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ABSTRACT

Aragonés, L.; López, I.; Villacampa, Y.; Serra, J.C., and Saval, J.M., 2015. New methodology for the classification of
gravel beaches: Adjusted on Alicante (Spain). Journal of Coastal Research, 31(4), 1023–1034. Coconut Creek (Florida),
ISSN 0749-0208.

In this article, a methodology is presented for the classification of gravel beaches, which can be applied internationally.
Such beaches’ defence against the energy of incoming water flow is due to their steep slopes and the high permeability of
infiltration, but that defence is reduced with increasing sand fraction. The objective of this research was to understand
the variables involved in the formation of gravel beaches, to classify them according to the distribution and position of
sediment along the transversal profile, and to obtain a discriminant function. To apply the methodology, 34 gravel
beaches in the province of Alicante, Spain, were first classified visually into five different types: Type 1: Sand and gravel
beaches, Type 2: Sand and gravel separated beaches, Type 3: Gravel and sand beaches, Type 4: Gravel and sand
separated beaches, and Type 5: Pure gravel beaches. In addition, a major study was performed to reduce the number of
variables because one of the concerns was to find the variables that characterize and classify the beaches. Thus, the 45
variables, grouped according to material characteristics, wave, boundary conditions, and geometry of the beach, were
first reduced to 25 by making comparisons among them and the type of beach and were finally reduced to 14 using the
discriminant method. Note the use of the important variable Posidonia oceanica in the Mediterranean area, which,
because of the changes produced in the swell, was actively involved in the classification. Finally, the discriminant
function obtained was validated.

ADDITIONAL INDEX WORDS: Discriminant method, variables, Posidonia oceanica.

INTRODUCTION
Gravel beaches make up a significant proportion of the

world’s coastline, being particularly widespread along the

coastlines of Northern Europe (especially Russia, the United

Kingdom, and Ireland), Canada, the United States, Japan,

New Zealand, and Latin America (Buscombe and Masselink,

2006); however, in the SE part of Spain, there is a large

extension of such beaches. Although most studies have focused

on long-term evolution (Forbes et al., 1991; Jennings et al.,

1998; Orford et al., 1995) or zoning sediments (Bluck, 1967,

1998; Orford, Forbes, and Jennings, 2002), research aimed at

short-term, morphodynamic aspects are limited to several

recent studies (Austin and Masselink, 2005; Holmes et al.,

2002; Horn et al., 2003; Pedrozo-Acuña et al., 2006). The larger

grain size of gravel beaches allows them to maintain steeper

slopes at the beachface than sandy beaches have, often

exceeding 108 (Longuet-Higgins and Parkin, 1962), leading to

a highly reflective domain, which is characterized by a

hydrodynamics and morphology that are markedly different

from those produced on sandy beaches. However, compared

with their counterparts in sand, gravel beaches have received

little attention in the coastal literature. This is partly because

gravel beaches are not as widely used, but it is also because of

the considerable logistical challenges associated with obtaining

meaningful measurements of water depths, flow velocities and

sediment flows at gravel beaches (Masselink et al., 2010).

Sediments of gravel beaches have a characteristic size and

homogeneous shape (Carter, 1988) because the physiographic

context of the development of gravel beaches is glacial and

mountain weathering (Buscombe and Masselink, 2006). There-

fore, the geographic coverage is distinctly high latitudinal;

however, there are areas where, because of their topographic

relief near the coast and the short length of their ravines or

gullies, eroded elements are deposited on beaches almost

without being decanted. However, when the same beach has

two different supply sources (rivers and gullies), the differences
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can be seen visually, put precisely that combination of sources

makes the behaviour differ from one beach to another. As is

well known, an important advantage of gravel beaches is their

ability to absorb wave energy efficiently over a short distance

because of the infiltration flow allowed on the beach. That

advantage over sandy beaches quickly disappears as the sand

fraction increases. These beaches have behaviours substan-

tially different from the gravel beaches, but there is no clear

definition of what proportion of sand is required for a beach to

be considered a mixed beach because fractions between 15 and

68% have been found (Mason and Coates, 2001).

Quick and Dyksterhuis (1994) suggested that gravel cannot

protect a beach against the attack of waves above a critical

value, so they can lose their protective function over time (Horn

and Walton, 2007). Therefore, if we can classify the different

types of gravel beaches, we can understand their performance

against wave actions. The increase in the sand fraction relative

to pure gravel beaches means beaches must be classified by the

relative position of the sand with respect to the gravel because

that position, relative to the breaking zone, makes beach

behaviour different. Several studies have classified gravel

beaches, such as (1) Pye (2001), where they were classified into

three groups: pure gravel beaches, beaches with sand in the

tidal zone, and beaches where sand and gravel coexist, or (2)

Jennings and Shulmeister (2002), whose classification included

pure gravel beaches, mixed sand and gravel beaches, and

composite gravel beaches.

