scalable, high-performance, open source

NoSQL database. MongoDB is document-oriented: instead of breaking up the

information into multiple relational structures (as typically happens with other

systems such as MySQL, where data are stored in rows and grouped in tables),
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information is stored in MongoDB in the form of BSON documents, a binary

representation for JSON objects, which are grouped in collections. This struc-

ture makes MongoDB an effective storage system when working with Python

and JavaScript because data exchange requires little or no adaptation, signifi-

cantly reducing the workload when managing large amounts of data. In terms

of connection with the database, PaintOmics makes use of PyMongo, a python

module for working with MongoDB, as well as an implementation for the DAO

pattern (see section 3.2.1) that simplifies the interaction between the server

functions and the MongoDB database.

Finally, an important consideration for the development of PaintOmics was

the need for a queuing system for executing user jobs. The typical workflow

for PaintOmics implies processing input data that can contain thousands of

biological features for multiple omics data types. PaintOmics 3 is meant to

be a multi-user application, and despite the optimisation of other concurrent

computing code that it uses, processing such large amounts of data can be

time-consuming, thus a system for managing the server resources is essential for

maintaining system stability and for improving the user experience. Therefore,

PaintOmics includes PySiQ, a simple but effective task management system,

developed as a reusable, configurable, and open-source Python module (see

Appendix B for more details).

PaintOmics 3 client application

The PaintOmics 3 client application was entirely developed using JavaScript

and HTML5 technologies and is divided into two separate layers: a front-end

application oriented to users and data visualisation and a back-end application

for administrative purposes. Both applications were developed as indepen-

dent projects using different technologies. The back-end application, which is

only accessible by the administrator users, was developed using AngularJS [45]

and Bootstrap [16], both popular HTML, CSS, and JavaScript frameworks for

developing responsive web applications. The front-end application was built

using the Sencha ExtJS framework [117] which provides sotisficated tools for

controlling the layout and the web components that shape the application.

The Sencha ExtJS framework was complemented by using the open-source
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JavaScript library JQuery [132], which makes it easier to navigate through the

HTML documents, manipulate the web components, or to add a wide variety

of effects and animations. As visualisation was the final objective of the ap-

plication, a large number of JavaScript resources for data representation were

studied. As a result, the following libraries were selected as the best options in

terms of representative effectiveness (visual resources available, configurability,

extensibility, etc.), robustness, user friendliness, and maintenance.

1. HighCharts [52], a charting library written in pure JavaScript. High-

Charts is cross-platform and fully compatible with most of the modern

browsers. This library is also free (for non-commercial use) and is open-

source. HighCharts supports a many interactive graph types, includ-

ing line, area, and pie charts, as well as more atypical options such as

heatmaps or gauges. Another interesting characteristic for this library is

its extendibility, which allowed us to develop new features for the heatmap

diagrams such as the usage of clustering strategies and dendrograms.

2. Linkurious.js [80], a cross-browser JavaScript library for interactive net-

work visualisation. This library is based on Sigma.js [119] a powerful

JavaScript library dedicated to graph drawing, which extends with new

HTML5 features. Linkurious provides a lot of plugins and extensions and

is distributed as open-source, which makes this library easy to extend and

customise.

3. SVGjs [127], is a lightweight open-source library for manipulating and

scalable vector graphics(SVGs). This library was especially useful for

generating interactive diagrams for the KEGG pathways.

Regarding the application architecture, the client-side is built following the

model-view-controller (MVC) architectural pattern, which simplifies the organ-

isation, maintenance and extension of large client applications (see Section

3.2.1).
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5.2.2 The KEGG pathways database

The KEGG is a collection of databases and resources for studying the high-

level functions of biological systems [64, 65]. The KEGG database project

was started in 1995 at the Institute for Chemical Research, Kyoto University,

who were looking for a computerised representation for the links between ge-

nomic information and higher-level systemic functions of cells, organisms, and

ecosystems (Figure 5.4).

Figure 5.4: Overview for the integrated information in KEGG database.

The most recent release of the KEGG database (Release 81.0, January 1, 2017)

includes 17 main databases maintained in an internal Oracle database [64, 65],

which contain large amounts of genomic and molecular-level information for up

to 5014 species (360 eukaryotes, 4090 bacteria, 247 archaea, and 317 viruses).

These databases are broadly categorised into Systems information, Genomic

information, Chemical information, Health information, and Drug labels (Table

5.1).

The KEGG PATHWAY database is a collection of graphical diagrams, usually

known as pathway maps, which represent molecular interaction and reaction

networks within a cell during specific biochemical processes, which usually leads

to the output of a product or a change in the cell. KEGG PATHWAY con-

tains about 508 reference pathways (Release 81.0, January 1, 2017), which are

manually drawn and continuously updated according to biochemical evidence,
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Category Database Content

Systems information
KEGG PATHWAY KEGG pathway maps
KEGG BRITE BRITE functional hierarchies
KEGG MODULE KEGG modules of functional units

Genomic information

KEGG ORTHOLOGY KEGG Orthology (KO) groups
KEGG GENOME KEGG organisms with complete genomes
KEGG GENES Gene catalogues of complete genomes
KEGG SSDB Sequence similarity database for GENES

Chemical information

KEGG COMPOUND Metabolites and other small molecules
KEGG GLYCAN Glycans
KEGG REACTION Biochemical reactions
KEGG RPAIR Reactant pair chemical transformations
KEGG RCLASS Reaction class defined by RPAIR
KEGG ENZYME Enzyme nomenclature

Health information

KEGG DISEASE Human diseases
KEGG DRUG Drugs
KEGG DGROUP Drug groups
KEGG ENVIRON Crude drugs and health-related substances

Drug labels KEGG MEDICUS Drug labels from different sources.

Table 5.1: The main KEGG database categories.

and are categorised by a hierarchical classification as shown in Figure 5.5. In

addition to reference maps, the KEGG PATHWAY database contains over than

490,000 organism-specific pathways inferred by automatic-mapping based on

existing orthologies between species.

Each pathway in the KEGG is identified by a 5 digit number (referred to

as the entry name or the accession number) proceeded by a 2-4 letter code

that indicates the organism or databases to which it belongs. Some examples

of valid identifiers are map03060 (Reference protein export pathway, Figure

5.6), mmu03060 (Mus musculus protein export pathway), or hsa03060 (Homo

sapiens protein export pathway).

Pathways are manually drawn using in-house software called KegSketch which

uses different graphic resources to visualise the information. For example, boxes

represent gene products, mostly proteins but also RNA, while circles represent

other molecules such as chemical compounds (Figure 5.7-A). Interactions be-

tween biomolecules or other pathways are drawn using different arrows (Figure

5.7-B), and the combination of multiple shapes can be interpreted as different

biochemical processes or molecular interactions (Figure 5.7-C). Colouring is

also another resource for diagram interpretation: as a general rule, reference

pathways are not coloured while variations of pathways for the KEGG ENZYME

database are coloured blue, and organism-specific pathways are coloured green,

where colouring indicates that the biological feature (i.e. the gene or metabo-

lite) exists in the corresponding database (Figure 5.7-D).
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Finally, it is interesting to highlight the KEGG markup language (KGML),

an exchange format for KEGG pathway maps which contains computerised

information about the graphical objects it represents and their relationships in

the KEGG pathway, i.e. coordinates for shapes, dimensions, colours, or links

to databases, among other information (Code fragment 5.1).

KEGG is the main biological resource for PaintOmics. The application uses

the information from KEGG Pathways in two different ways:

1. Pathway Diagrams: PaintOmics requires both the static images in PNG

format and the KGML files, to generate the customised KEGG diagrams.

2. Mapping files: using these files the application is able to associate the

different biological features with the pathways in which they are involved,

and vice versa. This allows us to infer the set of pathways of interest

and to perform their subsequent enrichment analysis.

All the required information is downloaded and processed from KEGG using

the Administrator tools (see Section 5.2.7) and are stored locally in MongoDB.

Figure 5.5: The hierarchical classification of KEGG Pathways: primary and secondary
categories.
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Figure 5.6: KEGG diagram for reference Protein export pathway (KEGG id
map03060).

Figure 5.7: Some examples of the graphic resources used in KEGG diagrams to
visualise the information. Graphical representation of genes and molecules and its in-
teractions (a and b); Representation in shapes of biochemicals processes (c); Colouring
representations of the different databases available in KEGG (d).
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<?xml version="1.0"?>
<!DOCTYPE pathway SYSTEM "http://www.kegg.jp/kegg/xml/KGML_v0.7.1_.dtd">
<pathway name="path:hsa00010" title="Glycolysis/Gluconeogenesis" image="http://www.kegg.jp/.../hsa00010.png"

link="...">
<entry id="13" name="hsa:226 hsa:229 hsa:230" type="gene" reaction="rn:R01070" link="...">
<graphics type="rectangle" x="483" y="407" width="46" height="17" name="ALDOA, ALDA,..." fgcolor="#000"

bgcolor="..." />
</entry>
<entry id="37" name="hsa:217 hsa:219 hsa:223 hsa:224 hsa:501" type="gene" reaction="rn:R00710">

[...]
</entry>

[...]
<entry id="113" name="cpd:C00036" type="compound" link="http://www.kegg.jp/dbget-bin/www_bget?C00036">
<graphics name="C00036" fgcolor="#000" bgcolor="#FFF" type="circle" x="146" y="736" width="8" height="8"/>

</entry>
[...]
<relation entry1="68" entry2="70" type="ECrel">

<subtype name="compound" value="86"/>
</relation>
[...]
<reaction id="47" name="rn:R00014" type="irreversible">
<substrate id="98" name="cpd:C00022"/>
<substrate id="136" name="cpd:C00068"/>
<product id="99" name="cpd:C05125"/>

</reaction>
[...]

</pathway>

Code fragment 5.1: Fragment of the KGML file for the Homo Sapiens
Glycolysis/Gluconeogenesis KEGG pathway. In the KGML the pathway element
specifies an object with entry elements as its nodes and the relation and reaction
elements as its edges. The relation and reaction elements indicate the connection
patterns of rectangles (gene products) and the connection patterns of circles (chemical
compounds), respectively, in the KEGG pathways [66].

5.2.3 User system in PaintOmics 3

By default, all data uploaded by users, as well as the results from running the

application, are stored on the server-side for future use, which avoids users

having to re-submit files and provides them with tools for resuming previous

executions of the application. Because data in PaintOmics 3 are potentially

sensitive in terms of privacy and confidentiality, the application includes some

security constraints in order to keep the data safe from undesired accesses.

As explained in Section 3.2.2, the current PaintOmics 3 version follows two

levels of security verifications: Authentication, which verifies that the stored

data can be accessed and manipulated only by the owners; and Authorisation,
which verifies that users are allowed to perform an action which affects or makes

use of certain data. Therefore, PaintOmics 3 implements a User System based

on sessions, which support typical features such as log in (open new session),

log out (close session), and sign in (registration), with email confirmation for

account activation (Figure 5.8).
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Figure 5.8: Session management in PaintOmics 3. When accessing the applica-
tion, the user can choose between three options: log in using a valid user account
(A), create a new regular account (B) or work as a Guest user (C). Guest user ac-
counts are temporary and the account, as well as the data uploaded and produced,
are automatically deleted after 7 days. These accounts are meant for testing or for
educational purposes (e.g. courses or workshops).
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Additionally, PaintOmics 3 creates a cloud storage space for each user account

where uploaded files and results are stored. Users can manipulate the content

of their personal storage through the web application, upload or remove files,

add textual descriptions and other annotations to the uploaded content, and

resume or clean previous executions of the application (Figure 5.9).

5.2.4 Accepted input data

As previously mentioned, the use of multiple complementary genome-wide mea-

surements is becoming a powerful tool for better understanding the complexity

of biological systems. Within this scenario, new tool for Systems Biology tools

cannot ignore this emerging trend and should be able to support multi-omics

experiments. Following this idea, PaintOmics 3 has been developed to accept

diverse data types, including those from common techniques such as Transcrip-

tomics, Metabolomics, and Proteomics, as well as emerging approaches such

as DNase-seq, ChIP-seq, miRNA-seq, and methylation sequencing. As result,

the data input accepted by PaintOmics 3 can be broadly classified into four

categories, depending on their nature.

(i) Gene-based omics: this category covers omics data types where the

biological features measured are, or can be, translated into genes. Some

typical examples are mRNA-seq or microarrays, where measurements are

made at the gene or transcript level, and proteomics, where protein quan-

tification can be imputed to the codifying gene.

(ii) Metabolite-based data: here we include omics types where the studied

biological features are, or can be, assigned to metabolites. This cate-

gory would include metabolite quantification using, for example liquid

chromatography coupled with mass spectrometry (LC-MS).

