
BACHELOR’S THESIS

Traversing algorithm based on
proprioceptive measures for sensory

deprived environments

Author:
Albert CLÉRIGUES GARCÍA

Supervisor:
Tomáš SVOBODA

Co-supervisor:
Germán RAMOS PEINADO

A thesis submitted to Escuela Técnica Superior
de Ingenieros de Telecomunicación from the
Universitat Politècnica de València for the
Degree in Telecommunications Technology
Engineering

Year 2015-16

Valencia, June 24, 2016

iii

Abstract
The main goal of the diploma project is to develop a combined robot-motion
and tilting-flippers algorithm for traversing harsh terrains without extero-
ceptive measurements, i.e. without Lidar, RGB-D cameras, etc. The robot
should advance in the direction given by the operator as autonomously as
possible, deciding how much distance to advance, positioning the flippers
to aid in traversal and ensuring its safety. The features considered in the
planning will be exclusively proprioceptive such as tactile sensor arrays in
each flipper, gyroscopes, accelerometers or odometry.

Resumen
El principal objetivo de este proyecto es desarrollar un algoritmo de con-
trol del movimiento y de las aletas del robot con el objetivo de avanzar
sobre el terreno prescindiendo de sensores extereoceptivos, es decir, sin in-
formación de LIDAR, camaras RGB-D, etc. El robot debe avanzar en la
dirección indicada por el operador de la forma mas autónoma posible, de-
cidiendo cuanto avanzar, moviendo las aletas para ayudarse y procurando
su seguridad. Los sensores considerados para tomar las decisiones serán
exclusivamente proprioceptivos como el array de sensores de presión en
las aletas frontales, giroscopios, acelerómetros y odometría.

Resum
El principal objectiu d’aquest projecte es desenvolupar un algoritme de con-
trol del moviment i de les aletes de un robot amb el objectiu de avançar
sobre terrenys prescindint de sensors extereoceptius, es a dir, sense infor-
mació de LIDAR, càmeres RGB-D, etc. El robot deu avançar en la direc-
ció indicada per el operador de la forma mes autònoma possible, decidint
cuant avançar, moguent les aletes per a ajudarse i mirant per la seva segure-
tat. Els sensors considerats per a prendre les decisions seràn exclusivament
proprioceptius, com per exemple els sensors de presio de les aletes frontals,
giroscopis, acceleròmetres i odometria.

v

Contents

Abstract iii

1 Introduction 1

1.1 The TRADR Research Project 1
1.1.1 TRADR Project Motivation 2

1.2 The NIFTi ground rover . 2
1.3 Goals of this work . 3

1.3.1 Motivation . 3
1.3.2 Flipper’s force sensor array 3
1.3.3 Development of a Blind Traversing Algorithm 5

1.4 Technical Specifications and Planning 5

2 The Blind Traversing Algorithm 7

2.1 Algorithm Overview . 7
2.1.1 Traversing with only proprioceptive sensors 8

2.2 Software Architecture . 8
2.2.1 The Robot Operating System (ROS) 8
2.2.2 Blind Traversing Node Graph 9
2.2.3 The Blind Traversing Node 10

3 Blind Traversing Strategies and Stage Determination 13

3.1 Blind Traversing Strategies 13
3.2 Stage Determination . 15

3.2.1 Strategy Design Overview 15
3.2.2 Stage Determination Decision Algorithm 16
3.2.3 Terrain Analysis . 19

3.3 Dangerous Terrain . 20

4 Experiments and Conclusions 21

4.1 Experiments . 21
4.1.1 Descending step . 21
4.1.2 Stairs traversal . 22
4.1.3 Complex Obstacle . 25
4.1.4 Known Issues . 26

4.2 Conclusions . 27
4.3 Future Development . 28

Bibliography 31

vii

List of Figures

1.1 Evaluation scenario for TRADR project 1
1.2 The NIFTi ground rover . 2
1.3 Smoke related problems . 3
1.4 Flipper force sensor array . 3
1.5 Readings of force sensor array 4
1.6 Estimated terrain from force sensor array 4
1.7 Adaptive Traversing Strategies 5

2.1 Diagram of actions in a stage 7
2.2 ROS Nodes example . 9
2.3 Node interaction diagram in Blind Traversing 9
2.4 Class and data flow diagram of Blind Traversing 12

3.1 Blind Traversing Strategies . 14
3.2 Climbing Strategies Overview 15
3.3 Descent Strategies Overview 16
3.4 Rear estimation glitch of estimated terrain 19
3.5 Under-track estimation glitch 19
3.6 Front flat terrain computation 20
3.7 Example of dangerous hole 20

4.1 Step descent experiment . 21
4.2 Stair climb experiment . 23
4.3 Stair descent experiment . 24
4.4 Multiple pallet obstacle experiment 25
4.5 Flippers stuck between steps of stairs 26
4.6 Robot stuck in measuring top of obstacles 26

1

Chapter 1

Introduction

1.1 The TRADR Research Project

This work has been entirely developed for the NIFTi ground rover (UGV)
robot as part of the TRADR Research Project, which stands for Long-Term
Human-Robot Teaming for Robot-Assisted Disaster Response. This is an
EU-funded 4-year Integrated Project in the FP7 which develops technology
for human-robot teams to assist in disaster response efforts, with the aim
of developing persistent models for environment perception, multi-robot
acting and human-robot teaming. The TRADR programme will be now
briefly introduced as a way to put in context the development of this thesis.

