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Resumen 
Con los rápidos avances en Realidad Virtual y Realidad Aumentada en los últimos 

años, y el enfoque de las grandes compañías en estas tecnologías, es crucial que su 

potencial y sus nuevas aplicaciones se evalúen mientras todavía están creciendo. Este 

trabajo resume la evolución de las tecnologías de Realidad Virtual y Realidad 

Aumentada y sus aplicaciones a lo largo de los años, y explora aplicaciones potenciales 

que no se han discutido ampliamente. 

Proponemos un sistema que combina las tecnologías de Realidad Virtual y Realidad 

Aumentada, en una experiencia de Virtualidad Aumentada. Se pilotará un vehículo 

volador en un entorno controlado, que podría estar capturando video con una cámara 

montada. Mientras tanto, un usuario está inmerso en una copia virtual del entorno real 

gracias a la Realidad Virtual. Las tecnologías de realidad aumentada pueden usar la 

transmisión de video desde el entorno real para aumentar el entorno virtual en tiempo 

real con objetos predeterminados. 

El sistema se divide en tres módulos: un módulo de simulación creado en Unity3D, 

que se encarga del entorno virtual y la realidad virtual. Un módulo de seguimiento de 

drones, que rastrea un dron usando la captura de movimiento basada en el marcador 

OptiTrack. Finalmente, un módulo de seguimiento de objetos, que rastrea objetos de un 

video con una técnica de seguimiento sin marcadores con modelo, basada en ORB y 

PnP. 

La integración de los diferentes módulos fue exitosa, y la aplicación final puede 

aumentar el entorno de Unity en tiempo real al rastrear el dron y colocarlo en una 

versión virtual del entorno, y ubicar los objetos rastreados correctamente en el entorno. 

Se diseñó un esquema de controles intuitivo, un sistema extensible y un entorno de 

trabajo personalizable. El resultado es una interfaz intuitiva para la navegación 

espacial, que podría ampliarse para aceptar múltiples fuentes, información térmica / IR 

o incluso generar el entorno dinámicamente con SLAM. 

 

 

 

 

 

 

Palabras clave: Realidad Virtual, Realidad Aumentada, Virtualidad Aumentada, 

Telepresencia, Navegación, Tracking por marcadores, Tracking sin marcadores, 

Estimación de pose 3D 
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Abstract 
With the rapid advancements in Virtual Reality and Augmented Reality in the recent 

years, and the focus of big companies on these technologies, it is crucial that their 

potential and new applications are assessed while they are still growing. This thesis 

summarises the evolution of Virtual Reality and Augmented Reality technologies and 

their applications throughout the years, and explores potential applications that have 

not been extensively discussed. 

We propose a system that mixes Virtual Reality and Augmented Reality technologies, 

into an Augmented Virtuality experience. A flying vehicle is being piloted in a 

controlled environment, which could be capturing a video feed with a mounted camera. 

Meanwhile, a user is immersed into a virtual copy of the real environment thanks to 

Virtual Reality. Augmented Reality technologies can use the video feed from the real 

environment to augment the virtual environment in real time with predetermined 

objects. 

The system is divided in three modules: a simulation module made in Unity3D, which 

supports the virtual environment and Virtual Reality. A drone tracking module, which 

tracks a drone using OptiTrack marker-based motion capture. Finally, an object 

tracking module, which tracks objects from a simulated video feed with model-based 

markerless tracking technique based on ORB and PnP. 

Integration of the different modules was successful, and the final application is able to 

augment the Unity environment in real time by tracking the drone and placing it in a 

virtual version of the environment, and placing tracked objects correctly in the 

environment. An intuitive control scheme, extensible system and customizable 

framework were built. The result is an intuitive interface for spatial navigation, which 

could be extended to accept multiple sources, thermal/IR information, or even 

generating the environment dynamically with SLAM. 

 

 

 

 

 

Keywords : Virtual Reality, Augmented Reality, Augmented Virtuality, Telepresence, 

Navigation, Marker-based tracking, Markerless tracking, 3D pose estimation 
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1. Introduction 
 

In recent years, there has been a surge in advancements in the fields of Augmented 

Reality (AR) and more notably, Virtual Reality (VR). Such are the improvements that in 

2016, head-mounted displays (HMD) and VR set-ups have become commercially 

available worldwide at affordable prices, for the first time. Leading companies are 

shifting their focus towards integrating their technologies into the world that surrounds 

us, and exploiting the physical world to create interactions never seen before. 

With these advancements also come new opportunities to exploit them, and to find how 

these technologies fit into our current procedures and workspaces. For many years, the 

aviation industry has been using virtual reality and CAVE set-ups to train pilots in flight 

tasks. More recently, the medical industry has started to adopt augmented reality and 

virtual reality technologies for educational purposes, in order to teach interns and 

resident doctors. 

  

Figure 1 - CAVE and Augmented Reality in aerospace and medicine 

Since AR and VR have now become the center of attention of many drivers of 

development, it is critical that we explore the potential and applications of these 

technologies while they are growing. 

This thesis will focus on exploring and bringing forward applications of the mix of 

Virtual Reality and Augmented Reality technologies, in the form of what is called 

Augmented Virtuality (AV). We will explore the potential of an interface based on these 

technologies, build and analyse a system that exploits them, and discuss the extensions 

that can be made into different fields of research. 

Originally, the motivation of this thesis was born out of a similar project by Louis-

Pierre Bergé at Cranfield University, which involved using VR to examine point cloud 

data. Building on this idea, and its effectiveness, this thesis aims to show the potential 

of these technologies in applications tied to the real world. 

We will first have a look at the advancements and applications of Virtual Reality, 

Augmented Reality, and surrounding technologies during the years. Then, a definition 

of a system exploiting these technologies will be given, with a set of constraints and 

targets. Afterwards, the methodology for implementing the system will be presented, 

with a detailed run-down of the different components. Following the methodology, we 
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will present the results given by the system, discuss whether the established goals were 

met, and accentuate the weaknesses of the system in place. Finally, we will give a short 

discussion about the possible extensions and applications of the presented system, and 

the alternative technologies that could help improve it. 
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2. Literature Review 
 

In this section, we will describe the background surrounding this thesis, and the 

research behind the key components of the developed application. The different 

approaches to the technologies used, as well as their applications are described in the 

following segment.  

Virtual Reality 
 

Virtual Reality (VR) is an increasingly used medium for telepresence, with many 

applications ranging from the academic to entertainment [1]. The term itself was first 

coined in 1989 by Jaron Lanier of VPL Research, Inc., a pioneer in the 

commercialisation of VR technologies [2]. A general definition of VR was given by 

Jonathan Steuer in 1992, where he states: “A virtual reality is defined as a real or 

simulated environment in which a perceiver experiences telepresence.” [3]. 

Telepresence can be understood as “enabl[ing] people physically located in [a] host 

location to behave and receive stimuli as though at a remote site” [4]. However, this is 

not exactly what VR is trying to achieve. A more appropriate term would be “virtual 

presence”, which is similar to telepresence, but states that the remote site is exclusively 

virtual [5]. Thus, we understand VR as “a … simulated environment in which a 

perceiver experiences [virtual presence]”. 

Virtual presence can be achieved by providing different kinds of sensory information, 

but the main focus of research around VR devices throughout the years has been visual 

information. The most common and understood form of VR is with the use of Head-

mounted displays (HMD), which track the user’s head to display a scene at different 

angles through lenses placed in front of the user’s eyes, providing stereo vision. 

However, virtual presence also requires the user to be able to interact with the 

simulated environment in order to create a strong sense of presence, and to provide 

useful applications. The main interaction channels used by humans are locomotion and 

manipulation, and thus, it is key to read these user inputs in some way [1]. Through the 

use of body-suits which capture the user’s movements, holding tracked devices on each 

hand, or head-mounted computer vision, this input is nowadays readily available. 

The concept of Virtual Reality as we know it goes back at least to 1935, with Stanley G. 

Weinbaum's short story "Pygmalion's Spectacles" [6]. This was one of the first 

references to HMD-based VR, showing partial sensory immersion into a virtual world. 

Ever since, there have been many attempts and reformulations of VR, such as the 

Heilig’s Sensorama [7] and Sutherland’s “Ultimate Display” [8], the latter being 

considered the first VR HMD. 

While some of these approaches were conceived with entertainment purposes in mind, 

Sutherland was also one of the first in describing the potential of VR in an academic 

background in 1965 [9]. In this short paper he describes how VR can be used to analyse 

and gain familiarity with new concepts and behaviours. However, before this “Ultimate 
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Display”, Philco had also experimented with HMDs based on magnetic tracking [10], as 

opposed to Sutherland’s mechanical approach. This system was used to monitor 

another room with a live video feed from a camera, which would move according to the 

user user’s head. Although this technology cannot be called VR by the previous 

definition; which distinguishes telepresence and virtual presence; it is one of the first to 

show that HMD-based technologies offer potential beyond entertainment. It is our task 

to see just how far this potential can extend. 

Nowadays, commercial devices like the Oculus Rift [11] and HTC Vive [12] offer HMD-

based VR with visual and auditory immersion, as well as locomotive interaction. As the 

production costs of the technology are decreasing and the hardware is becoming more 

accessible, it is now possible to quickly find and test new applications for the 

technology. We can find applications related to training personnel in a controlled 

environment. In the aviation field, flight simulations are carried out to train pilots 

without any danger with high degrees of fidelity [13]. In the medical field, VR is also 

being widely used for anatomy education, due to its interactivity, intuitiveness and non-

intrusiveness [14]. Similar to pilot training, surgical training in VR also offers a wide 

variety of advantages, like greater skill transfer than standard training [15] and box-

training [16], and non-intrusiveness following the Minimally-Intrusive Surgery (MIS) 

philosophy. There are further applications outside training personnel, like acting as a 

better visualisation interface for 3D animation and modelling programs [17], or 

improved visual feedback from real-world robots requiring teleoperation [18]. Using 

VR not only as a platform to lead detailed simulations, but as a tool to offer more 

natural spatial understanding, has been heavily discussed and is one of the main 

potentials for applications of VR as of now. 

Augmented Reality 
 

With the steady increase in computational power of everyday devices, and the 

improvements on computer vision techniques, Augmented Reality (AR) has become 

much more accessible in the recent years. AR can be defined as 

“[A]ny system that has the following three characteristics: 

1. Combines real and virtual 

2. Is interactive in real time 

3. Is registered in three dimensions” [19]. 

In general, visual-based Augmented Reality systems understand real-world geometry 

and overlay geometrically dependent information on it; whether it is a 3D model of an 

object or text information; and allows the user to examine that environment in real 

time. However, this is not restricted to sight only, and just like VR, it can apply to other 

senses like hearing or smell. It is seen as capable of “enhanc[ing] a user’s perception of 

and interaction with the real world.” [19]. VR and AR have grown together in the last 

years, however AR has gotten a head-start due to the affordability of the required 

hardware. 
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Ivan Sutherland’s “Ultimate Display” [8] is not only one of the first advances in VR and 

HMDs, but also the first in AR prototypes due to its see-through nature. A survey by 

D.W.F. van Krevelen and  R. Poelman from 2010 describes the different AR supports 

and technologies available, as well as giving a brief history of the AR advances since 

Sutherland’s first prototypes [20]. In the same paper, the numerous applications of AR 

that have already been proven to be of interest are described. Such applications involve 

personal assistance and advertising, spatial navigation, industrial design, maintenance, 

simulation, medical applications, games, education and training. 

Rabbi and Ullah [21] classify current challenges of AR in five categories: performance, 

alignment, interaction, mobility and visualization. Performance challenges refer to the 

processing time of the system, with metrics such as frame rate and frame time, delay, 

CPU load, memory usage. Many factors are involved in this such as 3D model 

complexity and tracking methods used, as discussed by Wagner and Schmalstieg in 

2009 on mobile phones as a potential platform [22]. Alignment challenges refer to 

proper placement of virtual objects with respect to the real world. If errors happen 

during the alignment phase, information will be incorrectly rendered, which can be 

dangerous in critical applications like the medical field [21]. Because of this, calibration 

and correct registration must be ensured. Interaction challenges look at the different 

interaction methods between the user and the augmented environment. While in this 

research we will not be concerned with this since interaction will be made through VR 

equipment, they are problems that still need to be taken into account nowadays. 