(iii) Region-based omics: this category includes all omics data types where

the information is grouped around a set of genomic locations of interest

(genomic regions). Some examples of region-based omics are ChIP-seq

data which analyses protein interactions with DNA and generally results

in a set of genome regions where the target protein may be bound;

or DNase-seq, where regions indicate the location of regulatory sites
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sensitive to cleavage by DNase I. In some cases, region-based data can be

also translated to gene-based domains for regions that totally or partially

match a gene to the genome.

(iv) Micro-RNA-based omics: this category can be considered a special

case of category (i) where the measured molecules are miRNAs. Data

files for this category need to be pre-processed before being treated as a

gene-based omics type (see below).

For the current version, acceptable data files must be saved as tab-separated

plain text files. As general rule, users should provide two files for each omics

data type: a quantification file containing measurements for each biological

entity (e.g. gene expression quantification) and a second file with a list of

features that the user considers relevant for the experiment (usually the list of

differentially-expressed (DE) features). PaintOmics 3 is meant to work with

log-scale quantification values where positive values indicate overexpression or

the increased presence of the features, and negative values indicate repression

or the reduced presence of these features, with regard to a reference or control

condition.

Table 5.2-A shows an example of a quantification file for categories (i) and (ii):

the first column must contain the feature name or identifier. As a general rule

PaintOmics accepts Entrez Gene IDs as feature identifiers, although for some

species other identifier/name domains are supported (see below identifier and

name conversion). The remaining columns contain the quantification values for

each sample in the experiment, preferably in a logarithmic scale format. Table

5.2-B shows an example of a relevant features file for categories (i) and (ii).

This file must contain a single column with the identifiers or names for each

of the significant features in the experiment (e.g. the differentially expressed

genes). The accepted input formats for categories (iii) and (iv) are extensively

described in the following sections.
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(A)

# Feature name Treated 0h Treated 2h Treated 6h
ENSMUSG000000270914 -0.82545 -0.13123 0.65332
ENSMUSG000000271116 0.31252 0.23123 0.11124
ENSMUSG000000271315 1.25544 -0.00123 -0.02265

... ... ... ...

(B)

Feature name
ENSMUSG000000270914
ENSMUSG000000271116
ENSMUSG000000271641

...

Table 5.2: Example of the input for a gene-based omics type dataset. (A) -
The quantification file contains the gene name or identifier (first column) followed by
the quantification values for 3 different time points, on a logarithmic scale. (B) -

Differentially-expressed genes are provided as a list.

Converting region-based data to genes

Omics approaches to studying regulatory aspects of gene expression such as

ChIP-seq, DNase-seq, assay for transposase-accessible chromatin using se-

quencing (ATAC-seq), or Methyl-seq, typically return potentially functional

regions, defined by genomic coordinates, which must then be related to prox-

imal genes in order to gain any biological meaning. Therefore, integration of

these region-based "omics" requires an extra step where regions are associated

with genes based on their relative position with respect to specific areas of

the gene (i.e. the promoter region, the first exon, intronic areas, etc.). For

example, in a ChIP-seq experiment, the predicted transcription factor binding

sites are generally expected to be located in the transcription start site (TSS)

or promoter regions of the gene that is being regulated (Figure 5.10-A).

To achieve this objective, PaintOmics 3 incorporates RGmatch [38], a rule-

based and highly configurable method for computing region-gene associations,

annotating each association with the area of the gene where the region over-

laps. As RGmatch was developed as a command-line algorithm, PaintOmics

3 provides a web interface to run the tool which is fully integrated within the

application workflow (Figure 5.10-B).

The format for input files for region-based data is slightly different from the

default because in this case the features are genomic regions. For this category

of data, PaintOmics uses a modification of the BED format in which the first

three columns indicate the name of the chromosome or scaffold, the start

position of the feature in standard chromosomal coordinates (i.e. first base is

0), and the end position of the feature in standard chromosomal coordinates,
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Figure 5.10: RGmatch in PaintOmics 3. (A) - Associations between genes and
ChIP-seq regions, valid regions should match to the transcription start site (TSS)
or promoter regions of the gene (area of interest). (B) - The input web-form for
RGmatch.
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respectively. The remaining columns contain the quantification values for each

sample in the experiment, again, on a logarithmic scale (Table 5.3-A). Following

this idea, the file with relevant regions (e.g. the DE regions) for this category

must contain three columns, corresponding to the chromosome, the start, and

the end position (Table 5.3-B).

(A)

#Chr Start End Treated 0h Treated 2h Treated 6h
10 100487291 100487483 0.514722 0.938385 0.43417
10 100487717 100487888 0.785665 0.679 0.723835
... ... ... ... ... ...

(B)

#Chr Start End
8 66438023 66438216
8 66913732 66913929
... ... ...

Table 5.3: Example of input for a region-based "omics" type dataset. (A) -
Quantification file contains the chromosome number, start and end positions (first,

second, and third columns, respectively) for each region, followed by the
quantification values for three different time points, on a logarithmic scale. (B) -

Relevant regions are provided as a list of genomic coordinates.

For each genomic region in the input file, RGMatch computes all the possible

associations between the region and closest genes, and reports the areas of the

gene that the region overlaps. Parameters such as the minimum percentage

of the area of the gene that should be overlapped to accept an association,

or the distance of TSS and promoter areas of the gene, can be configured for

more accurate associations. By default, the output for RGMatch includes all

the found associations for the given parameters, including regions that could

match to undesired areas of the gene. Besides, multiple regions can be reported

for the same area of a certain gene. For that reason, PaintOmics 3 incorporated

a post-processing of the RGMatch output as follows.

• First, reported pairs "region-gene" are filtered based on the gene areas

selected by the user. Gene areas can be easily chosen using the selector

at the bottom of the web interface (Figure 5.10-B).

• Then PaintOmics 3 examines the list of associations and applies the

selected strategy for resolving them. Available strategies are: "Do noth-

ing" (i.e. leave the list of associations as it is), "Mean" (i.e. calculate

the mean of the quantification values for all the regions matching the

same gene area) and "Maximum" (choose the region with a maximum

fold-change).
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Converting miRNA-based data to genes

Micro RNAs (miRNA) are small, non-coding RNA molecules that can bind to

mRNA transcripts of certain protein-coding genes (known as target genes) and

negatively control their translation or even cause their degradation. Identify-

ing the miRNA targets accurately is crucial for the better understanding of

cellular functions [137]. Although many miRNA target prediction algorithms,

as well as methods for experimental validation, have been developed during

the last years, an effective prediction of miRNA-mRNA interactions remains

challenging due to the interaction complexity and a limited knowledge of rules

governing these processes [155]. Nevertheless, the inferred miRNA-mRNA in-

teractions are usually gathered in dedicated miRNA-mRNA repositories. Some

examples of popular databases are miRWalk2.0 [31], a comprehensive archive,

supplying the largest available collection of predicted and experimentally veri-

fied miRNA-target interactions, miRTarBase [23], an experimentally validated

microRNA-target interactions database, and miRBase database [74], a central

online repository that stores miRNA nomenclature, sequence data, annotation

and target prediction.

For a fully support of miRNA data, PaintOmics 3 uses "miRNA2Genes", a rule-

based python script that automatically match miRNAs to their target protein-

coding genes. This tool processes the input miRNA quantification data and

assigns the expression values to the known list of target genes for each miRNA.

The tool includes many options to customize the resulting gene list and is

accessible through a user-friendly web interface.

In order to compute the associations, the required input for the tool is:

1. A tabulated file containing the quantification values for all the miRNAs

(Figure 5.11-A).

2. A tabulated file containing the list of miRNA→ target gene associations

(Figure 5.11-B). This file can be downloaded from any of the public

databases described above.
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Both input files must use the same convention for the identifiers or names

for the miRNAs. Additionally, two secondary files can be provided for more

accurate results.

3. A list of relevant miRNAs, usually the DE miRNAs (Figure 5.11-C).

4. A transcriptomics file with the quantification values for the expression

of genes for the same experiment. This file is necessary for filtering the

reported target genes based on the correlation between the target gene

expression and the miRNA expression. Naming convention must be the

same that the used in the miRNA → target gene file (Figure 5.11-D).

As a general rule, each miRNA has numerous known target genes. Nevertheless,

the presence of a miRNA does not necessary mean that a certain target gene

is being regulated for that miRNA. Hence, it is necessary to discriminate those

genes that may be affected by the action of a miRNA from the complete list of

potential target genes for that miRNA. Assuming that all files explained above

are provided, miRNA2Genes includes the following selection strategies.

(i) If the list of relevant miRNAs is provided, the user can choose between

reporting the target genes for all miRNAs in the input files, or just those

target genes being regulated by a relevant miRNAs (e.g. the DE miR-

NAs), ignoring the rest.

(ii) If the transcriptomics quantification file is provided, reported target genes

can be discriminated based on the existing correlation between the quan-

tification for a miRNA and the codified by target genes. Usually, it is

expected a negative correlation between miRNA and target genes being

regulated. The tool calculates the correlation for each pair miRNA-

target gene and the usage of a cut-off for correlation value determines

the selection of the genes that are finally reported (Figure 5.12). If the

transcriptomics file is not available, the default score methods is the value

of the fold-change for the expression of each miRNA.
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Figure 5.11: Example of the input for a miRNA-based omics type dataset. (A)
- The quantification file contains the miRNA name or identifier (first column) followed
by the quantification values for the different time points, on a logarithmic scale. (B)
- Differentially-expressed genes are provided as a list. (C) - Example for the miRNA
→ target gene associations file. (D) - Example for transcriptomics file.

Figure 5.12: Example for the filtering by correlation for the miRNA2Genes
results. The image displays the profiles for the expression for certain miRNA and two
of its targets genes. Using Kendall correlation and a cut-off of -0.6 we can discriminate
the genes that are included in the results for the tool. For this example, the first target
gene would be considered as "not regulated by the miRNA" and, consequently, it would
be rejected.
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Identifier and name conversion for gene-based data

The lack of standard naming conventions for the biological features is a com-

mon hurdle when trying to integrate or extract information from multiple data

sources [91]. Although some effort has been made to move to a non-redundant

standardised naming domain [76], most of the databases and bioinformatics

resources are independent from each other and assign custom naming conven-

tions to the biological features they incorporate. For example, while some of

the major public databases such as GenBank [12], NCBI RefSeq [85] or UniProt

[11] organise the stored data based on accession numbers, other resources use

organism-specific naming conventions (e.g. the Gene Ontology database [15])

or numerical codes (Entrez database [84]). The KEGG database uses different

gene name conventions for each species, generated from publicly available re-

sources, mostly NCBI RefSeq and GenBank. This usually results in extra work

for the researchers who need to move from their usual set of identifiers to the

set of identifiers accepted by the resource to be used. Historically, multiple

resources have been developed to address this problem of identifier mapping.

These tools provide web-based applications for converting the user’s input gene

or gene product identifiers, usually complemented by application programming

interfaces(APIs) and web services. Examples are the DAVID Gene identifier

(ID) Conversion Tool (DICT) [55], CRONOS [148], MatchMiner [20], and

BridgeDB [58]. Both CRONOS and MatchMiner have important limitations in

terms of the number of available species and because their databases have been

outdated since 2011. On the other hand, DICT supports over 65,000 species

and its databases are periodically updated. Additionally, DICT can be accessed

programmatically using the DAVID web services and the DAVID API. Never-

theless, both tools are limited by the number of genes that they can process per

job and the number of jobs each user can perform per day. Finally, BridgeDB

is a software library intended to provide a standardised interface layer through

which bioinformatics tools can be connected to different identifier mapping

services using short and simple code. The BridgeDB API takes two different

forms: a Java API and a REST-based API that can be embedded into non-

Java applications. Although the BridgeDB approach is significantly different,

we found common limitations such as the number of available species, the

limited number of genes per job that the tool can process, and greatly reduced
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tool performance when querying large lists of identifiers. Consequently, as part

of the PaintOmics 3 development, a Python module for Name/ID translation

was implemented in order to extend the scope of the application, allowing users

to input their data regardless of the naming domain it uses.

This Python module fetches the translation information from public databases

such as Ensembl, PDB, NCBI RefSeq, and KEGG, processes the downloaded

files, generates the translation tables, and stores them in MongoDB collections.

The central pillars for translation process are the transcripts. For example, given

a feature ID (gene, protein, or transcript) for database A, which we want to

translate into a valid gene name for database B, first the system retrieves the

list of transcripts associated with the feature (if any). Then, for each transcript

ID in database A, it searches for the equivalent transcript identifier for database

B. Finally, as we requested the gene name, the system finds the gene name

associated for each transcript found (Figure 5.13). Although this method has

some limitations, mainly because the intersection between databases is not

complete (which means that some biological features in database A do not

exist in database B), in general terms the percentage of translated features

is good and is sufficient to work properly with PaintOmics. Alternatively,

users can translate their data using third-party tools and input them into the

corresponding KEGG name domain for the studied organism.