FIGURE 1.1: Scenario used to evaluate the TRADR project. [1]

2 Chapter 1. Introduction

1.1.1 TRADR Project Motivation

The TRADR Project spins-off from the NIFTI project (Natural human-robot
cooperation in dynamic environments) specializing in disaster response,
such as train accidents, tunnel disasters or earthquakes. In these scenarios,
various kinds of robots collaborate with human team members to explore
and gain consciousness of the environment. The team can consist of hu-
mans operating on the area and/or from a remote command post, NIFTi
ground rovers (UGV), and quadcopters/microcopters (UAV), with an ini-
tial Human-to-Robot ratio of about 1:1, which could be further decreased
in the future.

The goal is that throughout this collaborative effort team members gain a
faster and deeper understanding of the disaster area, improving the coor-
dination, planning and response time. Figure 1.1 shows an example of the
kind of scenarios the project is aimed for.

1.2 The NIFTi ground rover

The robot used for this work is a small search-and-rescue robot designed
to move through rough terrain and hostile scenarios. The robot is remotely
controlled by an operator using the data from the robots sensors that, in
its most basic configuration, include an omnidirectional camera, a LIDAR
(a rotating 2D laser scanner), IMU and GPS. New sensors for the robot are
being developed and improved, as this is much an R&D ongoing project.

FIGURE 1.2: The NIFTi ground rover

The robots traversing capabilities rely on two main caterpillar tracks to de-
liver most of the push, and four independent tilting flippers that aid in
traversing of terrain, such as climbing obstacles or helping to stabilize. The
flippers are actuated by powerful servos with a current of up to 4 A, which
is enough for the robot to lift itself through obstacles of up to 40 cm.

The flippers can also be used to increase the effective contact surface with
the ground and gain traction, this is critical to traverse obstacles such as
stairs where the step corners are the only contact points.

1.3. Goals of this work 3

1.3 Goals of this work

1.3.1 Motivation

One important role for the TRADR UGV in fire scenarios is to help firefight-
ers by scouting indoor disaster sites and providing valuable information
prior to human deployment. A significant problem has been spotted in the
project reviews, where UGV going through areas filled with dense smoke
has seen its camera and LIDAR rendered useless.

(A) UGV robot (B) Camera view (C) LIDAR pointcloud

FIGURE 1.3: Examples of dense-smoke related problems

The LIDAR sensor fails completely as laser beams are randomly reflected
by smoke particles, creating a cloud of noise around the robot as seen in Fig-
ure 1.3 (c). This fact, combined with nearly zero visibility from the camera,
leads to poor robot placement perception from the operator, whose only
information for remote control comes essentially from this two sensors.

1.3.2 Flipper’s force sensor array

A new branch of development was started to solve this problem with the
addition of new proprioceptive sensors whose performance is not affected
by smoke [2]. The most relevant is the addition of force sensors to the front
flippers, consisting on an array of six force sensing elements.

FIGURE 1.4: The flipper force sensor array

The main idea being that by pressing the flippers against the ground, the
different pressures on each sensor of the array will convey information
about the shape of underlying terrain as seen on Figure 1.5

4 Chapter 1. Introduction

FIGURE 1.5: Force sensor array placed in the flipper along the readings

A terrain estimator was then trained using features such as the pressure
sensor readings along with other, as the flipper angles at touch or inter-
nal odometry, to estimate the height profile of the terrain as discussed in
[2]. The estimation gives an average height profile of the terrain with a
resolution of 10 cm. under and in front of the robot as seen in Figure 1.6.
Additionally, it gives the upper and lower quartiles of the height probabil-
ity distribution for each estimated height, which can be used as a measure
for the certainty and accuracy of estimation.

FIGURE 1.6: From left: robot in front of obstacle, measured forces in sens-
ing elements, estimated terrain height in bins

1.4. Technical Specifications and Planning 5

1.3.3 Development of a Blind Traversing Algorithm

The main goal of this work will be to develop a traversing algorithm for
the so called "blind mode" using proprioceptive sensors data, such as the
estimated terrain from the tactile measurements, and setting the robot mor-
phology as needed to traverse the terrain in forward direction while en-
suring the safety and stability of the robot. The traversal has to be as au-
tonomous as possible since teleoperation of the complex robot morphology
causes high cognitive load of the operator, whose attention should be rather
focused on reaching the higher-level search and rescue goals. The operator
should only have to set the desired advance direction for the robot and the
algorithm should do the rest.

Although other work has been made for this robot in the area of adap-
tive traversability [4], where the morphology of the robot is dynamically
changed for successful traversal, this is not transferable to our problem as
its traversing strategies rely heavily on the flippers for support as seen on
Figure 1.7. These are not suited for the blind traversal, as front flippers
should be free for tactile sensing to the extent possible. Instead, a new set
of flipper positioning traversing strategies will be proposed to solve this
problem.

FIGURE 1.7: Flipper configurations for the adaptive traversing algorithm,
inadequate for blind traversing

The scope of this work aims at traversing symmetrical relatively simple ob-
stacles such as steps, stairs or ramps. Asymmetrical obstacle traversing or
angled approach to obstacles would require the addition of tactile sensors
to the back flippers and independent estimation of terrain under left and
right track, which at the time was still being implemented. Thus, this work
aims to serve as baseline and to uncover the challenges and problems to
account for future development.

1.4 Technical Specifications and Planning

This work will be developed on ROS.org (Robot Operating System) which
will be introduced later, and the algorithm will be implemented in Python.
It will be deployed on the UGV introduced in Section 1.2, which will be
equipped with two force sensor arrays in each of the front flippers. These
will produce a terrain estimation consisting on a single one-dimensional
array representing the average height of the terrain between the two flip-
pers. In parallel to the development of this work two more force sensor
arrays were being developed and added to the rear flippers to extend the
profile to also include the rear section of the robot. Furthermore, indepen-
dent terrain profiles for right and left tracks were also being added to the

6 Chapter 1. Introduction

setup. This work does not benefit of those advantages but has been made
and implemented accounting for this future imminent additions.