Mobility challenges involve the portability of the AR system, which we will also not be 

concerned with ourselves too in depth. We will however look at the expandability of the 

system and show possible extensions. Lastly, visualization challenges refer to the 

problems arising when trying to display the visual information to the user. We are not 

only talking about contrast, resolution and other characteristics intrinsic to the images, 

but also problems like occlusion in particular [23]. 

Markerless Tracking 
 

To bring Augmented Reality to life, and to solve some of the usability challenges 

presented by it, markerless tracking is a very active field of research as of now. 

Markerless tracking involves the correct alignment of 3D objects on the real 

environment without the need of any markers placed on the real scene, as opposed to 

marker-based tracking, which uses easy to detect markers to infer geometry from the 

real world [24]. Markerless tracking can deal with scenes never visited before, and does 

not require physically altering the scene, or the object to be tracked with some kind of 

special marker. Generally, markerless tracking imposes many less restrictions than its 

counterpart. However, this comes at the cost of increasing the complexity of the 

problem and its computational cost. We will see the theory behind markerless tracking 

and show different approaches in literature to solve the problem. 
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Mathematical background 
 

 

Figure 2 - Perspective camera model, from the OpenCV documentation 

To better understand the requirements of tracking a 3-dimensional object from a 2-

dimensional image, we have to assume a model for the camera to use. Generally we 

assume a perspective camera model, as shown in Figure 2. 

We first distinguish between the world coordinate system (𝑤𝑥 , 𝑤𝑦, 𝑤𝑧), and the camera 

coordinate system (𝑐𝑥 , 𝑐𝑦, 𝑐𝑧), which are corresponding after a rotation and translation 

transform. Such transforms are represented in the rotation 𝑅3×3 and translation 𝑡3×1 

matrices, and the transformation equation from 𝑤 to 𝑐 can be seen in equation (0-1). 

[

𝑐𝑥
𝑐𝑦
𝑐𝑧
] = [

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

]
⏟          

𝑅3×3

[

𝑤𝑥
𝑤𝑦
𝑤𝑧
] + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]
⏟
𝑡3×1

 
(0-1) 

By composition we describe this operation from 𝑤 to 𝑐 with the [𝑅|𝑡]3×4 matrix, which 

reduces the equation to the following expression: 

[

𝑐𝑥
𝑐𝑦
𝑐𝑧
] = [

𝑅11 𝑅12 𝑅13 𝑡𝑥
𝑅21 𝑅22 𝑅23 𝑡𝑦
𝑅31 𝑅32 𝑅33 𝑡𝑧

]

⏟              
[𝑅|𝑡]3×4

[

𝑤𝑥
𝑤𝑦
𝑤𝑧
1

] 
(0-2) 

With this transformation, we can represent points from the world coordinate system in 

the camera coordinate system before projecting them onto the camera plane. 
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Figure 3 - Projection from 3D coordinates to camera plane (Lima et al. [25]) 

A point in the camera coordinate system (𝑥, 𝑦, 𝑧) corresponds to a point (𝑢, 𝑣) in the 

camera plane. The camera plane is described by the following values: 

• 𝑓 – focal length of the camera 

• (𝑢0, 𝑣0, 𝑓) – camera plane center in camera coordinate system 

• (𝑝𝑤 , 𝑝ℎ) – pixel width and height 

This is shown in Figure 3, from which we can also infer the perspective projection 

conditions: 

𝑢 =
𝑥

𝑧
𝑓 + 𝑢0 (0-3) 

𝑣 =
𝑦

𝑧
𝑓 + 𝑣0 (0-4) 

However, knowing that pixels are not points but well-defined rectangles with pixel 

width 𝑝𝑤 and pixel height 𝑝ℎ, we must take them into account: 

𝑢 =
𝑥

𝑧

𝑓

𝑝𝑤
+ 𝑢0 (0-5) 

𝑣 =
𝑦

𝑧

𝑓

𝑝ℎ
+ 𝑣0 (0-6) 

These projection constraints can be represented into the single projection equation: 

[
𝑢
𝑣
1
] = [

𝑓/𝑝𝑤 0 𝑢0
0 𝑓/𝑝ℎ 𝑣0
0 0 1

] [
𝑥/𝑧
𝑦/𝑧
1

] (0-7) 

Note that equation (0-7) assumes 𝑝𝑤 = 𝑝ℎ. If that is not the case, the ratio between 𝑝𝑤 

and 𝑝ℎ must be described by an angle 𝜃 and factored in: 
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[
𝑢
𝑣
1
] = [

𝑓/𝑝𝑤 −cot(𝜃)/𝑝ℎ 𝑢0
0 𝑓 ∗ 𝑐𝑜𝑠𝑒𝑐(𝜃)/ 𝑝ℎ 𝑣0
0 0 1

] [
𝑥/𝑧
𝑦/𝑧
1

] (0-8) 

We call the resulting matrix in equation (0-8) the intrinsic parameters of the camera, 

since they depend on physical properties of the camera and the lens. It is also 

sometimes called 𝑘 for calibration. We can now merge equations (0-2) and (0-8) to 

obtain the full projection formula: 

[
𝑢
𝑣
1
] = [

𝑓/𝑝𝑤 −cot(𝜃) /𝑝ℎ 𝑢0
0 𝑓 ∗ 𝑐𝑜𝑠𝑒𝑐(𝜃)/𝑝ℎ 𝑣0
0 0 1

] 𝑧−1 [

𝑅11 𝑅12 𝑅13 𝑡𝑥
𝑅21 𝑅22 𝑅23 𝑡𝑦
𝑅31 𝑅32 𝑅33 𝑡𝑧

] [

𝑤𝑥
𝑤𝑦
𝑤𝑧
1

] (0-9) 

With the full projection formula as a basis for 2D-3D projections, we can now define 

our criteria for estimating the pose of a 3D object from a 2D image. 

Using equation (0-9), we can determine the extrinsic parameters of the camera if we 

have corresponding 2D and 3D points, since we assume the intrinsic parameters are 

known. Knowing that the extrinsic parameters of the camera relate the position of the 

camera to the world coordinates, we can know the rotation and translation of an object 

if we solve the problem. 

We call this problem Perspective-n-point (PnP), which involves using 𝑛 2D-3D 

correspondences to estimate the [𝑅|𝑡] matrix. PnP solutions exploit the fact that the 

intrinsic parameters are constant, thus by knowing 2D and 3D points, [𝑅|𝑡] remains the 

only unknown. There are different solutions to the PnP problem, such as Direct Linear 

Transformation (DLT) [26] which solves a linear system of equations made by the 

correspondences. However, it requires at least 15 of them, which shows its weakness 

compared to other methods which require less correspondences. While DLT also solves 

an algebraic error, other methods rely on the minimization of a geometric error, which 

is more desirable [25]. 

Although it is technically possible to solve the PnP problem with only 3 points, solving 

the P3P problem does not yield a unique solution. Using 𝑛 ≥ 6 consistently gives 

unique solutions in most cases. 

Many solutions have been proposed to the PnP problem, such as an iterative solution in 

2000 by Lu et al. [27], and EPnP, a non-iterative solution in 2007 by Moreno-Noguer 

et al. [28], which gave an efficient 𝑂(𝑛) solution for 𝑛 ≥ 4. More recent solutions 

include RPnP in 2012 by Shiqi et al. [29], OPnP in 2013 by Zheng et al. [30], and more 

recently REPPnP in 2014 by Ferraz et al. [31], based on early outlier rejection, capable 

of dealing with over 1,000 points in 5ms. Solutions to PnP strive to achieve high 

efficiency when dealing with a high number of points, and a high degree of accuracy 

when dealing with a low number of points. Since PnP solutions tend to show spurious 

errors, they are usually paired with a RANSAC (Random Sample Consensus) algorithm 

to minimize the effect of outliers. 
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Model-based markerless tracking 
 

A great many tools are available to solve the PnP problem, but obtaining the required 

2D-3D correspondences is not trivial. We will now see some of the proposed methods 

in literature. 

As described by Teichrieb et al. [32], there are two branches of markerless tracking: 

Model-based tracking and Structure-from-Motion (SfM). The former involves previous 

knowledge of the object to be tracked by the system, while the SfM infers information 

from camera movements. A survey by Lima et al. [25] discusses in detail the different 

approaches to model-based tracking in particular, which we will focus on rather than 

SfM. 

Inside the model-based tracking branch, there exist in turn two types of tracking 

methods: recursive tracking and tracking by detection. Recursive tracking gets its name 

from its time dependence. To track an object in a certain frame, it relies on the tracking 

results of the previous frames, and merges current information with past information. 

Tracking by detection, however, does not rely on past information and infers everything 

from the current frame. 

Table 1 - Model-based tracking methods survey, by Lima et al. [25] 

Table 1 shows the results of the survey made by Lima et al. comparing the main 

tracking techniques that have been studied. They particularly examine an edge based 

technique based on Wuest et al. [33], an interest point based technique based on 

Vaccheti et al. [34], and a keypoint based technique based on Skrypnyk and Lowe [35]. 

We will highlight the main concepts of the three methods, in the modelling phase and 

the tracking phase: 

 

Method Model Tracking 

Point Sampling 
(Edge based) 

- 3D model of the object 

- Control points along edges 

- Detect visible edges (Edge-ID) 

- Match image and model points 

using past result (ME* algorithm) 

- Pose estimation with 2D-3D 

Category Method Detection Processing Accuracy Limitations 

Recursive 
tracking 

Edge based No Low Jitter 
• Fast camera 

• Cluttered background 

Optical flow based No Low 
Cumulative 

errors 

• Fast camera 

• Lighting changes 

Template maching No Low Very Accurate 

• Fast camera 

• Lighting changes 

• Occlusion 

Interest point based No High Accurate Fast camera movement 

Tracking by 
detection 

View based Yes High Accurate Restricted range of poses 

Keypoint based Yes High Jitter and drift None 
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correspondences 

Interest point based 

- 2D keyframes from known 

camera pose 

- 2D features (interest points) and 

corresponding 3D point on 

model 

- Normals at each 3D point 

- Select keyframe closest to current 

frame using past results 

(Mahalanobis or histograms) 

- Generate intermediary image 

from keyframe to better match 

frame (homography) 

- Match features between frame 

and intermediary image 

- Pose estimation with 2D-3D 

correspondences 

Keypoint based 

- 3D model of the object 

- 2D image of the object 

- Project invariant 2D features 

onto model for corresponding 

3D points 

- Extract invariant 2D features 

- Match 2D features with 

knowledge-base 

- Pose estimation with 2D-3D 

correspondences 

* ME = Moving Edges algorithm [36] 

Table 2 - Main features of PS, IPB and KPB tracking methods 

Note that for the implementation of these methods in Table 2, the pose estimation step 

with 2D and 3D correspondences was not made using the aforementioned PnP 

solutions. Instead, a minimisation of the reprojection error of the object from 3D space 

back to 2D space is made, using optimization algorithms with M-estimators for 

robustness against outliers. This choice is because PnP methods tend to be sensitive to 

noise. 

Another key point for the success of these methods is the type of 2D feature extraction 

to be used. It is important for the registration phase to be as efficient as possible, for 

both the extraction and the matching of 2D features, in order to obtain an acceptable 

frame rate. Aside from being fast, we also need the features to be scale, rotation, and 

lighting invariant, since tracked objects can come at any angle and distance. Some of 

the possible feature descriptors to use are SIFT [37], SURF [38], ORB, an alternative to 

both presented by Rublee et al. in 2011 [39], or the more recent state-of-the-art LIFT, 

proposed in 2016 by Yi et al. [40].  

Conclusion 
 

While there are several tools available for the construction of VR applications and AR 

systems, and a great many solutions to most of their technical requirements and 

roadblocks, there is still much to explore in their applications and how they fit in our 

current world. In particular, while this has been explored in the past, there is great 

potential in testing the fusion of these two technologies. The immersiveness and 

intuitiveness of VR interfaces, and the information extraction of AR technologies, 

jointly open the door to new possibilities which we hope to show with this thesis. 
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3. Problem Description 
 

With the potential of VR and AR technologies, we would like to merge these two and 

extend them into an Augmented Virtuality experience. Augmented virtuality lies in the 

reality-virtuality continuum, proposed by Paul Milgram in 1994 [41]. 