On the other hand, it is well known that marine vegetation

dissipates the energy of waves and turbulence, helping to

protect the coast from erosion (Fonseca and Cahalan, 1992;

Gacia and Duarte, 2001; Ifuku and Hayashi, 1998). Moreover,

vegetation can influence coastal hydrodynamics, depending on

its size, location, density, distribution, and morphology

(Mendez and Losada, 2004). There are numerous examples

that show the importance of vegetation in shallow water, e.g.,

the protection of Posidonia oceanica meadows along the

Mediterranean coast (Gacia and Duarte, 2001), and the

dissipation of wave energy by Spartina alterniflora fields in

the British marshes (Moller, Spencert, and French, 1996;

Moller et al., 1999).

The main objective in our research was to classify the gravel

beaches of Alicante, Spain. To achieve that, 45 variables

involved in the formation of such beaches were determined.

The number of variables was then reduced, enabling us to

obtain a classification while disregarding small changes in

some variables that do not affect gravel beach behaviour. Thus,

any researcher may classify gravel beaches at any time using

the methodology proposed here. Therefore, we intended to

obtain a discriminant function that would allow us to classify

the beaches studied, employing the fewest variables, and

determining the importance of those variables within the

classification.

Study Area
The study area was located in the northern part of the

province of Alicante, Spain. The study comprised the 34 gravel

beaches found in that area (Figure 1).

Alicante is in the SE part of Spain. It has a total coastal

length of 244 km and can be morphologically divided into two

zones: (1) an area with mainly gravel beaches, ranging from the

northern boundary of the province to the Cabo de las Huertas,

Spain; and (2) a zone composed almost entirely of sandy

beaches, ranging from Cabo de las Huertas to the southern

border of the province (Figure 2).

The northern area, where the gravel beaches that were the

subject of this study are located, can be divided into two areas,

both dominated by the presence of Posidonia oceanica beds. An

area from the northern boundary to Cabo de la Nao is

dominated by limestone cliffs and ENE wave directions, with

the NE swells being the strongest. The southern region consists

of small gravel and silt cliffs and a higher frequency of waves

from the east. The wave incident along this coast is microtidal

and astronomical, with an amplitude between 20 and 30 cm

and weather that can sometimes cause waves to reach 1 m

(echo cartographic study of the provinces of Valencia and

Alicante, Spain, from the General Directorate of Coasts

[Ecolevante]).

Background
One of the first classifications of beaches was based on the

transverse distribution of the sediment and particle shape

(Bluck, 1967). Bluck (1967) identified two distinct areas,

representing high and low energies. Those two types of beach

were composed of gravel sizes ranging from�40 to�70 (16 to

128 mm) (Krumbein, 1934) and faced an intertidal rock

platform. Williams and Caldwell (1988) found that, in high

energy gravel beaches, better discrimination could be made

with a sedimentological classification using particle size

instead of shape. They showed that there was a statistically

significant difference between 10 different configurations

identified but were unable to determine the main physical

processes that controlled the evolution of the profile. Carter and

Orford (1993) suggested that there are two main types of beach

gravel based on morphology: (1) a single slope from the beach

crest to wave base, ignoring small scale bars and berms; and (2)

a slope composed of a beach ridge to the base wave, with a steep

upper intertidal zone (gravel) and a lower intertidal zone of low

Figure 1. Beach locations in the study area.
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angle (sand). These types of beaches are composed of varying

proportions of each component and different positions within

the beach (Carter and Orford, 1984). Some authors, such as Pye

(2001), used a classification that differentiated beaches by the

relative proportions and distributions of sand on the beach or

backshore and were classified as (1) pure gravel beaches; (2)

beaches with an upper foreshore and backshore of gravel and a

lower foreshore of sand; and (3) mixed-sand-and-gravel types

(mixed beaches), where no clear spatial division exists between

the sand and gravel components.