The work has been developed in the span of 4 months, from the 18th of
February up to the end of June of 2016, being developed in two main stages:

First stage (18 February - 18 March) – consisted on the introduction to
ROS.org and the robot environment by developing a simple prototype of
the algorithm that can climb and descend a standard ISO European pallet
for the 2nd Year review of the TRADR Research Project in Dortmund, Ger-
many. This was developed in tandem with a member of the CMP in the
beginning but progressively being more individual. The review and evalu-
ation of this first version of the algorithm was satisfactory and encouraged
further development.

Second stage (22 March - 20 June) – production of the final version of the
Blind Traversing algorithm. The software architecture, blind strategies and
tests were done in this phase. The work from the first stage is not included
in this document as it was essentially a learning exercise on which the next
version would be built.

7

Chapter 2

The Blind Traversing
Algorithm

2.1 Algorithm Overview

We have approached the blind traversing algorithm real-time operation
dividing its operations in an arbitrary number of sequential stages, each
stage is comprised of three consecutive actions that the robot will execute.
The operation will consist on executing stage after stage, where each action
of the stage is executed according to the settings associated with it for that
particular stage:

1. Set flippers to desired shape.
2. Advance forward a certain distance (20 cm).
3. Lower the flippers to perform tactile sensing (or touch) with the front

flippers in order to estimate the height profile of the terrain.

FIGURE 2.1: Diagram describing actions executed in one stage

The first action will apply the optimal robot morphology to traverse the
next stage, this is achieved by adjusting the angle and torque of each flip-
per according to the values of the stage options. Then the robot moves for-
ward using its caterpillar tracks until it reaches the next measuring point
and stops. The robot then lowers the front flippers and pushes them to
the ground to get information about the terrain shape as explained in 1.3.2.
After this touch action, an estimation of the terrain is made using the force
sensor array data in each of the front flippers, which is then used along with
other proprioceptive sensor measures to determine the optimal settings for

8 Chapter 2. The Blind Traversing Algorithm

the actions in the next stage, i.e. set morphology, advance and touch. The
information and decisions made for the next stage are then presented to the
operator, that should acknowledge them and give the algorithm permission
to execute the next stage as planned.

2.1.1 Traversing with only proprioceptive sensors

The approach described above responds to many limitations involving
the use of proprioceptive sensors. The algorithm has an stop-and-go mo-
tion, where the robot has to stop to perform the touch action, then wait
for the height profile estimation, compute the optimal settings to traverse
the estimated terrain and finally wait for the operator to validate the plan
to continue its movement. Among other things, this is motivated by the
static tactile measuring procedure used to train the terrain estimator and
the range of the flippers tactile sensors of about 35 cm. that hugely limits
the anticipation of obstacles and operator awareness of the environment.

This operation, although perfectly functional, presents many drawbacks
such as low operator interactivity, that receives information of the terrain
shape every 10s., and slow effective advance speed. However, this opera-
tion has been chosen as it is reasonably effective and copes better with the
restrictions of working with this kind of sensors:

• Having null terrain anticipation, the robot has to advance with their
flippers up in case it encounters an obstacle, so it will begin to climb
it instead of crashing into it. If the flippers have to be upwards while
advancing, this means it is unsafe to perform the tactile sensing while
in movement and it is necessary to stop and remain still while this
action is happening.

• Each time the touch action is performed, an estimate of the front 30
cm. is made, hence it is safe to advance only around 20 cm. before the
terrain in front of the robot is sufficiently uncertain to have to measure
it again.

• A constant and specific torque has to be applied downwards when
performing the touch in order for the force sensors to be in their lin-
ear zone. The robot has to remain still as moving tracks would inter-
fere with the tactile sensing, and moreover, the terrain estimator had
already been trained with static measuring.

2.2 Software Architecture

2.2.1 The Robot Operating System (ROS)

The robot is controlled and operated using the software ROS.org, a highly
modular and flexible framework for writing robot software. ROS organizes
the control and operation of a robot using three main logical components:
nodes, topics and messages. A node really isn’t much more than an ex-
ecutable file that uses the ROS client library to communicate with other

2.2. Software Architecture 9

nodes. For that purpose, a node will register as a publisher or subscriber to
a topic, where messages flow from publisher to subscribers.

The components described above are the building blocks of a very pow-
erful architecture where each node can receive and broadcast information
system-wide. ROS.org uses a hybrid P2P system for communications, which
allows for nodes controlling the same robot or robots to be distributed on
multiple computers, sharing data and commands. A basic example dia-
gram illustrating this concepts is found on Figure 2.2.

FIGURE 2.2: Part of the ROS node diagram of the Blind Traversing node.
Nodes are circled and topic names are squared.

2.2.2 Blind Traversing Node Graph

FIGURE 2.3: Interaction between the Blind Traverse node and the nodes
present in the system

10 Chapter 2. The Blind Traversing Algorithm

The Blind Traverse node is also part of a bigger system of nodes present in
the robot. The most important subscriptions include the remote controller
commands, the flippers actual current and angle, the odometry, which in-
cludes position, pitch, roll and yaw, and the estimated terrain. Similarly, it
publishes to topics controlling the movement of the robot, the angle of the
flippers and its maximum torque, the Graphical User Interface (GUI) and
sending the tactile sensor data to the terrain estimator.

2.2.3 The Blind Traversing Node

The blind traversing node internal class architecture has been divided
into four main classes, to provide flexibility and modularity in future de-
velopment:

• Blind Controller class which contains the main loop, serves as a cen-
tral hub for control, coordination and staging of the blind mode.