 

 

 

Figure 4 - Reality-virtuality continuum 

Augmented virtuality is the counterpart to augmented reality, in a sense. While AR 

consists in augmenting the real environment with completely virtual elements by 

integrating them in it, AV consists in augmenting a virtual environment by integrating 

real objects in it. This can be achieved in various ways, from a simple live video feed 

from a real camera, to the virtualisation of real objects in 3D. 

On another hand, exploration of 3D environments using 2D interfaces like video 

cameras and sensors presents some inconveniences. Thalmann discussed this in their 

previously mentioned article [17], which highlights this contradiction of trying to 

understand a 3D object through 2D interfaces. They are by nature non-intuitive 

visualisation tools, which require careful user input to perceive details in the way the 

user requires. Teleoperation with robots in real environments can as well present a 

problem if the visualisation medium consists of a live video feed from the robot [18]. 

Visual obstacles like fire or smoke can pose a problem to operators on the other end, 

which can be ignored by virtual reality. 

We will propose an augmented virtuality system that attempts to solve these problems, 

by defining its requirements, and explain some of its potential applications. 

Proposed system 
With the help of virtual reality as a natural visualisation interface, and augmented 

reality solutions as a way to integrate real-world elements into a virtual world, we 

propose a surveying system by virtual presence. 
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Figure 5 - Surveying system by virtual presence, structure diagram 

Figure 5 shows the basic structure of the surveying system, which makes use of a real 

set-up and a virtual set-up. In the real environment, a vehicle is moving and exploring 

its surroundings, possibly with the help of an operator controlling it remotely. 

Meanwhile, the user is placed in a virtual environment which is a recreation of the real 

environment. The vehicle is equipped with sensors that extract information from the 

environment, and augment the virtual environment by placing objects or other 

information in it. Because of the dependence of the virtual objects on the real world, 

and the display environment being completely virtual, this is an AV application. 

With the help of the VR equipment, the user can look around as if they were in the 

virtual environment. While they can be placed to follow the vehicle’s point of view as it 

is moving, the user can also move around freely to explore the environment at ease, 

while the vehicle is augmenting the environment in real time. In our case, we will work 

with a remote-controlled commercial drone, and the way we will augment the 

environment is by tracking the position of surrounding objects with a monocular 

camera. 

Because of this, the application should consist of three main modules: 

➢ A drone tracking module, responsible of keeping track of the vehicle’s 

position in real time, and broadcasting the information to other applications. 

➢ An object tracking module, in charge of tracking specific objects using a live 

video feed from a monocular camera, and broadcasting the information to other 

applications. 

➢ A simulation module, which manages the virtual environment that can be 

augmented with the information sent by the drone and object tracking modules. 

Functional Requirements 

➢ A drone should fly in a closed, controlled environment 

➢ The simulation should show a simplified version of the environment 

➢ The user should be able to observe the virtual environment with VR 
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➢ Drone movements in the real environment should be mimicked by moving 

in the virtual environment 

➢ The user should be able to detach from the drone and explore the 

environment freely 

➢ An object tracking module should track objects and their position with a 

monocular camera 

➢ The application should be able to receive data from tracked objects and 

display it in the virtual environment 

➢ The application should be expandable for future applications 

➢ The application should offer customization options and some freedom to 

both the user and the programmer 

➢ Modules should have a low degree of coupling upon implementation 

➢ Total failure of the drone and object tracking modules should not affect the 

simulation module 

Non-Functional Requirements  

➢ A framerate of at least 60fps should be achieved for the drone tracking 

➢ There should not be a delay of over 100ms for the drone’s movements to be 

reflected in the simulation  

➢ A framerate of at least 5fps should be achieved for the object tracking 

➢ There should not be a delay of over 100ms for the object tracking module results 

to be reflected in the simulation  

➢ A framerate of at least 60fps should be achieved for the simulation  

➢ The user should not suffer from motion sickness from the application for short 

periods of usage 

➢ Main landmarks of the real environment should be kept in its virtual 

representation 

➢ The user should be able to discern the tracked objects from the environment 

immediately 

With this definition of the system, we will work towards an augmented virtuality proof 

of concept, which can easily be generalized for other applications in different fields. 

Advantages and Contribution 
The main advantage of representing the environment in a virtual way, is that it offers a 

more natural spatial understanding of the vehicle’s surroundings. In monitoring 

tasks and navigation applications, it is essential to have a clear understanding of the 

vehicle’s surroundings. Certainly, one of the most natural ways of understanding the 

environment is to be in the environment and explore it oneself. 
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One similar application in the past has proven to be of interest, proposed by Ott et al. 

[42], and extended by Righetti et al. in 2007 [43]. In these papers, a monocular camera 

is mounted on a R/C blimp, which can be accessed through a HMD. The former focuses 

on providing a more natural interface to view the video feed provided by the camera, 

with the use of eye-tracking technology. The user wearing the HMD controls the 

camera’s orientation with their gaze, thus giving a sense of presence under the blimp. 

In the publication by Ott et al. [42], the same benefits of their system are discussed, and 

the applicability of such a system is demonstrated by their experiments. 

However, we believe that virtualising the environment and offering the possibility to 

explore it in 3D rather than from a 2-dimensional image in a HMD offers an even more 

natural way of interacting with surveillance tools. 

Another advantage of this system is that traditional surveillance and monitoring 

systems cannot naturally merge information from different sources and capture 

devices. Traditional interfaces have to either show this information separately, or 

process it in a different way to be able to show them simultaneously. However, by 

offering a virtual platform with the simulation module, multiple sources of 

information can augment the virtual environment and cooperate to create a 

more complete image of the real environment. This could all be done in real time and 

concurrently, although with a centralised model of the system. 

Stripping undesired information from the environment while keeping the essential 

geometry also allows for more efficient analysis tasks in order to understand the real 

environment. It gives a focused view of the world, where the desired objects are 

brought immediately to the attention of the user, and leaves more time for the 

actual decision-making process. 

We believe that the potential of this kind of interface is worth exploring since it appears 

to offer a great deal of advantages, and provides an accessible decision-making tool for 

many applications. 

Limitations 
One of the main limitations of this platform is the assumption of the real environment 

geometry, and how it may not necessarily stay the same at the moment of capture. This 

can lead to inaccurate analysis by the user, as they may not assess the situation as they 

should considering the environment. With the current implementation that we 

propose, this is an important problem. However, it can be overcome by dynamically 

generating the environment around the drone with Simultaneous Localization and 

Mapping (SLAM) tools. 

Another limitation regarding the simplification of the environment and the extraction 

of a few points of interest is that, while many undesired details are lost, some of the lost 

details could also be of importance to the user. This can happen in multiple situations, 

the most likely being a tracking failure from the object tracking module. When this 

happens, the object of interest will not be picked up at all, and the user will not know 

that it is there. However, this problem can also come from the development of the 

system itself, and the target objects. The developer must be careful to make sure they 

are tracking all necessary objects of interest, lest they assume tracking a certain object 

will not be necessary, but as it turns out it is crucial in understanding the environment. 
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Such objects could be things like cars or pedestrians. Any object that could be dynamic 

in the environment, but is not necessarily an object of interest, can and should still be 

tracked in order to further understand the environment. 

These limitations mean that the user who is in the virtual environment, can absolutely 

not be the one operating the drone remotely. While they may have an accurate 

understanding of the real scene’s geometry, and could pilot the drone not to crash 

against any of the basic surfaces, there are many elements that could be unaccounted 

for. These elements range from structures that were omitted when constructing the 

virtual environment for clarity, to dynamic elements that are not being taken into 

account in the virtual environment. 

Because of this, in order to complement this AV interface, the real 2D feed from the 

mounted camera can still be used to support the understanding of the real 

environment. However, this 2D feed should be naturally integrated into the 3D space 

by means of a tool the user can look at, rather than a fixed display overlaid in front of 

their eyes. This is in order to follow the principle of diegetic or spatial interfaces in VR, 

an active topic of research in user interfaces [44]. A practical way of doing this would be 

having the 2D feed on a 3D plane attached to one of the controllers, so that the user 

may bring it closer or hide it when they do not need to look at it. 

Applications 
The proposed Augmented Virtuality system has several potential applications, the first 

being an interface for monitoring and surveillance systems. Many of the available 

surveillance techniques rely on non-cooperative 2D interfaces, while this system allows 

for the modelization of the monitored environment, as well as providing a manageable 

framework for the cooperation of multiple capture points, be them static sources or 

moving vehicles. 

Modelization of the environment surrounding the vehicle and capture of key objects 

can also have applications in aerospace, where it might be of interest to place sensors 

around a vehicle and monitor the surroundings in 3D for extraneous or target objects. 

Depending on the capability of the sensors, the scale of the environment to be 

monitored can be as big as the technology allows. 

We chose AR with monocular computer vision techniques when developing this project, 

but the augmentation of the virtual environment is not restricted to these technologies 

only. In fact, any sensor or combination of sensors which allows estimating the 

direction of a signal, as well as estimating the distance of said signal, can place 

information in the virtual environment. This ranges from infrared light to thermal 

sensors, as well as high level data inferred by other means, similar to the pose 

estimation of objects we will show. It is from the combination of all these technologies 

that powerful monitoring systems can be born, providing much more than just 

positional and visual information. 

Generally speaking, this kind of system is highly malleable to accommodate multiple 

kinds of information. It can cover a wide range of applications that require some sense 

of spatial awareness for monitoring tasks, as well as providing a framework for 

cooperation to augment the same environment. 
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4. System Implementation 
 

In this chapter, the structure and implementation of the proposed AV system will be 

presented, as well as any other details regarding the followed methodology. 

 

Figure 6 - Structure of the AV system 

In order to keep the required modules from Section 0 independent, the system has 

been designed to be supported in up to three different machines. The machines can be 

connected via standard TCP/IP or UDP/IP protocols, either via a local area network 

(LAN), from a distance, or any combination of both. The drone tracking and object 

tracking modules communicate with the simulation module as seen in Figure 6, using 

standardised messages that we will see in their respective sections. 

The first module to be built was the simulation module, using Unity3D and C# 

exclusively, and the HTC Vive head-mounted display. Afterwards, the drone tracking 

module was prepared using OptiTrack in a laboratory, tested, and connected to the 

simulation module. Finally, the object tracking module was implemented using 

OpenCV for C++ in either of the machines, tested and connected to the simulation 

module. 

We will now have an overview of the technologies used and the implementation behind 

each of the modules. 

Simulation module 
 

First of all is the simulation module, which encompasses everything that the user will 

see in the final application. Everything was implemented using Unity3D and Visual 

Studio C# as the development environments for multiple reasons, the first of which 

being that Unity3D allows for very quick prototyping, correcting and testing. 
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Furthermore, Unity3D provides an easy to learn workflow which allows applications to 

scale nearly as much as the programmer wants, even with non-professional editions. 

When building the simulation module, multiple goals were first defined: 

➢ Integrate the VR interface 

➢ Define a scheme for user movement 

➢ Prepare the object tracking features 

➢ Make all features generic and customizable 

➢ Document objects and scripts and provide mouse-over descriptions 

Note that we did aim to prepare the drone tracking features when first defining the 

goals of this module. This is because, as we will see in Section 0, there are factors to 

take into account that can only be seen when dealing with the real system. 

In the following sections, we will see the different aspects of the simulation module 

implementation, and how the different goals were achieved during development. 

Unity3D 
 

Unity3D [45] is a powerful development framework for Windows and Mac OS X. It 

primarily offers tools for the creation of games, but can also serve in the development of 

educational applications and interactive simulations. Not only it includes an extensive 

API for this purpose, but applications built in Unity3D run on its proprietary engine. 