Furthermore, Masselink and Short (1993) argued that

natural beaches could be grouped into several types depending

Figure 2. (A) Southern province with flat landscapes, (B) northern area dominated by cliffs, (C) Cliffs south of Cabo de la Nao predominated by gravel and silt,

and (D) chalk cliffs north of Cabo de la Nao.
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on the height of the wave breaking (Hb), the period (T), the fall

rate of the sediments (wo), and the tidal range (TR). These four

variables were quantified by two parameters: the dimension-

less fall velocity (X ¼ Hb/woT) used by Wright et al. (1984) to

classify microtidal beaches, and the relative tidal range (RTR¼
TR/Hb). The value of the dimensionless fall velocity indicates

whether the conditions of the surf zone are reflective,

intermediate, or dissipative, whereas the relative tidal range

reflects the relative importance of surf and swash areas and the

shoaling processes. In the model proposed by Masselink and

Short (1993), there were three thresholds related to tidal range

that depend on the relative importance of the processes in the

swash, surf, and shoaling. Jennings and Shulmeister (2002)

proposed a simple classification from observing the beach,

which can be applied globally and is based on the geomorpho-

logical differences between the types of beaches. The three

types identified were pure gravel beaches, beaches of mixed

sand and gravel, and composite gravel beaches. That classifi-

cation uses 10 variables, which were ultimately reduced to six

that combined those above for the discriminant function. Those

six variables were (1) the Iribarren number (wave height and

period in deepwater and the slope of the beach), (2) beach

width, (3) the average grain size as the average of three

samples collected from beaches, (4) the height of the storm

berm, (5) the number of berms, and (6) the slope of the active

profile. One of the last classifications that took place was

conducted by Scott, Masselink, and Russell (2011) in which the

morphological, sedimentological, and hydrodynamic charac-

teristics of 92 beaches in the U.K. were collected. Using a

cluster analysis identified nine different coastal types. In

addition to traditional morphodynamic indices X and RTR, the

energy level of the absolute wave is also important in

controlling the type of beach.

As we can observe, the variables used by the authors for

classification were different, except for the wave parameters,

and, in turn, those variables present some important issues

because some of those parameters vary throughout the year,

especially the slope of the active profile, the height of the storm

berm, and the number of existing berms on the beach.

Sometimes when the beaches are short in length and are

protected with small capes, like the study area, boundary

conditions next to the coast change the swell, so the use of wave

characteristics in deep water is not appropriate.

METHODS
As a first approach, a visual classification of the 34 beaches

was conducted, and five groups were distinguished according to

the spread of sand and gravel. Thus a distinction has been made

between sandy and gravel-separated, sand and gravel, gravel

and sand, gravel and sand separate, and pure gravel beaches.

One concern of this research was to understand the

parameters that characterize and classify the beach. Therefore,

45 variables were managed for each of the 34 beaches that

comprised the study area. Those variables depended on both

the material characteristics of the beach, like the waves, and

the boundary conditions and geometry of the beach.

Sampling, cross-sections, and characterization of the waves

and measurements of each of the beaches were performed with

that in mind.

Groups of Variables
This section describes each of the variables used and a first

discrimination will be made to reduce their number and keep

those that most influence the classification of the beach, before

proceeding to the discriminant analysis. For this first reduction

a comparison of these with each of the types of beach classified

will take place, seeing if there is any relationship between them

or not (Figure 3).

Material Properties
On each beach, four samples of material were collected, three

of them in the dry zone in the N, centre, and S of the beach, and

a fourth sample in the swash zone in the centre of the beach.

From each of the samples and beaches, the following variables

were obtained:

(1) % hollow

(2) Bulk density

(3) D50, arithmetic means

(4) D50, medium weight

(5) D10, medium weight

(6) D90, medium weight

(7) Sorting (So)

(8) Skewness (Sk)

(9) Kurtosis (K)

(10) Uniformity coefficient (Cu)

(11) Coefficient of concavity (Cc)

From these parameters, D10 and D90 were chosen because the

study area consisted generally of mixed sediment beaches,

which were bimodal, and the use of standard parameters such

as the mean, sorting, skewness, and kurtosis can produce

results that have no physical meaning; e.g., if two modes are

Figure 3. Charts for a first discrimination of influential parameters in the

classification. To the left are the discarded variables: (A) percentage of

hollow, and (C) the length of the beach. To the right are the accepted

variables accepted: (B) the source (river or canyon), and (D) D50 weight.
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present, the average may fall into the gap between modalities

and, therefore, represent a fraction of size with little or no

sediment (Horn and Walton, 2007).

The weight average size D50 was also used in the classifica-

tion because it better represented all beaches than the

arithmetic mean did and because there were some primary,

unimodal beaches, such as those of Types 1 and 2 that were

better represented by the average size for D10 and D90.