• Kinematic Controller class that serves as a high level interface for the
node to easily control the robot actuators.

• Stage Determination class which receives sensors data and terrain,
analyzes them and determines the settings for the next stage.

• IOController class receives and packs the robot sensor information
for the other controllers as well as communicating other system re-
lated functions.

All the algorithm has been implemented as a standard real-time control
loop where updated sensor data is gathered at least once per iteration. The
functions have been implemented to work on a step-by-step basis with per-
sistent state, processing the updated real-time data in each iteration and
then updating its state variables or executing the appropriate instructions.

IOController

The IOController class manages, among other things, the Blind Mode con-
trol service, which serves as an interface for other ROS.org nodes to toggle
the operation of this node. It can also display text in RViz, a visualization
tool that reconstructs and shows the 3D maps and position of the robot, an
example of RViz and the displayed text can be seen in Figure 3.7(A).

Most importantly, it manages the sensor reading updates: everytime a new
reading is made from any sensor, the corresponding IOController callback
function is called that updates the value in the Loop Variables. Every time
an iteration of the main loop is performed, a copy of the updated Loop Vari-
ables is requested from the IOController and distributed to all controllers
in the node. The Loop Variables include information such as:

– Pressed Buttons pressed state of the buttons in the remote controller.
Currently using the ’1’ button to toggle the Blind Mode, the ’4’ to give
permission to execute next stage and ’3’ to repeat the touch operation.

– Flipper angles tilted angle of each flipper.

2.2. Software Architecture 11

– Flipper currents electrical current the servo in each flipper is using to
move it or to keep it in place.

– Internal odometry Position vector and euler angles.
– Estimated Terrain represented by the median, upper and lower quar-

tile height profiles.

Stage Determination

The Stage Determination class analyzes and processes the sensor readings
and estimations to produce the optimal settings to traverse the next stage.
The decision algorithm will be explained later in Section 3.2.2. The stage
settings that the algorithm determines are composed of the next options:

• Movement Options This include a boolean to enable/disable move-
ment for that stage, the distance to advance in meters and the speed
to do so.

• Front and Rear Flipper Options In each stage, two independent set-
tings are computed for front and rear flippers, these include:

– Marker Text Text to be displayed in RViz for operator.
– Angles Angles of flippers to get the right morphology. If this

value is null, no change is made to the angle of the flippers in
next stage.

– Torque referred to the maximum electrical current that the ser-
vos can apply to move the flipper or keep it in place.

– Touch Options settings for the touch operation, that include a
boolean to toggle touch for next stage and an option to return
the flippers to the original position after the touch operation.

Kinematic Controller

The Kinematic Controller provides an easy interface to control the move-
ment speed of the robot and the position of the flippers. These are used to
form high-level function to perform the three actions in each stage: set mor-
phology, move and touch. All actions are executed in a step-by-step basis,
each step corresponding to one iteration of the control-loop, resulting in
the functions flipper_shape_step(stage_options), touch_step

(stage_options) and movement_step(stage_options), where each
one uses only the required options from stage_options.

The touch_step function returns a Touch Report object in each iteration,
which contains:

– Touch Completed boolean that indicates Blind Controller if the touch
action has finished.

– Dangerous Hole, boolean indicating that the terrain in front of the
robot is a dangerously deep hole, this will be seen in Section 3.3.

– Angle at touch angle of each of the four flippers when touching the
ground used by the Stage Determination class to detect dangerous
terrain and output the best settings for the next stage.

12 Chapter 2. The Blind Traversing Algorithm

Stage Operation Overview

FIGURE 2.4: Diagram illustrating the flow of data through the classes

For a given stage, the data flow and class interaction is exemplified in the
Figure 2.4, and proceeds as follows:

• The Kinematic Controller sets the flippers to the desired shape, moves
forward and performs the touch operation. In initialization, the shape
and movement options are given blank, so they are not executed.

• While executing the touch action, when all flippers are in contact with
the ground, the terrain estimator node is informed that the tactile sen-
sor array data is ready to be captured and processed.

• Once the touch action is finished, it wraps important information
from the action into a packet called touch report where information
such as the flippers angle at touch are included. The robot then waits
for the terrain estimation to be done by the Terrain Estimation node.

• When the terrain estimation has been computed, it is then inserted
into the loop variables, and then passed to the Stage Determination
class along with the touch report. Then, the optimal settings for the
next stage actions are computed using this information and are then
sent to the Blind Controller.

• The Blind Controller will display the planned settings for the next
stage to the operator and await for permission to start the new stage.

13

Chapter 3

Blind Traversing Strategies and
Stage Determination

3.1 Blind Traversing Strategies

As stated in Section 1.3.3 a new set of traversing strategies is needed in
order to traverse the terrain while leaving the front flippers free as much as
possible. A strategy is defined as a combination of certain settings for the
shape, move and touch actions to traverse a particular terrain.

To implement these strategies the decision has been made to independently
compute and apply flipper settings for front and rear sections, configuring
parameters such as flippers angle and torque, performing or not tactile
sensing and the distance to advance. This provides great flexibility when
facing situations with multiple obstacles. With this in mind, different pre-
defined flipper settings have been proposed to implement the strategies:

Predefined Front Flipper Settings

Detection Default position at 45º up for traversing.

Flat Aligned with ground plane, used to traverse slopes.

Hole Keeps the flipper on angle at touch.

Soft Softens flippers to pivot smoothly.

Predefined Rear Flipper Settings

Straight Default position at 0º for traversing.

Lever Lifts the body to pivot over obstacle.

Traction Soft torque when flipper is lower than robot ground plane.
Strong torque when flipper tries to go up getting locked at 0º.

Soft Softens flippers to pivot smoothly.