This means that the programmers only have to understand high-level concepts, and do 

not need to worry about the low-level intricacies of building an engine from the ground 

up if they do not wish to. 
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Figure 7 - Unity3D editor view. 1: Scene hierarchy, 2: Scene view, 3: Inspector 

view, 4: Project explorer, 5: Run/Pause tools 

Figure 7 shows the basic view of Unity3D in editing mode. Every project is broken up in 

scenes, and each of these scenes can be edited individually on this screen. We can see 

the scene hierarchy (1), which lists the objects present in the scene and their 

relationship. The scene view (2) shows the 3D layout of the scene, and preview of the 

lighting conditions. Objects can be manipulated from here. The inspector view (3) 

shows the details of the selected object, and all of the components attached to it. The 

project explorer (4) allows the programmer to organize the project in the file system, by 

arranging all files usually in a standardised manner. Finally, the scene can be launched, 

paused and advanced step by step thanks to the run/pause tool on top (5). 

GameObjects  

 

Unity3D relies on GameObjects as building blocks to establish a scene. Each 

GameObject is an entity with a position in the world, which contains attached 

Components that define its behaviour. 
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Figure 8 - GameObject in Scene view (left) and Inspector view (right) 

The list of Components in a GameObject can be seen in the inspector view, as shown in 

Figure 8. Every existing GameObject has an associated Transform component, 

because they are physically present in the scene. The transform does not only hold 

positional, rotational and scale information about the object, but it also specifies where 

the object is in the scene hierarchy. Child objects and the parent object are all in the 

Transform. In fact, the scene hierarchy seen in Figure 7 is not a hierarchy of 

GameObjects, but a hierarchy of Transforms. Transform position / rotation / scale are 

shown relative to the parent Transform in the inspector view, or absolute if there is 

none. 

Here are some of the relevant Components that can be attached: 

➢ Transform – Local position, rotation, scale and scene hierarchy 

➢ Mesh filter – 3D mesh/model of the object in the world 

➢ Mesh renderer – Visual properties of the model (texture, opacity…) 

➢ Collider – Collision boundaries for interaction (physics, etc…) 

➢ Rigidbody – Physical properties (mass, drag…) for physics calculations 

➢ Light – Light emission from the center of the GameObject 

➢ Script – Custom behaviour of the object, variables exposed in inspector 

 

When a GameObject is going to be generated multiple times with the same properties 

or structure, or similar enough behaviour, it can be made into a Prefab. Prefabs can be 

created by simply dragging a GameObject to the project explorer, and act as a base 

object which can be instantiated into the scene multiple times. A good example of this 

would be bullets, birds or cars, even if they may present variations: these can be 

generated and changed at runtime. This is useful not only because it avoids re-building 

the same object multiple times, but also because they can be instantiated at any time, 

which means they can be used for any kind of task. This allows either a certain degree 

of genericity in GameObjects, or can be used as a simple shortcut when building scenes. 
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C# scripts 

 

One of the most important parts when building an application for Unity3D is the script 

Components attached to the GameObjects, since these define the behaviours that will 

fit our application. Unity3D supports both the C# and JavaScript scripting languages; 

during the research project only C# was used. 

 

Figure 9 - Script in Visual Studio (left), Script component in Inspector view (right) 

Public variables in a script will automatically be shown in the Inspector view, as shown 

in Figure 9; and private variables will be hidden, although they can still be exposed by 

other means. These variables can be modified at any point from the Inspector view, 

before or during execution, although changes made during execution will not be 

permanent. The values provided inside the script are just the default values that will be 

used when attaching the script to an object. 

Every script has a set of functions defined by the Unity API that will help bring their 

behaviours to life. They are as follows: [46] 

➢ Awake() – Called once when the object is first created 

➢ Start() – Called once when the object is first enabled 

➢ Update() – Called once every frame (framerate dependent) 

➢ FixedUpdate() – Called at a fixed rate, possibly multiple times every frame 

(not framerate dependent) 

➢ LateUpdate() – Called after every other Update() has finished 

If any of these functions is specified in the script, they will be called by the Unity3D 

engine at runtime accordingly. Most of the time code will be in the Update() function, 

but since the delay between each Update() call is not fixed, this can be fatal for physics 

and collision calculations, where objects might have different behaviours at different 
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framerates. Some internal calculations should be done in FixedUpdate() in that case, 

which should not suffer from those framerate issues. 

User input by polling should also be done in the correct function: if the user input is 

received in FixedUpdate(), it might affect the scene in-engine, but frames are not 

generated and the visual feedback is not accurate. Because of this, it is worth 

considering putting user input in Update(), where the user input matches visual 

feedback. However, for time sensitive user input, FixedUpdate() should still be used. 

Finally, another special type of function is essential for some features: Coroutines 

[47]. Coroutines are functions defined as IEnumerator that can be interrupted with the 

yield return statement, to be resumed later from the same point. They are executed 

serially with the rest of the code but allow using intermediate results, and can simulate 

parallel execution like a thread. 

Project layout 
Now that we have covered the basis of Unity3D, this section will present the layout and 

hierarchy that was used to bring the simulation module to life. 

 

Figure 10 - Scene hierarchy in Unity3D (left), [CameraRig] in the scene (right) 

As seen in Figure 10, we make use of several different controllers to manage all aspects 

of the simulation. We will go through all GameObjects shown and briefly explain them: 

➢ Directional Light – Default light illuminating the scene 

➢ [CameraRig] – Area where the user will stand, default VRTK prefab 

➢ Controllers – Models and input scripts for the controllers 

➢ Camera (head) – Camera following the user’s head with HTC Vive 

➢ Platform + Arrow – Indicate where to stand when moving 

➢ MarkersOrigin – Used for object tracking, see Section 0 

➢ [MovementController] – Manages [CameraRig] movement 

➢ [VRTK] – VRTK prefab to connect VR kit to Unity 

➢ [LightController] – Manages changes in lighting for display features 
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➢ [Marker Supermanager] – Used for object tracking, see Section 0 

➢ [External Communications] – Used for communicating with other 

modules, see Section 0 and Section 0. 

➢ lab_notexture_new – simplified 3D mesh of the laboratory 

Since the controllers related to the other two modules will be explained with their 

respective sections, we will look at the movement and input controllers, and their 

scripts. 

 

Figure 11 - [MovementController] Inspector view 

The most important controller in this regard is the [MovementController] 

GameObject, whose inspector view can be seen in Figure 11. The script attached to it 

serves as a bridge between any event that wants to move the [CameraRig], and the 

[CameraRig] itself. Appendix A.1 show the parameters that can be specified to control 

the [CameraRig] movement, and the functions that serve as an interface for the other 

controllers. 

With this [MovementController] acting as an interface between user input and user 

movement, a control scheme must be defined to allow intuitive movement. The 

Controller (left) and Controller (right) GameObjects have a “Controller Input” 
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script attached to them, which reads user input via Update() and events, and calls the 

appropriate [MovementController] (or other controller) functions. 

 

Figure 12 - HTC Vive controller buttons 

# Button name Left controller function Right controller function 
1 Menu Toggle day/night mode Toggle gaze control 
2 Trackpad left Rotate left Move left 
3 Trackpad up Fly up 
4 Trackpad right Rotate right Move right 
5 Trackpad down Fly down 
6 System Display HTC Vive menu 
7 Trigger Move back Move forward 
8 Grip Toggle drone attachment Sprint (while holding) 
9 Trackpad press Unassigned 

Table 3 - HTC Vive button control scheme 

 

Figure 12 shows all the controller buttons available for non-locomotion user input in 

HTC Vive. To make use of all movement features, we distinguish between the two 

controllers provided, the left controller and right controller in-application, as shown in 

Figure 13. Red was assigned to the right controller, and blue was assigned to the left 

controller.  
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Figure 13 - Left (blue) and right (red) HTC Vive controllers in-application 

The control scheme presented in Table 3 was used. Moving forward was assigned to the 

right controller for being the most used button, and most people being right handed. 

Rotation is more frequently used than lateral movement, thus rotation was kept in the 

opposite controller to accommodate usage with both hands. Regardless of these 

assignments, the controllers can simply be swapped if the user finds it more 

comfortable. 

A control scheme with the same functions was used for the keyboard and is shown in 

¡Error! No se encuentra el origen de la referencia.. It is read in the Update() 

function of the [MovementController] and [LightController] scripts. 
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Key Function 

W Move forward 

S Move backward 

A Move left 

D Move right 

UP arrow Fly up 

DOWN 

arrow 

Fly down 

LEFT arrow Rotate left 

RIGHT 

arrow 

Rotate right 

Shift Sprint (while holding) 

N Toggle drone attachment 

M Toggle day/night mode 

 
 

 
 

 

 

Table 4 - Keyboard control scheme 

Figure 14 - Keyboard control layout 

As seen in ¡Error! No se encuentra el origen de la referencia., this keyboard is 

easy to use since it follows the common control patterns used in 3D editing applications 

and games. This layout can be used if the user does not feel comfortable with the HTC 

Vive controls, or for simple debugging tasks that require moving around the 

environment. 

One limitation of this control scheme is that it does not allow rotations in the X-Z axis 

(pitch, roll). This slightly limits the freedom in movement of the user. However, it is 

advised that the user is standing upright in the virtual environment anyway, since they 

are standing upright in the real world. If the user rotates around the X-Z axis, they 

might become disoriented and stumble as their visual information does not match that 

of their body’s. 

Finally, the [CameraRig] itself depicted in Figure 10, serves as a visual point of 

reference, which indicates where the user should stand and where to look at. 

Object tracking 
 

In order to accept the positional information of predetermined real-world objects, an 

internal infrastructure for the management and display of the objects was built. When 

building the system, the goal was to have highlighted markers imitating the shape of 

the real objects, moving in the virtual environment according to the real object’s 

movement. The different objects would be predetermined before the execution of the 

application, and this internal module would be completely self-managed. 
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Figure 14 - Two example tracked objects inside Unity3D, in night mode 

Figure 14 depicts this main set of features. The following is a full list of features that 

were finally implemented in the object tracking module inside Unity: 

➢ Genericity, and scalability: takes in multiple kinds of objects 

➢ Customizable model colours and light colours 

➢ Night mode, further highlighting the tracked markers 

➢ Formatted external input for refreshing marker positions 

➢ Time-out and fade-out animations for unrefreshed markers 

 

 

Figure 15 - Basic structure of the marker system in the simulation module 

In order to implement these features, the layered structure shown in Figure 15 was 

established. This layered structure follows a hierarchy, where higher levels encapsulate 

and manage lower levels. The three layers are: 

➢ Marker – Represents a real-world object with a highlighted model 

➢ Manager – Manages all markers of a certain type of object 

➢ Supermanager – Data entry point, sends commands to all managers 

Each Marker GameObject contains a model of an object, a light source that ignores 

the model, and an attached script. It is defined by a name and a numbered ID; the 

name and ID are generated by a Manager depending on the type of object. The first 

“taxi” object would be called “taxi_1” with ID 1. 
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A marker is not capable of moving by itself, and its only purpose is to depict an object 

in a static position. It is only capable of controlling its light and colour, and animate 

changes by fading over time. 

Managers, as previously mentioned, refer to one and only one specific type of object. 

They decide the name of the object they want to handle, the Prefab to instantiate when 

generating markers (thus, the model), and the colour of the generated markers. They 

keep track of the Markers under their control and update their time-out timers with the 

help of internal lists, as evidenced by Figure 16. 

 

Figure 16 - [Manager] Inspector view 

They can be given the order to move a marker with a certain ID, and will either move 

the existing marker to the target position, or generate a new one with the predefined 

properties. The time-out timer for said marker will also be reset. Since these specific 

cases are handled internally by the Manager, higher layers only need to call this method 

on the appropriate manager: 

manager.MoveMarkerByID(id, position, rotation); 

Additionally, since the tracking data comes from a real camera with a position in the 

real world, we must specify where the camera is in our virtual world so that the 

Manager can place the Markers relative to it. This is done with the empty 

MarkersOrigin GameObject, which is shown in Figure 10. 
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Finally, the Supermanager has no specific parameters, and serves exclusively as an 

entry point for any parsed tracking data. It keeps track of all the existing Managers and 

their names, and there is only one instance at a time. It can be given the order to move 

a marker of a specific object name, with a certain ID, with the following function: 

supermanager.MoveMarker(name, id, position, rotation); 

If a Manager with the corresponding name exists, it will call its MoveMarkerByID 

method and relay the ID, position and rotation information for the marker. Should a 

Manager not exist, it will simply return an error message instead of creating a Manager, 

like Managers create Markers. It means the simulation was not prepared for that kind 

of object, and it would have to guess what 3D model and parameters we want to use for 

it. 