In both cases, PaintOmics 3 processes the input and presents the user with

some statistics summarising the distribution for the data for each omics data

type as well as the percentage of features translated to valid KEGG feature

names, as shown in Figure 5.14. These results can be downloaded as text files

to manually evaluate the translation.

Resolving metabolite names

As seen in previous chapters, high-throughput techniques for metabolomics use

certain properties of the particles, such as the mass or the chemical composi-

tion, for the detection and identification of the metabolites in a sample. Al-

though these technologies are extensively used in the biomolecular researching,

identifying a metabolite unambiguously and confidently is yet a bottle-neck in
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metabolomics studies, especially when the differences between two metabolites

are almost undetectable as in the case of the isomerism. Due to the results in

later stages can be affected by the presence or absence of certain metabolites,

PaintOmics 3 includes some tools for resolving any existent ambiguity during

the translation of the supplied metabolites to KEGG metabolite names. Hence,

for each input metabolite, PaintOmics 3 generates a list of potentially related

metabolites based on the similarities in their names as follows:

• Identical names receive a score of 1.

• Known names for isomers and other structural variations of the metabo-

lite (e.g. beta-Alanine, L-Alanine or D-Alanine) receive a score of 0.9.

• For the remaining metabolites, similarity is calculated using a python

algorithm includes that returns a measure of the similarity between two

sequences.

The resulting list of metabolites is then displayed to the user (Figure 5.15).

By default, metabolites with a similarity score of 0.9 or more are automatically

selected, but the user can change this selection manually. To avoid duplicated

Figure 5.13: Identifier/name conversion in PaintOmics 3.

103



Chapter 5. Integrative visualization of multi-omics data: The PaintOmics 3 Platform

Figure 5.14: Results for the ID/name conversion step in PaintOmics 3. For each
input data type, an interactive chart indicating the percentage of translated features
is shown. Additional statistics about the data distribution are also reported.

metabolites, the user will be notified in case of selecting a metabolite twice

and only the metabolite with higher similarity score will be selected by default.

5.2.5 Pathway enrichment analysis

Pathway analysis is a powerful tool for understanding the biology underlying the

data contained in large lists of differentially-expressed genes, metabolites, and

proteins resulting from modern high-throughput profiling technologies. The

central idea of this approach is to group these long lists of individual features

into smaller sets of related biological features (genes and metabolites), usually

based on biological processes or cellular components in which genes, proteins,

and metabolites are known to be involved [71].

One popular method for pathway analysis is pathway enrichment analysis (PEA),

which is the approach adopted by the current version of PaintOmics 3. Figure

5.16 depicts the process followed to determine the set of significantly enriched

pathways for the input data. First, the tool identifies the subset of genes,

proteins, and metabolites that participate in a particular KEGG pathway for

the input. Then, it evaluates the fraction of those biological features which

overlaps with the set of features that the researcher considered significant, usu-

ally features showing significant changes in expression or concentration (e.g.

the differentially-expressed genes). In the final step, the tool computes the
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significance of the overlap using the Fisher exact test. The p-value obtained

can be interpreted as a measurement of the confidence that this overlap is due

to chance (null hypothesis). The smaller the p-value, the more likely that the

association between the features of interest and the pathway is not random,

i.e. an overrepresentation of the significant biological features of that pathway

may exist. As a general rule, a p-value of 0.05 is accepted as the threshold

indicating a statistically significant association.

From this analysis the application ranks the pathways for each omics data type

and sorts them from higher to lower statistical significance values. However,

extracting meaning from multiple significance values can be complicated, espe-

cially when individually evaluating very different omics data types. Therefore,

PaintOmics 3 incorporates an additional step in the process in order to obtain a

Figure 5.15: Compound disambiguation in PaintOmics 3. For each input metabo-
lite, a panel is displayed containing all the possible disambiguation for the metabolite
name. Metabolites with a similarity score over 0.9 are selected by default, while re-
maining options are displayed in a secondary section (see Beta-alanine in the figure).
The user can get more details for each metabolite moving the mouse cursor over the
metabolite name, and clicking in the name, a new window is opened in the browser
with the entry in the KEGG database for the selected metabolite.
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joint significance value which indicates its relevance in the context of the biolog-

ical system for each pathway. Hence, it applies the Fisher combined probability

test, a statistical method which allows the results from several independent

tests for similar null hypotheses to be combined. This method combines the

p-values for each test into one test statistic (X) using the formula:

X = −2
k∑

i=1

ln(pi) (5.1)

where pi is the p-value for the ith hypothesis test, k is the number of tests being

combined and with X following a χ2 distribution with 2k degrees of freedom,

from which a p-value for the global hypothesis can be easily obtained.

Figure 5.17 shows an example of the visual representation of the ranking as

a table. Note that the upper positions in the table correspond to the most

relevant pathways, based on the combined p-value. Each row in the table rep-

resents a Pathway. The first column displays the name of the pathway, while

the second and third columns indicate the total number of genes and metabo-

lites found in the pathway. A colour label close to the pathway name identifies

the main classification for the pathway, using the same colour code as that used

in the "Pathway classification" section. The last column provides some useful

links to external sources, such as KEGG or PubMed. The remaining columns

indicate the significance value for each omics data type for each pathway, and

a colour scale is used to highlight the level of enrichment for each one. When

the mouse is moved over each cell the application displays the contingency

table used for obtaining the significance value.

5.2.6 Exploring data with PaintOmics 3

Hierarchical classifications for KEGG Pathways

As mentioned in previous sections, KEGG Pathways are organised in a hierar-

chy around seven main classifications (Cellular Processes, Drug Development,

Environmental Information Processing, Genetic Information Processing, Hu-

man Diseases, Metabolism, and Organismal Systems) and over 50 secondary
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Figure 5.16: Significance evaluation for the Glutamatergic synapse KEGG
pathway. The Glutamatergic synapse pathway contains a total of 150 genes and 10
metabolites that are known to participate in the biological processes. First, PaintOmics
3 finds the intersection between the features in the pathway and the features at each
input data type. Next, the tool evaluates the fraction of relevant features that fall
into the intersection. PaintOmics 3 uses these values to calculate a significance value
for each omics data type. Lastly, a combined p-value is calculated using the Fisher
combined probability test.

Figure 5.17: Pathways found for an experiment combining data from Gene
Expression, Proteomics, and DNase-seq.
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classifications. The PEA performed by PaintOmics may return a high num-

ber of pathways, however, sometimes not all of these are of interest to the

user in functional terms. For example, in the study of certain biological pro-

cesses in murine cells the PEA may return pathways from the Human Diseases

classification. Hence, the presence of these undesired pathways can hamper

interpretation of the results. For this reason, PaintOmics 3 includes a Path-

way Classification tool which organises the reported pathways based on their

KEGG classifications and provides some details about their hierarchical distri-

bution (Figure 5.18-A). This tool allows the user to browse the results and

hide any undesired pathways based on their main or secondary classifications

(Figure 5.18-B).

The pathways interaction network

Although tables and tree diagrams are very helpful for visualising hierarchical

information and understanding the PEA results, they do not always sufficiently

represent the underlying information or relationships that exist between the

KEGG pathways. Examples of this type of hidden information may include

genes or metabolites shared between biological processes, belonging to the same

classification of two or more pathways, or even that two or more pathways show

a similar behaviour or trend at similar biological agent (gene or metabolite)

concentration levels, under the same conditions.

In this scenario network-based approaches become a valid option for repre-

senting such biological interactions in combination with the results obtained

from the PEA. PaintOmics 3 includes an interactive network where nodes rep-

resent pathways and the existing relationships are displayed by drawing edges

(Figure 5.19). In the current version of PaintOmics, the existence of an edge

between two nodes indicates that both pathways share an important percent-

age of biological features, suggesting that both biological processes may be

somehow related. Additional information is represented by using different vi-

sual resources, as follows: the presence of nodes in the network depends on

the percentage of input biological features that participate in the biological

process. By setting this threshold we are able to discriminate pathways that

do not contain enough input information to be considered by the user. The
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Figure 5.18: Pathway classification (A) and Classification filters (B) in
PaintOmics 3. Both tools allow users to discriminate pathways which are less impor-
tant for their particular experiment.

Figure 5.19: Example of an interactive network diagram showing pathway-
pathway interactions in PaintOmics 3. Nodes represent pathways with a combined
p-value lower than 0.05. In this case the node colour indicates the classification for the
pathway based on the trend of the biological features for Proteomics data. Finally, an
existing edge between two nodes indicates that both biological processes are closely
related in biological terms, e.g. the reaction described by pathway A fires another
biological process described by pathway B.
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sizes for the nodes are directly proportional to the statistical significance of

the represented pathway (i.e. inversely proportional to the computed p-value).

Spatial arrangement for nodes is also informative. By default, PaintOmics 3

uses ForceAtlas2 [60], a forced-direct layout algorithm which distributes the

nodes based on repulsion and attraction forces until it reaches a steady state.

While all nodes are affected by repulsion forces, the attraction forces act on

pairs of nodes connected by edges in proportion to the weight associated with

the edge (i.e. the percentage of shared biological features). Hence, spatial

distribution will likely show nodes grouped into sets of related nodes, allowing

users to rapidly identify potential pathways of interest for further research. Al-

ternatively, users can manually distribute the nodes in the pathway using the

tools provided in PaintOmics 3.

Last but not least, PaintOmics 3 makes use of different approaches for colour-

ing the nodes in order to discriminate whether a pathway belongs to a KEGG

classification or follows a certain regulatory trend for the biological features

involved. More specifically, after the PEA step, PaintOmics 3 calculates the

major regulatory trend(s) for the features in each ranked pathway, for each

omics type. The strategy adopted, implemented as an external R routine, con-

sists of three key steps: (i) for each omics data type it evaluates the regulatory

profile of the biological features in different conditions or samples, based on

the method proposed by Nueda et al. [98]. Essentially, the strategy applies

principal component analysis (PCA) to the data matrices and obtains a set of

"synthetic genes", also called metagenes, that depict the most representative

regulation patterns for each pathway, (ii) it then clusters the resulting pro-

files and groups the pathways based on similar behaviour for each omics data

type (iii), and finally it assigns colours to the different clusters and renders the

nodes in the network accordingly. The optimal number of clusters is calculated

automatically using the average silhouette approach. The silhouette of an ob-

servation is a measure of how similar it is to its own cluster, compared to the

other clusters (ranging from -1 to 1), providing an appreciation of the relative

quality of the clusters. Obtaining the average silhouette of observations for

different values of k, it is possible to determine the optimal number of clusters

k, as the one that maximizes the average silhouette [114]. After that, users can

switch the rendering strategy for the network by choosing the omics type they
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are interested in. Figure 5.20 shows an example of a network painted using 2

different approaches: colouring by classification (A) and colouring by RNA-seq

trends (B). Finally, is important to note that each node in the network is ex-

tended with a pop-up showing the pathway trend (for the chosen omics type,

Figure 5.21-A), as well as a supplementary panel summarising the trends for

each cluster (Figure 5.21-B) and an advanced view showing the trends for each

omics type for a chosen pathway (Figure 5.21-C). This tool introduces a valu-

able characteristic to the application: researchers can easily switch between

the different complexity levels in the biological system of interest, moving from

the pathway network to the single pathway level and, from there, down to the

level of individual genes, with a single mouse click.

Multi-omic pathway-based visualisation

One of the core features of PaintOmics 3 is that it allows individual KEGG

pathways to be studied in combination with user input data. After filtering the

initial set of pathways based on their classification and/or behaviour criteria,

users can then explore the pathways. Figure 5.22 illustrates an example of

the typical workspace for pathway exploration. An important decision when

designing visualisation tools is the layout of the application as it should be

able to exploit the space available in the window, which is often limited by

the size of the screen. Such limitations in the usable space usually result in

restrictions in the displayable data (e.g. only being able to use a single view

at a time) which become a hurdle for analysing and comparing information

[159]. In contrast, overuse of simultaneous views may become confusing and

thus dramatically reduce user-friendliness.

Considering the characteristics described above, the layout for the pathway

exploration section was divided into three simultaneous, closable, resizable,

and window-based panels which allow users to visualise the optimal amount

of information they require to conduct their research. The main panel (Fig-

ure 5.22-A) contains an interactive diagram representing the KEGG pathway

combined with the input data. As mentioned in previous sections (see section

5.2.2), several graphical resources are used for pathway diagrams, for example,

boxes to represent gene products, circles for chemical compounds, etc. Re-
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Figure 5.20: Example of three different approaches for node colouring systems
in PaintOmics 3. Rendering by pathway classification (A) and by RNA-seq trends
(B).

Figure 5.21: An example of an interactive network in PaintOmics 3. The
interactive network panel (A) is complemented by a secondary panel which shows the
trends for all the clusters in a given omics type (B), or the trends for each omics type
for a chosen pathway (C).
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sults from previous steps in PaintOmics which supply input data (omics mea-

surements) are mapped to KEGG biological features (genes and metabolites).