Wave Characteristics
With respect to energy, different wave heights, periods,

directions, and frequencies were accounted for mainly because

most of the beaches in the study area were small or had capes

with sheltered locations against the swell, although there are

also some less-protected, extensive beaches, such as Albir beach

orParaı́s beach. The different wave heights and periods used are

(1) Swell higher frequency

a. Wave height in deep water (Ho)

b. Period (Tp)

c. Frequency

d. Direction

e. Wavelength deepwater (Lo)

(2) Swell of highest wave

a. Wave height in deep water (Ho)

b. Period (Tp)

c. Direction

d. Wavelength deepwater (Lo)

(3) Swell perpendicular to the coast

a. Wave height in deep water (Ho)

b. Breaking wave height (Hb)

c. Period (Tp)

d. Frequency

e. Direction

f. Wavelength deepwater (Lo)

(4) Depth of Posidonia oceanica

Thus, the waves chosen were those with swells perpendicular

to the coast because they were less affected by boundary

conditions. To do that, the wave height in deep water was used

to obtain the surf break from the correlation between the

Iribarren number (Iribarren Cavanilles and Nogales, 1949) and

the Surf Similarity Index (Battjes, 1974) because, as stated

above, most of the beaches were small and were protected by

capes or artificial breakwaters. The depth of Posidonia oceanica

was also included in this group, given its energy-reducing

character (Gacia and Duarte, 2001). Hence, its use will be

considered later because it is a differentiator for the beaches in

the study because it can be found in 33 of the 34 beaches.

Boundary Conditions
In this group, all those variables that depend on the

environment in which the beach is located are attached, i.e.

the origin and sources of material supply to the beach, and

morphological seabed conditions, which also influence the

energy reaching the coast and especially the transport of

sediment. These variables included the following:

(1) Modality, whether it was a unimodal or bimodal beach

because that indicates whether there were one or two

sources supplying material;

(2) Profile type: gravel, wall and diffraction–refraction

profile, gravel profile, gravel and diffraction–refraction

profile, gravel and wall profile, and slab and diffraction–

refraction profile (Figure 4);

(3) Source, according to whether the main source was a river

or ravine;

(4) Distance to the source, measured from the source to the

centre of the beach.

These variables will all be taken into account when

classifying the beaches by a simple comparison between them

and the kind of beach where some influence is seen by them

grouped according to the type of beach.

Geometry of the Beach
In the latter group are the variables that depend on the

geometry and geomorphology of the beach. This is the largest

group because the same variable can be defined in different

ways. The variables in this group included the following:

(1) Length of the beach

(2) Width of the beach

(3) Slopes

a. Swash slope, average profiles to a depth of 1–1.5 m;

b. Slope to change of the sediment;

c. Slope to the closure depth of the sediment;

d. Slope to the closure depth as described by Hallermeier

(1981);

e. Slope to the closure depth as described by Birkemeier

(1985).

(4) Berm’s characteristics

a. Height

b. Width

c. Slope

(5) Closure depth of the sediment.

(6) Profile’s length to the closure depth of the sediment.

(7) Iribarren number (Iribarren Cavanilles and Nogales,

1949).

(8) Surf Similarity Index (Battjes, 1974).

First, the length and width of beach were discarded

because for the same type of beach, there are some very

Figure 4. Schematic profile types.
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long ones with a length of more than 1 km and other very

small beaches measuring only a few metres. The same goes

for beach width. Regarding slopes, it could be observed

visually that the slope to the closure depth of sediment and

the swash slope were best at defining beach types.

Regarding the berm, the slope was chosen by directly

relating it to its height and width. Finally, the length of the

profile to the closure depth of the sediment was also used

when observing a certain relation to the type of beach.

Once compared two by two, the number of variables was

reduced to 25, and then a discriminant method was used as

a comparative and differentiating element between them.

Classification Model
Discriminant analysis has been used before to test a

predictive analysis for the classification of sandy beaches

(Wright, Short, and Green, 1985) and also for gravel

beaches (Jennings and Shulmeister, 2002). The discrimi-

nant analysis defines a linear combination of the variables

used to better differentiate the proposed groups, called

canonical functions. The maximum number of linear

canonical functions is equal to the number of groups minus

1, and they are independent of each other (Engelman,

1998). To perform this analysis, we used the SPSS program

(version 20). The statistical significance of the discriminant

analysis was tested using Wilks k multivariate statistical

analysis of variance (Engelman, 1998).