Visually, the two main features of this infrastructure are the day/night mode, and the 

automatic fade-out of markers. We will briefly discuss how these were achieved. 

The automatic fade-out of unrefreshed markers is handled by Managers. For every 

Marker, they also keep track of a timer. At each Update(), all timers are decreased and 

then checked, and whenever a Marker is moved its timer is reset to its original value. 

However once the timer hits zero, the Manager forces the Marker to fade out to 

transparency over time with the help of dedicated coroutines. After the Marker has 

become invisible, it lingers for some seconds and is finally destroyed completely from 

the scene. It can still be re-instantiated if new tracking data is received. 

Finally, the day/night mode is achieved thanks to the [LightController] seen in 

Figure 10. When night mode is enabled, the [LightController] fades the Directional 

Light in the scene and all the existing Markers to different values (preferably decreasing 

the scene light and increasing the Marker light). It calls the following function from the 

Supermanager: 

Supermanager.FadeLightAll(lightIntensity, time) 
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Figure 17 - [LightController] Inspector view 

¡Error! No se encuentra el origen de la referencia. shows the different 

parameters that can be customized in the [LightController]. Depending on how much 

the programmer wants to highlight the markers, they can adjust these numbers in 

order to obtain better results. This can be used for other effects, such as for completely 

turning off the lights emitted by the markers, and similar applications. 

While this entire infrastructure works on its own, it needs to receive external data in 

order to actually generate the markers. The [Tracking Controller] takes care of this 

task, by being the entry point of the entire application for object tracking data. 
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Figure 18 - [Tracking Controller] inspector view 

As shown in Figure 18, the Tracking Controller only needs to know the IP and TCP port 

to listen to. The Tracking Controller will accept an incoming client connection, and will 

act as a server receiving data asynchronously. We decided to use a TCP connection 

instead of a UDP connection since the tracking framerate requirements were relatively 

low. Thus, we can afford to sacrifice throughput for increased reliability. 

The data received by the Tracking Controller should be a string of characters, 

specifically formatted for the application. Incoming strings use an XML-like structure 

to describe the state of the tracking system, and mimic that of the structure of the 

system described earlier in this subsection. Each individual marker is described as: 

<ID=_><x=_><y=_><z=_><qx=_><qy=_><qz=_>< / ID> 

Here, x y and z define the position, and qx qy and qz define the rotation of the marker. 

The rotation can also be represented in quaternions, as seen in Figure 18. These 

markers will be encapsulated in the following structure: 

<Markername=”__”> … … … < / Markername> 

Each of these elements will describe each type of tracked object, and contain all the 

markers referring to that type. Finally, all <Markername> elements will be 

encapsulated by a final level: 

<Markers> … … … < / Markers> 

An example of this structure in the real application would be: 

<Markers> 
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<Markername="monitorbox"> 

<ID=1><x=-15.9756><y=16.512><z=214.234> 

<qx=-149.817><qy=4.90648><qz=-28.5223></ID> 

</Markername> 

</Markers> 

After receiving a message, it is parsed inside the [Tracking Controller] and the 

supermanager.MoveMarker(name, id, position, rotation) function is called for 

each <ID> element in the message. However, a scaling parameter is used for the 

position information, which depends on two things: the scale of the object in the 

tracking application, and the scale of our world in the simulation (NB: In Unity, 1 unit 

= 1 meter). These should be taken into account and factored in to obtain valid results. 

This standardised format allows communication with any kind of tracking application, 

as long as said application tailors its output before sending it to the simulation module 

in Unity3D. With this, the object tracking section of Unity is ready to accept 

information, update it, and manage it by itself. 
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Building the virtual lab 
 

Before proceeding to tracking the drone’s position in the real laboratory, it is necessary 

to set up the virtual environment that will be equivalent to the real environment. A 3D 

model of the real environment has to be built, imported to Unity, and verified against 

the real environment. 

 

Figure 19 - Rough map of the laboratory static features 

As shown in Figure 19, the map has a set of static features that must be taken into 

account when building its 3D model: 6 OptiTrack cameras, a TV monitor, a workbench 

in the corner, and the main entrance. Less reliable static features were added in the 

final model, like a bicycle and a stack of boxes, which never changed throughout this 

thesis. The room has 3:4 proportions in length and width, and the ceiling was not taken 

into account for the purposes of the application. 

With this information, we can use any 3D modelling program to build the 3D model. In 

our case, we used Blender, an easy to use application for 3D modelling, rendering and 

animation. The obtained model is shown in Figure 20. Note that some of the shapes in 

the Unity3D version are moved (cameras farther apart, cameras closer to workbench, 

boxes closer to the door). This is because the .blend file retains the different shapes 

when imported in Unity, and allows to move them inside the model. 
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Figure 20 - Laboratory model, in Blender (left) and Unity3D (right) 

When first testing the drone tracking, the elements of the virtual environment were 

adjusted so that the environment would be correctly calibrated, and its geometry 

matched that of the real one. This was made by checking where the tracked object 

would collide with the main features by bringing it closer, and adjusting the position 

accordingly in the Unity project. 

The simulation module is now ready to move the [CameraRig] in the virtual 

environment according to the real environment. In the following section, more details 

will be given on the [OptiTrack Communication] GameObject, which receives external 

tracking data from the drone and applies it. 
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Drone tracking module 
 

Going back to our proposed system in Section 0, the objectives related to the drone 

tracking module are: 

• A drone should fly in a closed, controlled environment 

• Drone movements in the real environment should be mimicked by moving 

in the virtual environment 

• The user should be able to detach from the drone and explore the 

environment freely 

From these requirements, we decided to use the OptiTrack technology available in our 

laboratory to carry out this task. In this section, we will see the principle behind 

OptiTrack and how the tracking module was handled. 

 

Figure 21 - View of the laboratory's OptiTrack environment 
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OptiTrack 
 

OptiTrack is a widespread commercial motion capture solution, with an extensive list of 

applications as of today [48]. It offers 6 DoF tracking (3D position and 3D rotation). It 

consistently offers sub-millimetre precision, and negligible rotational error in most 

conditions. Furthermore, it works at a high framerate, being capable to capture up to 

360 fps with our available set-up. 

Due to its accuracy and efficiency, OptiTrack is used as the ground truth for the 

validation of many applications, such as AR tracking and trajectory estimation. It is 

also the reason this technology was selected for this project. 

OptiTrack operates with a set of IR cameras that cover different angles and regions of 

the same space. Thanks to a set of reflective markers, they are able to estimate the 

position and rotation of an object to which the markers are attached. 

 

Figure 22 – Motive main interface, using 6 OptiTrack cameras, tracking 1 object 
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In order to exploit the potential of this technology, we used Motive, an application that 

serves as an interface for OptiTrack’s hardware. After calibration of the cameras by 

“wanding” the OptiTrack wand around the area, and defining the X-Y-Z axis by using a 

special piece with three markers, OptiTrack can start tracking objects. Each object that 

we want to track has a representation in Motive called “Rigid Body”. A Rigid Body is 

defined by a set of 3 or more markers, and its principle is that the markers cannot move 

relative to one another. This is a promise that the structure of the markers is “rigid”, 

hence the name. Failure to ensure this will lead to tracking errors. 

Tracking 
 

In order to track the drone and send its positional information in Unity, we must follow 

a specific pipeline. First, the drone has to be registered by Motive. Then, Motive should 

stream the information captured in each frame. For that, the gap between Motive and 

Unity must be bridged. Finally, Unity should use the frame information to move the 

drone in the AV. We will now see the details in each step. 

Once the drone is ready to be tracked, a set of at least there reflective markers must be 

placed on it. All of the markers must be visible before tracking, and they must be 

selected in the 3D view of Motive. Once a Rigid Body is created out of them, Motive will 

be tracking the Rigid Body at the selected framerate; for the purposes of our 

application, we selected 120fps as the target framerate. Figure 22 – Motive main 

interface, using 6 OptiTrack cameras, tracking 1 objectshows for example a Rigid Body 

tracked with only three markers. 

The next step is to stream the data from the Data Streaming tab. From here, the 

information to be streamed can be selected. In our case, we only want to know the pose 

of the drone’s Rigid Body, so we disable streaming Markers and Skeletons. In order to 

send the data to Unity, a C++ executable bridges the gap between the two applications. 

The basis for this executable is provided in the NatNetSDK, the networking SDK used 

for Motive. This executable unwraps the data package send by Motive, and wraps it in 

an XML format, similar to that of Section 0. The produced format is the following: 

<Rigidbodies> 

<Rigidbody ID=1 

x=“1” y=“1” z=“-3” 

qx=“0” qy=“1” qz=“0” qw=“2” /> 

 

<Rigidbody ID=2 

x=“3” y=“0” z=“-2” 

qx=“0” qy=“1” qz=“0” qw=“2” /> 

. . . 

</Rigidbodies> 
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Rotations are expressed in quaternions, rather than Euler angles. This is helpful since 

while Unity might not display rotations as quaternions, internal operations and 

assignments are all managed in quaternions. 

Each of these messages is sent to Unity through a UDP port. In this case, we use UDP 

since the throughput is very important, as this data will potentially move the player 

around. If the framerate is too low, the user’s movement will be irregular and they will 

become motion sick. These messages are captured by the [OptiTrack Communication] 

GameObject. 

 

Figure 23 - [OptiTrack Communication] Inspector view 

Similarly to the [Tracking Controller] in Figure 18 - [Tracking Controller] inspector 

view the [Optitrack Communication] GameObject requires an IP address and a Port to 

listen to. As seen in Figure 23, it requires additional information. First, it requires the 

ID of the Rigid Body to be treated as the drone in the XML. Then, it requires to know 

what the [CameraRig] is, and where the MarkersOrigin GameObject is. 

The basis for the connectivity on Unity’s side is also provided in the NatNetSDK. After 

receiving the message, the correct Rigid Body is parsed from the XML. If the user is 

currently attached to the drone, then the script will simply move the [CameraRig]. 

However, if the user is not attached to the drone and is moving freely, only the 

MarkersOrigin which represents the real camera’s position will respond to the tracking. 

Rotation around the X/Y/Z axis can also be independently restricted. It is useful to 

restrict the pitch and roll motions for the same reasons they are restricted in user 

movement, to avoid user disorientation. Furthermore, it can also simulate stability 

even when the real drone is flying unstably. However, this must be taken into account 
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when spawning objects from the object tracking module, as their positions or rotations 

might not be accurate. 

The tracking module is now able to provide the simulation module with accurate and 

high framerate tracking for the drone, and the simulation module has the tools to 

manage the incoming data. 
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Object tracking module 
 

Our goal is to track objects with a monocular camera by estimating their pose, and 

sending the information to the simulation module. During the research project, we 

decided that the OpenCV [49] library fit our requirements, in terms of flexibility of the 

code. OpenCV is an open-source C++ and Python library for computer vision, with 

frameworks for detection, AR, machine learning, and many more applications. 

For the purpose of this application, a single C++ program was developed to take care of 

the object tracking. In this section, we will see the underlying architecture, and the 

algorithm behind the tracking. 

Software architecture 
 

While it is not necessary to make it so, the architecture for the object tracking module 

mirrors that of the marker system in Unity. The same layered architecture of Object → 

Manager → Supermanager is followed, as shown in Figure 24. 

 

Figure 24 - Basic UML diagram of the object tracking module 

TrackedObject represents a single object of a given type, with a 3D position and a 3D 

rotation. It can only change its position and rotation, and nothing else. 

TrackedObjectManager keeps track of TrackedObjects in an ordered double-ended 

queue (deque). It can retrieve them by index or by ID, and place them back efficiently 

in the deque when an object is being tracked again. This is checked and done 

automatically when calling the following function: 
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bool MoveObjectByID(int id, Vector3 position, Vector3 rotation); 

The Supermanager is the final layer of this structure, which has access to all 

TrackedObjectManagers. It is the entry point for the tracking data obtained from the 

other half of the application, and can move an object calling: 

bool MoveObject(std::string type, int id, Vector3 position, Vector3 rotation); 

Unlike the Unity version of this structure, this Supermanager is able to create 

TrackedObjectManagers if the “type” does not match any existing one. This is because 

in this case TrackedObjectManagers do not store any knowledge of the object aside 

from their name, so there are no assumptions to be made. 