The situations depicted in Figure 3.1 exemplify the expected computed set-
tings given the terrain. These strategies try to maximize the control and
predictability of the blind traversing, where one strategy shape naturally
leads to the next stage.

14 Chapter 3. Blind Traversing Strategies and Stage Determination

(A) Straight/Detection (B) Traction/Flat (C) Traction/Flat

(D) Lever/Detection (E) Traction/Detection (F) Straight/Hole

(G) Straight/Hole (H) Straight/Soft (I) Soft/Detection

FIGURE 3.1: Rear/Front settings for the Blind Traversing Strategies.

These strategies are more passive than the Adaptive Traversing (AT) ones
in Figure 1.7 and try to address some issues such as:

Uncertainty of obstacle top – it is not known if the obstacle being climbed
continues up, flattens or goes down, hence, we try to climb with the front
flipper upwards to prevent getting stuck or not sensing the upcoming ter-
rain correctly. Figure 1.7(e) shows how in AT the front flipper is pushed
down to get grip on top while climbing an obstacle, to compensate for the
loss of traction the rear flipper is used to provide the necessary grip.

Holes – As the terrain after and at the bottom of the hole is unknown, the
pivoting and descent is delayed as much as possible to avoid descending
on a dead end. We say a hole is detected if the front flippers descend be-
yond a certain threshold when executing the touch operation. When a hole
is detected, the front flippers are kept a little bit up from the touch angle
as seen in Figure 3.1(F), this way we increase stability and speed of touch
operation and delay the descent. We descend only when the robot naturally
leans towards the front and the terrain has been sufficiently probed.

Stairs – Given the uncertainty of obstacle top commented earlier and the
inability to properly recognise stairs and complex slopes that need critical
traction, a simple solution has been adopted: when the robot is pitched up
the front flippers go flat aligned with the ground plane. This simple change
increases the grip when the obstacle continues up, like in stair climbing Fig-
ure 3.1(C), without reducing the ability to sense and prevent from unknown
terrain features, as the flippers are still raised up.

Predictability – The strategies have been designed to provide clear and
meaningful magnitude changes to clearly mark the transition from one
strategy to another. For example, the decision to soften front flippers to
end descent over a hole as in the Figure 3.1(H) is given by the increase in
force the front flippers have to do to keep shape when the robot starts sup-
porting in them, which is a natural consequence of advancing over a hole.
This will be seen and explained in the next section.

3.2. Stage Determination 15

3.2 Stage Determination

Once the strategies have been laid out, a decision algorithm is needed
to correctly identify the terrain based on sensor readings and output the
optimal strategy to traverse it. The decision algorithm selects the optimal
predefined flipper settings to traverse the next stage and returns them.

3.2.1 Strategy Design Overview

As stated before, the Blind Traversing strategies have been designed to
naturally flow from one another at the time of traversing an obstacle. De-
spite this fact, the decision algorithm has been implemented with flexibility
in mind without using state-machines or anything like that, this will be de-
tailed later. Before describing the algorithm it seems logical to explain and
show the main markers and indicators for choosing the correct strategy.

Climbing Strategies Overview

(A) Traction/Flat (B) Lever/Detection (C) Traction/Detection

FIGURE 3.2: Rear/Front settings for obstacle climbing with main variable
indicators for transition decision.

1. Starting from the default position Figure 3.1(A), we encounter an ob-
stacle and climb over it, as the pitch raises above the slope threshold
the front flippers automatically alineate with the robot ground plane
as seen on Figure 3.2(A).

2. If pitch is above the slope threshold and the ground in front of the robot
is flat, as Figure 3.2(A) points out, this indicates that we have topped
the climb and should now pivot over the obstacle by levering with the
rear flippers as seen on Figure 3.2(B).

If the ground in front of the robot was not flat it would mean that the
obstacle continues to change elevation and the flippers would keep
the optimal configuration for slope climb which is the same as in Fig-
ure 3.2(A).

3. While the pivoting hasn’t been completed the robot rests over the
back flippers causing a high current in the servo to keep the flipper
in position. The current in rear flipper servos is used as an indicator
to detect when the robot pivots and tops the obstacle, as seen on Fig-
ure 3.2(C), where the rear flipper indicates now a low current. At this
point we engage back traction in the back flippers to finish the climb
safely and stable.

16 Chapter 3. Blind Traversing Strategies and Stage Determination

Descent Strategies Overview

(A) Straight/Hole (B) Straight/Hole

(C) Straight/Soft (D) Soft/Detection

FIGURE 3.3: Rear/Front settings for obstacle descent with main variable
indicators for transition decision.

1. While traversing terrain and measuring, the touch report indicates that
the angle of touch is below the hole threshold, the Hole preset is selected
and flippers are set a little bit higher than the angle of touch as seen
in Figure 3.3(A).

2. The robot keeps advancing until it naturally pivots and starts sup-
porting on its front flippers, consequently the current in front flippers
raises to keep them in place as seen on Figure 3.3(B). This raise in cur-
rent is used to determine when the robot is ready to end its descent
by softening the torque in front flippers as Figure 3.3(C) shows.

3. Once the robot has descended, it keeps advancing until the rear part
starts to support onto the rear flippers, this raises the current in the
rear servos to keep flippers in place. The increase in current in back
flippers is then interpreted to soften the back flippers and softly de-
scend the rear part of the robot to the lower level like in Figure 3.3(D).

3.2.2 Stage Determination Decision Algorithm

The decision algorithm has been implemented as a handcrafted if-else
decision tree where the front and rear flipper configurations are assigned in-
dependently. A machine learning algorithm would certainly perform better
than a handcrafted if-else algorithm, however, the decision was made to se-
lect the last one given that there was no prior work to rely on and the terrain
estimation awaiting for better and richer estimations.