The 25 variables were used to carry out a discriminant

function that classified the 34 beaches of the study

according to their proposed types. However, the proposed

objective was to obtain a discriminant function that

provided us with the same classification but with fewer

variables. For that, variables were eliminated one by one.

and the functions were obtained to provide the same

classification, so that number could be reduced to 14

variables associated with a discriminant function classified

according to defined groups, with the final variables:

modality, D50, D10, D90, source, breaking wave height

perpendicular to the beach (Hb), period (Tp), frequency,

direction, profile type, profile’s length to the closure depth of

sediment, the berm’s slope, the depth of the Posidonia

oceanica, and the distance to the source.

Subsequently, the discriminant function was validated; it

has been used for data collected in January, March, April,

and May 2014 on five of the beaches that make up the 34

beaches studied, each of a different type. A campaign of

sampling and transverse profiles was performed. The

procedure was as follows: Three cross-sections at each

beach, N, S, and central areas, always taking the profile

from the same point, for this analysis, the bases, and the

landmarks of each beach were located. Three samples on

each of the profiles were also collected in the swash, in the

middle and on the crest of the berm. The purpose of this

gathering was to check whether there was a significant

variation of these variables because they are quite sensitive

to changes, and the intention was to see whether those

changes influenced the classification made by the discrim-

inant analysis.

RESULTS
Gravel beaches with different morphology were found all

along the area of Alicante coastline studied, and five groups

could be distinguished (Figure 5). These groups can be

distinguished generally as mixed beaches (type 1 to type 4)

and pure gravel beaches (type 5). The five groups are described

below.

Type 1 Beaches: Sand and Gravel
Sand and gravel are mixed beaches, where the materials are

mixed more or less along the entire beach, but where the

proportion of sand is much greater than the proportion of

gravel. They are usually unimodal beaches whose material

comes from both rivers and ravines and has the following

diameters: D10 , 15 mm, D50 , 20 mm, and D90 between 15 and

50 mm.

Type 2 Beaches: Sand and Gravel Separated
Sand and gravel separated are those in which a clear

separation exists between the gravel area and the sand area,

which lies in the swash zone, and the sand proportion is far

greater than that the gravel proportion. These beaches are also

usually unimodal; however, in this case, the material comes

exclusively from rivers, and the sizes are D10 , 5 mm, D50 ,10

mm, and D90 , 40 mm.

Type 3 Beaches: Gravel and Sand
Gravel and sand beaches are the opposite of type 1 beaches,

although, in this case, the materials are also mixed at the

beach, but the gravel ratio is much higher. These beaches are

the only ones that are unimodal, and their materials come from

ravines, with a D10 between 5 and 35 mm, a D50 between 20 and

35 mm, and D90 between 40 and 85 mm.

Type 4 Beaches: Gravel and Sand separated
Gravel and sand separated beaches are the last case in sand

is found on the beach and is distinguished by a clear separation

between the two materials, with the fraction of gravel being in

the area of the seashore and the sand fraction in the interior

region. These beaches are strongly bimodal with material from

ravines. Its characteristic diameters are D10 , 15 mm, D50

between 5 and 25 mm, and D90 between 40 and 80 mm.

Type 5 Beaches: Pure Gravel
Finally, pure gravel beaches are, as the name suggests, only

gravel, which is found along the entire beach. These beaches,

like type 4 beaches, are generally bimodal, differentiating

themselves by the absence of sand, leading to differences in the

diameters of the sediment. As expected, diameters are larger

than those of type 4 beaches, being D10 , 25 mm, D50 , 70 mm,

and D90 between 10 and 90 mm.

From the discriminant analysis, we can see that the value of

Wilks k and v2 tests show that substantial differences can be

observed among the groups. According to Noruešis (2011),

Wilks k values close to one indicate a strong resemblance

among the groups, whereas values close to zero indicate a

difference among them. Furthermore, the transformed value

(v2 test) is associated, e.g., for case 1, with 56 degrees of

freedom, the critical level (Sig) is 0.001 (Table 1), so we reject

the null hypothesis that the groups being compared have

averages equal in the discriminant variables.
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The discriminant functions show the contribution of each

variable to the discrimination among each group. As shown

in Table 2, wave frequency, the source, the slope of the

berm, and modality are the most influential parameters in

the classification. Finally, we can see how the discriminant

analysis correctly classified 100% of the original cases

(Table 3).