Additionally, the Supermanager can produce an XML string that can be output by the 

application, following the format specified in Section 0. Each layer creates a wrapper, 

and asks the next layer to fill it with information. First, the Supermanager creates the 

following wrapper: 

<Markers> … … … < / Markers> 

TrackedObjectManagers add their own wrapper one by one: 

<Markername=”__”> … … … < / Markername> 

Finally, for each TrackedObjectManager, each TrackedObject adds: 

<ID=_><x=_><y=_><z=_><qx=_><qy=_><qz=_>< / ID> 

After the XML has been generated with the std::string GetXml() method, the tracking 

application can use the RemoteConnection class to connect to Unity and send the 

resulting string through a TCP port. 

However, this architecture is only a way of representing the tracking data; it does not 

help in the actual tracking of real objects. The other half of the C++ program follows a 

certain pipeline to track objects from a video feed. We will now see in detail this real-

time tracking pipeline. 

Tracking algorithm 
 

Going back to Table 1 by Lima et al. we can see the different methods at our disposal for 

our task. We must take into account that our video feeds will have rough camera 

movements because of the drone, that there might be strong lighting changes, and that 

backgrounds could be cluttered. Because of this, it seems that a keypoint-based 

approach would be appropriate. For this application, we will follow the suggested 

workflow in the OpenCV documentation for a keypoint-based approach [50]. 

In our case, the priority was to provide a proof of concept for the applications of AV in 

navigation. More complex shapes and 3D meshes could be used; however we decided 

that tracking textured objects with 8 vertices like boxes, books, and so on, would serve 

our application well. This is also one of the reasons the suggestion from the OpenCV 

documentation was used. 
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Figure 25 - Tracking workflow diagram 

 

Figure 26 - Tracking workflow with images 

Figure 25 and Figure 26 show the basic idea of the workflow. It relies on a simple 

offline phase for description, and an online phase for the detection and tracking of the 

object. We will first see the offline description phase, and then the online registration 

phase. 

Offline description 

 

A separate executable was made for the offline description of an object to be tracked. It 

requires two things: a 3D mesh of the object, and a picture of the unoccluded object, 

containing the features that we expect to see in the video feed. The keypoint-based 

approach relies on the detection of 2D features from the object, and associating them to 

3D points. In that way, each 2D feature effectively has a 3D point that can be used to 

estimate the pose of the object when detected in an image. 

The format used for the 3D mesh is .ply, a human-readable type of file that can easily be 

interpreted and edited. It has the structure shown in Figure 27. 



 

 

49 
 

 

Figure 27 - .ply format structure, 6-sided box example 

With this 3D mesh and the 2D picture, we can project the 2D features from the image 

onto the mesh to associate each feature with a 3D point. However, we must first place 

the 3D mesh in the camera coordinate system to be able to project those features. A 

common way of placing the 3D mesh in the camera coordinate system is to use pictures 

from which we know the pose of the object relative to the camera in the first place, like 

in the interest-point based method [34]. In our case, we opted for the more flexible 

solution proposed in the OpenCV documentation for simple-shaped objects. By going 

through all the points in the .ply and placing them one by one in the image, we are 

giving a set of 2D-3D correspondences; these can be used to estimate the pose of the 

mesh in the image by the use of PnP solvers (0). A pseudo-code of this process: 

For every point P(x,y,z) in list_points 

Select corresponding point p(x,y) in image 

Generate pair c(p,P) with 2D and 3D point 

Add c to list_correspondences 

Solve PnP for list_correspondences 

Place 3D mesh in image 

After the 3D mesh has been placed in the camera coordinate system, we can select the 

2D features that we would like to describe the object with. During the online 



Living Within an Augmented Reality World 
 

50 
 

registration, these 2D features will be extracted once again by the registration 

algorithm, so the choice of feature descriptor is very important in the application. We 

must take into account the alternatives that are available, considering the restrictions of 

our system in the real world. The objects that we want to detect might not be facing the 

camera directly, might be rotated in an unexpected way, and might be closer or farther 

from the camera. This means that we need a descriptor that is both rotation invariant 

and scale invariant. Since OpenCV provides a good implementation, we decided to use 

the ORB feature descriptor [39]. It provides both of these properties, and is efficient 

enough for our target application. 

Once the feature descriptor has been decided, we can proceed to extract these features 

from the provided image. The number of keypoints that the descriptor will extract is 

important, since it will have a direct impact on both the accuracy of the system, and its 

computational cost. Increasing the number of keypoints will increase both the accuracy 

and the computational cost of the online registration phase. This will have a direct 

effect on the framerate, thus the programmer should decide where to settle in this 

trade-off. 

 

Figure 28 - Projection diagram of 2D features. Green: inliers, Orange: outliers 

Once all the 2D features have been extracted from the image, they are projected into 

the 3D space, from the camera coordinate system to the world coordinate system. This 

is done by “ray-casting” through each of the 2D points, creating a 3D line that might 

intersect with surfaces in the 3D space. Every feature that intersects with the 3D mesh 

is considered an inlier, which means it contributes to the description of the object. 

However, features that do not intersect with the 3D mesh are considered outliers, 

which means they are features that describe the background of the image and have 

nothing to do with the object. This behaviour is shown in Figure 28. After obtaining all 
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of the inliers that describe the object, the features are exported to a .yml file that lists all 

of the ORB features with their descriptor, and their corresponding 3D point. 

 

Figure 29 - Offline description workflow with images 

Once the .yml file is produced, we now have a full description of the object in 3D based 

on 2D features. The entire workflow for the offline description can be seen in Figure 29, 

where images at each step is shown. In the third image, inlier features projected onto 

the mesh are shown in green, and outlier features which did not find a projection are 

shown in red. A pseudo-code of the entire process would be: 

For every point P(x,y,z) in list_points 

Select corresponding point p(x,y) in image 

Generate pair c(p,P) 

Add c to list_correspondences 

Estimate pose A(R,t) of 3D model for list_correspondences 

Place 3D mesh in image with pose A(R,t) 

Extract features from image with ORB onto list_features 

For every feature F(p(x,y),descriptor) in list_features 

 Project p(x,y) with ray-cast R(x,y) 

 If R hits 3D mesh with A(R,t) at point P(x,y,z) in WCS 

  Add F to list_inliers 

  Add P(x,y,z) to list_inlierpoints 

 Else 

  Add F to list_outliers 

Save list_inliers and list_inlierpoints to .yml 

 

To ensure tracking will perform correctly in the online registration phase, the 

programmer must take into account two key aspects of this process: first, as previously 
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mentioned, the features should be robust and tolerate the conditions that will be 

imposed in the registration phase. If this is not the case, the feature extractor will not 

be able to find these features in the real images, because the features extracted will not 

match the features from the object description. Furthermore, another aspect to be 

taken into account is the pose estimation phase of this process. If the pose estimation is 

done incorrectly or is too inaccurate, the mesh will be incorrectly placed in the camera 

coordinate system, and the projection of features will be done incorrectly; two things 

might happen in this case. On one hand, features that should be inliers will not be 

projected at all on the object, and will be lost as false outliers. This will result in fewer 

features with which to track the object in the registration phase. On the other hand, the 

inlier features that will be projected onto the mesh will be projected as different 3D 

points than the real 3D point they represent. When estimating the pose of the object 

with these points during the registration phase, the object will be translated and rotated 

with the same error as the pose estimation error made during the offline description 

phase. 

 

This workflow can be applied to more complex objects, as long as the user is able to 

place the 3D points describing the mesh onto the 2D image. However, this workflow is 

strongly oriented to simple objects whose points can be clearly seen in the provided 

images. Nevertheless, if a strong pose estimation algorithm is used, the user would be 

able to roughly place the 3D points in the image, and the pose estimation should still 

find an accurate pose for the object. 
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Online registration 

 

Thanks to the offline description phase, we have the resources necessary to detect and 

track objects in real time. The online registration part of the code corresponds to the 

“Real-time tracking application” element in Figure 24, and functions as its own 

module, similar to that of the layered architecture. The online registration and the 

Supermanager infrastructure are part of the same execution, and the former 

contributes to the latter frame by frame. 

First of all, multiple resources are needed for the registration. The most essential is the 

.yml description generated by the user during the offline description phase. 

Additionally the online registration makes use once again of the same 3D mesh of the 

object, in .ply format. Of course the registration needs video input, which can either 

come from a pre-recorded video, or directly from a camera in real time. For testing 

purposes, we worked on pre-recorded footage. 

 

Figure 30 - Online registration pipeline diagram 

Figure 30 shows the pipeline of the registration, and the techniques used to solve each 

step. We will go through each step, and finally provide a pseudo-code implementation 

of the whole process. 

➢ Import object data – First of all, the .yml description and the .ply mesh must 

be loaded beforehand. Afterward, the whole process can be executed frame by 

frame, with each execution being independent from one another. Additionally, 

the intrinsic parameters of the camera to be used should be specified in the 

code. 

➢ Feature Extraction – For each input image, extract the 2D features by using 

the same feature extractor as the offline description process. It is important that 

the number of features to extract is greater or equal than the number of inliers 

found during the offline registration. As stated in Section 0, we will be using 

ORB since OpenCV provides a robust implementation and it fits our 

requirements adequately. 
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➢ Feature Matching – From the list of 2D features obtained after the ORB 

feature extraction, perform matching against the set of features from the object 

description. There are multiple ways to perform this matching step, but the 

FLANN-based robust matcher (Fast Approximate Nearest Neighbour) proposed 

by the OpenCV documentation is a sensible choice considering our 

requirements. It is fast, efficient, and easy to use for our proof of concept. By 

attempting to match each of the 2D features from the list, we obtain a list of 

outliers which did not find a match in the description; and a list of inliers which 

successfully found themselves in the object description, and to which we can 

now associate a 3D point. 

 

➢ Pose Estimation – We now have a list of inlier features, which means we have 

a set of 2D-3D correspondences from 2D coordinates to 3D points in the world 

coordinate system (see Section 0). PnP solutions only need to know 2D and 3D 

points to estimate the rotation and translation of the camera, since the intrinsic 

parameter matrix is constant. OpenCV provides different implementations of 

PnP solutions, which only need to be given a list of 2D points and a list of 3D 

points, as well as additional accuracy thresholds. PnP solutions will try to 

minimize the reprojection error, and will give an [𝑅|𝑡] matrix, with the help of 

RANSAC. In this case, we are using EPnP, since it is more efficient than 

traditional implementations of iterative PnP.  

 

 

 

➢ Output and Display – Once the pose has been estimated, a wireframe of the 

object can be placed on the original image, and now the pose of the object for 

the last frame can be retrieved by other parts of the application. 

 

Figure 31 - Feature matching (left) and Pose estimation (right) examples 
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Figure 31 - Feature matching (left) and Pose estimation (right) shows an example of 

feature matching and pose estimation achieved with this workflow. Being based on the 

OpenCV documentation implementation of this pose estimation task, a great part of the 

pose estimation module relies on the open source code provided. However, the code 

has extensively been rewritten and re-structured for multiple reasons, the first of which 

being improved clarity, genericity and maintainability of the code. On the other hand, 

most of the utility code used by this workflow has been optimized at the lowest level, 

especially for recurring operations such as projections and rotations, by restructuring 

the data and eliminating overhead. The following is a pseudo-code implementation of 

the pipeline: 
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Extract features from image with ORB onto list_features 

For every feature F(p(x,y), descriptor) in list_features 

 Try matching F to object_description with FLANN 

 If good match with feature f(P(x,y,z), descriptor) 

  Add m(p(x,y),P(x,y,z)) to list_matches 

  Draw F on image as inlier 

 Else 

  Add F to list_outliers 

  Draw F on image as outlier 

Estimate pose A(R,t) of 3D mesh for list_matches with EPnP 

Draw 3D mesh in image with pose A(R,t) 

N.B: In the actual implementation, the feature extraction from the image is 

incorporated in the same function that performs the feature matching. 