Selecting and training a machine learning algorithm could be on its own a
complete bachelor’s thesis, but in this case, also the software architecture
had to be designed and implemented. The final decision, given the time
and amount of work restrictions, was to do a handcrafted if-else decision
tree that suffices for the scope of this work.

The front flipper settings decision is made according to Algorithm 1:

3.2. Stage Determination 17

Algorithm 1 Decision algorithm for front flipper settings

1: if front flipper angle at touch < hole angle threshold and pitch < pitch
threshold for slope then

2: if front flippers current > min current threshold support then

3: front flipper settings = soft
4: else

5: front flipper settings = hole
6: end if

7: else

8: if abs(pitch) > pitch threshold for slope then

9: front flipper settings = flat
10: else

11: front flipper settings = detection
12: end if

13: end if

The front flipper decision algorithm is rather simple because the touch op-
eration is really the main usage of the front flipper, it is divided in two
conditional decision blocks: hole and obstacle case.

• The hole case (line 1) is triggered when the front flippers have touched
the ground at a sufficient negative angle and the robot is not in a slope,
it then checks if the robot is supporting on the front flippers or not to
produce the final descent as explained previously in Descent Strate-
gies Overview (Section 3.2.1).

• The case for obstacles (line 7) then checks if the robot is on a slope
to assign either front detection or flat settings to deal with stairs as
explained in Section 3.1.

Algorithm 2 Decision algorithm for rear flipper settings

1: if previous rear settings == lever then

2: if rear current > max current threshold not support then

3: rear flipper settings = previous rear flipper settings
4: else

5: rear flipper settings = traction
6: end if

7: else if pitch horizontal and rear current > min current threshold sup-
port then

8: rear flipper settings = soft
9: else if pitch > pitch threshold for slope and terrain front flat then rear

flipper settings = lever (big or small)
10: else

11: if abs(pitch) > pitch threshold for slope then

12: rear flipper settings = traction
13: else

14: rear flipper settings = straight
15: end if

16: end if

18 Chapter 3. Blind Traversing Strategies and Stage Determination

The rear flipper settings are assigned using rather more complex condition-
als, given that they are the main traversing flippers as seen in Algorithm 2:

• The first conditional aims at delivering levering consistency once it
has been triggered, it was seen in experiments that interrupting lev-
ering caused serious safety issues. The current applied to the rear
flippers helps determine if we have stopped supporting on them and
it is safe to stop the levering.

• The second conditional in line 7 checks the conditions for the end de-
scent strategy to lower the rear part of the body smoothly as seen in
Figure 3.1(I).

• In line 9, the conditional checks if the robot is on top of an obstacle and
should start the levering maneuver, it does so by looking if the robot
is on a sufficiently ascending pitch and if the terrain in front is flat.
There are two levering presets, one for small obstacles and another
one for big ones, that are chosen based on the pitch of the robot, the
taller the obstacle the bigger the pitch.

• Lastly there is the default case if none of the above applies, which also
checks the pitch of the robot to apply either the stairs/slope setting or
the flat settings.

Decision thresholds and parameters definition

The Stage Determination decision algorithm features many thresholds
and parameters in the conditionals, these have been defined attending to
specific criteria:

Pitch thresholds – The thresholds related with the pitch have been assigned
attending to some basic parameter definitions. First, an obstacle has been
defined as a sufficiently high change in height to cause abrupt transition,
which has been experimentally set to a change in height bigger than 6cm.
between bins (10cm. long).

• The pitch horizontal threshold has been defined as the pitch of the robot
when standing on top of the smallest obstacle. Which is computed as
the inverse sin of the length of the track (0.5 m.) divided by the height
of the obstacle (0.06m.):

arcsin

(

0.06

0.5

)

= 6.89
◦
≈ 7

◦ (3.1)

• The slope threshold has been defined as the pitch that the robot would
be in at half climb on the 6cm. obstacle, this roughly being two times
the pitch horizontal threshold at 14°.

• Finally, the pitch threshold for big or small lever has been determined
experimentally at 30°, this is used when starting the lever maneuver,
where the pitch is checked to either do a big or small lever to lift the
robot more.

3.2. Stage Determination 19

Current thresholds – The current thresholds have been entirely determined
through experimental results, resulting in:

• Min current threshold support is the minimum current from which
we determine the robot is supporting on those flippers, set at 1 A.

• Max current threshold not support is the maximum current up to
which we determine the robot is not supporting on its flippers, with
a value of 0.5 A.

Hole angle threshold – is the angle of the flippers at touch from which it
is determined that there is a hole in front, it has been experimentally set to
avoid false positives at -22.5°.

Terrain front flat – is a measure that the terrain in front of the robot is suf-
ficiently horizontal to consider it flat. Its calculation will be detailed in Sec-
tion 3.2.3.

3.2.3 Terrain Analysis

In the beginning of the project, a huge portion of the Stage Determina-
tion was done based on a terrain analysis of the height differences of the
estimate. However, as development advanced, many issues appeared re-
lated with poor under-track estimation, outliers and a prototyping training
data set which, for example, did not include stairs.

FIGURE 3.4: Terrain height profile with a rear estimation glitch, the black
line symbolizes the robot, it is clear that the height of bins 0, 1 and 2 is not

right as the robot was not underground.

(A) Ground Truth
(B) Estimated Terrain

FIGURE 3.5: Step being aproximated as a ramp due to poor under-track
estimation.