From the coefficients in Table 2, the discriminant function as

a linear combination of the various variables is harvested, as

follows:

Figure 5. Types of classified beaches: (A) Tio Roig beach (type 1), (B) Bonnou beach (type 2), (C) Cap Negret beach (type 3), (D) Roda beach (type 4), and (E)

Carritxal beach (type 5).
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�0:050 3 D50 � 0:737 3 M þ 0:019 3 D90 þ 0:021 3 D10

þ 0:394 3 Hb þ 0:152 3 Tp þ 4:090 3 F þ 0:466 3 D
þ 0:461 3 TPrþ 2:7853 3 Sþ 0:001 3 DSþ 0:003 3 PL
þ 1:244 3 BSþ 0:005 3 P� 11:067 ð1Þ

where M is modality: (1) unimodal, and (2) bimodal; F is

frequency; D is direction: (1) N, (2) NNE, (3) NE, (4) ENE, (5)

E, (6) ESE, (7) SE, (8) SSE, (9) S, (10) SSW, (11) SW, and (12)

WSW; TPr is type of profile: (1) gravel profile wall and

diffraction–refraction, (2) gravel profile, (3) gravel and

diffraction–refraction profile, (4) gravel and wall profile, (5)

slab and diffraction–refraction profile; S is source: (1) ravine,

and (2) river; DS is distance to the source; PL is profile length;

BS is the berm slope; and P is the depth of Posidonia

oceanica.

Figure 6 shows the values of the canonical functions for the

first and the second functions, which represent 57.6% and

25.7% of the variance, respectively. Figure 6 shows there is

good discrimination between the five groups of gravel beaches.

In Figure 6, group 3 could be included in group 4; however, that

is because only function 1 and function 2 are represented

because of the difficulty of representing the four canonical

functions in the same figure.

Furthermore, the results of the data collection from the five

beaches that characterize the model during the months of

January to May 2014 can be seen in Table 4. Significant

changes in the parameters can be seen; in fact, if we classify the

form of breaking through the Iribarren number, it shows how

much it varies from one month to another. In addition, the

average diameter changed from 7.87 mm in January to 0.849

mm in May, but reached 31.95 mm in March on the Torres

beach (Table 5).

Thus, using the SPSS programme, ground truthing of the

new variables was validated on the beaches (Figure 6), and all

beaches coincided, except the Almadraba beach, which in any

case was classified as type five, a pure gravel beach.

DISCUSSION
The result of the discriminant analysis confirmed the

assumption made that there are five types of gravel beaches,

and also indicated that they were statistically different, given

that these five types of beaches show considerable morpholog-

ical difference; depending on the frequency of the waves; the

main supply source (river or ravine), the berm slope; the

modality of the samples; the wave direction; the type profile;

the normal break wave height to the beach and its correspond-

ing period; the diameters D50, D90, and D10; the depth of

Posidonia oceanica; the profile length to the closure depth of

sediment; as well as the distance to the source. Because these

beaches are morphologically distinct, presumably the processes

that occur in them are also different (Wright et al., 1984).

Table 1. Statistical data of the discriminant analysis.

Contrast

Functions Wilks k v2 Test

Degrees of

Freedom Significance

1–4 0.018 94.25 56 0.001

2–4 0.108 52.40 39 0.074

3–4 0.344 25.09 24 0.401

4 0.661 9.73 11 0.555

Table 2. Coefficients of canonical discriminant functions (nonstandardized

coefficients).

Function

1 2 3 4

D50 (mm) �0.050 �0.098 �0.104 0.029

Modality (unimodal or bimodal) �0.737 0.327 �1.218 �0.850

D90 (mm) 0.019 0.039 0.080 �0.034

D10 (mm) 0.021 0.116 0.130 0.049

Hb (m) 0.394 �0.605 0.414 0.314

Tp (s) 0.152 �0.058 �0.199 0.393

Frequency (8/1) 4.090 3.099 �1.777 0.152

Direction 0.466 �0.411 �0.350 0.440

Profile type 0.461 0.689 �0.986 �0.044

Source (river or ravine) 2.785 �0.218 1.187 �0.016

Distance to the source (m) 0.001 0.000 0.000 �0.001

Profile length (m) 0.003 0.009 0.003 �0.001

Berm slope 1.244 0.092 0.338 �6.155

Depth of Posidonia oceanica (m) 0.005 �0.001 0.003 �0.002

(Constant) �11.067 0.720 2.453 �3.572

Table 3. Classification results of the discriminant analysis.