After one frame has been processed, the rotation matrix and translation vector are 

retrieved from the pipeline. The rotation matrix is converted into an Euler angle 

rotation vector, and the information is passed to the Supermanager by calling its 

function: 

bool MoveObject(std::string type, int id, Vector3 position, Vector3 rotation); 

After the Supermanager has finished updating the state of the system, it can generate 

the XML message to send to Unity for that frame. 

It is important to note that in the event that the processing speed of this pipeline is 

lower than the fps of the incoming video signal, the tracking will lag behind the live 

feed. The problem lies in the buffering of frames, in which frames queue before being 

processed by the OpenCV code. To counter this effect, an optional frame-skip feature 

was added. Upon retrieving a frame, the system will ignore all the frames that were lost 

during the previous computation cycle, and will use the latest frame to arrive in the 

buffer. In this way, the tracking system is synchronized to the live video feed. 

With this system in place, Unity now receives tracking data from a video feed, 

describing a system of tracked objects with labels and positions/rotations. 
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5. Results 
 

Due to this research project having been led at the Defence Academy of the United 

Kingdom, several restrictions have made testing the system in its entirety, a fairly 

difficult task. Fortunately, all three modules are independent from one another, 

meaning that they can be run in separate machines, or share machines in any possible 

combination. The main features which could not be tested together were the drone 

tracking and the HMD, due to both physical and network constraints. However, they 

are separate layers handled by Unity that do not affect one another, and will merge 

seamlessly when all components are properly integrated. 

In this section, we will see the different tests that were carried out, and the viability of 

the components that make up the system. 

Validation 
 

Validation of the system was carried out continuously throughout the research project 

in two different machine: the VR machine and the Lab machine. The following are 

specifications of both machines: 

VR machine specifications 

➢ Windows 10 Entreprise 64-bit (Build 15063) 

➢ LENOVO 30A6S3CV00 

➢ Processor: Intel® Xeon® CPU E5-1630 v3 @ 3.70GHz (8 CPUs), ~3.7GHz 

➢ Memory: 16,384 MB RAM 

➢ DirectX 12 

➢ GPU: NVIDIA GeForce GTX 960 (2,016 MB VRAM) (10,157 MB Total) 

Lab machine specifications 

➢ Windows 7 Entreprise 64-bit 

➢ LENOVO 10FCS0DA00 

➢ Processor: Intel® Core™ i5-6500 CPU @ 3.20GHz (4 CPUs), ~3.2GHz 

➢ Memory: 8,192 MB RAM 

➢ DirectX 11 

➢ GPU: Intel® HD Graphics 530 (No dedicated memory) (1,824 MB Total) 

Note that the Lab machine is less powerful than the VR machine in most aspects. This 

must be taken into account when evaluating the modules of the application. 

The following parts of the application were tested on the VR machine: 

➢ Simulation module (Unity3D) – main platform 

➢ Head-mounted display (HTC Vive) – only platform 
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➢ Object tracking module (OpenCV) – main platform 

On the other hand, the Lab machine ran the following parts: 

➢ Simulation module (Unity3D) 

➢ Drone tracking module (OptiTrack) – only platform 

➢ Object tracking module (OpenCV) 

To evaluate the success of the application, we can go back to our original set of 

requirements, and verify that each of the functional requirements is met. Since it is 

difficult to quantify the success of these features, we will discuss the user experience, 

restrictions and other thoughts on each aspect of the final application. 

➢ A drone should fly in a closed, controlled environment 

➢ Drone movements in the real environment should be mimicked by 

moving in the virtual environment 

Thanks to the drone tracking module built from the OptiTrack technology, the 

standardisation of the communication and the UDP connection to the simulation 

module, we have successfully been able to mimic the drone’s movements in the virtual 

environment. During the final weeks of the research project, multiple tests were made 

in the laboratory with real drones. 

 

Figure 32 - Drone tracking module, flight test (left), Unity view (right) 

As seen in Figure 32, the tests were successful. The connection between Motive and 

Unity3D is successfully established via the NatNetSDK executable, and the drone’s 

position is being correctly mimicked in Unity3D. However, the module had previously 

been tested repeatedly with objects other than drones, for accessibility and safety 

measures. This allowed to test extreme angles and fast movements indoors, without any 

possible dangers and safety concerns. 
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Figure 33 - (a) OptiTrack axis (left) - (b) OptiTrack wand (right) 

Figure 33 shows one of the objects that were used to test the connectivity between 

OptiTrack and Unity3D, which we will refer to as pseudo-drones. The software 

responds correctly to the movement of the tracked object to replace the drone, and the 

functionalities such as the rotation locks and the Rigid Body selection (if multiple Rigid 

Bodies are being tracked) as well. 

One of the noticeable restrictions of our set-up is that the OptiTrack cameras do not 

allow the drone to increase its altitude a lot. Horizontally, the cameras roughly cover a 

7m x 6m rectangle in which tracked objects are not lost. However, the cameras lose 

track of the drone once it reaches roughly 2m of altitude, which is the height that can be 

seen in Figure 32. This is because the markers on the drone were all on the top, making 

it difficult for the cameras to capture the drone once it is elevated too much. However, 

for the purposes of our proof of concept, this limitation did not hinder our testing, and 

is tied directly to our set-up. Other tracking methods or camera configurations should 

not necessarily show this problem. 

➢ The simulation should show a simplified version of the environment 

➢ The user should be able to observe the virtual environment with VR 

While some adjustments had to be made to the 3D model of the virtual environment, as 

stated in Section 0, the virtual representation of the real environment was also a 

success, as shown in Figure 32. Both when wearing the HMD and testing the drone 

tracking module, the room is up to scale and the distinguishing features are in place. 

This was verified by moving the pseudo-drone against the objects, and walking to key 

points of the scene, making sure that Unity shows the correspondence correctly. 

Manual orientation of the environment was required when building the 

correspondence. When calibrating the OptiTrack environment, it was necessary to use 

the instrument shown in Figure 33 to define the X, Y and Z axis in Motive. When doing 

this, it was important to always use the same orientation for the X and Z axis between 

tests. If this was not done, upon sending the information to Unity, the entire 

environment would appear to be rotated, and require the model of the laboratory to be 

rotated manually in Unity, or redefining the axis in OptiTrack. Surely enough, the latter 

is easy to do and takes less than 30 seconds, but it is crucial to make sure that under 

any circumstance, the 3D model of the virtual environment is correctly oriented at any 

time. The biggest limitation at the moment is that this has to be done manually. 

Despite this, integrating the VR into the project is as easy as using the tools provided by 

the Virtual Reality Toolkit (VRTK), including the [CameraRig] prefab, input listener 

scripts and many other functionalities that simply layer on top of the existing project 

seamlessly. Despite the environment lacking many features and being obviously virtual, 

all testers of the system have been successfully immersed in the environment, also 

recognizing the laboratory without being told. This shows the success of the virtual 

presence, once again, thanks to the VRTK , and also the calibration of the virtual 

environment model. 

➢ An object tracking module should track objects and their position 

with a monocular camera 
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➢ The application should be able to receive data from tracked objects 

and display it in the virtual environment 

During the research project, the object tracking module has been tested multiple times 

in both the VR machine and the Lab machine. One critical aspect of our testing is that 

due to time constraints, we were unable to test a real camera mounted on the drone. 

Instead, different sets of footage was capture in-house, and tested directly on the 

different parts of the software. This acts as a simulated feed, and can be treated as feed 

coming from the drone for testing purposes. Nevertheless, validation on real conditions 

still remains an issue. 

 

 

Figure 34 - Tracking examples with "monitorbox", success (left) & failure (right) 

The software was tested with various objects, however tests for validating the 

connectivity and the tracking functionalities in Unity were made using the single 

“monitorbox” object. The tests shown in Figure 34 were made using 500 keypoints, and 

illustrate the success and the constraints of the system. 
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Figure 35 - Tracking examples with "monitorbox3.mp4" at various angles 

First of all, the system successfully identifies and matches the features, even when 

shown at drastically different angles and distances, as shown in Figure 35. The 

rotation-invariant and scale-invariant properties of the feature descriptor that was 

chosen are indeed validated by our data set. The pose estimation is done correctly, as 

the wireframe of the model is being overlaid on top of the real object from the video 

feed. 

However, there are some constraints that must be taken into account with the current 

system. The test footage was recorded on a 640x480 smartphone camera at 29fps 

rather than using high-speed and high-resolution cameras, both for flexibility and to 

potentially expose the weaknesses of the system. Two key points appear on the right 

half of Figure 34. 

First of all, motion blur (top-right) is a very important issue for our application. 

Considering the real camera will be mounted on a moving drone, a considerable 

amount of motion blur will appear on our images if the camera is not able to handle 

high speeds. When this occurs, feature extraction and matching becomes a nigh 

impossible task. It is important to verify whether the process is able to handle fast 

moving objects, and if this is not the case, either an alternative solution must be found, 

or this must be compensated either via pre-processing methods, or hardware. 

Another problem appears when the camera does not have a high dynamic range (HDR) 

and cannot offer enough contrast in dark areas or bright areas (bottom-right). If this is 

the case, our system will lose features to track when the object becomes too bright or 
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too dark, whether because the camera changes its opening or because the object is 

simply too dark or bright for the camera. If these details are lost on a hardware level, 

feature extraction and matching becomes once again a difficult task. With these two 

constraints in mind, the properties of the camera being used a crucial for the success of 

the system. 

 

Figure 36 - Tracked object (left) and marker in Unity (right) 

On the other hand, the connectivity and proper display of the information in Unity was 

successful, the information being correctly relayed between one application and the 

other. The time-out of the markers when no more information is received, fading 

animations, and correct placement by following the pseudo-drone in the scene all 

functioned as expected, and contributed to making a coherent and descriptive scene. 

 

➢ The user should be able to detach from the drone and explore the 

environment freely 

 

Figure 37 - User at vantage point, while drone tracking is performed elsewhere 

As Figure 37 shows, the user can move around freely, while the tracked objects will be 

correctly spawned from the last known camera position. The controls have been tested 

extensively and proved to be a success among new users, who would get accustomed to 

the control scheme in the first minute of usage. 

The detached user movement has also been tested while moving the pseudo-drone in 

the scene, and both tasks proved to not affect one another. The tracked objects were 
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placed correctly in accord to the pseudo-drone’s simulated feed, and the user could 

freely detach and watch the pseudo-drone’s tracking move around the scene, or 

instantly snap back to the pseudo-drone’s position at any point. 

➢ Total failure of the drone and object tracking modules should not 

affect the simulation module 

➢ Modules should have a low degree of coupling upon implementation 

During testing, modules were forcibly closed, connections inadvertently cut off, and the 

drone would be brought out of OptiTrack’s range. However, none of these failures 

affected other modules, and the system would keep running as expected in the different 

machines. All modules are successfully self-managed. 

➢ The application should offer customization options and some 

freedom to both the user and the programmer 

➢ The application should be expandable for future applications 

During the research project, numerous efforts have been made to provide future 

customization options for both the user and the programmer. Here is a list of options 

that are available in Unity: 

Movement 

X/Y/Z speed, Rotation speed, Sprint multiplier, X/Y/Z sprint, rotation sprint, Gaze 

control, Controller haptic feedback 

Light Controller 

Ambient light, Night/Mode switch time, Day mode ambient/marker intensities, Night 

mode ambient/marker intensities 

Markers 

Marker name and prefabs, Model colour, Emitted light colour, Fade out time, Time 

out enabling, Time out time 

Drone tracking 

IP/Port, Target Rigid Body, Target Markers Origin, X/Y/Z rotation locks 

Object tracking 

IP/Port, Movement scale, Use of Quaternions 

The application has been extensively tested by altering this settings throughout the 

research project in order to create a better user experience (by reducing motion 

sickness, enabling controls that seemingly useful or intuitive, etc). 

The application on Unity’s side is also expandable, offering an infrastructure ready to 

track multiple objects simultaneously from the same drone. While this is not 

implemented in the code, the application can be fairly easily made to accept multiple 

drones / sources of tracking, track them and place them in the environment. 