20 Chapter 3. Blind Traversing Strategies and Stage Determination

As these problems appeared, fewer and fewer decisions where based on
information extracted from the terrain. In the end only one parameter is
computed from the terrain estimate, this being the flatness of the terrain in
front of the robot, used for deciding if the obstacle top has been reached
and we should lever with the back flippers. The way this parameter is
computed is by comparing the maximum upper quartile in bins 6 to 9 with
the minimum lower quartile in the same bins, if they don’t differ more than
6 cm. we can classify the terrain in front of the robot as flat.

FIGURE 3.6: Example of front flat terrain and its calculation.

3.3 Dangerous Terrain

Currently, only one safety measure has been implemented in the Blind
Traversing algorithm: if the angle at touch reaches the touch bottom angle
limit, then the hole is considered too deep, the movement is disabled and
the operator is prompted to retake manual control to manage the situation.

(A) Operator view (B) Robot before hole

FIGURE 3.7: Example of a dangerous hole and the operator view.

Safety in Blind Traversing is absolutely vital, however, it has not been a
priority for this work, given that this branch of development is still in very
early stages and there is still a lot of work to do before being able to apply
safety policies.

21

Chapter 4

Experiments and Conclusions

4.1 Experiments

The evaluation of the algorithm has been done with several experiments
traversing obstacles such as stairs, steps and some complex obstacles sim-
ulating debris or complex terrain. The traversal was succesful in any case
despite some glitches that didn’t affect beyond excess push with flippers or
abrupt movement.

The experiments are only qualitative, meaning that no metrics have been
recorded such as time to traverse or energy consumed. Given the lack of
time to develop the proper Blind Traversing algorithm, after programming
the software architecture, only one iteration of the Blind Strategies has been
done, limiting the ability to measure and compare improvements over sev-
eral versions.

4.1.1 Descending step

(A) (B) (C)

(D) (E) (F)

FIGURE 4.1: Different stages of a step descent experiment

22 Chapter 4. Experiments and Conclusions

4.1.2 Stairs traversal

Stair Climb

(A) (B)

(C) (D)

(E) (F)

(G) (H)

4.1. Experiments 23

(I) (J)

(K) (L)

(M) (N)

(O) (P)

(Q) (R)

FIGURE 4.2: Different stages of a stair climb experiment along with the
operator simulation view

24 Chapter 4. Experiments and Conclusions

Stair Descent

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I)

FIGURE 4.3: Different stages of a stair descent experiment

4.1. Experiments 25

4.1.3 Complex Obstacle

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

FIGURE 4.4: Different stages of composed pallet obstacle traversal

26 Chapter 4. Experiments and Conclusions

4.1.4 Known Issues

Although the algorithm has been refined and tuned, there are some issues
hard to solve at this point of the development but should easily addressable
with the forthcoming addition of independent left/right track estimations,
rear flipper force sensors and more richer training data set for the terrain
estimator which will include stairs and walls.

• The lever shape can get stuck in loop if the low force spot is missed or
shape is activated when not necessary. The lever shape is the only
special case of temporal coherence given that if it was disengaged
too soon the robot could destabilize heavily and even turn over. To
avoid this, when levering, the algorithm waits for the robot to stop
supporting on back flippers, which signals that the levering can be
finished. However, if the lever is triggered where it should not (e.g.
in flat terrain) it will enter a loop where the force in the back flippers
is never released and they will keep pushing the ground hopelessly.
This will be easily solvable once the rear flipper terrain estimation is
implemented.

• The front flippers can get stuck inbetween the steps of stairs when
climbing a structural stair. This is a difficult problem to solve for the
general case which is very specific for this kind of stairs. Some ideas
and possible solutions will be proposed in Section 4.3.

FIGURE 4.5: Examples of flippers stuck inbetween the steps of stairs.

• The robot cannot climb steps bigger than 20 cm. because measuring
the top pushes the robot down, the rear flippers move from the ideal
0º angle, rear levering fails to push the back of the robot up to climb
the obstacle and it starts going vertical as the robot tries to advance.

FIGURE 4.6: Examples where measuring the top of the obstacle pushes the
robot down.

4.2. Conclusions 27

• The touch operation with all flippers can lead in many cases to unsafe
situations. Especially when hovering over a downwards step, where
the rear flippers touch first the ground, lift the rear of robot and could
potentially make it fall downwards. This should be definitely consid-
ered when implementing and deploying safety policies.

• The algorithm fails to recognize unclimbable obstacles, such as a wall
or a high step. This is mainly due to the lack of training examples
for the terrain estimator, which will be further trained for this matter.
Other policies can be implemented for this matter, such as stopping
the robot if its pitch goes beyond a dangerous threshold.

4.2 Conclusions

The Blind Traversing algorithm presented in this work has been the first
attempt to address this particular problem:

• A software architecture has been built nearly from scratch that pro-
vides a flexible and modular framework for future developments.

• The algorithm is functional and reliable when used on symmetrical
simple obstacles such as steps, stairs or slopes.

The aim of this project has been to serve as a baseline to benchmark future
improvements, but more importantly, to uncover the challenges and prob-
lems to account for future development. It has also been a first approach
to this kind of traversing, that had never been implemented nor tested for
this robot, and has demonstrated that the force sensors fulfill their role and
provide the functionality and information that was expected.

The terrain estimation has proved to work better as a way for the opera-
tor to be aware of the context and environment of the robot than to use it
for robot morphology determination. At least this holds true for the hand-
crafted algorithm presented in this work, it is nearly guaranteed that a ma-
chine learning algorithm could extract and use the information in the esti-
mates far more effectively.

Throughout the development of this work it has come clear that the chal-
lenges and considerations to make for the Blind Traversing case are far more
complex and restrictive than usual:

• The environment awareness of the operator is key for this kind of
traversing, as it is critical for the operator to understand the proposed
plans and evaluate if they are adequate and safe.