Classification

Predicted Group Membership

Total1 2 3 4 5

Count

1 8 0 0 0 0 8

2 0 6 0 0 0 6

3 0 0 5 0 0 5

4 0 0 0 5 0 5

5 0 0 0 0 10 10

%

1 100.0 0.0 0.0 0.0 0.0 100.0

2 0.0 100.0 0.0 0.0 0.0 100.0

3 0.0 0.0 100.0 0.0 0.0 100.0

4 0.0 0.0 0.0 100.0 0.0 100.0

5 0.0 0.0 0.0 0.0 100.0 100.0

Figure 6. Representation of the first two canonical functions, which explain

57.6% and 25.7% of the variance. Ellipses delimit the approximate

correspondence group, acquiring a good discriminant function. The

validation cases are shown as open circles.
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Based on these results, a model that differentiates between

different types of gravel beaches has been developed and

presented using the 14 variables listed above, which mainly

depend on the morphology, particle size, and dynamics of the

beach. The five proposed types of beaches are (1) sand and

gravel, (2) sand and gravel separated, (3) gravel and sand, (4)

gravel and sand separated, and (5) pure gravel beaches.

The advantage of this classification with respect to other

classifications found in the literature is mainly due to the ease

of obtaining the various variables. When using the other

classifications, doubts can arise about how to determine some of

the variables, e.g., between which points the slope of the beach

can be determined or how and where to obtain the wave height

at breaking. Moreover, most of the beaches in the other

classifications were very wide and long (Jennings and

Shulmeister, 2002; Pye, 2001; Scott, Masselink, and Russell,

2011), and therefore, do not account for, or are not affected by,

reflection or by diffraction, which occur when beaches are well

protected.

It has often been assumed that gravel beaches have a high

permeability (Bluck, 1967). This assumption implies that the

levels of infiltration into gravel beaches is enough to cause the

transport of sediments to the predominant land mass; however,

the study by Mason et al. (1997) showed that in mixed beaches,

despite the open structure of the gravel surface, the behaviour

of the water was controlled by the sand layer. Moreover, the

sand content significantly changes the slope of the beach and,

therefore, the reflective nature of it (Sherman, Orford, and

Carter, 1993). Hence, the importance of dividing the mixed

beaches into four different groups, depending on the composi-

tion of the beach in the surf zone is necessary because the

behaviour of each type of beach will be different during storms

(Masselink et al., 2010; Masselink and Turner, 2012) and will

be different in its type of wave breaking. For example, a type 2

beach will behave more like a sandy beach because the surf

zone consists mainly of sand; however, type 4 beaches will

behave like pure gravel beaches. As for types 1 and 3, because

their surf zones consist of mixed sand and gravel, their

behaviour will be different from beaches of types 2, 4, and 5

and will depend on the amount of sand the beach contains. That

is why it was decided to classify beaches into five groups,

instead of three (e.g., Jennings and Shulmeister, 2002). As

mentioned, the importance of separating the beaches into these

types is due to the different behaviour they present against

storms, because, as many authors suggest (Bakhtyar et al.,

2009; Horn, 2002; Masselink and Turner, 2012), the higher the

gravel content, the better is the behaviour against erosion

because wave reflection occurs and the infiltration reduces the

erosion of the beach; so, we believe it is important to classify the

beaches in these five groups.

On the other hand, as is known, the characteristics of the

beaches vary throughout the year, mainly a change in slope

and grain size, which can cause their permeability and hence

their hydrodynamic behaviour to change at any given time,

which begs the question, is it correct to classify beaches in

response to variables, such as grain size or slope?

The answer to that question is partially answered with the

results from our discriminant validation because, as shown,

modifying the corresponding variables from one month to

another did not change the classification, except for the

Almadraba beach.

The failure in the classification of Almadraba is due to its

special characteristics, and if the beach is studied in more

detail, by looking, e.g., at its location and distribution of

material along the beach, the beach has two very different

orientations, which makes the distribution of material

throughout its length very different, finding very thick

materials (boulders) in the south and sands in the north

(Figure 7). Almadraba is also a beach that accumulates a lot of

Posidonia oceanica, which makes it difficult to obtain slope

data during the months of January, April, and May, to the

point of not being able to obtain samples of material for sieve

tests in April.

Table 4. Iribarren number for months.

Beach January March April May

El Torres 2.16 Plunging 1.74 Plunging 3.09 Collapsing 3.09 Collapsing

Paraı́s 1.14 Plunging 1.21 Plunging 1.55 Plunging 1.55 Plunging

Barranc d’Aigües 3.46 Surging 4.69 Surging 6.23 Surging 6.23 Surging

Amerador 3.61 Surging 3.04 Collapsing 1.97 Plunging 1.97 Plunging

Almadraba 0.85 Plunging 1.11 Plunging 2.10 Plunging 2.10 Plunging

Table 5. Parameters of the beaches studied variables for discriminant

validation.