Consequently, users can easily navigate through the diagram and visualise the

different values associated with each biological feature. As depicted in Figure

5.23-A, for each matched feature, a gridded box is overlaid on the KEGG image

which shows an equal number of sections to the number of columns present

in the input files, and as many rows as there are omics data-types supplied

(this option is configurable by the user). Each section is coloured using as a

heatmap approach, according to the corresponding ratio of the expression or

concentration value. By default, the 10th and 90th percentiles of the ratio val-

ues determine the min and max tonalities used for heatmaps, thus preventing

incorrect colouring due to the presence of outliers. Additionally, any biological

features considered as significant for any of the omics data types (based on

the input data), are highlighted by a thicker border and a special mark at the

top right corner. This approach helps users to get an at-a-glance overview of

the behaviour of all the biological features involved in the biological process of

interest in the different conditions analysed.

Figure 5.22: Example of a workspace for pathway exploration in PaintOmics 3.
The layout for pathway exploration is divided into three panels. The main panel (A)
contains the interactive pathway diagram, the auxiliary panel (B) shows some useful
tools for analysis, and the secondary panel (C) contains information complementary
to the KEGG diagram.
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Figure 5.23: Heatmaps in PaintOmics 3. (A) - Concentration values for the
features in the pathway are represented using heatmaps. (B) - When the user hovers
the mouse over a heatmap box in the diagram, PaintOmics shows a floating panel
with an interactive heatmap or a line chart depicting the concentration values for all
the omics data types for the different conditions in the experiment.

As part of the interactivity of the diagram, users can hover the mouse over the

biological features to get extended views of the feature values as an interactive

heatmap (by default in blue-white-red scale, where blue indicates downregula-

tion and red represents upregulation) or as a line chart depicting the expression

or concentration trend for all the omics data types for the different conditions

in the experiment (Figure 5.23-B). It is noteworthy that features which share

functions or somehow both contribute equally to the biological process will also

share the position in the diagram (i.e. a single box can represent one or more

biological feature). For these sets of features (designated as feature families),

by default the gridded box shows the values for the most significant features

in the set (namely, the feature most frequently marked as significant for the

uploaded omics types) and the existence of hidden features is indicated by a

special mark in the bottom right corner (Figure 5.23-A). Using the extended

view, users can switch between the features in the set and change the feature

drawn in the diagram. In a secondary panel (Figure 5.22-C) users can find

complementary information for the KEGG diagram. This panel shows a de-

tailed view for feature families or individual features, including links to external

databases or resources and charts describing the behaviour of the features for
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each supplied omics type (Figure 5.24-A). Alternatively, users can visualise a

set of heatmaps which provide a global idea of the concentration levels for all

the features involved in the biological process on this panel (Figure 5.24-B).

Finally, an auxiliary panel (Figure 5.22-B) provides access to useful tools such

as a search panel for quickly locating features in the pathway and a settings

panel which offers several options for adjusting the visualisation to the user’s

requirements.

5.2.7 Administrator tools for PaintOmics

As mentioned in previous sections, the PaintOmics 3 client-side consists of two

independent applications: the front-end application, oriented towards research

and data analysis; and a back-end application that provides administrators

with tools for internal management of the system. The current version of

the back-end application includes tools for user management, for uploading

auxiliary files (e.g. reference files for converting region-based data to genes),

and for managing the data for the organisms installed. Despite some of the

most commonly studied species being pre-installed in PaintOmics, as discussed

in section 5.2.2, the KEGG database contains genomic and molecular-level

information for up to 5000 species, which are also regularly updated, meaning

that PaintOmics 3 must provide administrators with tools for installing and

updating the organisms they use.

Although from 2011 access to the KEGG FTP site for organism data down-

load was made available only to paying subscribers, the database includes a

representational state transfer (REST)-style API for academic use [68]. Us-

ing the KEGG API, users can access the up-to-date databases on the KEGG

server and retrieve specific information programmatically. The APIs available

for the PATHWAY database provide methods to search genes, metabolites,

and enzymatic reactions in the pathway as well as for retrieving the image file

and the KGML representation for the diagram. Hence, a complete pipeline for

retrieving, processing and storing the information in the MongoDB databases

was developed in Python and included as part of the administrator tools. This

pipeline can be executed as a stand-alone command-line program or through

the administrator back-end application.
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Figure 5.24: Example of a secondary panel for pathway visualisation. (A) -
Using this panel, users can visualise the concentration values for the features in a
feature family together, grouped by omics type. (B) - Alternatively, this panel can
be also used to inspect the concentration values for all the features that participate
in the biological process, grouped by omics type. These global heatmaps can be
customised by the user by applying different clustering methods, by forcing the order
of the features, or by choosing between showing all or just a subset of the relevant
features for each omics data type.
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Figure 5.25 summarises the main steps in the installation process. Typically,

the process starts when researchers contact the administrator requesting the

installation of new organisms (if available in KEGG). The administrator can

choose between installing a new species and updating an existing one. In

both cases, PaintOmics will retrieve the required information (e.g. plaintext

files describing the connections between biological features and pathways, files

containing the names for pathways, etc.) using the KEGG API. Additionally,

the administrator can download the feature ID/name translation information

from third-party databases such as the ENSEMBL database or the RefSeq

databases, by setting up the corresponding configuration files. After down-

loading, PaintOmics proceeds with the data processing and the generation of

the MongoDB collections. Finally, the databases are installed and indexed to

allow them to better perform when queried, and the new species are included

in the available organisms chooser.

Figure 5.25: Installation process for new species in PaintOmics 3. Typically,
the process starts when researchers request the installation of new organisms using
the channels provided and finishes with the installation of the new species and its
inclusion in the list of available organisms.
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5.3 Results

5.3.1 Availability and requirements

PaintOmics 3 is free to use and is distributed under the GNU General Public

License Version 3. A public copy of the application is hosted at the CIPF facili-

ties (see table 5.3.1) and sources are available at GitHub, a popular web-based

Git repository, allowing other laboratories to browse, propose code reviews, and

even download the code in order to set up their own instance of the applica-

tion. The documentation and guides for users and administrators are available

at the free web platform Read the Docs (see table 5.3.1 below), which provides

fully-searchable and easy-to-find documentation. All the documentation was

written in Markdown markup language and are stored at the GitHub repository.

As previously mentioned, the PaintOmics 3 server-side application was devel-

oped in Python and R, and has been extensively tested on Ubuntu and Debian

Linux servers, although installation on other platforms (e.g. Windows-based

systems) has not yet been tested.

Availability and requirements

Project links
Public Instance: https://bioinfo.cipf.es/paintomics

Sources: https://github.com/fikipollo/paintomics

Documentation: https://paintomics.readthedocs.org

Other information
Operating system(s): Platform independent

Programming languages: HTML, JavaScript, Python, R

Other requirements: Web browser. Recommended Google Chrome.

License: GNU General Public License Version 3
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5.3.2 Discussion

The current trend towards the development of outstanding high-throughput

technologies has boosted the scope and the ambitions of the biological projects

associated with them. Thanks to these technological advances, a new range

of research disciplines and measurement techniques have emerged, and as a

natural consequence the combination of these, the trend towards compiling

genome-wide measurements into the same experiments has arisen in Systems

Biology. Nevertheless, the increasing use of high-throughput technologies has

also multiplied the magnitude and the complexity of the data generated. Thus

the exceptional amount of data created and its heterogeneity poses new chal-

lenges for effective data integration and analysis.

As discussed in this chapter, integrative visualisation can be both a powerful

tool and an important bottleneck in data analysis. The main goal of visuali-

sation tools is to provide intuitive data representation that allows researchers

to validate their hypothesis or to interpret the results of their experiments.

Although network-based tools, such as Cytoscape or Gephi, have been success-

fully used in many biological domains, the extraction of knowledge is hampered

by two factors: the high levels of complexity of the knowledge involved in bi-

ological networks, where thousands of nodes are densely connected to each

other; and the lack of underlying biological contexts that can increase the

explanatory power of the relationships observed. Pathway-based visualisation

tools such as MapMan and Pathview solve the problem of this lack of biolog-

ical background, but they make it hard to expose hidden or new knowledge.

In order to provide a more complete visualisation tool, PaintOmics 3 com-

bines both network-based and pathway-based approaches. On the one hand,

the platform provides fully interactive pathway visualisation, implemented us-

ing modern web-based technologies and complemented with useful information

and links to external resources, which distinguishes it from other more static

solutions such as Pathview. On the other hand, its use of pathway interac-

tion networks in combination with different colouring and clustering strategies

provides a valuable tool for revealing new associations and for results interpre-

tation.
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This integrative capability is also an important criterion when classifying these

visualisation tools. While some tools, such as PaintOmics 2, KaPPa-View,

and 3Omics restrict their accepted input to a closed set of omics data types

(usually transcriptomics, metabolomics, and in some cases proteomics), the

actual trend in integrative analysis indicates that this reductionist approach

may not be enough for the incoming multi-omics era. Other tools such as

IGV, IGB, MapMan, and Pathview allow users to upload and simultaneously

visualise various types of data. Nevertheless, the integration capability for these

tools is not complete as they do not solve existing issues with the visualisation

of data from chromatin-profiling (e.g. ChIP-seq or DNase-seq) experiments.

While MapMan and Pathview are able to display many omics types, they lack

a method for visualising changes at the chromatin level. In contrast, genome

browsers such as IGV and IGB, only support data which can be described

using genomics coordinates and lack resources for effective visualisation of

the changes in, for example, gene expression or protein concentration in the

different conditions in an experiment. In opposition to these software solutions,

PaintOmics 3 incorporates RGmatch, a method for computing the region-gene

associations, that allows researchers to easily visualize their data for chromatin

features in the context of the explored biological process.

This chapter described a novel method for integrative visualisation of many

different types of omics data: PaintOmics 3, which works as a one-click web

tool, and allows the effective and complete analysis and exploration of multi-

omics data. Using this tool, researchers can easily move through the different

complexity levels of several biological systems, from individual pathways to

pathway networks, and from there, down to the level of individual genes and

metabolites. This proposed approach supports joint visualisation of a wide va-

riety of omics types, even where no other solutions for display at the pathway

level currently exist. This valuable feature bridges the gap that exists in visu-

alising changes which occur at the chromatin level, and those that happen at

different levels of biochemical activity such as at the level of gene expression,

protein activity, and metabolite concentration. It provides an effective method

for visualising and understanding the underlying associations and dynamics of

the regulation of cellular processes.
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The current version of PaintOmics 3 has been successfully tested in the Euro-

pean 7th Framework Programme (FP7) STATegra Project [134] and has also

been used in additional studies on numerous other organisms (mammal, plant,

and bacteria models). The variety of organisms that PaintOmics 3 supports

highlights its scope in comparison to other solutions such as MapMan and

KaPPa-View, which are plant-specific tools, or 3Omics, which is only available

for human-specific analyses. PaintOmics 3 supports a wide range of species in

different biological kingdoms and offers the user the possibility of requesting

the addition of any other organism available in the KEGG database. Further-

more, the inclusion of automatic translation for the feature name/identifier

improves the usability of the tool, allowing users to work with their existing

datasets without requiring them to first convert their data to the identifier

domains used by KEGG for the selected organisms.

All of these aforementioned features, in addition to the ability of PaintOmics

3 to identify the set of significantly-enriched pathways, as well as its use of

modern web resources, confirms PaintOmics 3 as an effective platform for full

integration, analysis, and visualisation of multi-omics datasets.
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6
Visualizing multilevel integration models using
PaintOmics 3: a use case in Systems Biology

Parts of this chapter are contents of the manuscript: "Hernández-de-Diego R, Silberberg G*,

Ferreiros I, van del Kloet F, Ramirez R, Schmidt A, Marabita F, Lagani V, Papoutsoglou

G, Hankemeier T, Westernhuis J, Imhof A, Ballestar E, Meier D, Lappe M, Tsamardinos I,

Mortazavi A, Merkenschlager M, Tenger J, Gomez-Cabrero D, and Conesa A. A comprehensive

guideline to the multiomics data analysis paradigm in time course perturbation studies. (In

preparation)".

6.1 Introduction

The objective for this chapter is to illustrate how PaintOmics 3 can be used in

the context of real biomedical research for visualising and analysing the multi-

omics data. For this purpose, we consider the data from the STATegra project

[134], whose main objectives and experimental design were described in detail

in Chapter 4. PaintOmics 3 was used extensively as part of the validation

process for the conclusions for this study.
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6.2 Running PaintOmics 3

Paintomics 3 is available as a web-service in the CIPF facilities. Nevertheless,

users can choose to deploy their own Paintomics server by following the in-

stallation guidelines available in http://paintomics.readthedocs.io/en/

latest/0_install/.

