Índice general

Indice general						
Ín	dice	de fig	uras	v		
Ín	dice	de tab	olas	XIV		
Li	ista d	le síml	polos	XV		
1	Plai	nteami	iento de la tesis	1		
	1.1.	Introd	lucción	. 1		
	1.2.		edentes			
	1.3.	Objeti	ivos	. 4		
	1.4.		ctura de la tesis			
2	Fun	damer	ntos del proceso de inyección	13		
	2.1.	Introd	lucción	. 13		
	2.2.	Sisten	nas de inyección diésel	. 14		
		2.2.1.	Sistemas de inyección directa en motores diésel	. 15		
		2.2.2.	El sistema common-rail	. 17		
		2.2.3.	Inyectores common-rail	. 19		
	2.3.	Flujo	interno en toberas de inyección diésel	. 22		
		2.3.1.	Toberas de inyección diésel	. 23		
		2.3.2.	Características del flujo interno			
		2.3.3.				
		2.3.4.	El fenómeno de la cavitación	. 35		

		2.3.5.	Estudios computacionales sobre el flujo interno en tobe-
			ras diésel
	2.4.	Chorre	o diésel
		2.4.1.	El proceso de atomización
		2.4.2.	El proceso de evaporación
		2.4.3.	Características macroscópicas del chorro diésel 53
		2.4.4.	Características microscópicas del chorro diésel 58
		2.4.5.	Estudios computacionales del chorro diésel 61
	2.5.	Gasóle	eo
		2.5.1.	Contexto actual
		2.5.2.	Propiedades físico-químicas del gasóleo 67
	Refe	rencias	
3	Téc	nicas e	experimentales 89
	3.1.	Introd	ucción
	3.2.	Caract	terización geométrica de las toberas 90
		3.2.1.	Obtención del molde de silicona 90
		3.2.2.	Visualización del molde mediante microscopía electróni-
			ca de barrido
	3.3.	Caract	terización hidráulica del flujo interno
		3.3.1.	Medición de la tasa de inyección
		3.3.2.	Medición del flujo de cantidad de movimiento 95
	3.4.	Visual	ización del chorro diésel
		3.4.1.	Instalación de alta presión y alta temperatura 97
		3.4.2.	Técnica de Mie Scattering
		3.4.3.	Técnica de Schlieren
		3.4.4.	Procesado de las imágenes
	Refe		
4	Met	odolog	gía computacional 107
		_	ucción
	4.2.		iones de Navier-Stokes
		4.2.1.	
		4.2.2.	
			Ecuación de conservación de la energía 109
	4.3.		ado de la turbulencia
	4.4.		ado del chorro
		4.4.1.	
		4.4.2.	
			Modelos de colisión y coalescencia

		4.4.4.	Modelos de evaporación	122
		4.4.5.	Modelos de dispersión turbulenta	123
	4.5.	Refina	miento adaptativo de la malla	125
	Refe	rencias		127
5	Aná	alisis de	e resultados	131
	5.1.	Introd	ucción	131
	5.2.	Anális	is de resultados experimentales	132
		5.2.1.	Caracterización geométrica de las toberas	133
		5.2.2.	Caracterización hidráulica	135
		5.2.3.	Visualización del chorro diésel	143
	5.3.	Estudi	o computacional del flujo interno con CONVERGE	151
		5.3.1.	Estudio de independencia de la malla	152
		5.3.2.	Validación del código en condiciones estacionarias	154
		5.3.3.	Simulación del transitorio: Ley de levantamiento de la	
			aguja	154
		5.3.4.	Resultado de la simulación del transitorio	156
		5.3.5.	Evaluación de la velocidad de inyección en el transitorio	
			de apertura y cierre	164
	5.4.	Simula	ación del chorro diésel	166
		5.4.1.	Dominio computacional	166
		5.4.2.	Refinamiento de malla adaptativo (AMR)	168
		5.4.3.	Sensibilidad a parámetros numéricos	171
		5.4.4.	Sensibilidad a parámetros físicos del chorro	173
		5.4.5.	Estudio estadístico	177
		5.4.6.	Optimización	183
		5.4.7.	Validación del proceso de optimización con otros inyec-	
			tores y comparación	184
			Análisis de la variación del parámetro C_{RT}	
	Refe	rencias		189
6			nes y desarrollos futuros	191
	6.1.	Conclu	usiones	191
	6.2.	Desarr	rollos futuros	194
Bi	bliog	grafía		197
\mathbf{A}	Apé	endice		221
	A.1.	Tasa d	le inyección - Comparación entre inyectores	221
	A.2.	Flujo d	de cantidad de movimiento	231
	A.3.	Visual	ización del chorro diésel	234

	A.3.1. Bosch CRI2.18	234
	A.3.2. Bosch CRI2.22	240
	A.3.3. Delphi DFI4	244
A.4.	Sensibilidad a parámetros numéricos	248
A.5.	Sensibilidad a parámetros físicos del chorro	256
A.6.	Diseño de experimentos y estudio de análisis de la varianza	
	(ANOVA)	275
A.7.	ANOVA	275
A.8.	Diseño de experimentos	279
Refe	rencias	280