Living Within an Augmented Reality World 
 

64 
 

The biggest limitation in the system is that due to time constraints, the object tracking 

module is not able to track multiple objects simultaneously. The infrastructure of the 

C++ code is already able to generate multiple poses and update the system with 

multiple objects of different types. However, the part of the program shown in Section 

0 at the moment only generates the pose for one object. Nevertheless, this algorithm 

inside the program can be extended to multiple objects, or replace with another 

structure able to generate multiple poses at the same time. 
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Efficiency 
For performance evaluation, we take into account the characteristics of the machines 

shown in Section 0. 

Unity Performance 

Unity has showed exceptionally good performance both in the VR Machine and in the 

Lab machine, through the entirety of the research project. The following is data from 

testing sessions with functionalities implemented in their final state. 

Testing conditions 

Machine: VR Machine 

Unity version: Unity 5.6.1f1 Personal (64bit) 

GPU: NVIDIA GeForce GTX 960 (2,016 MB VRAM) (10,157 MB Total) 

CPU: Intel® Xeon® CPU E5-1630 v3 @ 3.70GHz (8 CPUs), ~3.7GHz 

RAM: 16,384 MB 

Session durations: 120 seconds 

Comments: Constant user-input, viewing scene from all angles, rendering tracked object 

Results 

Average FPS: 105fps 

Minimum FPS: 101fps 

Maximum FPS: 112fps 

Average CPU time: 9.5ms 

Minimum CPU time: 9.2ms 

Maximum CPU time: 10.1ms 

Our objective was to achieve a frame rate of at least 60fps for the simulation module, 

including the VR computation and the input from other modules. However, the frame 

rate obtained during testing is almost twice as high as our target frame rate. The FPS 

remained consistently above 100, which ensures VR will be properly displayed in the 

HMD without straining the user. 

Total computation time was also fast, consistently staying under 10ms. Overall, the 

system that was built in Unity is not demanding, and fits our target performance for 

this application. 

OptiTrack Performance 

OptiTrack and Motive have not shown to be a bottleneck in the Lab machine, despite its 

characteristics being significantly lower than those of the VR machine. 

The OptiTrack cameras used in the laboratory are the Prime 17W model [51]. 

Characteristics are: 
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Name: OptiTrack Prime 17W 

Image sensor: 1664×1088, 5.5 µm×5.5 µm pixel size, 30–360 FPS, 2.8ms latency 

LEDs: 20 ultra-high power LEDs, 850nm IR 

Lens: 6mm F#1.6, 850nm band-pass filter 

Lens FOV: 70° horizontal, 49° vertical 

As described in Section 0, our laboratory set-up uses 6 OptiTrack cameras, arranged in 

the pattern seen in Figure 19. The drone tracking was performed at a rate of 120fps, 

above the maximum frame rate that Unity has given us over the course of the research 

project. Since the used cameras can go up to 360fps, the tracking frame rate has been 

completely constant at 120fps throughout all tests carried out. 

Thanks to the OptiTrack hardware, the Motive software and the efficiency of the 

NatNetSDK, the connectivity between OptiTrack and Unity showed no bottlenecks, and 

the simulation module was extremely responsive, even when faced with extreme 

movements and rotations from the pseudo-drones. The only limitations imposed by our 

drone tracking set-up are the ones stated in Section 0, where the effective tracking area 

was a 7m x 6m x 2m box, restricting our vertical movements of the drone. 

Overall, both of our efficiency goals for the drone tracking module were met: we 

obtained a framerate higher than 60fps for the tracking, and the delay between the 

drone tracking module and the simulation module remained well under 100ms, being 

near-instant when tested in laboratory conditions. 

 

Object tracking Performance 

Finally, the performance of the object tracking module has been close to our goals, but 

has shown signs of being fragile. The following charts are performance results examples 

from the footage recorded at the academy. 

 

Figure 38 - FPS trend for "monitorbox3.mp4" with 500 keypoints 
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Figure 39 - Features trend for "monitorbox3.mp4" with 500 keypoints 

 

Figure 40 - Inlier % trend for "monitorbox3.mp4" with 500 keypoints 
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Figure 41 - Inlier trend for "monitorbox3.mp4" with 500 keypoints 

Figure 38 - FPS trend for "monitorbox3.mp4" with 500 keypoints shows the frame rate 

of the entire object tracking module, over the span of 10 seconds for readability. In this 

case, we are dealing with the extraction of up to 500 keypoints. The behaviour of this 

trend is consistent over all our testing data. The maximum amount of fps that the 

system usually achieves with 500 keypoints is 6fps, while averaging throughout the 

1600+ frames of capture at 5fps when the object is present. Generally, the system stays 

at our target fps of at least 5 fps, in the non-functional requirements. 

However, at some points the frame rate dips under 4 fps. While this is acceptable in the 

overall context of our application, it risks not meeting our standards at certain 

moments. This behaviour is consistent with the percentage of inlier features found in 

the online registration phase, shown in Figure 40. Once the percentage of inliers drops 

under 45%, the pose estimation phase of the algorithm can take over 150ms in average, 

creating a bottleneck in the tracking pipeline. This could be avoided by using REPPnP, 

whose performance is stable with a high percentage of outliers, and seems to 

outperform every other alternative in that situation. 

Computation time can be reduced by reducing the number of keypoints, the following 

charts are results after reducing the number of keypoints from 500 to 150: 
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Figure 42 - FPS trend for "monitorbox3.mp4" with 150 keypoints 

 

Figure 43 - Features trend for "monitorbox3.mp4" with 150 keypoints 
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Figure 44 - Inlier % trend for "monitorbox3.mp4" with 150 keypoints 

 

Figure 45 - Inlier trend for "monitorbox3.mp4" with 150 keypoints 
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comes with an accuracy cost. Figure 44 shows that the percentage of inliers has 
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keypoints is generally less refined, and is dangerously susceptible of losing track of the 

object completely (as seen around frame 70). 
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Lab machine seems to perform similarly to the VR machine. We are still not sure of 

what could be causing this effect, and this is something that needs to be investigated 

further. 

As a side note, all of these results can be further improved by moving part of the code to 

the GPU. While this was not done due to time constraints, NVidia and OpenCV have 

CUDA tools at the programmer’s disposal to this end. 
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6. Conclusion 

Summary of work 
 

The aim of this thesis was to present a system that exploits the advantages of Virtual 

Reality and Augmented Reality, and can be used as a framework for different 

navigation applications 

A system based on three key modules has been built: a simulation module, which acts 

as the main environment and interface using Unity and VR; a drone tracking module, 

which allows a drone to be captured in real time and moved in the virtual environment 

thanks to OptiTrack; and an object tracking module based on AR technologies, which 

allows to augment the virtual environment in real time. 

After continuous unit tests and integration tests, the fusion of these technologies not 

only has proven to offer a valid alternative to traditional interfaces, but it also provides 

a framework to exploit this AV environment for numerous other applications. 

This AV system has multiple advantages. First and foremost, it allows the user to 

perform thorough spatial exploration tasks and sensible assessments of a situation, by 

being immersed in a simplified version of the environment they are monitoring. This 

mix of virtual presence and telepresence can serve as a decision-making tool, as it could 

allow a person to examine terrain they would not normally be able to examine. 

Furthermore, the system has been built so that it can easily be exploited and extended 

to other applications. Not only because of the flexibility of the simulation module, but 

also thanks to the low coupling of the three modules. This allows the drone tracking or 

the object tracking module to be replaced with different technologies, depending on the 

application that is being developed. 

We believe that this work can serve as the starting point for new fusions of 

technologies, and that this thesis has exposed new potentials of augmented virtuality, 

as well as offered the necessary tools in order to explore new areas of application for 

natural interfaces in spatial navigation. 

Future work 
 

One of the main lines of improvement for the research project is the improvement of 

the object tracking module. Further AR technologies can be explored in order to obtain 

the best results from the real environment. It is crucial to explore frameworks that 

allow tracking high amounts of objects in real time, considering the applications of our 

work. 

Another improvement crucial to our intended application, is the extension of drone 

tracking from an indoors environment to an outdoors one. While our system was 

developed as a proof of concept, it is important to evaluate the implications of 

switching to outdoor technologies such as GPS or GLONASS. Meeting frame rate 

requirements is key, either through high refresh rates, or interpolation in Unity; and 
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the impact of the accuracy when placing the vehicle in the virtual environment must 

also be assessed. 

Simultaneous Localization and Mapping (SLAM) technologies can also be integrated 

into Unity, which is one of the interesting extensions of this project. The system would 

allow the exploration of uncharted environments directly in VR, to scale, and with 

simultaneous object tracking. 

Furthermore, the object tracking module does not necessarily need to rely on AR. With 

the goal of augmenting the virtual environment to create an AV, the information 

acquired from the real environment could come from different types of sensors. 

Whether it is sound information, thermal information (for example projected onto the 

environment model), infrared signals; any kind of real information can be formatted 

and presented in the AV. 

Finally, the most interesting extension of the project in our opinion, would be the 

ability to receive information from multiple tracking sources, and place them in the 

virtual environment. This would be a key advantage over traditional interfaces, since 

the simulation module could provide a shared environment which can be augmented 

simultaneously by different sources. 

Other potential applications include for example exploring terrain around a spacecraft 

in 3D to plan routes; generation and visualisation of unmapped terrain with thermal 

information; or large scale monitoring in traffic security, urban areas, or terrain 

scouting.  
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APPENDICES  

MovementController 

 

Variable Type Description 
Camera Rig GameObject [CameraRig] GameObject to move in the scene 

Speed X/Y/Z float Speed factor for movement along each axis 
Speed Rotation float Rotation speed factor around Y-axis 

Sprint Multiplier float Speed multiplier when in “sprint” mode 
X/Y/Z Sprint bool If true, sprint is enabled along each axis 

Rotation Sprint bool If true, sprint is applied to rotation speed 
Realistic Movement bool If true, movement uses Unity physics (not 100% convenient) 

Gaze Control bool If true, forward = where the head camera is looking 
Player Head Camera GameObject “Camera (head)” GameObject for gaze control 

Table 0-1 [MovementController] variables 

Function Type Description 
moveRigBy(Vector3 distance) void Moves [CameraRig] in the desired distance 
moveRigTo(Vector3 position) void Moves [CameraRig] to the desired position 
rotateRigBy(Vector3 rotation) void Rotates [CameraRig] by the desired rotation in Euler angles 

rotateRigTo(Vector3 coordinates) void Rotates [CameraRig] to the desired rotation in Euler angles 
rotateRigTo(Quaternion coordinates) void Rotates [CameraRig] to the desired rotation in Quaternions 

movePlayerForward/Backward() void Moves the [CameraRig] along the Z axis with the specified speed 
movePlayerLeft/Right() void Moves the [CameraRig] along the X axis with the specified speed 
movePlayerUp/Down() void Moves the [CameraRig] along the Y axis with the specified speed 

changePlayerRotation(Vector3 
rotationDelta) 

void Changes the [CameraRig] rotation by the specified Euler angles 

sprintOn/Off() void Scales XYZ/r speed according to the Sprint Multiplier 
ToggleGazeControl() void Toggles movement controlled by the “Camera (head)” 

orientation 

Table 0-2 [MovementController] functions 

Results of “monitorbox3.mp4” over 55 seconds, 500 keypoints 

 

Figure 0-1 - FPS trend for "monitorbox3.mp4" over 55 seconds with 500 

keypoints 

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000

F
P

S

Frame #

FPS trend for 500 keypoints over 55 seconds



 

 

81 
 

 

Figure 0-2 - Features trend for "monitorbox3.mp4" over 55 seconds with 500 

keypoints 

 

Figure 0-3 - Inlier trend for "monitorbox3.mp4" over 55 seconds with 500 

keypoints 
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Figure 0-4 - Inlier % trend for "monitorbox3.mp4" over 55 seconds for 500 

keypoints 

 

 

 

Results of “monitorbox3.mp4” over 55 seconds, 150 keypoints 

 

Figure 0-1 - FPS trend for "monitorbox3.mp4" over 55 seconds for 150 keypoints 
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Figure 0-2 – Features trend for “monitorbox3.mp4” over 55 seconds for 150 

keypoints 

 

Figure 0-3 - Inlier trend for "monitorbox3.mp4" over 55 seconds for 150 

keypoints 
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Figure 0-4 - Inlier % trend for "monitorbox3.mp4" over 55 seconds for 150 

keypoints 
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