6.2.1 Data preparation for PaintOmics 3

Bearing in mind that the goal of PaintOmics is to visualize multiomics data

and infer pathways with significant changes, a number of characteristics are

expected for the input data.

• Experimental design should be consistent through omics. This implies

that the same experimental conditions are measured for each omics and

that the omics values file has the same number of columns for all omics.

• Ideally, each column should represent the value of one experimental con-

dition. In other words, replicated measurements should be averaged to

one value per experimental condition. Although this is not a hard require-

ment (the user could choose to submit replicates separately), PaintOmics

does not include tools to further process replicates, and data will be

treated completely independently.

• To maximally benefit from the coloring rules implemented in PaintOmics,

data should be provided as log fold change values meaning that a value

of 0 means no change in expression, a positive value is interpreted as

up-regulation and a negative value means down-regulation.

For the STATegra collection, three biological replicates were obtained per time

point and condition. Therefore, the first pre-processing requirement is to aver-

age replicates and compute log-fold change values between Ikaros and Control

samples, at each time point. Equations 6.1 shows the first rows of feature val-

ues matrix for RNA-seq before and after data preprocessing. Next to feature

values file, PaintOmics expects a list of relevant or significant features for each

omics data type, which is simply a text file with features ID, one per row.
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vt =

∑nt
i=1 ratiot,i
nt

(6.1)

with t signifying a valid time-point for the experiment, and nt representing the

number of replicates for time-point t.

ratiot,i = log2(
Ikarost,i
Controlt,i

) (6.2)

This transformation was applied to the mRNA-seq, miRNA-seq, DNase-seq,

proteomics and metabolomics STATegra data. ChIP-seq data were excluded

since only 2 time points were measured with this technology, while methylation

(RRBS-seq) data were not included because no differential methylation sites

were detected in this study.

A

# Feature name Batch-4-Ctr-0H Batch-5-Ctr-0H Batch-6-Ctr-0H ... Batch-4-Ik-24H Batch-5-Ik-24H Batch-6-Ik-24H
ENSMUSG00000000001 14.79793 14.81117 15.12762 ... 15.27448 15.04589 15.32687
ENSMUSG00000000085 14.21789 14.17325 13.80345 ... 14.35347 14.64078 14.25783
ENSMUSG00000000093 8.266099 7.973803 8.260593 ... 11.10137 11.63582 11.27248
ENSMUSG00000000148 12.21063 12.32635 12.40045 ... 12.84333 12.89742 12.80058

... ... ... ... ... ... ... ...

B

# Feature name Ikaros vs Ctr 0H Ikaros vs Ctr 2H Ikaros vs Ctr 6H Ikaros vs Ctr 12H Ikaros vs Ctr 18H Ikaros vs Ctr 24H
ENSMUSG00000000001 0.04420 -0.08201 0.62356 0.11461 0.66559 0.55371
ENSMUSG00000000085 0.03339 0.369412 0.00021 0.58192 0.10794 0.29233
ENSMUSG00000000093 -1.1108 -1.03058 0.32627 1.01830 1.98777 2.49369
ENSMUSG00000000148 0.03154 0.292241 0.82802 0.54109 0.65787 0.42011

... ... ... ... ... ... ...

Table 6.1: First five rows for the RNA-seq data before (A) and after
processing for use in PaintOmics 3 (B).

6.2.2 Data submission

After preparing the files, we can proceed with the file submission. First, we

choose the studied organism (Mus musculus, Figure 6.1-A) and we select as

many omics types as the experiment involves. By default, Gene Expression and

Metabolomics are selected; however, new omics types can easily be added or

removed using the available tools. For this use case, we choose Proteomics,

Region-based omics, and miRNA-based omics on the "Available omics" panel

(Figure 6.1-B) which will then include three new sections on the submission

form.
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Once all the omics types are selected, we proceed to fill in the form. Gene

expression (RNA-seq), proteomics and metabolomics are straight forward as

they only require the features values file and the file with significant features

(Figure 6.1-E). Input data for miRNA-seq is slightly different as we need first

to execute the data transformation routine present in the Tools utility of the

application. The form requires microRNA-target gene mapping file that is

utilized to move from microRNA to gene IDs. Additionally we select to consider

only microRNAs with a gene expression correlation value with their target

mRNAs lower than -0.7. After this transformation has been computed we

can use the Other Omics dialog to select and submit microRNA data (Figure

6.1-C).

Finally, we select "Region based omics" to configure the DNase-seq submis-

sion (Figure 6.1-D). First, we set the name for the data type (DNase-seq) and

choose the main input file (normalised coverage for the regions), and the rele-

vant features file with significant changing regions. Some interesting settings

pertinent to this use case are:

• Reference genome annotations file: the latest build for mouse genome

downloaded from the Ensembl website [157]. This file contains informa-

tion about the gene structure which is needed in order to calculate the

intersections between regions and genes.

• Summarisation method: determines how PaintOmics 3 resolves the gene

areas with multiple matched regions. For this use case we choose the

mean of the coverage values for all the regions.

• Report: discriminate the reported regions based on the overlapped area

of the gene. For this use case we are interested only in regions that

match the gene promoter area, the transcription start site (TSS), or the

first exon.

In summary the following table represents the number of total and significant

features submitted for each omics data type to Paintomics 3.
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Technology Total features Significant features
mRNA-seq 12762 5864
miRNA-seq 4998 605
DNase-seq 10274 5101
Proteomics 1110 148

Metabolomics 61 41
Table 6.2: Total features and significant features for each omics data type in
the the STATegra data, after data processing.

6.3 Results

6.3.1 Identifiers and names conversion

After filling in the submission form, the process continues with the conversion

of the input data names and identifiers into the accepted Kyoto Encyclopedia

of Genes and Genomes (KEGG) name domains for the selected species, and

a summary is presented of the number of features successfully found in the

KEGG database and the dynamic range of the data.

Figure 6.2 shows the results of the mapping step for this use case. It can

be observed that the faction of successfully mapped features is high for all

omics and nearly complete for Proteomics and microRNA-seq. Completion for

Proteomics data is explained by the fact that proteins detected by proteomics

experiments, normally abundant proteins, tend also to be well annotated pro-

teins. In the case of microRNAs, the high matching rate is probably related

to the fact that microRNAs tend to target many different mRNAs. On the

contrary, about 10% of the gene expression and DNase-seq features were not

matched in KEGG. These might be non-coding genes or genes not yet placed

in biological pathways. Finally, all metabolites had a match. Inspection of the

disambiguation options did not revealed any metabolite matching that should

be modified, and hence we can submit the job and continue to the next step.
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Figure 6.2: Results for the mapping step for the STATegra data. (A) - The
first part of the panel displays the total translated features for each omics data type
as a pie chart. Box-plots are used to provide an overview for the distribution of the
quantification values. Moving the mouse cursor over the box-plots provides more
details about the data distribution. (B) - The second part of the panel is devoted to
metabolite disambiguation. The user can choose which metabolites should be used
for subsequent analysis stages. When the mouse is moved over each metabolite name
more details are provided for the metabolite along with its structural diagram. Clicking
on the metabolite name causes a new window to open which displays the complete
description for the metabolite on the KEGG website.
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6.3.2 Obtaining pathways

After feature mapping, PaintOmics 3 obtains the list of pathways that contain

genes or metabolites from the input and evaluates their significance level by

applying an enrichment analysis. As shown in Figure 6.3, the application reports

297 pathways, of which, 83 are considered to be enriched (combined p-value ≤
0.05).

Using the tools in the "Pathways classification" section, the displayed pathways

can be individually hidden or shown or they can be customised by category or

subcategory. Based on the consortium experts’ knowledge, several pathways

were considered "not relevant" to the study and thus, were filtered out before

proceeding with the evaluation of results. For example, "Human Diseases"

KEGG category does not contain any pathways directly related to the studied

organism (mouse)and therefore the whole category can be excluded from down-

stream analysis. Appendix A contains the complete list of the 116 pathways

which the consortium experts considered to be closely related or interesting for

the system under study (SuS).

Figure 6.3: Results for the PaintOmics pathway enrichment analysis for the
STATegra data. A total of 297 pathways were reported, 83 of them were considered
to be significantly enriched. Using the filtering tools, we can exclude from the results
pathways that are not interesting for our specific study.
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6.4 Discussion

Due to the fact that the main framework of this thesis is computer engineering,

the following section intends to be an exemplification of the what can be

elucidate from a biological potin of view by using Paintomics 3. Further and

more complexes analysis can be found in Tarazona et al. [128].

6.4.1 Significant pathways

After setting up the set of pathways of interest for the study, we can proceed

to evaluate the enrichment analysis results. By default, the table lists all

the reported pathways sorted by their combined p-value, however, the user

can reorder or hide columns and add filters to the table content. The upper

positions correspond to the most significant pathways (i.e. lower p-values).

Paintomics3 returned a total of 31 significant pathways for the B3 cell differ-

entiation course (p-value ≤ 0.05). 27 pathways were significant at the Gene

Expression level, 5 for Proteomics, 23 for microRNAs, 15 for DNase-seq and

none for metabolomics (Figure 6.4). Interestingly there were not many path-

ways that were significant across different omics. On the contrary, it appears

that each omics layer will reveal as significant a different subset of processes.

Gene expression was significant for carbon and amino-acid metabolic pathways

and for a number of signaling pathways such as FoxO signaling, Jak-STAT,

Notch, p53, HIF-1 signaling. FoxO and Jak-STAT have been extensively re-

ported the transition from proliferating B cell progenitors towards quiescence

and differentiation [35]). On the contrary, miRNA-seq returns almost exclu-

sively signally pathways as significant, including AMPK signaling pathway, HIF-

1 signaling pathway, or B cell receptor signaling pathway, which may suggest

a role of microRNAs in this system to fine-tune the control of the molecular

signal processing. The DNase-seq data indicates significant chromatin acces-

sibility changes for genes in relevant signaling pathways (FoxO, p53, T-cell

receptor, Wnt, etc.) pathways related to cell division (cell cycle, base excision

repair, p53 signaling) and metabolism (Lysine degradation, One carbon pool

by folate, etc.), which mimics the transcriptional changes observed at the tran-

scriptomics data. Finally, a low number of pathways are significant either for
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proteomics or metabolomics, which might be explained by the more reduced

number of features in these datasets, the lower coverage of the pathway space

and possibly a higher nose level in the measurements.

Figure 6.4: Enriched pathways for the STATegra data ordered by combined
p-value. Upper positions correspond to the most significant pathways. A color scale
is used to highlight the level of enrichment for each pathway where the higher intensity
of red, the higher significance is it. Gray cells indicate that the corresponding omics
is not present on the pathway.
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6.4.2 Pathway network

The pathway network shows the underlying interactions among significant path-

ways what aids in the interpretation of the experiment in terms of global func-

tional and regulatory relationships at the cellular level. Figures 6.5 - 6.9 displays

the network using the different color strategies available on the system. The

spatial distribution of the nodes is calculated based on the number of shared

genes between pathways and is therefore independent of the omics data. The

"a priori" pathway network is colored based on the main pathway categories

in the KEGG database such as "Metabolism", "Information Processing", etc.

This representation choice creates a uniform network template that is then

modified in color and of number of displayed pathway as a function of the

represented omics dataset. In this way we facilitate the interpretation of the

impact each omics layer has on the underlying pathway network. Figure 6.6

displays the network after imposing the gene expression data. The color and

number of displayed pathways change. To interpret the network we need to

first turn our attention to the metagene patterns at the lower right corner. The

pathway metagene analysis indices two clusters of pathways, one of ascent and

one of descent, both showing a sharp change at the middle of the series that

seems to correspond to the change from proliferation to quiescence state. By

matching the color of the metagene with the color pathways displayed for the

gene expression data we can appreciate which pathways are either a up or

down regulated. We can conclude that in our experiment there is a global

downregulation of "Metabolism" and "Genetic Information Processing" (cell

cycle, DNA repair, transcription, splicing, etc.) representing an stop in the

cellular division process, that occurs fast at 12 hours and slows down at 18

hours (cluster #1). On the other hand, the KEGG Environmental Signal Pro-

cessing category, i.e, the signaling pathways, are up-regulated suggesting that

the differentiation processes is the result of a generalize activation of the whole

cellular signaling machinery. This global activation is the one that may control

all the changes that can be observed: the cellular cycle arrests, a specific nu-

clear rearrangement occurs and the metabolism stops. We can highlight the

great synchronization that takes place in this process.
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The pathway network analysis of miRNAs gives also interesting results. We

can observe that a great majority of significant pathways according to the

microRNA data have a pattern of down regulation at late time points that

specially impacts signaling pathways, suggesting that the activation of signaling

in the differentiation course is coupled by a released of microRNA repression

of the genes present in these processes.