Beach El Torres Paraı́s

Barranc

d’Aigües Amerador Almadraba

2006

D50 (mm) 9.305 1.725 26.910 31.940 14.450

D90 (mm) 39.595 12.498 52.886 83.353 44.196

D10 (mm) 2.222 0.596 3.849 11.580 0.152

Slope 0.260 0.220 0.160 0.230 0.460

January

D50 (mm) 16.269 21.286 38.365 23.152 24.329

D90 (mm) 51.403 78.643 58.082 59.960 50.960

D10 (mm) 1.448 0.580 12.214 2.308 0.219

Slope 0.125 0.110 0.305 0.317 0.156

March

D50 (mm) 18.627 8.052 21.586 32.614 28.446

D90 (mm) 51.706 39.111 39.191 68.264 56.170

D10 (mm) 0.734 0.424 1.113 2.955 0.199

Slope 0.205 0.138 0.374 0.121 0.154

April

D50 (mm) 13.559 20.571 26.091 15.428 0.251

D90 (mm) 26.442 51.523 43.765 41.571 3.170

D10 (mm) 1.655 2.279 8.322 1.884 0.138

Slope 0.220 0.105 0.606 0.068 0.212

May

D50 (mm) 12.733 18.761 25.893 20.500 0.374

D90 (mm) 44.648 49.989 43.952 55.344 9.528

D10 (mm) 0.514 1.242 0.895 1.816 0.150

Slope 0.130 0.134 0.199 0.105 0.139
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Because the classification of the beaches studied in the

validation was not compromised by the variation of D50, D90,

D10, and the slope of the berm, which, as mentioned are very

sensitive to changes in the beach, the classification is mainly

due to the weight of those variables within the canonical

discriminant function. As shown in Table 2, the values

assigned to those variables are�0.05, 0.019, 0.021, and 1.244,

respectively. The values are quite low compared with the 4.090

of the wave frequency or 2.785 of the source. Furthermore,

because the classification of the beaches validated did not

change during the winter months, when wave heights are

higher from storms, the classification can be maintained

throughout the year.

Finally, using the depth of Posidonia oceanica has not, to our

knowledge, been used in any other classifications; however, it is

an important data input, especially along the Mediterranean

coast, where its presence is especially important. The use of

this variable is shown when performing the discriminant

analysis because it supposes that all beaches were correctly

classified visually or, on the contrary, that six of the beaches

were incorrectly classified, leading to a margin of error of

17.6%. This shows that the presence of Posidonia oceanica is

important during the classification of beaches because its

presence changes the energy of the incident wave and,

therefore, the characteristics of the beach are influenced by it.

The methodology proposed in this article should be valid for

any point worldwide. However, the variables in the corre-

sponding area would need to be studied to determine whether

the coefficients of the canonical functions obtained here were

still valid or whether new ones would be needed, following the

methodology proposed here.

CONCLUSIONS
The model presented in this article allows the classification of

gravel beaches in Alicante, Spain, into five different types,

namely: type 1: sand and gravel beaches, type 2: sand and

gravel separated beaches; type 3: gravel and sand beaches; type

4: gravel and sand separated beaches; and type 5: pure gravel

beaches. Forty-five variables involved in the formation of these

types of beaches were used. Subsequently, the number of

variables was reduced using two methods; in the first,

comparisons were made two by two between the classification

and the variable, and in the other, a discriminant function was

used that classified the beaches under the proposed model. This

has reduced the variables that describe the characteristics of

these beaches to 14.

To these 14 variables, the depth of the Posidonia oceanica

was added, previously unused in the classification of beaches.

This variable has been proved important with an error of 17.6%

in classification being observed in its absence.

A validation of the discriminant function has also been

performed using data from five beaches obtained between the

months of January and May 2014. That validation used very

different values for sediment size and berm slope and still

provided correct classifications, which indicate that, although

these variables are dependent on the time when the data are

determined, their influence within the discriminant function is

not large enough to change the classification, which remains

the same throughout the year.

Therefore, the method described here can be used to classify

gravel beaches anywhere in the world, simply, using variables

requiring basic measurements and verifying the validity of the

coefficients of the canonical function that beach behaviour and

Figure 7. Almadraba Beach: (A) north, where sand predominates, and (B) south, where boulders predominate.
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its ability to absorb the energy of waves depends largely on the

fraction of sand within its composition, so that the beach

management of maintenance and protection are different from

one type of beach to another.

Because of the complexity of these types of beaches, the

number of variables used to describe them should be such that

small changes do not change the model or type of beach studied,

which is why the study of the number and types of variables

used and their validation is important.
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