• The touch operation and the stop-go motion of the algorithm is re-
ally slow and makes for long stages that make the traversing really
sluggish. This long operation makes it hard for the operator to stay
focused in the task.

• It is not clear how to return the manual control to the operator in
danger situations or when requested as the LIDAR and camera could
still not work as expected and he/she would have to maneuver the
robot over unknown terrain, leading to potentially unsafe situations.

28 Chapter 4. Experiments and Conclusions

4.3 Future Development

The Blind Traversing poses many issues and challenges that should be
addressed before it is really safe and functional to deploy. The most relevant
and important considerations to account for future development are:

• The handcrafted Stage Determination algorithm, which should even-
tually be replaced by a machine learning algorithm that can produce
better and safer decisions. However, the training of this particular
feature can be really tricky given the reactive nature of the traversing
strategies and measured terrain. To illustrate, two different strategies
to descend a step will make the tactile measuring in different places,
angles and forces, resulting in different measurements. Hence, the
training procedure and traversing strategies should be engineered for
high repeatability and consistent measures and results.

• Speeding up the overall operation of the algorithm is key. Some of the
bigger time sinks lie on the tactile measuring procedure, the terrain
estimation and the slow (but safe) advance speed and distance. Ef-
forts should be made to make the process more interactive and quick,
such as dynamically deciding where to measure and the distance and
speed for each stage. Overlapping some part of the actions on a stage
could also be an option, for example starting to lower the front flip-
pers some centimeters before reaching the measuring point. Different
advance strategies could also speed up the operation such as raising
less the front flippers if the terrain has been flat for a while, which
would reduce the time to lower and raise them. It could even be con-
sidered to automatically execute the actions if the terrain estimation
is sufficiently certain and flat (which under normal conditions should
happen quite often).

• The creation of a Stairs mode independent of the normal Blind Travers-
ing should be created given the critical requirements for traction and
special treatment of stairs. A simple clasifier could be trained from
raw tactile sensing data to detect the patterns of stair steps, once de-
tected the Stairs mode could be engaged that maintained the flat shape
of the robot while ensuring the flippers didn’t get stuck between struc-
tural stairs steps as seen in Figure 4.6.

• The independence of terrain estimations is also a big drawback, merg-
ing the different estimations in a persistent map could help to statisti-
cally improve the accuracy of estimates and greatly increase the envi-
ronment awareness of the operator. Merged with the LIDAR 3D maps
could potentially avoid measuring the terrain of previously LIDAR
scanned areas that could have been filled with smoke afterwards.

• The situational awareness by the operator is one of the most critical
parts of the project, given that a poorly informed decision could end
in a tripped over robot or even a broken one. The persistent mapping
and merging of estimations should be enough to address this issue,
however it is highly recommended to consider this problem more
thoroughly. Partial fuzzy classification on the type of terrain could
help the operator mentally classify the terrain it is traversing (stairs,

4.3. Future Development 29

carpet, pile of rocks, gravel, wood, road...) which could be inferred
from IMU data [3].

• The proposed interactivity between algorithm and operator consists
on proposing a plan for the next stage, the operator then has to con-
sider if this is safe and adequate and then confirm the decision. Other
schemes could be considered that could significantly reduce the cog-
nitive load and lead to faster results, for example, instead of waiting
for a confirmation, execute the proposed plan some seconds after the
proposition if no button is pressed. Essentially, reduce the require-
ment for the operator to quickly understand and process the informa-
tion before the algorithm can continue.

31

Bibliography

[1] G.J.M. Kruijff et al. “Designing, developing, and deploying systems to
support human–robot teams in disaster response”. In: Advanced Robotics
28.23 (2014), pp. 1547–1570. URL: http://dx.doi.org/10.1080/
01691864.2014.985335.

[2] Vojtech Salansky et al. “Touching without vision: terrain perception
in sensory deprived environments”. In: 21st Computer Vision Winter
Workshop 21 (Feb. 2016). URL: http://vision.fe.uni-lj.si/
cvww2016/proceedings/1.

[3] Christian Weiss, Holger Fröhlich, and Andreas Zell. “Vibration-based
Terrain Classification Using Support Vector Machines”. In: 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (Oct. 2006), pp. 4429
–4434.

[4] Karel Zimmermann et al. “Adaptive Traversability of unknown com-
plex terrain with obstacles for mobile robots”. In: (2014), pp. 5177–
5182. ISSN: 1050-4729. DOI: 10.1109/ICRA.2014.6907619.

http://dx.doi.org/10.1080/01691864.2014.985335
http://dx.doi.org/10.1080/01691864.2014.985335
http://vision.fe.uni-lj.si/cvww2016/proceedings/1
http://vision.fe.uni-lj.si/cvww2016/proceedings/1
http://dx.doi.org/10.1109/ICRA.2014.6907619

	Abstract
	Introduction
	The TRADR Research Project
	TRADR Project Motivation

	The NIFTi ground rover
	Goals of this work
	Motivation
	Flipper's force sensor array
	Development of a Blind Traversing Algorithm

	Technical Specifications and Planning

	The Blind Traversing Algorithm
	Algorithm Overview
	Traversing with only proprioceptive sensors

	Software Architecture
	The Robot Operating System (ROS)
	Blind Traversing Node Graph
	The Blind Traversing Node

	Blind Traversing Strategies and Stage Determination
	Blind Traversing Strategies
	Stage Determination
	Strategy Design Overview
	Stage Determination Decision Algorithm
	Terrain Analysis

	Dangerous Terrain

	Experiments and Conclusions
	Experiments
	Descending step
	Stairs traversal
	Complex Obstacle
	Known Issues

	Conclusions
	Future Development

	Bibliography