Interestingly, the DNase-seq data, also clusters pathways in 2 major and sym-

metric trends. Cluster 1 represents Metabolic and Genetic Information pro-

cessing (the same as Gene Expression) and is characterized by a more-open

to more-close chromatin accessibility at 6 h and 12 h followed by stabiliza-

tion of the signal. Cluster 2 has the opposite pattern and represents (as in

RNA-seq) mostly Environmental Signal Processing pathways. This pattern of

activity could be interpreted as the changes in chromatin conformation that are

required previous to the changes in gene expression observed in these pathway

groups.

Finally, we can appreciate in the pathway network analysis the noisiness of

the proteomics data. The metagene clusters of proteomics data reveal a quite

erratic behavior of protein signals at the beginning of the experiment that has

as a result a quite "flat" mean profile at these time points. This is followed by

strong and opposite expression changes at 12 and 18 hours to conclude with

a stabilization of the expression profiles as down (Cluster 1) or upregulated

(Cluster 2) proteins. Most metabolic pathways are in Cluster 1 (ending in

protein down-regulation) what is in agreement with the gene expression data,

while signaling pathways are both in Cluster 1 and 2, which is in less agreement

with the gene expression. This more noisy behavior fits the overall observation

of STATegra researchers of lower signal to noise ratio and replicability in the

proteomics data compared to the RNA-seq.
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6.4.3 Pathway analysis

To date, there numerous publications that have studied the processes of cell

differentiation. However, little is known about the dynamics that occur within

such processes, including changes in gene expression, proliferative state, biosyn-

thetic capacity, metabolic state and gene regulatory networks. In the system

under study we focus on the dynamics and the regulatory control of a critical

step in B cell progenitor differentiation, namely the progression of proliferating

B cell progenitors towards resting pre-B cells. Following a phase of expan-

sion, cell cycle exit is critical, to avoid the accumulation of genetic lesions

that could otherwise result in several diseases. More specifically, when talking

about the regulatory control of B cell progenitor differentiation, the transition

from a proliferative state to quiescence may inhibit leukemic transformation,

and enables immunoglobulin light chain rearrangement, the expression of a

functional BCR, and B cell differentiation [24, 29, 51]. For that reason, the

stimulus-driven transition from quiescence to an activated state is central to

a functional immune system and has been studied extensively. One of the

genes that participate in the transition from proliferation to quiescence dur-

ing haematopoiesis is FOXO1, a direct target of IKAROS [134] with opposite

function to MYC [134].

If we want to focus on the different omics processes related to the regulation of

FOXO1, we could explore the FoxO signaling pathway individually, visualizing

the input data over the KEGG diagram. As commented in previous chapters,

the first time that we open a pathway, PaintOmics shows two panels:

• The interactive KEGG diagram, where each feature (significant or not)

is displayed as a box divided in several heatmaps, colored according to

the concentration values at each particular sample.

• An auxiliary panel showing some interesting information and a "Search"

tool.

Within the information displayed at the auxiliary panel, we can find line charts

representing the most significant trends for each omics data type (i.e. the

metagenes) for current pathway. As shown in Figures 6.10 and 6.11, in FOXO

signaling pathway, in a general form, we can observe an increase of gene ex-
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pression accompanied by a decrease in miRNA expression. More specifically,

an up-regulation of several genes associated with cell growth and apoptosis –

such as SGK1, STAt3 and AKT1 – that appears early in the process induces

an over expression of FOXO1. The progressive transcriptional up-regulation

of FOXO1 promotes the establishment of the quiescence state. This fact is

supported by the up-regulation of genes like RAG1/2 which are known to be a

key step of B-Cell differentiation.

Figure 6.10: Most significant trends for each omics in FoxO signaling pathway.

The overexpression of FOXO1 also induces changes in other metabolic and

cellular processes. For example, it is well known that a reverse "metabolic re-

programming" is needed for the activation of quiescent lymphocytes [100, 150]

and, as it can be observed in the graph, genes that inhibit glucose metabolism

such as PCK2 and G6pc3 are down-regulated. This fact is better understood

if we overview the process from a global sight. When cells are proliferating,

great bioenergetics consumption are needed and, in order to maintain a mini-

mal content of adenosine triphosphate (ATP) to satisfy energy requirements,

a change in cellular pathways is required. On the contrary, after the transition

from "cycling" stage to "resting", the high metabolic demands are reduced

and only basal metabolic activity is required

At this point, the Glycolysis pathway serves as a prominent example to continue

with this analysis validation and we will focus our next steps on the study of

this biological process.
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As a rule, glucose works as a major source of cellular energy and new cell mass.

Glucose is metabolized via Glycolysis to pyruvate, which can be oxidatively me-

tabolized into the mitochondria producing large amounts of ATP through the

process of oxidative phosphorylation. Alternatively, when limited amounts of

oxygen are available, glucose can be transformed to lactate (anaerobic glycoly-

sis), usually carried out through fermentation. Glucose fermentation generates

ATP with far lower efficiency than oxidative phosphorylation but at a faster

rate. Nevertheless, the con-version of glucose to lactate have been observed as

a common phenomenon among proliferating animal cells, even in the presence

of sufficient oxygen to support oxidative phosphorylation, suggesting that this

enhanced rate of ATP generation may be beneficial for rapidly proliferating

cells. In addition, some authors suggest that glucose degradation is preferable

because produces several intermediate chemical constituents (e.g. nucleotides,

amino acids, and lipids) needed to support biosynthesis.

As shown in Figure 6.12, metagenes for Glycolysis support the previous obser-

vations: genes involved on Glycolysis undergo a down-regulation at transcrip-

tional level and chromatin accessibility when the transition from proliferation

to quiescence takes part. Interestingly, the pattern profile for DNase-seq shows

that chromatin conformation changes seems to occur earlier in time than gene

expression changes. As, previously know, proteomics data does not follow the

same clear trend, and although protein levels in the pathway seems to be gen-

erally lower at 24 h than at 0h, the time course profile looks more variable and

erratic.

Figure 6.13 describes in more detail the dynamic changes for the significant

genes that participate at Glycolysis. If we have a look to Hk2 and Ldha genes, a

general agreement between genes - proteins - metabolites and microRNAs can

be seen. In both cases, a correlation between the genes’ expression and changes

in chromatin in the TSS, given by DNase-seq, is clearly visible. In addition,

an upregulation of microRNAs that targets the genes takes place and may

represent a mechanism of controlling the genes’ expression. On the opposite,

as was already known, the metabolic data are noisier, but clearly shows how

the value of both Hk2 and Ldha proteins is reduced at 24h, corresponding with

the halting in the glycolysis at the end of the differentiation time course.
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Figure 6.12: Most significant trends for each omics in Glycolysis / Gluconeo-
genesis pathway.
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Figure 6.13: The interactive KEGG diagram for Glycolysis / Gluconeogenesis pathway
displaying transcriptomics expression.
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6.5 Conclusions

We can conclude that PaintOmics 3 can be used in the context of real biomed-

ical research for visualising and analysing data from different omics. It provides

us with a very useful and complete tool that shows us different points of view of

the same process. On the one hand, when we rely on the part of the network,

we can perceive the different general patterns that occur in each metabolic

process. However, the possibility of having a focus on each independent path-

way, constitutes a very useful strategy in biomedical research as it allow us

the ability of visualizing the small details that may be biologically significant

in each different pathway.

Considering all these observations, we can assume that, after Ikaros induction,

pre-B3 cells undergo different processes which may induce the transition of

cycling pre-B cells to the quiescence stage. This change is transcriptionally

driven, as implies the activation of major signaling pathways by chromatin

accessibility changes and suppression of microRNA downregulation of target

genes. On the other hand the process implies a metabolic shut down, observed

both at the gene expression and at the metabololic level, as well as the ar-

rest of genetic information processing pathways such as cell cycle and DNA

repair that also accordingly modify chromatin accessibility. More specifically,

the progressive transcriptional up-regulation of FOXO1 supported by the up-

regulation of genes like RAG1/2 promotes the establishment of the quiescence

state. However a well-orchestrated reprogramming of metabolism is required

and changes in the Glycolysis pathway are mandatory for the transition. Both

figures 6.11 and 6.13, as well as the detailed study of the Glycolysis process,

point that this process of cell differentiation may be primarily driven by tran-

scriptional regulation. This fact was also observed during other analysis of the

study and motivated one of the global strategies adopted in the project: the

usage of RNA-seq as the central data type in the study.
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7.1 General discussion

This thesis addresses the problem of data integration for multi-omics experi-

ments. More specifically, this research focused on two of the most character-

istic computational challenges of Systems Biology (SB): the development of

integrative databases and the problem of integrative visualisation.

From the standpoint of developing integrated database resources, the wide va-

riety of data sources, formats, and content requires a lot of work to store and

organise large datasets. In addition, the highly context-dependent nature of

omics data requires detailed meta-data to be recorded to help the identification

of each dataset; this can only be accomplished by adopting community stan-

dards for the data schemas, formats, nomenclatures, and protocols. However,

to take full advantage of the potential of visual analytics, visualisation tools

for SB must maintain the balance between clarity, precision, and efficiency.

The high volume and wide variety of omics data, and the complexity of inter-

actions between biological components, makes choosing data representations

that enable the extraction of meaningful knowledge, and minimise information

and performance loss challenging [149]. This thesis focuses on some of the

problems in multi-omics data integration that were relevant to the state of the

art technologies in SB when the work started.
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Integrative analysis is usually performed by scientists with a limited compu-

tational background and SB approaches are being increasingly adopted by

medium and small-scale laboratories with limited access to powerful bioin-

formatics infrastructures. Thus, the methods proposed had to be easy to use

and applicable to the majority of such research. Therefore, we made our tools

web-based, open-source, and freely available, ensuring accessibility and free-

distribution of the software and also providing a high-throughput and reliable

research resource. We also considered user-friendliness and flexibility to be

fundamental to the success of our tools. The usability of web tools is ham-

pered by the conceptual complexity of the methods they use and the size of

the data displayed, and requires aspects such as efficiency, clarity, and learn-

ability to be balanced. Thus, our strategies focused on creating an effective

user experience; for instance, we adopted intuitive layouts and colour schemes

and implemented interactive chart designs so that users can easily navigate

the system and quickly identify the information relevant to them. Similarly,

the design of our simple input forms, complemented with default and optimal

options, content validators and help tips, reduces the user’s workload.

Performance also constitutes an important challenge for the development of

web applications in the context of large datasets which increase data-processing

and loading times, significantly degrading the user experience. Key user oper-

ations such as interactive real-time data browsing (logical and fluid application

performance) are imperative in attracting and retaining users. Different meth-

ods can help to increase the application’s responsiveness; for example, code

optimisation (by introducing changes to data structure design, access pat-

terns and code layouts) can significantly reduce resource use and computation

times, but must be weighed against the potential negative effects of reduced

code readability and higher maintenance. Thus, we implemented code optimi-

sation techniques in loops and repeated tasks using high-performance parallel

computing techniques by dividing large complex tasks across multiple proces-

sors. Similarly, good database design and the creation of efficient indexes can

dramatically reduce data-query and update response times and increase appli-

cation performance and so we devoted special attention to optimising resource

allocation and retaining data flexibility in our tools. Finally, we also reduced
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loading times by using data compression, managing the load-distribution of

user-client data exchange, and using temporary user data-caching.

STATegra EMS

The first part of this thesis (Chapters 3 and 4) addressed the absence of com-

prehensive tools for properly storing and organising large datasets and pro-

cessing pipelines in multi-omics experiments. The STATegra Experiment Man-

agement System (EMS) was designed to store experimental information for

entire integrative-experiment workflows – from biomaterial production to re-

sults generation – including the experimental design and protocols for sample

measurements and data processing. This architecture is substantially differ-

ent from other information management solutions created for next-generation

sequencing (NGS) data that focus on the production on the samples. Never-

theless, the EMS goes beyond and provides tools for the further analysis and

data generation. As a result, the system provides researchers with a valuable

tool for tracking data provenance and ensuring experimental reproducibility. In

addition, the tools included for exporting annotations to popular formats allow

users to easily distribute their methods and results with the research commu-

nity. Obtaining an accurate description for each information unit in a given

study is not trivial because of the heterogeneity of omics data; thus, before

creating this system we extensively studied the data collection techniques com-

monly used in SB so that we could include the most useful standards for each

data type. Moreover, we also put significant effort into conceptualising the

analysis workflows for each omics discipline while also retaining sufficient flexi-

bility to allow users to implement alternative analysis flows. Thus, we identified

each step involved and the minimum meta-data required to comprehensively

describe it.

Another characteristic that distinguishes the proposed tool from other solutions

is its collaborative nature, developed to accommodate the fact that in most

research labs the samples are usually prepared, measured, and the data analysed

by different people. Enabling collaboration in web applications means that the

system information synchronisation must be tightly controllable (so as to avoid

any data conflicts or loss) and means that several layers of complexity must

be introduced when designing the system logic. The STATegra EMS use case-
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study (Chapter 4) gives detailed insights into how we organised the annotation

process in this tool and uses the context of a real integrative study to show

the logic behind the incorporation of the different layers of information the

application manages.

PaintOmics 3

The second part of this thesis focused on the challenges associated with integra-

tive data visualisation and proposed solutions that can be used in multi-omics

experiments. As seen in Chapter 3, there are three major visualisation-tool

categories in SB, but none of these can achieve comprehensive integration.

Networks are useful for studying the connections between the system compo-

nents, but the increasing size and complexity of these data and the lack of

a biological context usually hamper their interpretation. Alternatively, solu-

tions based on dissecting the pathway data sets into smaller subsets (based

on previously established knowledge) adds biological meaning and simplifies

interpretation, but means foregoing the ability to gain new insights into the

system’s functioning. Moreover, neither approach can easily accept omics data

types derived from genomic regions such as ChIP-seq or DNase-seq data types.

In contrast, genome browsers can handle these data types but fail to provide an

appropriate framework for comparative studies in multi-condition experiments.

As discussed in Chapter 5, the proposed solution – PaintOmics 3 – uses path-

way diagrams as the major analysis and visualisation method but also takes

advantage of the other two approaches. Networks are used to display the

pathway interactions and major omics expression data-trends and these are

combined with pathway-based visualisation and statistical methods for study-

ing individual pathways. This allows detailed analysis, even at the individual

gene or metabolite level, and provides researchers with a comprehensive tool for

navigating multiple biological system levels and for observing any underlying

associations or regulation dynamics in these biological processes.

One of the key features of PaintOmics 3 is its flexibility. As opposed to the other

available systems, which are restricted to specific species subsets, PaintOmics3

supports all of the organisms available in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database. Furthermore, in contrast to other pathway-based
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solutions, PaintOmics 3 does not limit the number or variety of input omics

data-types; instead it includes an effective method for translating the different

naming conventions and feature identifiers into the corresponding KEGG name

domain for the studied organism, including region-based and microRNA-based

omics types. These features automatically translate the feature names and

identifiers in order to improve the tool’s usability and allow users to work

with their datasets, regardless of the nomenclature of the identifiers or names

used. PaintOmics 3 can be used for simple "Case-Control" experiments with a

single omics type, but also works with complex experimental designs that may

include several conditions, time-series, and multiple omics measurements. The

use case-study, which utilised data from the STATegra project [134] (Chapter

6), reflects this flexibility and demonstrates that PaintOmics 3 represents a

powerful minimal-effort tool for data enrichment analysis and results validation.

7.2 Conclusions

The following text summarises the conclusions of this work and is organised

according to the goals defined in Chapter 1.

1. To develop a user-friendly and integrated system for the manage-
ment, annotation, and storage of multi-omics experiments.

• We proposed a novel tool for managing experiments (STATegra

EMS) that provides an integrated system for annotating complex

high-throughput omics studies; this includes descriptions of the bio-

logical material used in the experiment, its processing, and data-set

analysis.

• This system accepts multiple types of omics data, including five

popular sequencing functional-assays and non-nucleic acid compo-

nents such as proteomics and metabolomics, and uses accepted

standards for storing the information for each specific omics type.

• Web technologies are used in order to provide the key tools for

running the system (i.e. by making it a centralised and collaborative
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service), and the accounts system allows multiple users to protect

their information.

• The proposed solution was successfully applied in the context of a

multi-omics study.

2. To develop a user-friendly tool for integrative visualisation of mul-
tiple omics data types based on metabolic pathways.

• We developed a novel methodology for integrative data visualisa-

tion; its most important features are its flexibility and capacity for

inter-user communication. The system provides a complete frame-

work for biological function enrichment analysis and supports mul-

tiple species and many different omics types, including epigenomics

data based on genomic regions and microRNA (miRNA) data.

• The main visualisation approach is based on KEGG pathway dia-

grams but secondary tools extend the tool’s scope by adding inter-

action networks. Other useful features are automatic identifier and

name conversion, the interactivity of the displayed information, and

the use of parallelisation to minimise back-end calculations.

3. As general rule, the new tools developed must be reliable and
user-friendly.

• Biologists and other researchers participated in designing the inter-

faces and defining the requirements of both tools in order to im-

prove their user-friendliness. The tools were also extensively tested

to ensure they are secure, reliable, and error-proof.

4. Good accessibility and wide distribution of the generated software
are also objectives for this thesis.

• Both systems are distributed as open-source software and public

instances of the tools guarantees their free use. Moreover, both

tools have also been presented at national and international confer-
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ences and in popular international scientific print journals. Finally,

extensive user documentation has been developed for both systems.

7.3 Reach and relevance

• The methodologies described in this thesis have been implemented as

open-source and freely-available web applications. On the one hand, the

STATegra EMS provides the scientific community with a user-friendly

bioinformatics management suite capable of collaboratively annotating

multi-omics experiments. On the other hand, PaintOmics 3 provides re-

searchers with an intuitive and flexible web platform for data enrichment

analysis and integrative visualisation of biological functions for Systems

Biology studies.

• This thesis was developed within the framework of the STATegra in-

ternational research project [134], and the resulting methods have been

extensively used to analyse the data generated within this project, also

contributing to the dissemination of the results of the thesis.

• Both applications have been presented at international and national con-

ferences and courses, demonstrating their usefulness to end-users. In

addition, descriptions of the main features of both these tools, provid-

ing use case-examples in the context of multi-omics studies, have been

published in popular open-access bioinformatics journals.

• The STATegra EMS has been incorporated into the eBioKit system [50],

an educational and analytical bioinformatics platform developed by the

SLU Global Bioinformatics Centre (Swedish University of Agricultural

Sciences). This kit is used in more than 20 research centres and uni-

versities in Africa, South America, and Asia. Additionally, PaintOmics 3

has been also included in the new version of the eBioKit, currently on

development.

• Additionally, the STATegra EMS has been selected as the main experi-

ment management system for the eB3Kit, a bio-banking platform devel-

oped by the B3Africa project [73], funded by European Horizon 2020.
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This project aims to implement a cooperation platform and technical

informatics framework for integrating biobanks in Africa and Europe.

• PaintOmics 3 has been officially installed in two different locations: at the

Principe Felipe Research Centre in Spain, and at the University of Florida

bioinformatics facilities. The system has over 200 active accounts.

7.4 Major scientific contributions

During the development of this thesis I have had the opportunity to spread

my work and the state of the art of omics data integration to the scientific

community in different events. Below are some of the most relevant.

Publications

• Hernández-de-Diego R, Boix-Chova N, Gómez-Cabrero D, Tegner J, Abuges-

saisa I, and Conesa A. STATegra EMS: an Experiment Management

System for complex next-generation omics experiments. BMC Systems
Biology, 8 Suppl 2:S9, 2014.

• Conesa A, and Hernández-de-Diego R. Omics Data Integration in Sys-

tems Biology: Methods and Applications. In: Applications of Advanced

Omics Technologies: From Genes to Metabolites, Volume 64 (Comprehensive
Analytical Chemistry). 2014.

• Hernández-de-Diego R, de Villiers EP, Klingström T, Gourlé H, Conesa

A, and Bongcam-Rudloff E. The eBioKit, a stand-alone educational plat-

form for bioinformatics. PLoS Computational Biology. (In revision)

• Tarazona S*, Hernández-de-Diego R, Silberberg G*, Ferreiros I, van del

Kloet F, Ramirez R, Schmidt A, Marabita F, Lagani V, Papoutsoglou

G, Hankemeier T, Westernhuis J, Imhof A, Ballestar E, Meier D, Lappe

M, Tsamardinos I, Mortazavi A, Merkenschlager M, Tenger J, Gomez-

Cabrero D, and Conesa A. A comprehensive guideline to the multiomics

data analysis paradigm in time course perturbation studies. (In prepara-

tion)
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• Hernández-de-Diego R, Tarazona S, Furió-Tarí P, and Conesa A. Paintomics:

a web resource for the pathway level visualisation of multiomics data. (In

preparation)

Conferences

• HiTSeq ISCB/ECCB 2013. Berlin, Germany. July 2013. Hernández-

de-Diego R, Boix-Chova N, Gómez-Cabrero D, Tegner J, Abugessaisa

I, and Conesa A. The STATegra NGS Experiment Management System

(Poster).

• XII Symposium on Bioinformatics. Sevilla, Spain. September 2014.

Hernández-de-Diego R, Boix-Chova N, Gómez-Cabrero D, Tegner J, Abuges-

saisa I, and Conesa A. STATegra EMS: an Experiment Management Sys-

tem for complex next-generation omics experiments (Poster).

• SMODIA 2014. Heraklion, Greece. November 2014. Hernández-de-

Diego R, Boix-Chova N, Gómez-Cabrero D, Tegner J, Abugessaisa I, and

Conesa A. The STATegraEMS, an Experiment Management System for

multi-omics experiments (Oral presentation).

• SMODIA 2015. Valencia, Spain. September 2015. Hernández-de-Diego

R, Tarazona S, Furió-Tarí P, and Conesa A. Paintomics 3.0: Integrated

visualization of multi omics data on KEGG pathways (Oral presentation).

• XIII Symposium on Bioinformatics. Valencia, Spain. May 2016. Hernández-

de-Diego R, Tarazona S, Furió-Tarí P, and Conesa A. Integrative visual-

ization of multi omics data: the PaintOmics 3 platform (Poster).

Teaching activities

• X International Course of Massive Data Analysis in Transcriptomics.

Centro de Investigación Príncipe Felipe. Valencia, Spain. March 2014.

• The Genomics of Gene Expression RNA-Seq Course. Centro de Investi-

gación Príncipe Felipe. Valencia, Spain. September 2014.
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• The H3ABioNet Advanced Systems Administration workshop: Introduc-

tion to the eBioKit system: services, architecture and administration.

University of Pretoria, Pretoria, South Africa. February 2015.

• The Genomics of Gene Expression RNA-Seq Course. Centro de Investi-

gación Príncipe Felipe. Valencia, Spain. March 2015.

• STATegra Summer School in Omics Data Integration. Benicassim, Spain.

September 2015.

7.5 Major future perspectives

Our current and future lines of research are defined by the requests the appli-

cation users. As usual in software development, the applications are now in the

"transition" stage in which new features and tools are added to the system to

provide a more complete user-experience. Some of the most important features

scheduled for inclusion in their forthcoming versions are:

• Improve the usability for the STATegra EMS adding new features to the

system. Some examples would be:

– Tools for uploading, downloading and manage files into the system

(on development).

– Support for different storage systems (e.g. FTP servers or iRODS

storage system, on development).

– Wizards for creating multiple analysis or samples.

– New tools for querying the system.

– Controlled vocabulary and ontologies for use in the experiment an-

notations.

• Increase the scope of the PaintOmics 3 application by adding new fea-

tures such as the following:

– Inclusion of alternative methods for pathway enrichment analysis.
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– Inclusion of new information available in KEGG, such as enzymes

or Gene Ontology (GO) terms.

– Support for alternative databases of pathway information such as

Reactome [33].

– Include new types of visualization tools such as genome browsers.

– Reduces the installation time of new databases by providing database

dumps.
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A
Selection of pathways for the PaintOmics 3 use
case

A.1 Introduction

This section enumerates the selected KEGG pathways that were considered

as "closely related" or "interesting" for the model biological system studied

in the STATegra project [134]. The model describes the differentiation of

the mouse B3 cell line (cycling pre-B cells) under the controlled induction

of the Ikaros transcription factor (TF). The differentiation is controlled by a

tamoxifen-inducible vector of the Ikaros TF (Ikaros-ERt2), while control cells

carry an empty vector. This model is of special clinical interest because the

genetic deletion of Ikaros can result in severe disturbances or even completely

block B-cell development. Based on the knowledge of the consortium experts,

the following subset of the mouse pathways was considered for the evaluation

of the study results.
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A.2 Selection of pathways

• Cellular Processes

– Cell growth and death

∗ Apoptosis

∗ Cell cycle

∗ p53 signaling pathway

– Cell motility

∗ Regulation of actin cytoskeleton

– Cellular community

∗ Adherens junction

∗ Focal adhesion

∗ Gap junction

∗ Tight junction

– Transport and catabolism

∗ Endocytosis

∗ Lysosome

∗ Peroxisome

∗ Phagosome

∗ Regulation of autophagy

• Environmental Information Processing

– Membrane transport

∗ ABC transporters

– Signal transduction

∗ AMPK signaling pathway
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∗ Calcium signaling pathway

∗ cAMP signaling pathway

∗ cGMP-PKG signaling pathway

∗ ErbB signaling pathway

∗ FoxO signaling pathway

∗ Hedgehog signaling pathway

∗ HIF-1 signaling pathway

∗ Hippo signaling pathway

∗ Jak-STAT signaling pathway

∗ MAPK signaling pathway

∗ mTOR signaling pathway

∗ NF-kappa B signaling pathway

∗ Notch signaling pathway

∗ Phosphatidylinositol signaling system

∗ PI3K-Akt signaling pathway

∗ Rap1 signaling pathway

∗ Ras signaling pathway

∗ Sphingolipid signaling pathway

∗ TGF-beta signaling pathway

∗ TNF signaling pathway

∗ VEGF signaling pathway

∗ Wnt signaling pathway

– Signaling molecules and interaction

∗ Cell adhesion molecules (CAMs)

∗ Cytokine-cytokine receptor interaction

∗ ECM-receptor interaction

∗ Neuroactive ligand-receptor interaction

• Genetic Information Processing

– Folding, sorting and degradation
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∗ Proteasome

∗ Protein export

∗ Protein processing in endoplasmic reticulum

∗ RNA degradation

∗ SNARE interactions in vesicular transport

∗ Ubiquitin mediated proteolysis

– Replication and repair

∗ Base excision repair

∗ DNA replication

∗ Fanconi anemia pathway

∗ Homologous recombination

∗ Mismatch repair

∗ Non-homologous end-joining

∗ Nucleotide excision repair

– Transcription

∗ Basal transcription factors

∗ RNA polymerase

∗ Spliceosome

– Translation

∗ Aminoacyl-tRNA biosynthesis

∗ mRNA surveillance pathway

∗ Ribosome

∗ Ribosome biogenesis in eukaryotes

∗ RNA transport

• Metabolism

– Carbohydrate metabolism

∗ Amino sugar and nucleotide sugar metabolism
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∗ Ascorbate and aldarate metabolism

∗ Citrate cycle (TCA cycle)

∗ Fructose and mannose metabolism

∗ Galactose metabolism

∗ Glycolysis / Gluconeogenesis

∗ Inositol phosphate metabolism

∗ Pentose and glucuronate interconversions

∗ Pentose phosphate pathway

∗ Pyruvate metabolism

∗ Starch and sucrose metabolism

– Energy metabolism

∗ Oxidative phosphorylation

– Global and overview maps

∗ 2-Oxocarboxylic acid metabolism

∗ Carbon metabolism

∗ Fatty acid metabolism

∗ Metabolic pathways

∗ Biosynthesis of amino acids

– Lipid metabolism

∗ Fatty acid biosynthesis

∗ Fatty acid degradation

∗ Fatty acid elongation

– Metabolism of cofactors and vitamins

∗ Biotin metabolism

∗ Folate biosynthesis

∗ Lipoic acid metabolism

∗ Nicotinate and nicotinamide metabolism
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∗ One carbon pool by folate

∗ Pantothenate and CoA biosynthesis

∗ Porphyrin and chlorophyll metabolism

∗ Retinol metabolism

∗ Riboflavin metabolism

∗ Thiamine metabolism

∗ Ubiquinone and other terpenoid-quinone biosynthesis

∗ Vitamin B6 metabolism

– Nucleotide metabolism

∗ Purine metabolism

∗ Pyrimidine metabolism

– Xenobiotics biodegradation and metabolism

∗ Drug metabolism - cytochrome P450

• Organismal Systems

– Endocrine system

∗ Adipocytokine signaling pathway

∗ Glucagon signaling pathway

∗ GnRH signaling pathway

∗ Insulin signaling pathway

∗ PPAR signaling pathway

– Environmental adaptation

∗ Circadian rhythm

– Immune system

∗ Antigen processing and presentation

∗ B cell receptor signaling pathway

∗ Chemokine signaling pathway
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∗ Cytosolic DNA-sensing pathway

∗ Fc epsilon RI signaling pathway

∗ Fc gamma R-mediated phagocytosis

∗ Hematopoietic cell lineage

∗ Leukocyte transendothelial migration

∗ NOD-like receptor signaling pathway

∗ RIG-I-like receptor signaling pathway

∗ Toll-like receptor signaling pathway
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B
PySiQ, a Python Simple Queue system

B.1 Introduction

PySiQ (Python Simple Queue) is a job queue or task queue implemented for

Python applications. The main objective of task queues is to avoid running

resource-intensive tasks immediately and wait for them to complete. Instead,

tasks are scheduled by adding them to a queue, where they will wait until

eventually a worker, i.e. a special process running in separate thread, takes

them out of the queue and execute the job. This concept is especially necessary

for web applications where it is not possible to handle a heavy task during a

short HTTP request window.

B.2 Features

PySiQ has been entirely implemented in Python and provides the following

features:

• Multi-process execution on tasks, configurable number of workers.

• The status of the queued tasks can be easily checked at any time.
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• Dependencies between tasks can be specified executing them in the ap-

propriate order.

• The results for tasks are stored until the client asks for them.

• Lightweight module. The code takes less than 300 lines of code.

• Easy to use and to install in your application.

• It does not depend on other libraries or tools.

B.3 Design

The main component of PySiQ is the Queue, a Python object that works as a

task dispatcher and worker-pool manager. The Queue is a singleton instance

that is listening to the other components in the application (Figure B.1-1).

When the queue is instantiated, a certain number of Workers are created

depending on the user’s settings. Workers are special threads that extract tasks

from the queue and execute them. By default, workers are idle, waiting for new

tasks are sent to the queue (Figure B.1-2). When a client needs to execute

certain time-consuming job, it is encapsulated in a Task instance, defining the

function or code to be executed and the parameters for its execution (Figure

B.1-3). Some additional parameters can be specified such as a timeout that

will abort the execution of the task if it does not finish after a determined

amount of time, and a list of dependencies, i.e. the identifiers for the tasks

that must be completed before launching the execution of the new task. The

task instance is sent to the queue and workers are notified that a new task

is waiting for being executed. As soon as a worker is idle, it takes the next

task at the queue and starts the execution, provided that all its dependencies

already finished (Figure B.1-4).

The queue contains an internal table that keeps the status for all the tasks in

the queue. Possible statuses are: "waiting", "running", "finished", and "error"

(Figure B.1-5). When a task is finished, it is kept in this table in addition to

the results of the execution, until someone asks for the results. Similarly, failed

tasks are kept in the table with the information of the error (Figure B.1-6).
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Figure B.1: Overview of the design of the queue system.

B.4 Example of use

The following code fragment exemplifies the usage of the developed module.

For this use case an instance of queue is initialized with two workers. A total of

five tasks are sent to the queue. All tasks will execute the same function called

foo which displays a message indicating that execution has started, then waits

N seconds, and displays a message announcing the end of execution. Both the

displayed message and the duration of the delay (the N value) are provided

as parameters for the foo function. Tasks 1 and 3 will take 10 seconds for

execution, while tasks 2 and 4 will take less than 5 seconds. Task 5 takes 4

seconds but it won’t start until tasks 3 and 4 are completed. Figure B.2 shows

the temporal line for the execution of the tasks, as well as the status for the

queue and the workers at different time-points.
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from PySiQ import Queue

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Initialize queue
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
N_WORKERS = 2

queue_instance = Queue()
queue_instance.start_worker(N_WORKERS)

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Queue tasks
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def foo(N, message):
print message + " started..."
from time import sleep
sleep(N)
print message + " finished"

queue_instance.enqueue(
fn=foo,
args=(10, "Task 1"),
task_id= "Task 1"

)

queue_instance.enqueue( fn=foo, args=(4, "Task 2"), task_id= "Task 2")

queue_instance.enqueue( fn=foo, args=(10, "Task 3"), task_id= "Task 3")

queue_instance.enqueue( fn=foo, args=(5, "Task 4"), task_id= "Task 4")

queue_instance.enqueue(
fn=foo,
args=(4, "Task 5"),
task_id= "Task 5",

depend= ["Task 3", "Task 4"]
)

Code fragment B.1: Example of usage of the PySiQ module.
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Figure B.2: Output for the example program, overview for the tasks’ execution,
and status of the queue and workers. (A) - When the program execution starts,
the queue is empty and both workers are idle. The five tasks are then sequentially
added to the queue and workers are notified to start working. (B) - The first two
tasks are extracted from the queue and executed by the workers. Each task shows
a message in the terminal. (C) - After four seconds, task 2 finishes, and worker 2
becomes idle. Worker 2 then asks for a new task (task 3) and executes it. (D) - After
four seconds, task 1 finishes and task 4 starts. (E) - When task 3 is done, worker 2
become idle and waits for a new task; however, task 5 cannot start because it depends
on task 4, which still running on worker 1. (F) - Once task 4 finished, task 5 is valid
for being executed by any worker. (G) - Finally, after 4 seconds, task 5 is finished.

B.5 Advanced use

Figure B.3 shows a more complex example of using. For this use of case two

different users interact with the queue by sending requests to a server-side

program. More specifically, each user sends first a request to the server in

order to launch certain time-consuming task. For each client, a task instance

is created and sent to the queue and the identifier for the new job is returned

to the client application. While waiting for the end if the task, the clients send

periodically a request in order to query the execution status. Finally, when the

task if finished, the user can retrieve the result for the execution of the task.
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Figure B.3: Using the queue system in a Client-Server environment. From client
side, two different users send a request to execute some time-consuming task at server
side (1). When a request is received, the server program wraps the job to be executed,
and its parameters into an instance of task, and sends the new object to the queue
system (2). When a task is queued, an identifier is returned that uniquely identifies
the task in the queue system. Task identifiers are then returned to the corresponding
client that can use it later to check the execution status or retrieve the results. Every
time that a new task is received, the queue system notifies the workers (3), and those
that are idle extract and execute the next tasks in the queue (4). While the task is
being executed, clients can check periodically the status of the job by sending a request
to the server (5). Possible statuses are "queued", "running", "finished" and "failed".
When a worker finishes the execution of a task, the result is kept in the queue system
until it is requested, and the worker proceeds to execute the next task in queue (6).
If no new tasks are available the worker becomes idle. Finally, when the client detects
that the task is done - i.e. it receives a ’finished’ status (7), a new request is sent in
order to retrieve the results of the execution (8).
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B.6 Availability

PySiQ module is distributed under MIT license and can be downloaded from the

project repository (see table below). Sources are hosted at GitHub, a popular

web-based Git repository, which allows anyone to browse and download the

code or discuss it, submit contributions, and review the code.

Availability and requirements

Project links
Sources: https://github.com/fikipollo/PySiQ

Other information
Operating system(s): Platform independent

Programming language(s): Python

License: MIT license
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Acronyms

A adenine.

AJAX asynchronous JavaScript and XML.

API application programming interface.

AS analytical sample.

ATP adenosine triphosphate.

BC biological condition.

BLAST basic local alignment search tool.

BR biological replicate.

C cytosine.

cDNA complementary DNA.

ChIP chromatin immunoprecipitation.

ChIP-seq chromatin immunoprecipitation followed by sequencing.

CLP common lymphoid progenitor.

CQN conditional quantile normalisation.
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CSS cascading style sheets.

DAO data access object.

DE differentially-expressed.

DNA deoxyribonucleic acid.

DNase-seq DNase I hypersensitive site sequencing.

DTO data transfer object.

EMS Experiment Management System.

ENCODE Encyclopaedia of DNA Elements.

FP7 7th Framework Programme.

FTP file transfer protocol.

G guanine.

GB genome browser.

GC gas chromatography.

GO Gene Ontology.

HSC hematopoietic stem cells.

HTML hypertext markup language.

HTTP hypertext transfer protocol.

ID identifier.

IGB Integrated Genome Browser.

IGV Integrative Genomics Viewer.
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IU information unit.

JDBC Java database connectivity.

JSON JavaScript object notation.

KEGG Kyoto Encyclopedia of Genes and Genomes.

KGML KEGG markup language.

LC liquid chromatography.

LIMS laboratory information and management systems.

MIAPE minimum information about a microarray experiment.

MINSEQE minimum information about a high-throughput sequencing exper-

iment.

miRNA microRNA.

miRNA-seq microRNA sequencing.

MPP multipotent progenitor.

mRNA messenger RNA.

mRNA-seq messenger RNA sequencing.

MS mass spectrometry.

MVC model-view-controller.

NGS next-generation sequencing.

NMR nuclear magnetic resonance.

PCA principal component analysis.

PEA pathway enrichment analysis.
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Acronyms

POI protein of interest.

REST representational state transfer.

RNA ribonucleic acid.

RNA-seq RNA sequencing.

RRBS-seq reduced representation bisulfite sequencing.

rRNA ribosomal RNA.

SB Systems Biology.

SMS sample management systems.

SNP single nucleotide polymorphism.

SRA Sequence Read Archive.

sRNA-seq small RNA sequencing.

SuS system under study.

SVG scalable vector graphic.

T thymine.

TF transcription factor.

TGCA The Cancer Genome Atlas.

tRNA transfer RNA.

TSS transcription start site.

U uracil.

UCSC University of California Santa Cruz.

XML extensible markup language.
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